|  | /* | 
|  | * drivers/clocksource/arm_global_timer.c | 
|  | * | 
|  | * Copyright (C) 2013 STMicroelectronics (R&D) Limited. | 
|  | * Author: Stuart Menefy <stuart.menefy@st.com> | 
|  | * Author: Srinivas Kandagatla <srinivas.kandagatla@st.com> | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify | 
|  | * it under the terms of the GNU General Public License version 2 as | 
|  | * published by the Free Software Foundation. | 
|  | */ | 
|  |  | 
|  | #include <linux/init.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/clocksource.h> | 
|  | #include <linux/clockchips.h> | 
|  | #include <linux/cpu.h> | 
|  | #include <linux/clk.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/err.h> | 
|  | #include <linux/io.h> | 
|  | #include <linux/of.h> | 
|  | #include <linux/of_irq.h> | 
|  | #include <linux/of_address.h> | 
|  | #include <linux/sched_clock.h> | 
|  |  | 
|  | #include <asm/cputype.h> | 
|  |  | 
|  | #define GT_COUNTER0	0x00 | 
|  | #define GT_COUNTER1	0x04 | 
|  |  | 
|  | #define GT_CONTROL	0x08 | 
|  | #define GT_CONTROL_TIMER_ENABLE		BIT(0)  /* this bit is NOT banked */ | 
|  | #define GT_CONTROL_COMP_ENABLE		BIT(1)	/* banked */ | 
|  | #define GT_CONTROL_IRQ_ENABLE		BIT(2)	/* banked */ | 
|  | #define GT_CONTROL_AUTO_INC		BIT(3)	/* banked */ | 
|  |  | 
|  | #define GT_INT_STATUS	0x0c | 
|  | #define GT_INT_STATUS_EVENT_FLAG	BIT(0) | 
|  |  | 
|  | #define GT_COMP0	0x10 | 
|  | #define GT_COMP1	0x14 | 
|  | #define GT_AUTO_INC	0x18 | 
|  |  | 
|  | /* | 
|  | * We are expecting to be clocked by the ARM peripheral clock. | 
|  | * | 
|  | * Note: it is assumed we are using a prescaler value of zero, so this is | 
|  | * the units for all operations. | 
|  | */ | 
|  | static void __iomem *gt_base; | 
|  | static unsigned long gt_clk_rate; | 
|  | static int gt_ppi; | 
|  | static struct clock_event_device __percpu *gt_evt; | 
|  |  | 
|  | /* | 
|  | * To get the value from the Global Timer Counter register proceed as follows: | 
|  | * 1. Read the upper 32-bit timer counter register | 
|  | * 2. Read the lower 32-bit timer counter register | 
|  | * 3. Read the upper 32-bit timer counter register again. If the value is | 
|  | *  different to the 32-bit upper value read previously, go back to step 2. | 
|  | *  Otherwise the 64-bit timer counter value is correct. | 
|  | */ | 
|  | static u64 notrace _gt_counter_read(void) | 
|  | { | 
|  | u64 counter; | 
|  | u32 lower; | 
|  | u32 upper, old_upper; | 
|  |  | 
|  | upper = readl_relaxed(gt_base + GT_COUNTER1); | 
|  | do { | 
|  | old_upper = upper; | 
|  | lower = readl_relaxed(gt_base + GT_COUNTER0); | 
|  | upper = readl_relaxed(gt_base + GT_COUNTER1); | 
|  | } while (upper != old_upper); | 
|  |  | 
|  | counter = upper; | 
|  | counter <<= 32; | 
|  | counter |= lower; | 
|  | return counter; | 
|  | } | 
|  |  | 
|  | static u64 gt_counter_read(void) | 
|  | { | 
|  | return _gt_counter_read(); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * To ensure that updates to comparator value register do not set the | 
|  | * Interrupt Status Register proceed as follows: | 
|  | * 1. Clear the Comp Enable bit in the Timer Control Register. | 
|  | * 2. Write the lower 32-bit Comparator Value Register. | 
|  | * 3. Write the upper 32-bit Comparator Value Register. | 
|  | * 4. Set the Comp Enable bit and, if necessary, the IRQ enable bit. | 
|  | */ | 
|  | static void gt_compare_set(unsigned long delta, int periodic) | 
|  | { | 
|  | u64 counter = gt_counter_read(); | 
|  | unsigned long ctrl; | 
|  |  | 
|  | counter += delta; | 
|  | ctrl = GT_CONTROL_TIMER_ENABLE; | 
|  | writel_relaxed(ctrl, gt_base + GT_CONTROL); | 
|  | writel_relaxed(lower_32_bits(counter), gt_base + GT_COMP0); | 
|  | writel_relaxed(upper_32_bits(counter), gt_base + GT_COMP1); | 
|  |  | 
|  | if (periodic) { | 
|  | writel_relaxed(delta, gt_base + GT_AUTO_INC); | 
|  | ctrl |= GT_CONTROL_AUTO_INC; | 
|  | } | 
|  |  | 
|  | ctrl |= GT_CONTROL_COMP_ENABLE | GT_CONTROL_IRQ_ENABLE; | 
|  | writel_relaxed(ctrl, gt_base + GT_CONTROL); | 
|  | } | 
|  |  | 
|  | static int gt_clockevent_shutdown(struct clock_event_device *evt) | 
|  | { | 
|  | unsigned long ctrl; | 
|  |  | 
|  | ctrl = readl(gt_base + GT_CONTROL); | 
|  | ctrl &= ~(GT_CONTROL_COMP_ENABLE | GT_CONTROL_IRQ_ENABLE | | 
|  | GT_CONTROL_AUTO_INC); | 
|  | writel(ctrl, gt_base + GT_CONTROL); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int gt_clockevent_set_periodic(struct clock_event_device *evt) | 
|  | { | 
|  | gt_compare_set(DIV_ROUND_CLOSEST(gt_clk_rate, HZ), 1); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int gt_clockevent_set_next_event(unsigned long evt, | 
|  | struct clock_event_device *unused) | 
|  | { | 
|  | gt_compare_set(evt, 0); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static irqreturn_t gt_clockevent_interrupt(int irq, void *dev_id) | 
|  | { | 
|  | struct clock_event_device *evt = dev_id; | 
|  |  | 
|  | if (!(readl_relaxed(gt_base + GT_INT_STATUS) & | 
|  | GT_INT_STATUS_EVENT_FLAG)) | 
|  | return IRQ_NONE; | 
|  |  | 
|  | /** | 
|  | * ERRATA 740657( Global Timer can send 2 interrupts for | 
|  | * the same event in single-shot mode) | 
|  | * Workaround: | 
|  | *	Either disable single-shot mode. | 
|  | *	Or | 
|  | *	Modify the Interrupt Handler to avoid the | 
|  | *	offending sequence. This is achieved by clearing | 
|  | *	the Global Timer flag _after_ having incremented | 
|  | *	the Comparator register	value to a higher value. | 
|  | */ | 
|  | if (clockevent_state_oneshot(evt)) | 
|  | gt_compare_set(ULONG_MAX, 0); | 
|  |  | 
|  | writel_relaxed(GT_INT_STATUS_EVENT_FLAG, gt_base + GT_INT_STATUS); | 
|  | evt->event_handler(evt); | 
|  |  | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | static int gt_starting_cpu(unsigned int cpu) | 
|  | { | 
|  | struct clock_event_device *clk = this_cpu_ptr(gt_evt); | 
|  |  | 
|  | clk->name = "arm_global_timer"; | 
|  | clk->features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT | | 
|  | CLOCK_EVT_FEAT_PERCPU; | 
|  | clk->set_state_shutdown = gt_clockevent_shutdown; | 
|  | clk->set_state_periodic = gt_clockevent_set_periodic; | 
|  | clk->set_state_oneshot = gt_clockevent_shutdown; | 
|  | clk->set_state_oneshot_stopped = gt_clockevent_shutdown; | 
|  | clk->set_next_event = gt_clockevent_set_next_event; | 
|  | clk->cpumask = cpumask_of(cpu); | 
|  | clk->rating = 300; | 
|  | clk->irq = gt_ppi; | 
|  | clockevents_config_and_register(clk, gt_clk_rate, | 
|  | 1, 0xffffffff); | 
|  | enable_percpu_irq(clk->irq, IRQ_TYPE_NONE); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int gt_dying_cpu(unsigned int cpu) | 
|  | { | 
|  | struct clock_event_device *clk = this_cpu_ptr(gt_evt); | 
|  |  | 
|  | gt_clockevent_shutdown(clk); | 
|  | disable_percpu_irq(clk->irq); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static u64 gt_clocksource_read(struct clocksource *cs) | 
|  | { | 
|  | return gt_counter_read(); | 
|  | } | 
|  |  | 
|  | static void gt_resume(struct clocksource *cs) | 
|  | { | 
|  | unsigned long ctrl; | 
|  |  | 
|  | ctrl = readl(gt_base + GT_CONTROL); | 
|  | if (!(ctrl & GT_CONTROL_TIMER_ENABLE)) | 
|  | /* re-enable timer on resume */ | 
|  | writel(GT_CONTROL_TIMER_ENABLE, gt_base + GT_CONTROL); | 
|  | } | 
|  |  | 
|  | static struct clocksource gt_clocksource = { | 
|  | .name	= "arm_global_timer", | 
|  | .rating	= 300, | 
|  | .read	= gt_clocksource_read, | 
|  | .mask	= CLOCKSOURCE_MASK(64), | 
|  | .flags	= CLOCK_SOURCE_IS_CONTINUOUS, | 
|  | .resume = gt_resume, | 
|  | }; | 
|  |  | 
|  | #ifdef CONFIG_CLKSRC_ARM_GLOBAL_TIMER_SCHED_CLOCK | 
|  | static u64 notrace gt_sched_clock_read(void) | 
|  | { | 
|  | return _gt_counter_read(); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static unsigned long gt_read_long(void) | 
|  | { | 
|  | return readl_relaxed(gt_base + GT_COUNTER0); | 
|  | } | 
|  |  | 
|  | static struct delay_timer gt_delay_timer = { | 
|  | .read_current_timer = gt_read_long, | 
|  | }; | 
|  |  | 
|  | static void __init gt_delay_timer_init(void) | 
|  | { | 
|  | gt_delay_timer.freq = gt_clk_rate; | 
|  | register_current_timer_delay(>_delay_timer); | 
|  | } | 
|  |  | 
|  | static int __init gt_clocksource_init(void) | 
|  | { | 
|  | writel(0, gt_base + GT_CONTROL); | 
|  | writel(0, gt_base + GT_COUNTER0); | 
|  | writel(0, gt_base + GT_COUNTER1); | 
|  | /* enables timer on all the cores */ | 
|  | writel(GT_CONTROL_TIMER_ENABLE, gt_base + GT_CONTROL); | 
|  |  | 
|  | #ifdef CONFIG_CLKSRC_ARM_GLOBAL_TIMER_SCHED_CLOCK | 
|  | sched_clock_register(gt_sched_clock_read, 64, gt_clk_rate); | 
|  | #endif | 
|  | return clocksource_register_hz(>_clocksource, gt_clk_rate); | 
|  | } | 
|  |  | 
|  | static int __init global_timer_of_register(struct device_node *np) | 
|  | { | 
|  | struct clk *gt_clk; | 
|  | int err = 0; | 
|  |  | 
|  | /* | 
|  | * In A9 r2p0 the comparators for each processor with the global timer | 
|  | * fire when the timer value is greater than or equal to. In previous | 
|  | * revisions the comparators fired when the timer value was equal to. | 
|  | */ | 
|  | if (read_cpuid_part() == ARM_CPU_PART_CORTEX_A9 | 
|  | && (read_cpuid_id() & 0xf0000f) < 0x200000) { | 
|  | pr_warn("global-timer: non support for this cpu version.\n"); | 
|  | return -ENOSYS; | 
|  | } | 
|  |  | 
|  | gt_ppi = irq_of_parse_and_map(np, 0); | 
|  | if (!gt_ppi) { | 
|  | pr_warn("global-timer: unable to parse irq\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | gt_base = of_iomap(np, 0); | 
|  | if (!gt_base) { | 
|  | pr_warn("global-timer: invalid base address\n"); | 
|  | return -ENXIO; | 
|  | } | 
|  |  | 
|  | gt_clk = of_clk_get(np, 0); | 
|  | if (!IS_ERR(gt_clk)) { | 
|  | err = clk_prepare_enable(gt_clk); | 
|  | if (err) | 
|  | goto out_unmap; | 
|  | } else { | 
|  | pr_warn("global-timer: clk not found\n"); | 
|  | err = -EINVAL; | 
|  | goto out_unmap; | 
|  | } | 
|  |  | 
|  | gt_clk_rate = clk_get_rate(gt_clk); | 
|  | gt_evt = alloc_percpu(struct clock_event_device); | 
|  | if (!gt_evt) { | 
|  | pr_warn("global-timer: can't allocate memory\n"); | 
|  | err = -ENOMEM; | 
|  | goto out_clk; | 
|  | } | 
|  |  | 
|  | err = request_percpu_irq(gt_ppi, gt_clockevent_interrupt, | 
|  | "gt", gt_evt); | 
|  | if (err) { | 
|  | pr_warn("global-timer: can't register interrupt %d (%d)\n", | 
|  | gt_ppi, err); | 
|  | goto out_free; | 
|  | } | 
|  |  | 
|  | /* Register and immediately configure the timer on the boot CPU */ | 
|  | err = gt_clocksource_init(); | 
|  | if (err) | 
|  | goto out_irq; | 
|  |  | 
|  | err = cpuhp_setup_state(CPUHP_AP_ARM_GLOBAL_TIMER_STARTING, | 
|  | "clockevents/arm/global_timer:starting", | 
|  | gt_starting_cpu, gt_dying_cpu); | 
|  | if (err) | 
|  | goto out_irq; | 
|  |  | 
|  | gt_delay_timer_init(); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | out_irq: | 
|  | free_percpu_irq(gt_ppi, gt_evt); | 
|  | out_free: | 
|  | free_percpu(gt_evt); | 
|  | out_clk: | 
|  | clk_disable_unprepare(gt_clk); | 
|  | out_unmap: | 
|  | iounmap(gt_base); | 
|  | WARN(err, "ARM Global timer register failed (%d)\n", err); | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* Only tested on r2p2 and r3p0  */ | 
|  | TIMER_OF_DECLARE(arm_gt, "arm,cortex-a9-global-timer", | 
|  | global_timer_of_register); |