blob: 726de4f4df0189240bea16888daeb65744f35bed [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* SMP related functions
*
* Copyright IBM Corp. 1999, 2012
* Author(s): Denis Joseph Barrow,
* Martin Schwidefsky <schwidefsky@de.ibm.com>,
*
* based on other smp stuff by
* (c) 1995 Alan Cox, CymruNET Ltd <alan@cymru.net>
* (c) 1998 Ingo Molnar
*
* The code outside of smp.c uses logical cpu numbers, only smp.c does
* the translation of logical to physical cpu ids. All new code that
* operates on physical cpu numbers needs to go into smp.c.
*/
#define KMSG_COMPONENT "cpu"
#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
#include <linux/workqueue.h>
#include <linux/memblock.h>
#include <linux/export.h>
#include <linux/init.h>
#include <linux/mm.h>
#include <linux/err.h>
#include <linux/spinlock.h>
#include <linux/kernel_stat.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/irqflags.h>
#include <linux/irq_work.h>
#include <linux/cpu.h>
#include <linux/slab.h>
#include <linux/sched/hotplug.h>
#include <linux/sched/task_stack.h>
#include <linux/crash_dump.h>
#include <linux/kprobes.h>
#include <asm/asm-offsets.h>
#include <asm/diag.h>
#include <asm/switch_to.h>
#include <asm/facility.h>
#include <asm/ipl.h>
#include <asm/setup.h>
#include <asm/irq.h>
#include <asm/tlbflush.h>
#include <asm/vtimer.h>
#include <asm/abs_lowcore.h>
#include <asm/sclp.h>
#include <asm/debug.h>
#include <asm/os_info.h>
#include <asm/sigp.h>
#include <asm/idle.h>
#include <asm/nmi.h>
#include <asm/stacktrace.h>
#include <asm/topology.h>
#include <asm/vdso.h>
#include <asm/maccess.h>
#include "entry.h"
enum {
ec_schedule = 0,
ec_call_function_single,
ec_stop_cpu,
ec_mcck_pending,
ec_irq_work,
};
enum {
CPU_STATE_STANDBY,
CPU_STATE_CONFIGURED,
};
static DEFINE_PER_CPU(struct cpu *, cpu_device);
struct pcpu {
unsigned long ec_mask; /* bit mask for ec_xxx functions */
unsigned long ec_clk; /* sigp timestamp for ec_xxx */
signed char state; /* physical cpu state */
signed char polarization; /* physical polarization */
u16 address; /* physical cpu address */
};
static u8 boot_core_type;
static struct pcpu pcpu_devices[NR_CPUS];
unsigned int smp_cpu_mt_shift;
EXPORT_SYMBOL(smp_cpu_mt_shift);
unsigned int smp_cpu_mtid;
EXPORT_SYMBOL(smp_cpu_mtid);
#ifdef CONFIG_CRASH_DUMP
__vector128 __initdata boot_cpu_vector_save_area[__NUM_VXRS];
#endif
static unsigned int smp_max_threads __initdata = -1U;
cpumask_t cpu_setup_mask;
static int __init early_nosmt(char *s)
{
smp_max_threads = 1;
return 0;
}
early_param("nosmt", early_nosmt);
static int __init early_smt(char *s)
{
get_option(&s, &smp_max_threads);
return 0;
}
early_param("smt", early_smt);
/*
* The smp_cpu_state_mutex must be held when changing the state or polarization
* member of a pcpu data structure within the pcpu_devices arreay.
*/
DEFINE_MUTEX(smp_cpu_state_mutex);
/*
* Signal processor helper functions.
*/
static inline int __pcpu_sigp_relax(u16 addr, u8 order, unsigned long parm)
{
int cc;
while (1) {
cc = __pcpu_sigp(addr, order, parm, NULL);
if (cc != SIGP_CC_BUSY)
return cc;
cpu_relax();
}
}
static int pcpu_sigp_retry(struct pcpu *pcpu, u8 order, u32 parm)
{
int cc, retry;
for (retry = 0; ; retry++) {
cc = __pcpu_sigp(pcpu->address, order, parm, NULL);
if (cc != SIGP_CC_BUSY)
break;
if (retry >= 3)
udelay(10);
}
return cc;
}
static inline int pcpu_stopped(struct pcpu *pcpu)
{
u32 status;
if (__pcpu_sigp(pcpu->address, SIGP_SENSE,
0, &status) != SIGP_CC_STATUS_STORED)
return 0;
return !!(status & (SIGP_STATUS_CHECK_STOP|SIGP_STATUS_STOPPED));
}
static inline int pcpu_running(struct pcpu *pcpu)
{
if (__pcpu_sigp(pcpu->address, SIGP_SENSE_RUNNING,
0, NULL) != SIGP_CC_STATUS_STORED)
return 1;
/* Status stored condition code is equivalent to cpu not running. */
return 0;
}
/*
* Find struct pcpu by cpu address.
*/
static struct pcpu *pcpu_find_address(const struct cpumask *mask, u16 address)
{
int cpu;
for_each_cpu(cpu, mask)
if (pcpu_devices[cpu].address == address)
return pcpu_devices + cpu;
return NULL;
}
static void pcpu_ec_call(struct pcpu *pcpu, int ec_bit)
{
int order;
if (test_and_set_bit(ec_bit, &pcpu->ec_mask))
return;
order = pcpu_running(pcpu) ? SIGP_EXTERNAL_CALL : SIGP_EMERGENCY_SIGNAL;
pcpu->ec_clk = get_tod_clock_fast();
pcpu_sigp_retry(pcpu, order, 0);
}
static int pcpu_alloc_lowcore(struct pcpu *pcpu, int cpu)
{
unsigned long async_stack, nodat_stack, mcck_stack;
struct lowcore *lc;
lc = (struct lowcore *) __get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
nodat_stack = __get_free_pages(GFP_KERNEL, THREAD_SIZE_ORDER);
async_stack = stack_alloc();
mcck_stack = stack_alloc();
if (!lc || !nodat_stack || !async_stack || !mcck_stack)
goto out;
memcpy(lc, &S390_lowcore, 512);
memset((char *) lc + 512, 0, sizeof(*lc) - 512);
lc->async_stack = async_stack + STACK_INIT_OFFSET;
lc->nodat_stack = nodat_stack + STACK_INIT_OFFSET;
lc->mcck_stack = mcck_stack + STACK_INIT_OFFSET;
lc->cpu_nr = cpu;
lc->spinlock_lockval = arch_spin_lockval(cpu);
lc->spinlock_index = 0;
lc->return_lpswe = gen_lpswe(__LC_RETURN_PSW);
lc->return_mcck_lpswe = gen_lpswe(__LC_RETURN_MCCK_PSW);
lc->preempt_count = PREEMPT_DISABLED;
if (nmi_alloc_mcesa(&lc->mcesad))
goto out;
if (abs_lowcore_map(cpu, lc, true))
goto out_mcesa;
lowcore_ptr[cpu] = lc;
pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, __pa(lc));
return 0;
out_mcesa:
nmi_free_mcesa(&lc->mcesad);
out:
stack_free(mcck_stack);
stack_free(async_stack);
free_pages(nodat_stack, THREAD_SIZE_ORDER);
free_pages((unsigned long) lc, LC_ORDER);
return -ENOMEM;
}
static void pcpu_free_lowcore(struct pcpu *pcpu)
{
unsigned long async_stack, nodat_stack, mcck_stack;
struct lowcore *lc;
int cpu;
cpu = pcpu - pcpu_devices;
lc = lowcore_ptr[cpu];
nodat_stack = lc->nodat_stack - STACK_INIT_OFFSET;
async_stack = lc->async_stack - STACK_INIT_OFFSET;
mcck_stack = lc->mcck_stack - STACK_INIT_OFFSET;
pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, 0);
lowcore_ptr[cpu] = NULL;
abs_lowcore_unmap(cpu);
nmi_free_mcesa(&lc->mcesad);
stack_free(async_stack);
stack_free(mcck_stack);
free_pages(nodat_stack, THREAD_SIZE_ORDER);
free_pages((unsigned long) lc, LC_ORDER);
}
static void pcpu_prepare_secondary(struct pcpu *pcpu, int cpu)
{
struct lowcore *lc = lowcore_ptr[cpu];
cpumask_set_cpu(cpu, &init_mm.context.cpu_attach_mask);
cpumask_set_cpu(cpu, mm_cpumask(&init_mm));
lc->cpu_nr = cpu;
lc->restart_flags = RESTART_FLAG_CTLREGS;
lc->spinlock_lockval = arch_spin_lockval(cpu);
lc->spinlock_index = 0;
lc->percpu_offset = __per_cpu_offset[cpu];
lc->kernel_asce = S390_lowcore.kernel_asce;
lc->user_asce = s390_invalid_asce;
lc->machine_flags = S390_lowcore.machine_flags;
lc->user_timer = lc->system_timer =
lc->steal_timer = lc->avg_steal_timer = 0;
__ctl_store(lc->cregs_save_area, 0, 15);
lc->cregs_save_area[1] = lc->kernel_asce;
lc->cregs_save_area[7] = lc->user_asce;
save_access_regs((unsigned int *) lc->access_regs_save_area);
arch_spin_lock_setup(cpu);
}
static void pcpu_attach_task(struct pcpu *pcpu, struct task_struct *tsk)
{
struct lowcore *lc;
int cpu;
cpu = pcpu - pcpu_devices;
lc = lowcore_ptr[cpu];
lc->kernel_stack = (unsigned long)task_stack_page(tsk) + STACK_INIT_OFFSET;
lc->current_task = (unsigned long)tsk;
lc->lpp = LPP_MAGIC;
lc->current_pid = tsk->pid;
lc->user_timer = tsk->thread.user_timer;
lc->guest_timer = tsk->thread.guest_timer;
lc->system_timer = tsk->thread.system_timer;
lc->hardirq_timer = tsk->thread.hardirq_timer;
lc->softirq_timer = tsk->thread.softirq_timer;
lc->steal_timer = 0;
}
static void pcpu_start_fn(struct pcpu *pcpu, void (*func)(void *), void *data)
{
struct lowcore *lc;
int cpu;
cpu = pcpu - pcpu_devices;
lc = lowcore_ptr[cpu];
lc->restart_stack = lc->kernel_stack;
lc->restart_fn = (unsigned long) func;
lc->restart_data = (unsigned long) data;
lc->restart_source = -1U;
pcpu_sigp_retry(pcpu, SIGP_RESTART, 0);
}
typedef void (pcpu_delegate_fn)(void *);
/*
* Call function via PSW restart on pcpu and stop the current cpu.
*/
static void __pcpu_delegate(pcpu_delegate_fn *func, void *data)
{
func(data); /* should not return */
}
static void pcpu_delegate(struct pcpu *pcpu,
pcpu_delegate_fn *func,
void *data, unsigned long stack)
{
struct lowcore *lc, *abs_lc;
unsigned int source_cpu;
lc = lowcore_ptr[pcpu - pcpu_devices];
source_cpu = stap();
if (pcpu->address == source_cpu) {
call_on_stack(2, stack, void, __pcpu_delegate,
pcpu_delegate_fn *, func, void *, data);
}
/* Stop target cpu (if func returns this stops the current cpu). */
pcpu_sigp_retry(pcpu, SIGP_STOP, 0);
pcpu_sigp_retry(pcpu, SIGP_CPU_RESET, 0);
/* Restart func on the target cpu and stop the current cpu. */
if (lc) {
lc->restart_stack = stack;
lc->restart_fn = (unsigned long)func;
lc->restart_data = (unsigned long)data;
lc->restart_source = source_cpu;
} else {
abs_lc = get_abs_lowcore();
abs_lc->restart_stack = stack;
abs_lc->restart_fn = (unsigned long)func;
abs_lc->restart_data = (unsigned long)data;
abs_lc->restart_source = source_cpu;
put_abs_lowcore(abs_lc);
}
asm volatile(
"0: sigp 0,%0,%2 # sigp restart to target cpu\n"
" brc 2,0b # busy, try again\n"
"1: sigp 0,%1,%3 # sigp stop to current cpu\n"
" brc 2,1b # busy, try again\n"
: : "d" (pcpu->address), "d" (source_cpu),
"K" (SIGP_RESTART), "K" (SIGP_STOP)
: "0", "1", "cc");
for (;;) ;
}
/*
* Enable additional logical cpus for multi-threading.
*/
static int pcpu_set_smt(unsigned int mtid)
{
int cc;
if (smp_cpu_mtid == mtid)
return 0;
cc = __pcpu_sigp(0, SIGP_SET_MULTI_THREADING, mtid, NULL);
if (cc == 0) {
smp_cpu_mtid = mtid;
smp_cpu_mt_shift = 0;
while (smp_cpu_mtid >= (1U << smp_cpu_mt_shift))
smp_cpu_mt_shift++;
pcpu_devices[0].address = stap();
}
return cc;
}
/*
* Call function on an online CPU.
*/
void smp_call_online_cpu(void (*func)(void *), void *data)
{
struct pcpu *pcpu;
/* Use the current cpu if it is online. */
pcpu = pcpu_find_address(cpu_online_mask, stap());
if (!pcpu)
/* Use the first online cpu. */
pcpu = pcpu_devices + cpumask_first(cpu_online_mask);
pcpu_delegate(pcpu, func, data, (unsigned long) restart_stack);
}
/*
* Call function on the ipl CPU.
*/
void smp_call_ipl_cpu(void (*func)(void *), void *data)
{
struct lowcore *lc = lowcore_ptr[0];
if (pcpu_devices[0].address == stap())
lc = &S390_lowcore;
pcpu_delegate(&pcpu_devices[0], func, data,
lc->nodat_stack);
}
int smp_find_processor_id(u16 address)
{
int cpu;
for_each_present_cpu(cpu)
if (pcpu_devices[cpu].address == address)
return cpu;
return -1;
}
void schedule_mcck_handler(void)
{
pcpu_ec_call(pcpu_devices + smp_processor_id(), ec_mcck_pending);
}
bool notrace arch_vcpu_is_preempted(int cpu)
{
if (test_cpu_flag_of(CIF_ENABLED_WAIT, cpu))
return false;
if (pcpu_running(pcpu_devices + cpu))
return false;
return true;
}
EXPORT_SYMBOL(arch_vcpu_is_preempted);
void notrace smp_yield_cpu(int cpu)
{
if (!MACHINE_HAS_DIAG9C)
return;
diag_stat_inc_norecursion(DIAG_STAT_X09C);
asm volatile("diag %0,0,0x9c"
: : "d" (pcpu_devices[cpu].address));
}
EXPORT_SYMBOL_GPL(smp_yield_cpu);
/*
* Send cpus emergency shutdown signal. This gives the cpus the
* opportunity to complete outstanding interrupts.
*/
void notrace smp_emergency_stop(void)
{
static arch_spinlock_t lock = __ARCH_SPIN_LOCK_UNLOCKED;
static cpumask_t cpumask;
u64 end;
int cpu;
arch_spin_lock(&lock);
cpumask_copy(&cpumask, cpu_online_mask);
cpumask_clear_cpu(smp_processor_id(), &cpumask);
end = get_tod_clock() + (1000000UL << 12);
for_each_cpu(cpu, &cpumask) {
struct pcpu *pcpu = pcpu_devices + cpu;
set_bit(ec_stop_cpu, &pcpu->ec_mask);
while (__pcpu_sigp(pcpu->address, SIGP_EMERGENCY_SIGNAL,
0, NULL) == SIGP_CC_BUSY &&
get_tod_clock() < end)
cpu_relax();
}
while (get_tod_clock() < end) {
for_each_cpu(cpu, &cpumask)
if (pcpu_stopped(pcpu_devices + cpu))
cpumask_clear_cpu(cpu, &cpumask);
if (cpumask_empty(&cpumask))
break;
cpu_relax();
}
arch_spin_unlock(&lock);
}
NOKPROBE_SYMBOL(smp_emergency_stop);
/*
* Stop all cpus but the current one.
*/
void smp_send_stop(void)
{
int cpu;
/* Disable all interrupts/machine checks */
__load_psw_mask(PSW_KERNEL_BITS);
trace_hardirqs_off();
debug_set_critical();
if (oops_in_progress)
smp_emergency_stop();
/* stop all processors */
for_each_online_cpu(cpu) {
if (cpu == smp_processor_id())
continue;
pcpu_sigp_retry(pcpu_devices + cpu, SIGP_STOP, 0);
while (!pcpu_stopped(pcpu_devices + cpu))
cpu_relax();
}
}
/*
* This is the main routine where commands issued by other
* cpus are handled.
*/
static void smp_handle_ext_call(void)
{
unsigned long bits;
/* handle bit signal external calls */
bits = xchg(&pcpu_devices[smp_processor_id()].ec_mask, 0);
if (test_bit(ec_stop_cpu, &bits))
smp_stop_cpu();
if (test_bit(ec_schedule, &bits))
scheduler_ipi();
if (test_bit(ec_call_function_single, &bits))
generic_smp_call_function_single_interrupt();
if (test_bit(ec_mcck_pending, &bits))
s390_handle_mcck();
if (test_bit(ec_irq_work, &bits))
irq_work_run();
}
static void do_ext_call_interrupt(struct ext_code ext_code,
unsigned int param32, unsigned long param64)
{
inc_irq_stat(ext_code.code == 0x1202 ? IRQEXT_EXC : IRQEXT_EMS);
smp_handle_ext_call();
}
void arch_send_call_function_ipi_mask(const struct cpumask *mask)
{
int cpu;
for_each_cpu(cpu, mask)
pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
}
void arch_send_call_function_single_ipi(int cpu)
{
pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
}
/*
* this function sends a 'reschedule' IPI to another CPU.
* it goes straight through and wastes no time serializing
* anything. Worst case is that we lose a reschedule ...
*/
void arch_smp_send_reschedule(int cpu)
{
pcpu_ec_call(pcpu_devices + cpu, ec_schedule);
}
#ifdef CONFIG_IRQ_WORK
void arch_irq_work_raise(void)
{
pcpu_ec_call(pcpu_devices + smp_processor_id(), ec_irq_work);
}
#endif
/*
* parameter area for the set/clear control bit callbacks
*/
struct ec_creg_mask_parms {
unsigned long orval;
unsigned long andval;
int cr;
};
/*
* callback for setting/clearing control bits
*/
static void smp_ctl_bit_callback(void *info)
{
struct ec_creg_mask_parms *pp = info;
unsigned long cregs[16];
__ctl_store(cregs, 0, 15);
cregs[pp->cr] = (cregs[pp->cr] & pp->andval) | pp->orval;
__ctl_load(cregs, 0, 15);
}
static DEFINE_SPINLOCK(ctl_lock);
void smp_ctl_set_clear_bit(int cr, int bit, bool set)
{
struct ec_creg_mask_parms parms = { .cr = cr, };
struct lowcore *abs_lc;
u64 ctlreg;
if (set) {
parms.orval = 1UL << bit;
parms.andval = -1UL;
} else {
parms.orval = 0;
parms.andval = ~(1UL << bit);
}
spin_lock(&ctl_lock);
abs_lc = get_abs_lowcore();
ctlreg = abs_lc->cregs_save_area[cr];
ctlreg = (ctlreg & parms.andval) | parms.orval;
abs_lc->cregs_save_area[cr] = ctlreg;
put_abs_lowcore(abs_lc);
spin_unlock(&ctl_lock);
on_each_cpu(smp_ctl_bit_callback, &parms, 1);
}
EXPORT_SYMBOL(smp_ctl_set_clear_bit);
#ifdef CONFIG_CRASH_DUMP
int smp_store_status(int cpu)
{
struct lowcore *lc;
struct pcpu *pcpu;
unsigned long pa;
pcpu = pcpu_devices + cpu;
lc = lowcore_ptr[cpu];
pa = __pa(&lc->floating_pt_save_area);
if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_STATUS_AT_ADDRESS,
pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
return -EIO;
if (!MACHINE_HAS_VX && !MACHINE_HAS_GS)
return 0;
pa = lc->mcesad & MCESA_ORIGIN_MASK;
if (MACHINE_HAS_GS)
pa |= lc->mcesad & MCESA_LC_MASK;
if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_ADDITIONAL_STATUS,
pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
return -EIO;
return 0;
}
/*
* Collect CPU state of the previous, crashed system.
* There are four cases:
* 1) standard zfcp/nvme dump
* condition: OLDMEM_BASE == NULL && is_ipl_type_dump() == true
* The state for all CPUs except the boot CPU needs to be collected
* with sigp stop-and-store-status. The boot CPU state is located in
* the absolute lowcore of the memory stored in the HSA. The zcore code
* will copy the boot CPU state from the HSA.
* 2) stand-alone kdump for SCSI/NVMe (zfcp/nvme dump with swapped memory)
* condition: OLDMEM_BASE != NULL && is_ipl_type_dump() == true
* The state for all CPUs except the boot CPU needs to be collected
* with sigp stop-and-store-status. The firmware or the boot-loader
* stored the registers of the boot CPU in the absolute lowcore in the
* memory of the old system.
* 3) kdump and the old kernel did not store the CPU state,
* or stand-alone kdump for DASD
* condition: OLDMEM_BASE != NULL && !is_kdump_kernel()
* The state for all CPUs except the boot CPU needs to be collected
* with sigp stop-and-store-status. The kexec code or the boot-loader
* stored the registers of the boot CPU in the memory of the old system.
* 4) kdump and the old kernel stored the CPU state
* condition: OLDMEM_BASE != NULL && is_kdump_kernel()
* This case does not exist for s390 anymore, setup_arch explicitly
* deactivates the elfcorehdr= kernel parameter
*/
static bool dump_available(void)
{
return oldmem_data.start || is_ipl_type_dump();
}
void __init smp_save_dump_ipl_cpu(void)
{
struct save_area *sa;
void *regs;
if (!dump_available())
return;
sa = save_area_alloc(true);
regs = memblock_alloc(512, 8);
if (!sa || !regs)
panic("could not allocate memory for boot CPU save area\n");
copy_oldmem_kernel(regs, __LC_FPREGS_SAVE_AREA, 512);
save_area_add_regs(sa, regs);
memblock_free(regs, 512);
if (MACHINE_HAS_VX)
save_area_add_vxrs(sa, boot_cpu_vector_save_area);
}
void __init smp_save_dump_secondary_cpus(void)
{
int addr, boot_cpu_addr, max_cpu_addr;
struct save_area *sa;
void *page;
if (!dump_available())
return;
/* Allocate a page as dumping area for the store status sigps */
page = memblock_alloc_low(PAGE_SIZE, PAGE_SIZE);
if (!page)
panic("ERROR: Failed to allocate %lx bytes below %lx\n",
PAGE_SIZE, 1UL << 31);
/* Set multi-threading state to the previous system. */
pcpu_set_smt(sclp.mtid_prev);
boot_cpu_addr = stap();
max_cpu_addr = SCLP_MAX_CORES << sclp.mtid_prev;
for (addr = 0; addr <= max_cpu_addr; addr++) {
if (addr == boot_cpu_addr)
continue;
if (__pcpu_sigp_relax(addr, SIGP_SENSE, 0) ==
SIGP_CC_NOT_OPERATIONAL)
continue;
sa = save_area_alloc(false);
if (!sa)
panic("could not allocate memory for save area\n");
__pcpu_sigp_relax(addr, SIGP_STORE_STATUS_AT_ADDRESS, __pa(page));
save_area_add_regs(sa, page);
if (MACHINE_HAS_VX) {
__pcpu_sigp_relax(addr, SIGP_STORE_ADDITIONAL_STATUS, __pa(page));
save_area_add_vxrs(sa, page);
}
}
memblock_free(page, PAGE_SIZE);
diag_amode31_ops.diag308_reset();
pcpu_set_smt(0);
}
#endif /* CONFIG_CRASH_DUMP */
void smp_cpu_set_polarization(int cpu, int val)
{
pcpu_devices[cpu].polarization = val;
}
int smp_cpu_get_polarization(int cpu)
{
return pcpu_devices[cpu].polarization;
}
int smp_cpu_get_cpu_address(int cpu)
{
return pcpu_devices[cpu].address;
}
static void __ref smp_get_core_info(struct sclp_core_info *info, int early)
{
static int use_sigp_detection;
int address;
if (use_sigp_detection || sclp_get_core_info(info, early)) {
use_sigp_detection = 1;
for (address = 0;
address < (SCLP_MAX_CORES << smp_cpu_mt_shift);
address += (1U << smp_cpu_mt_shift)) {
if (__pcpu_sigp_relax(address, SIGP_SENSE, 0) ==
SIGP_CC_NOT_OPERATIONAL)
continue;
info->core[info->configured].core_id =
address >> smp_cpu_mt_shift;
info->configured++;
}
info->combined = info->configured;
}
}
static int smp_add_present_cpu(int cpu);
static int smp_add_core(struct sclp_core_entry *core, cpumask_t *avail,
bool configured, bool early)
{
struct pcpu *pcpu;
int cpu, nr, i;
u16 address;
nr = 0;
if (sclp.has_core_type && core->type != boot_core_type)
return nr;
cpu = cpumask_first(avail);
address = core->core_id << smp_cpu_mt_shift;
for (i = 0; (i <= smp_cpu_mtid) && (cpu < nr_cpu_ids); i++) {
if (pcpu_find_address(cpu_present_mask, address + i))
continue;
pcpu = pcpu_devices + cpu;
pcpu->address = address + i;
if (configured)
pcpu->state = CPU_STATE_CONFIGURED;
else
pcpu->state = CPU_STATE_STANDBY;
smp_cpu_set_polarization(cpu, POLARIZATION_UNKNOWN);
set_cpu_present(cpu, true);
if (!early && smp_add_present_cpu(cpu) != 0)
set_cpu_present(cpu, false);
else
nr++;
cpumask_clear_cpu(cpu, avail);
cpu = cpumask_next(cpu, avail);
}
return nr;
}
static int __smp_rescan_cpus(struct sclp_core_info *info, bool early)
{
struct sclp_core_entry *core;
static cpumask_t avail;
bool configured;
u16 core_id;
int nr, i;
cpus_read_lock();
mutex_lock(&smp_cpu_state_mutex);
nr = 0;
cpumask_xor(&avail, cpu_possible_mask, cpu_present_mask);
/*
* Add IPL core first (which got logical CPU number 0) to make sure
* that all SMT threads get subsequent logical CPU numbers.
*/
if (early) {
core_id = pcpu_devices[0].address >> smp_cpu_mt_shift;
for (i = 0; i < info->configured; i++) {
core = &info->core[i];
if (core->core_id == core_id) {
nr += smp_add_core(core, &avail, true, early);
break;
}
}
}
for (i = 0; i < info->combined; i++) {
configured = i < info->configured;
nr += smp_add_core(&info->core[i], &avail, configured, early);
}
mutex_unlock(&smp_cpu_state_mutex);
cpus_read_unlock();
return nr;
}
void __init smp_detect_cpus(void)
{
unsigned int cpu, mtid, c_cpus, s_cpus;
struct sclp_core_info *info;
u16 address;
/* Get CPU information */
info = memblock_alloc(sizeof(*info), 8);
if (!info)
panic("%s: Failed to allocate %zu bytes align=0x%x\n",
__func__, sizeof(*info), 8);
smp_get_core_info(info, 1);
/* Find boot CPU type */
if (sclp.has_core_type) {
address = stap();
for (cpu = 0; cpu < info->combined; cpu++)
if (info->core[cpu].core_id == address) {
/* The boot cpu dictates the cpu type. */
boot_core_type = info->core[cpu].type;
break;
}
if (cpu >= info->combined)
panic("Could not find boot CPU type");
}
/* Set multi-threading state for the current system */
mtid = boot_core_type ? sclp.mtid : sclp.mtid_cp;
mtid = (mtid < smp_max_threads) ? mtid : smp_max_threads - 1;
pcpu_set_smt(mtid);
/* Print number of CPUs */
c_cpus = s_cpus = 0;
for (cpu = 0; cpu < info->combined; cpu++) {
if (sclp.has_core_type &&
info->core[cpu].type != boot_core_type)
continue;
if (cpu < info->configured)
c_cpus += smp_cpu_mtid + 1;
else
s_cpus += smp_cpu_mtid + 1;
}
pr_info("%d configured CPUs, %d standby CPUs\n", c_cpus, s_cpus);
/* Add CPUs present at boot */
__smp_rescan_cpus(info, true);
memblock_free(info, sizeof(*info));
}
/*
* Activate a secondary processor.
*/
static void smp_start_secondary(void *cpuvoid)
{
int cpu = raw_smp_processor_id();
S390_lowcore.last_update_clock = get_tod_clock();
S390_lowcore.restart_stack = (unsigned long)restart_stack;
S390_lowcore.restart_fn = (unsigned long)do_restart;
S390_lowcore.restart_data = 0;
S390_lowcore.restart_source = -1U;
S390_lowcore.restart_flags = 0;
restore_access_regs(S390_lowcore.access_regs_save_area);
cpu_init();
rcu_cpu_starting(cpu);
init_cpu_timer();
vtime_init();
vdso_getcpu_init();
pfault_init();
cpumask_set_cpu(cpu, &cpu_setup_mask);
update_cpu_masks();
notify_cpu_starting(cpu);
if (topology_cpu_dedicated(cpu))
set_cpu_flag(CIF_DEDICATED_CPU);
else
clear_cpu_flag(CIF_DEDICATED_CPU);
set_cpu_online(cpu, true);
inc_irq_stat(CPU_RST);
local_irq_enable();
cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
}
/* Upping and downing of CPUs */
int __cpu_up(unsigned int cpu, struct task_struct *tidle)
{
struct pcpu *pcpu = pcpu_devices + cpu;
int rc;
if (pcpu->state != CPU_STATE_CONFIGURED)
return -EIO;
if (pcpu_sigp_retry(pcpu, SIGP_INITIAL_CPU_RESET, 0) !=
SIGP_CC_ORDER_CODE_ACCEPTED)
return -EIO;
rc = pcpu_alloc_lowcore(pcpu, cpu);
if (rc)
return rc;
pcpu_prepare_secondary(pcpu, cpu);
pcpu_attach_task(pcpu, tidle);
pcpu_start_fn(pcpu, smp_start_secondary, NULL);
/* Wait until cpu puts itself in the online & active maps */
while (!cpu_online(cpu))
cpu_relax();
return 0;
}
static unsigned int setup_possible_cpus __initdata;
static int __init _setup_possible_cpus(char *s)
{
get_option(&s, &setup_possible_cpus);
return 0;
}
early_param("possible_cpus", _setup_possible_cpus);
int __cpu_disable(void)
{
unsigned long cregs[16];
int cpu;
/* Handle possible pending IPIs */
smp_handle_ext_call();
cpu = smp_processor_id();
set_cpu_online(cpu, false);
cpumask_clear_cpu(cpu, &cpu_setup_mask);
update_cpu_masks();
/* Disable pseudo page faults on this cpu. */
pfault_fini();
/* Disable interrupt sources via control register. */
__ctl_store(cregs, 0, 15);
cregs[0] &= ~0x0000ee70UL; /* disable all external interrupts */
cregs[6] &= ~0xff000000UL; /* disable all I/O interrupts */
cregs[14] &= ~0x1f000000UL; /* disable most machine checks */
__ctl_load(cregs, 0, 15);
clear_cpu_flag(CIF_NOHZ_DELAY);
return 0;
}
void __cpu_die(unsigned int cpu)
{
struct pcpu *pcpu;
/* Wait until target cpu is down */
pcpu = pcpu_devices + cpu;
while (!pcpu_stopped(pcpu))
cpu_relax();
pcpu_free_lowcore(pcpu);
cpumask_clear_cpu(cpu, mm_cpumask(&init_mm));
cpumask_clear_cpu(cpu, &init_mm.context.cpu_attach_mask);
}
void __noreturn cpu_die(void)
{
idle_task_exit();
pcpu_sigp_retry(pcpu_devices + smp_processor_id(), SIGP_STOP, 0);
for (;;) ;
}
void __init smp_fill_possible_mask(void)
{
unsigned int possible, sclp_max, cpu;
sclp_max = max(sclp.mtid, sclp.mtid_cp) + 1;
sclp_max = min(smp_max_threads, sclp_max);
sclp_max = (sclp.max_cores * sclp_max) ?: nr_cpu_ids;
possible = setup_possible_cpus ?: nr_cpu_ids;
possible = min(possible, sclp_max);
for (cpu = 0; cpu < possible && cpu < nr_cpu_ids; cpu++)
set_cpu_possible(cpu, true);
}
void __init smp_prepare_cpus(unsigned int max_cpus)
{
/* request the 0x1201 emergency signal external interrupt */
if (register_external_irq(EXT_IRQ_EMERGENCY_SIG, do_ext_call_interrupt))
panic("Couldn't request external interrupt 0x1201");
/* request the 0x1202 external call external interrupt */
if (register_external_irq(EXT_IRQ_EXTERNAL_CALL, do_ext_call_interrupt))
panic("Couldn't request external interrupt 0x1202");
}
void __init smp_prepare_boot_cpu(void)
{
struct pcpu *pcpu = pcpu_devices;
WARN_ON(!cpu_present(0) || !cpu_online(0));
pcpu->state = CPU_STATE_CONFIGURED;
S390_lowcore.percpu_offset = __per_cpu_offset[0];
smp_cpu_set_polarization(0, POLARIZATION_UNKNOWN);
}
void __init smp_setup_processor_id(void)
{
pcpu_devices[0].address = stap();
S390_lowcore.cpu_nr = 0;
S390_lowcore.spinlock_lockval = arch_spin_lockval(0);
S390_lowcore.spinlock_index = 0;
}
/*
* the frequency of the profiling timer can be changed
* by writing a multiplier value into /proc/profile.
*
* usually you want to run this on all CPUs ;)
*/
int setup_profiling_timer(unsigned int multiplier)
{
return 0;
}
static ssize_t cpu_configure_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
ssize_t count;
mutex_lock(&smp_cpu_state_mutex);
count = sprintf(buf, "%d\n", pcpu_devices[dev->id].state);
mutex_unlock(&smp_cpu_state_mutex);
return count;
}
static ssize_t cpu_configure_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct pcpu *pcpu;
int cpu, val, rc, i;
char delim;
if (sscanf(buf, "%d %c", &val, &delim) != 1)
return -EINVAL;
if (val != 0 && val != 1)
return -EINVAL;
cpus_read_lock();
mutex_lock(&smp_cpu_state_mutex);
rc = -EBUSY;
/* disallow configuration changes of online cpus and cpu 0 */
cpu = dev->id;
cpu = smp_get_base_cpu(cpu);
if (cpu == 0)
goto out;
for (i = 0; i <= smp_cpu_mtid; i++)
if (cpu_online(cpu + i))
goto out;
pcpu = pcpu_devices + cpu;
rc = 0;
switch (val) {
case 0:
if (pcpu->state != CPU_STATE_CONFIGURED)
break;
rc = sclp_core_deconfigure(pcpu->address >> smp_cpu_mt_shift);
if (rc)
break;
for (i = 0; i <= smp_cpu_mtid; i++) {
if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
continue;
pcpu[i].state = CPU_STATE_STANDBY;
smp_cpu_set_polarization(cpu + i,
POLARIZATION_UNKNOWN);
}
topology_expect_change();
break;
case 1:
if (pcpu->state != CPU_STATE_STANDBY)
break;
rc = sclp_core_configure(pcpu->address >> smp_cpu_mt_shift);
if (rc)
break;
for (i = 0; i <= smp_cpu_mtid; i++) {
if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
continue;
pcpu[i].state = CPU_STATE_CONFIGURED;
smp_cpu_set_polarization(cpu + i,
POLARIZATION_UNKNOWN);
}
topology_expect_change();
break;
default:
break;
}
out:
mutex_unlock(&smp_cpu_state_mutex);
cpus_read_unlock();
return rc ? rc : count;
}
static DEVICE_ATTR(configure, 0644, cpu_configure_show, cpu_configure_store);
static ssize_t show_cpu_address(struct device *dev,
struct device_attribute *attr, char *buf)
{
return sprintf(buf, "%d\n", pcpu_devices[dev->id].address);
}
static DEVICE_ATTR(address, 0444, show_cpu_address, NULL);
static struct attribute *cpu_common_attrs[] = {
&dev_attr_configure.attr,
&dev_attr_address.attr,
NULL,
};
static struct attribute_group cpu_common_attr_group = {
.attrs = cpu_common_attrs,
};
static struct attribute *cpu_online_attrs[] = {
&dev_attr_idle_count.attr,
&dev_attr_idle_time_us.attr,
NULL,
};
static struct attribute_group cpu_online_attr_group = {
.attrs = cpu_online_attrs,
};
static int smp_cpu_online(unsigned int cpu)
{
struct device *s = &per_cpu(cpu_device, cpu)->dev;
return sysfs_create_group(&s->kobj, &cpu_online_attr_group);
}
static int smp_cpu_pre_down(unsigned int cpu)
{
struct device *s = &per_cpu(cpu_device, cpu)->dev;
sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
return 0;
}
static int smp_add_present_cpu(int cpu)
{
struct device *s;
struct cpu *c;
int rc;
c = kzalloc(sizeof(*c), GFP_KERNEL);
if (!c)
return -ENOMEM;
per_cpu(cpu_device, cpu) = c;
s = &c->dev;
c->hotpluggable = 1;
rc = register_cpu(c, cpu);
if (rc)
goto out;
rc = sysfs_create_group(&s->kobj, &cpu_common_attr_group);
if (rc)
goto out_cpu;
rc = topology_cpu_init(c);
if (rc)
goto out_topology;
return 0;
out_topology:
sysfs_remove_group(&s->kobj, &cpu_common_attr_group);
out_cpu:
unregister_cpu(c);
out:
return rc;
}
int __ref smp_rescan_cpus(void)
{
struct sclp_core_info *info;
int nr;
info = kzalloc(sizeof(*info), GFP_KERNEL);
if (!info)
return -ENOMEM;
smp_get_core_info(info, 0);
nr = __smp_rescan_cpus(info, false);
kfree(info);
if (nr)
topology_schedule_update();
return 0;
}
static ssize_t __ref rescan_store(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t count)
{
int rc;
rc = lock_device_hotplug_sysfs();
if (rc)
return rc;
rc = smp_rescan_cpus();
unlock_device_hotplug();
return rc ? rc : count;
}
static DEVICE_ATTR_WO(rescan);
static int __init s390_smp_init(void)
{
struct device *dev_root;
int cpu, rc = 0;
dev_root = bus_get_dev_root(&cpu_subsys);
if (dev_root) {
rc = device_create_file(dev_root, &dev_attr_rescan);
put_device(dev_root);
if (rc)
return rc;
}
for_each_present_cpu(cpu) {
rc = smp_add_present_cpu(cpu);
if (rc)
goto out;
}
rc = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "s390/smp:online",
smp_cpu_online, smp_cpu_pre_down);
rc = rc <= 0 ? rc : 0;
out:
return rc;
}
subsys_initcall(s390_smp_init);
static __always_inline void set_new_lowcore(struct lowcore *lc)
{
union register_pair dst, src;
u32 pfx;
src.even = (unsigned long) &S390_lowcore;
src.odd = sizeof(S390_lowcore);
dst.even = (unsigned long) lc;
dst.odd = sizeof(*lc);
pfx = __pa(lc);
asm volatile(
" mvcl %[dst],%[src]\n"
" spx %[pfx]\n"
: [dst] "+&d" (dst.pair), [src] "+&d" (src.pair)
: [pfx] "Q" (pfx)
: "memory", "cc");
}
int __init smp_reinit_ipl_cpu(void)
{
unsigned long async_stack, nodat_stack, mcck_stack;
struct lowcore *lc, *lc_ipl;
unsigned long flags, cr0;
u64 mcesad;
lc_ipl = lowcore_ptr[0];
lc = (struct lowcore *) __get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
nodat_stack = __get_free_pages(GFP_KERNEL, THREAD_SIZE_ORDER);
async_stack = stack_alloc();
mcck_stack = stack_alloc();
if (!lc || !nodat_stack || !async_stack || !mcck_stack || nmi_alloc_mcesa(&mcesad))
panic("Couldn't allocate memory");
local_irq_save(flags);
local_mcck_disable();
set_new_lowcore(lc);
S390_lowcore.nodat_stack = nodat_stack + STACK_INIT_OFFSET;
S390_lowcore.async_stack = async_stack + STACK_INIT_OFFSET;
S390_lowcore.mcck_stack = mcck_stack + STACK_INIT_OFFSET;
__ctl_store(cr0, 0, 0);
__ctl_clear_bit(0, 28); /* disable lowcore protection */
S390_lowcore.mcesad = mcesad;
__ctl_load(cr0, 0, 0);
if (abs_lowcore_map(0, lc, false))
panic("Couldn't remap absolute lowcore");
lowcore_ptr[0] = lc;
local_mcck_enable();
local_irq_restore(flags);
memblock_free_late(__pa(lc_ipl->mcck_stack - STACK_INIT_OFFSET), THREAD_SIZE);
memblock_free_late(__pa(lc_ipl->async_stack - STACK_INIT_OFFSET), THREAD_SIZE);
memblock_free_late(__pa(lc_ipl->nodat_stack - STACK_INIT_OFFSET), THREAD_SIZE);
memblock_free_late(__pa(lc_ipl), sizeof(*lc_ipl));
return 0;
}