| /* |
| * Handle caching attributes in page tables (PAT) |
| * |
| * Authors: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com> |
| * Suresh B Siddha <suresh.b.siddha@intel.com> |
| * |
| * Interval tree (augmented rbtree) used to store the PAT memory type |
| * reservations. |
| */ |
| |
| #include <linux/seq_file.h> |
| #include <linux/debugfs.h> |
| #include <linux/kernel.h> |
| #include <linux/rbtree_augmented.h> |
| #include <linux/sched.h> |
| #include <linux/gfp.h> |
| |
| #include <asm/pgtable.h> |
| #include <asm/pat.h> |
| |
| #include "pat_internal.h" |
| |
| /* |
| * The memtype tree keeps track of memory type for specific |
| * physical memory areas. Without proper tracking, conflicting memory |
| * types in different mappings can cause CPU cache corruption. |
| * |
| * The tree is an interval tree (augmented rbtree) with tree ordered |
| * on starting address. Tree can contain multiple entries for |
| * different regions which overlap. All the aliases have the same |
| * cache attributes of course. |
| * |
| * memtype_lock protects the rbtree. |
| */ |
| |
| static struct rb_root memtype_rbroot = RB_ROOT; |
| |
| static int is_node_overlap(struct memtype *node, u64 start, u64 end) |
| { |
| if (node->start >= end || node->end <= start) |
| return 0; |
| |
| return 1; |
| } |
| |
| static u64 get_subtree_max_end(struct rb_node *node) |
| { |
| u64 ret = 0; |
| if (node) { |
| struct memtype *data = container_of(node, struct memtype, rb); |
| ret = data->subtree_max_end; |
| } |
| return ret; |
| } |
| |
| static u64 compute_subtree_max_end(struct memtype *data) |
| { |
| u64 max_end = data->end, child_max_end; |
| |
| child_max_end = get_subtree_max_end(data->rb.rb_right); |
| if (child_max_end > max_end) |
| max_end = child_max_end; |
| |
| child_max_end = get_subtree_max_end(data->rb.rb_left); |
| if (child_max_end > max_end) |
| max_end = child_max_end; |
| |
| return max_end; |
| } |
| |
| RB_DECLARE_CALLBACKS(static, memtype_rb_augment_cb, struct memtype, rb, |
| u64, subtree_max_end, compute_subtree_max_end) |
| |
| /* Find the first (lowest start addr) overlapping range from rb tree */ |
| static struct memtype *memtype_rb_lowest_match(struct rb_root *root, |
| u64 start, u64 end) |
| { |
| struct rb_node *node = root->rb_node; |
| struct memtype *last_lower = NULL; |
| |
| while (node) { |
| struct memtype *data = container_of(node, struct memtype, rb); |
| |
| if (get_subtree_max_end(node->rb_left) > start) { |
| /* Lowest overlap if any must be on left side */ |
| node = node->rb_left; |
| } else if (is_node_overlap(data, start, end)) { |
| last_lower = data; |
| break; |
| } else if (start >= data->start) { |
| /* Lowest overlap if any must be on right side */ |
| node = node->rb_right; |
| } else { |
| break; |
| } |
| } |
| return last_lower; /* Returns NULL if there is no overlap */ |
| } |
| |
| enum { |
| MEMTYPE_EXACT_MATCH = 0, |
| MEMTYPE_END_MATCH = 1 |
| }; |
| |
| static struct memtype *memtype_rb_match(struct rb_root *root, |
| u64 start, u64 end, int match_type) |
| { |
| struct memtype *match; |
| |
| match = memtype_rb_lowest_match(root, start, end); |
| while (match != NULL && match->start < end) { |
| struct rb_node *node; |
| |
| if ((match_type == MEMTYPE_EXACT_MATCH) && |
| (match->start == start) && (match->end == end)) |
| return match; |
| |
| if ((match_type == MEMTYPE_END_MATCH) && |
| (match->start < start) && (match->end == end)) |
| return match; |
| |
| node = rb_next(&match->rb); |
| if (node) |
| match = container_of(node, struct memtype, rb); |
| else |
| match = NULL; |
| } |
| |
| return NULL; /* Returns NULL if there is no match */ |
| } |
| |
| static int memtype_rb_check_conflict(struct rb_root *root, |
| u64 start, u64 end, |
| enum page_cache_mode reqtype, |
| enum page_cache_mode *newtype) |
| { |
| struct rb_node *node; |
| struct memtype *match; |
| enum page_cache_mode found_type = reqtype; |
| |
| match = memtype_rb_lowest_match(&memtype_rbroot, start, end); |
| if (match == NULL) |
| goto success; |
| |
| if (match->type != found_type && newtype == NULL) |
| goto failure; |
| |
| dprintk("Overlap at 0x%Lx-0x%Lx\n", match->start, match->end); |
| found_type = match->type; |
| |
| node = rb_next(&match->rb); |
| while (node) { |
| match = container_of(node, struct memtype, rb); |
| |
| if (match->start >= end) /* Checked all possible matches */ |
| goto success; |
| |
| if (is_node_overlap(match, start, end) && |
| match->type != found_type) { |
| goto failure; |
| } |
| |
| node = rb_next(&match->rb); |
| } |
| success: |
| if (newtype) |
| *newtype = found_type; |
| |
| return 0; |
| |
| failure: |
| pr_info("x86/PAT: %s:%d conflicting memory types %Lx-%Lx %s<->%s\n", |
| current->comm, current->pid, start, end, |
| cattr_name(found_type), cattr_name(match->type)); |
| return -EBUSY; |
| } |
| |
| static void memtype_rb_insert(struct rb_root *root, struct memtype *newdata) |
| { |
| struct rb_node **node = &(root->rb_node); |
| struct rb_node *parent = NULL; |
| |
| while (*node) { |
| struct memtype *data = container_of(*node, struct memtype, rb); |
| |
| parent = *node; |
| if (data->subtree_max_end < newdata->end) |
| data->subtree_max_end = newdata->end; |
| if (newdata->start <= data->start) |
| node = &((*node)->rb_left); |
| else if (newdata->start > data->start) |
| node = &((*node)->rb_right); |
| } |
| |
| newdata->subtree_max_end = newdata->end; |
| rb_link_node(&newdata->rb, parent, node); |
| rb_insert_augmented(&newdata->rb, root, &memtype_rb_augment_cb); |
| } |
| |
| int rbt_memtype_check_insert(struct memtype *new, |
| enum page_cache_mode *ret_type) |
| { |
| int err = 0; |
| |
| err = memtype_rb_check_conflict(&memtype_rbroot, new->start, new->end, |
| new->type, ret_type); |
| |
| if (!err) { |
| if (ret_type) |
| new->type = *ret_type; |
| |
| new->subtree_max_end = new->end; |
| memtype_rb_insert(&memtype_rbroot, new); |
| } |
| return err; |
| } |
| |
| struct memtype *rbt_memtype_erase(u64 start, u64 end) |
| { |
| struct memtype *data; |
| |
| /* |
| * Since the memtype_rbroot tree allows overlapping ranges, |
| * rbt_memtype_erase() checks with EXACT_MATCH first, i.e. free |
| * a whole node for the munmap case. If no such entry is found, |
| * it then checks with END_MATCH, i.e. shrink the size of a node |
| * from the end for the mremap case. |
| */ |
| data = memtype_rb_match(&memtype_rbroot, start, end, |
| MEMTYPE_EXACT_MATCH); |
| if (!data) { |
| data = memtype_rb_match(&memtype_rbroot, start, end, |
| MEMTYPE_END_MATCH); |
| if (!data) |
| return ERR_PTR(-EINVAL); |
| } |
| |
| if (data->start == start) { |
| /* munmap: erase this node */ |
| rb_erase_augmented(&data->rb, &memtype_rbroot, |
| &memtype_rb_augment_cb); |
| } else { |
| /* mremap: update the end value of this node */ |
| rb_erase_augmented(&data->rb, &memtype_rbroot, |
| &memtype_rb_augment_cb); |
| data->end = start; |
| data->subtree_max_end = data->end; |
| memtype_rb_insert(&memtype_rbroot, data); |
| return NULL; |
| } |
| |
| return data; |
| } |
| |
| struct memtype *rbt_memtype_lookup(u64 addr) |
| { |
| struct memtype *data; |
| data = memtype_rb_lowest_match(&memtype_rbroot, addr, addr + PAGE_SIZE); |
| return data; |
| } |
| |
| #if defined(CONFIG_DEBUG_FS) |
| int rbt_memtype_copy_nth_element(struct memtype *out, loff_t pos) |
| { |
| struct rb_node *node; |
| int i = 1; |
| |
| node = rb_first(&memtype_rbroot); |
| while (node && pos != i) { |
| node = rb_next(node); |
| i++; |
| } |
| |
| if (node) { /* pos == i */ |
| struct memtype *this = container_of(node, struct memtype, rb); |
| *out = *this; |
| return 0; |
| } else { |
| return 1; |
| } |
| } |
| #endif |