blob: c3eefa70633c4deadbbeb38136ed771aa7fd90cc [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Copyright (C) 2008 Red Hat, Inc., Eric Paris <eparis@redhat.com>
*/
/*
* fsnotify inode mark locking/lifetime/and refcnting
*
* REFCNT:
* The group->recnt and mark->refcnt tell how many "things" in the kernel
* currently are referencing the objects. Both kind of objects typically will
* live inside the kernel with a refcnt of 2, one for its creation and one for
* the reference a group and a mark hold to each other.
* If you are holding the appropriate locks, you can take a reference and the
* object itself is guaranteed to survive until the reference is dropped.
*
* LOCKING:
* There are 3 locks involved with fsnotify inode marks and they MUST be taken
* in order as follows:
*
* group->mark_mutex
* mark->lock
* mark->connector->lock
*
* group->mark_mutex protects the marks_list anchored inside a given group and
* each mark is hooked via the g_list. It also protects the groups private
* data (i.e group limits).
* mark->lock protects the marks attributes like its masks and flags.
* Furthermore it protects the access to a reference of the group that the mark
* is assigned to as well as the access to a reference of the inode/vfsmount
* that is being watched by the mark.
*
* mark->connector->lock protects the list of marks anchored inside an
* inode / vfsmount and each mark is hooked via the i_list.
*
* A list of notification marks relating to inode / mnt is contained in
* fsnotify_mark_connector. That structure is alive as long as there are any
* marks in the list and is also protected by fsnotify_mark_srcu. A mark gets
* detached from fsnotify_mark_connector when last reference to the mark is
* dropped. Thus having mark reference is enough to protect mark->connector
* pointer and to make sure fsnotify_mark_connector cannot disappear. Also
* because we remove mark from g_list before dropping mark reference associated
* with that, any mark found through g_list is guaranteed to have
* mark->connector set until we drop group->mark_mutex.
*
* LIFETIME:
* Inode marks survive between when they are added to an inode and when their
* refcnt==0. Marks are also protected by fsnotify_mark_srcu.
*
* The inode mark can be cleared for a number of different reasons including:
* - The inode is unlinked for the last time. (fsnotify_inode_remove)
* - The inode is being evicted from cache. (fsnotify_inode_delete)
* - The fs the inode is on is unmounted. (fsnotify_inode_delete/fsnotify_unmount_inodes)
* - Something explicitly requests that it be removed. (fsnotify_destroy_mark)
* - The fsnotify_group associated with the mark is going away and all such marks
* need to be cleaned up. (fsnotify_clear_marks_by_group)
*
* This has the very interesting property of being able to run concurrently with
* any (or all) other directions.
*/
#include <linux/fs.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/kthread.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/srcu.h>
#include <linux/ratelimit.h>
#include <linux/atomic.h>
#include <linux/fsnotify_backend.h>
#include "fsnotify.h"
#define FSNOTIFY_REAPER_DELAY (1) /* 1 jiffy */
struct srcu_struct fsnotify_mark_srcu;
struct kmem_cache *fsnotify_mark_connector_cachep;
static DEFINE_SPINLOCK(destroy_lock);
static LIST_HEAD(destroy_list);
static struct fsnotify_mark_connector *connector_destroy_list;
static void fsnotify_mark_destroy_workfn(struct work_struct *work);
static DECLARE_DELAYED_WORK(reaper_work, fsnotify_mark_destroy_workfn);
static void fsnotify_connector_destroy_workfn(struct work_struct *work);
static DECLARE_WORK(connector_reaper_work, fsnotify_connector_destroy_workfn);
void fsnotify_get_mark(struct fsnotify_mark *mark)
{
WARN_ON_ONCE(!refcount_read(&mark->refcnt));
refcount_inc(&mark->refcnt);
}
static fsnotify_connp_t *fsnotify_object_connp(void *obj,
enum fsnotify_obj_type obj_type)
{
switch (obj_type) {
case FSNOTIFY_OBJ_TYPE_INODE:
return &((struct inode *)obj)->i_fsnotify_marks;
case FSNOTIFY_OBJ_TYPE_VFSMOUNT:
return &real_mount(obj)->mnt_fsnotify_marks;
case FSNOTIFY_OBJ_TYPE_SB:
return fsnotify_sb_marks(obj);
default:
return NULL;
}
}
static __u32 *fsnotify_conn_mask_p(struct fsnotify_mark_connector *conn)
{
if (conn->type == FSNOTIFY_OBJ_TYPE_INODE)
return &fsnotify_conn_inode(conn)->i_fsnotify_mask;
else if (conn->type == FSNOTIFY_OBJ_TYPE_VFSMOUNT)
return &fsnotify_conn_mount(conn)->mnt_fsnotify_mask;
else if (conn->type == FSNOTIFY_OBJ_TYPE_SB)
return &fsnotify_conn_sb(conn)->s_fsnotify_mask;
return NULL;
}
__u32 fsnotify_conn_mask(struct fsnotify_mark_connector *conn)
{
if (WARN_ON(!fsnotify_valid_obj_type(conn->type)))
return 0;
return *fsnotify_conn_mask_p(conn);
}
static void fsnotify_get_sb_watched_objects(struct super_block *sb)
{
atomic_long_inc(fsnotify_sb_watched_objects(sb));
}
static void fsnotify_put_sb_watched_objects(struct super_block *sb)
{
if (atomic_long_dec_and_test(fsnotify_sb_watched_objects(sb)))
wake_up_var(fsnotify_sb_watched_objects(sb));
}
static void fsnotify_get_inode_ref(struct inode *inode)
{
ihold(inode);
fsnotify_get_sb_watched_objects(inode->i_sb);
}
static void fsnotify_put_inode_ref(struct inode *inode)
{
fsnotify_put_sb_watched_objects(inode->i_sb);
iput(inode);
}
/*
* Grab or drop watched objects reference depending on whether the connector
* is attached and has any marks attached.
*/
static void fsnotify_update_sb_watchers(struct super_block *sb,
struct fsnotify_mark_connector *conn)
{
struct fsnotify_sb_info *sbinfo = fsnotify_sb_info(sb);
bool is_watched = conn->flags & FSNOTIFY_CONN_FLAG_IS_WATCHED;
struct fsnotify_mark *first_mark = NULL;
unsigned int highest_prio = 0;
if (conn->obj)
first_mark = hlist_entry_safe(conn->list.first,
struct fsnotify_mark, obj_list);
if (first_mark)
highest_prio = first_mark->group->priority;
if (WARN_ON(highest_prio >= __FSNOTIFY_PRIO_NUM))
highest_prio = 0;
/*
* If the highest priority of group watching this object is prio,
* then watched object has a reference on counters [0..prio].
* Update priority >= 1 watched objects counters.
*/
for (unsigned int p = conn->prio + 1; p <= highest_prio; p++)
atomic_long_inc(&sbinfo->watched_objects[p]);
for (unsigned int p = conn->prio; p > highest_prio; p--)
atomic_long_dec(&sbinfo->watched_objects[p]);
conn->prio = highest_prio;
/* Update priority >= 0 (a.k.a total) watched objects counter */
BUILD_BUG_ON(FSNOTIFY_PRIO_NORMAL != 0);
if (first_mark && !is_watched) {
conn->flags |= FSNOTIFY_CONN_FLAG_IS_WATCHED;
fsnotify_get_sb_watched_objects(sb);
} else if (!first_mark && is_watched) {
conn->flags &= ~FSNOTIFY_CONN_FLAG_IS_WATCHED;
fsnotify_put_sb_watched_objects(sb);
}
}
/*
* Grab or drop inode reference for the connector if needed.
*
* When it's time to drop the reference, we only clear the HAS_IREF flag and
* return the inode object. fsnotify_drop_object() will be resonsible for doing
* iput() outside of spinlocks. This happens when last mark that wanted iref is
* detached.
*/
static struct inode *fsnotify_update_iref(struct fsnotify_mark_connector *conn,
bool want_iref)
{
bool has_iref = conn->flags & FSNOTIFY_CONN_FLAG_HAS_IREF;
struct inode *inode = NULL;
if (conn->type != FSNOTIFY_OBJ_TYPE_INODE ||
want_iref == has_iref)
return NULL;
if (want_iref) {
/* Pin inode if any mark wants inode refcount held */
fsnotify_get_inode_ref(fsnotify_conn_inode(conn));
conn->flags |= FSNOTIFY_CONN_FLAG_HAS_IREF;
} else {
/* Unpin inode after detach of last mark that wanted iref */
inode = fsnotify_conn_inode(conn);
conn->flags &= ~FSNOTIFY_CONN_FLAG_HAS_IREF;
}
return inode;
}
static void *__fsnotify_recalc_mask(struct fsnotify_mark_connector *conn)
{
u32 new_mask = 0;
bool want_iref = false;
struct fsnotify_mark *mark;
assert_spin_locked(&conn->lock);
/* We can get detached connector here when inode is getting unlinked. */
if (!fsnotify_valid_obj_type(conn->type))
return NULL;
hlist_for_each_entry(mark, &conn->list, obj_list) {
if (!(mark->flags & FSNOTIFY_MARK_FLAG_ATTACHED))
continue;
new_mask |= fsnotify_calc_mask(mark);
if (conn->type == FSNOTIFY_OBJ_TYPE_INODE &&
!(mark->flags & FSNOTIFY_MARK_FLAG_NO_IREF))
want_iref = true;
}
*fsnotify_conn_mask_p(conn) = new_mask;
return fsnotify_update_iref(conn, want_iref);
}
/*
* Calculate mask of events for a list of marks. The caller must make sure
* connector and connector->obj cannot disappear under us. Callers achieve
* this by holding a mark->lock or mark->group->mark_mutex for a mark on this
* list.
*/
void fsnotify_recalc_mask(struct fsnotify_mark_connector *conn)
{
if (!conn)
return;
spin_lock(&conn->lock);
__fsnotify_recalc_mask(conn);
spin_unlock(&conn->lock);
if (conn->type == FSNOTIFY_OBJ_TYPE_INODE)
__fsnotify_update_child_dentry_flags(
fsnotify_conn_inode(conn));
}
/* Free all connectors queued for freeing once SRCU period ends */
static void fsnotify_connector_destroy_workfn(struct work_struct *work)
{
struct fsnotify_mark_connector *conn, *free;
spin_lock(&destroy_lock);
conn = connector_destroy_list;
connector_destroy_list = NULL;
spin_unlock(&destroy_lock);
synchronize_srcu(&fsnotify_mark_srcu);
while (conn) {
free = conn;
conn = conn->destroy_next;
kmem_cache_free(fsnotify_mark_connector_cachep, free);
}
}
static void *fsnotify_detach_connector_from_object(
struct fsnotify_mark_connector *conn,
unsigned int *type)
{
fsnotify_connp_t *connp = fsnotify_object_connp(conn->obj, conn->type);
struct super_block *sb = fsnotify_connector_sb(conn);
struct inode *inode = NULL;
*type = conn->type;
if (conn->type == FSNOTIFY_OBJ_TYPE_DETACHED)
return NULL;
if (conn->type == FSNOTIFY_OBJ_TYPE_INODE) {
inode = fsnotify_conn_inode(conn);
inode->i_fsnotify_mask = 0;
/* Unpin inode when detaching from connector */
if (!(conn->flags & FSNOTIFY_CONN_FLAG_HAS_IREF))
inode = NULL;
} else if (conn->type == FSNOTIFY_OBJ_TYPE_VFSMOUNT) {
fsnotify_conn_mount(conn)->mnt_fsnotify_mask = 0;
} else if (conn->type == FSNOTIFY_OBJ_TYPE_SB) {
fsnotify_conn_sb(conn)->s_fsnotify_mask = 0;
}
rcu_assign_pointer(*connp, NULL);
conn->obj = NULL;
conn->type = FSNOTIFY_OBJ_TYPE_DETACHED;
fsnotify_update_sb_watchers(sb, conn);
return inode;
}
static void fsnotify_final_mark_destroy(struct fsnotify_mark *mark)
{
struct fsnotify_group *group = mark->group;
if (WARN_ON_ONCE(!group))
return;
group->ops->free_mark(mark);
fsnotify_put_group(group);
}
/* Drop object reference originally held by a connector */
static void fsnotify_drop_object(unsigned int type, void *objp)
{
if (!objp)
return;
/* Currently only inode references are passed to be dropped */
if (WARN_ON_ONCE(type != FSNOTIFY_OBJ_TYPE_INODE))
return;
fsnotify_put_inode_ref(objp);
}
void fsnotify_put_mark(struct fsnotify_mark *mark)
{
struct fsnotify_mark_connector *conn = READ_ONCE(mark->connector);
void *objp = NULL;
unsigned int type = FSNOTIFY_OBJ_TYPE_DETACHED;
bool free_conn = false;
/* Catch marks that were actually never attached to object */
if (!conn) {
if (refcount_dec_and_test(&mark->refcnt))
fsnotify_final_mark_destroy(mark);
return;
}
/*
* We have to be careful so that traversals of obj_list under lock can
* safely grab mark reference.
*/
if (!refcount_dec_and_lock(&mark->refcnt, &conn->lock))
return;
hlist_del_init_rcu(&mark->obj_list);
if (hlist_empty(&conn->list)) {
objp = fsnotify_detach_connector_from_object(conn, &type);
free_conn = true;
} else {
struct super_block *sb = fsnotify_connector_sb(conn);
/* Update watched objects after detaching mark */
if (sb)
fsnotify_update_sb_watchers(sb, conn);
objp = __fsnotify_recalc_mask(conn);
type = conn->type;
}
WRITE_ONCE(mark->connector, NULL);
spin_unlock(&conn->lock);
fsnotify_drop_object(type, objp);
if (free_conn) {
spin_lock(&destroy_lock);
conn->destroy_next = connector_destroy_list;
connector_destroy_list = conn;
spin_unlock(&destroy_lock);
queue_work(system_unbound_wq, &connector_reaper_work);
}
/*
* Note that we didn't update flags telling whether inode cares about
* what's happening with children. We update these flags from
* __fsnotify_parent() lazily when next event happens on one of our
* children.
*/
spin_lock(&destroy_lock);
list_add(&mark->g_list, &destroy_list);
spin_unlock(&destroy_lock);
queue_delayed_work(system_unbound_wq, &reaper_work,
FSNOTIFY_REAPER_DELAY);
}
EXPORT_SYMBOL_GPL(fsnotify_put_mark);
/*
* Get mark reference when we found the mark via lockless traversal of object
* list. Mark can be already removed from the list by now and on its way to be
* destroyed once SRCU period ends.
*
* Also pin the group so it doesn't disappear under us.
*/
static bool fsnotify_get_mark_safe(struct fsnotify_mark *mark)
{
if (!mark)
return true;
if (refcount_inc_not_zero(&mark->refcnt)) {
spin_lock(&mark->lock);
if (mark->flags & FSNOTIFY_MARK_FLAG_ATTACHED) {
/* mark is attached, group is still alive then */
atomic_inc(&mark->group->user_waits);
spin_unlock(&mark->lock);
return true;
}
spin_unlock(&mark->lock);
fsnotify_put_mark(mark);
}
return false;
}
/*
* Puts marks and wakes up group destruction if necessary.
*
* Pairs with fsnotify_get_mark_safe()
*/
static void fsnotify_put_mark_wake(struct fsnotify_mark *mark)
{
if (mark) {
struct fsnotify_group *group = mark->group;
fsnotify_put_mark(mark);
/*
* We abuse notification_waitq on group shutdown for waiting for
* all marks pinned when waiting for userspace.
*/
if (atomic_dec_and_test(&group->user_waits) && group->shutdown)
wake_up(&group->notification_waitq);
}
}
bool fsnotify_prepare_user_wait(struct fsnotify_iter_info *iter_info)
__releases(&fsnotify_mark_srcu)
{
int type;
fsnotify_foreach_iter_type(type) {
/* This can fail if mark is being removed */
if (!fsnotify_get_mark_safe(iter_info->marks[type])) {
__release(&fsnotify_mark_srcu);
goto fail;
}
}
/*
* Now that both marks are pinned by refcount in the inode / vfsmount
* lists, we can drop SRCU lock, and safely resume the list iteration
* once userspace returns.
*/
srcu_read_unlock(&fsnotify_mark_srcu, iter_info->srcu_idx);
return true;
fail:
for (type--; type >= 0; type--)
fsnotify_put_mark_wake(iter_info->marks[type]);
return false;
}
void fsnotify_finish_user_wait(struct fsnotify_iter_info *iter_info)
__acquires(&fsnotify_mark_srcu)
{
int type;
iter_info->srcu_idx = srcu_read_lock(&fsnotify_mark_srcu);
fsnotify_foreach_iter_type(type)
fsnotify_put_mark_wake(iter_info->marks[type]);
}
/*
* Mark mark as detached, remove it from group list. Mark still stays in object
* list until its last reference is dropped. Note that we rely on mark being
* removed from group list before corresponding reference to it is dropped. In
* particular we rely on mark->connector being valid while we hold
* group->mark_mutex if we found the mark through g_list.
*
* Must be called with group->mark_mutex held. The caller must either hold
* reference to the mark or be protected by fsnotify_mark_srcu.
*/
void fsnotify_detach_mark(struct fsnotify_mark *mark)
{
fsnotify_group_assert_locked(mark->group);
WARN_ON_ONCE(!srcu_read_lock_held(&fsnotify_mark_srcu) &&
refcount_read(&mark->refcnt) < 1 +
!!(mark->flags & FSNOTIFY_MARK_FLAG_ATTACHED));
spin_lock(&mark->lock);
/* something else already called this function on this mark */
if (!(mark->flags & FSNOTIFY_MARK_FLAG_ATTACHED)) {
spin_unlock(&mark->lock);
return;
}
mark->flags &= ~FSNOTIFY_MARK_FLAG_ATTACHED;
list_del_init(&mark->g_list);
spin_unlock(&mark->lock);
/* Drop mark reference acquired in fsnotify_add_mark_locked() */
fsnotify_put_mark(mark);
}
/*
* Free fsnotify mark. The mark is actually only marked as being freed. The
* freeing is actually happening only once last reference to the mark is
* dropped from a workqueue which first waits for srcu period end.
*
* Caller must have a reference to the mark or be protected by
* fsnotify_mark_srcu.
*/
void fsnotify_free_mark(struct fsnotify_mark *mark)
{
struct fsnotify_group *group = mark->group;
spin_lock(&mark->lock);
/* something else already called this function on this mark */
if (!(mark->flags & FSNOTIFY_MARK_FLAG_ALIVE)) {
spin_unlock(&mark->lock);
return;
}
mark->flags &= ~FSNOTIFY_MARK_FLAG_ALIVE;
spin_unlock(&mark->lock);
/*
* Some groups like to know that marks are being freed. This is a
* callback to the group function to let it know that this mark
* is being freed.
*/
if (group->ops->freeing_mark)
group->ops->freeing_mark(mark, group);
}
void fsnotify_destroy_mark(struct fsnotify_mark *mark,
struct fsnotify_group *group)
{
fsnotify_group_lock(group);
fsnotify_detach_mark(mark);
fsnotify_group_unlock(group);
fsnotify_free_mark(mark);
}
EXPORT_SYMBOL_GPL(fsnotify_destroy_mark);
/*
* Sorting function for lists of fsnotify marks.
*
* Fanotify supports different notification classes (reflected as priority of
* notification group). Events shall be passed to notification groups in
* decreasing priority order. To achieve this marks in notification lists for
* inodes and vfsmounts are sorted so that priorities of corresponding groups
* are descending.
*
* Furthermore correct handling of the ignore mask requires processing inode
* and vfsmount marks of each group together. Using the group address as
* further sort criterion provides a unique sorting order and thus we can
* merge inode and vfsmount lists of marks in linear time and find groups
* present in both lists.
*
* A return value of 1 signifies that b has priority over a.
* A return value of 0 signifies that the two marks have to be handled together.
* A return value of -1 signifies that a has priority over b.
*/
int fsnotify_compare_groups(struct fsnotify_group *a, struct fsnotify_group *b)
{
if (a == b)
return 0;
if (!a)
return 1;
if (!b)
return -1;
if (a->priority < b->priority)
return 1;
if (a->priority > b->priority)
return -1;
if (a < b)
return 1;
return -1;
}
static int fsnotify_attach_info_to_sb(struct super_block *sb)
{
struct fsnotify_sb_info *sbinfo;
/* sb info is freed on fsnotify_sb_delete() */
sbinfo = kzalloc(sizeof(*sbinfo), GFP_KERNEL);
if (!sbinfo)
return -ENOMEM;
/*
* cmpxchg() provides the barrier so that callers of fsnotify_sb_info()
* will observe an initialized structure
*/
if (cmpxchg(&sb->s_fsnotify_info, NULL, sbinfo)) {
/* Someone else created sbinfo for us */
kfree(sbinfo);
}
return 0;
}
static int fsnotify_attach_connector_to_object(fsnotify_connp_t *connp,
void *obj, unsigned int obj_type)
{
struct fsnotify_mark_connector *conn;
conn = kmem_cache_alloc(fsnotify_mark_connector_cachep, GFP_KERNEL);
if (!conn)
return -ENOMEM;
spin_lock_init(&conn->lock);
INIT_HLIST_HEAD(&conn->list);
conn->flags = 0;
conn->prio = 0;
conn->type = obj_type;
conn->obj = obj;
/*
* cmpxchg() provides the barrier so that readers of *connp can see
* only initialized structure
*/
if (cmpxchg(connp, NULL, conn)) {
/* Someone else created list structure for us */
kmem_cache_free(fsnotify_mark_connector_cachep, conn);
}
return 0;
}
/*
* Get mark connector, make sure it is alive and return with its lock held.
* This is for users that get connector pointer from inode or mount. Users that
* hold reference to a mark on the list may directly lock connector->lock as
* they are sure list cannot go away under them.
*/
static struct fsnotify_mark_connector *fsnotify_grab_connector(
fsnotify_connp_t *connp)
{
struct fsnotify_mark_connector *conn;
int idx;
idx = srcu_read_lock(&fsnotify_mark_srcu);
conn = srcu_dereference(*connp, &fsnotify_mark_srcu);
if (!conn)
goto out;
spin_lock(&conn->lock);
if (conn->type == FSNOTIFY_OBJ_TYPE_DETACHED) {
spin_unlock(&conn->lock);
srcu_read_unlock(&fsnotify_mark_srcu, idx);
return NULL;
}
out:
srcu_read_unlock(&fsnotify_mark_srcu, idx);
return conn;
}
/*
* Add mark into proper place in given list of marks. These marks may be used
* for the fsnotify backend to determine which event types should be delivered
* to which group and for which inodes. These marks are ordered according to
* priority, highest number first, and then by the group's location in memory.
*/
static int fsnotify_add_mark_list(struct fsnotify_mark *mark, void *obj,
unsigned int obj_type, int add_flags)
{
struct super_block *sb = fsnotify_object_sb(obj, obj_type);
struct fsnotify_mark *lmark, *last = NULL;
struct fsnotify_mark_connector *conn;
fsnotify_connp_t *connp;
int cmp;
int err = 0;
if (WARN_ON(!fsnotify_valid_obj_type(obj_type)))
return -EINVAL;
/*
* Attach the sb info before attaching a connector to any object on sb.
* The sb info will remain attached as long as sb lives.
*/
if (!fsnotify_sb_info(sb)) {
err = fsnotify_attach_info_to_sb(sb);
if (err)
return err;
}
connp = fsnotify_object_connp(obj, obj_type);
restart:
spin_lock(&mark->lock);
conn = fsnotify_grab_connector(connp);
if (!conn) {
spin_unlock(&mark->lock);
err = fsnotify_attach_connector_to_object(connp, obj, obj_type);
if (err)
return err;
goto restart;
}
/* is mark the first mark? */
if (hlist_empty(&conn->list)) {
hlist_add_head_rcu(&mark->obj_list, &conn->list);
goto added;
}
/* should mark be in the middle of the current list? */
hlist_for_each_entry(lmark, &conn->list, obj_list) {
last = lmark;
if ((lmark->group == mark->group) &&
(lmark->flags & FSNOTIFY_MARK_FLAG_ATTACHED) &&
!(mark->group->flags & FSNOTIFY_GROUP_DUPS)) {
err = -EEXIST;
goto out_err;
}
cmp = fsnotify_compare_groups(lmark->group, mark->group);
if (cmp >= 0) {
hlist_add_before_rcu(&mark->obj_list, &lmark->obj_list);
goto added;
}
}
BUG_ON(last == NULL);
/* mark should be the last entry. last is the current last entry */
hlist_add_behind_rcu(&mark->obj_list, &last->obj_list);
added:
fsnotify_update_sb_watchers(sb, conn);
/*
* Since connector is attached to object using cmpxchg() we are
* guaranteed that connector initialization is fully visible by anyone
* seeing mark->connector set.
*/
WRITE_ONCE(mark->connector, conn);
out_err:
spin_unlock(&conn->lock);
spin_unlock(&mark->lock);
return err;
}
/*
* Attach an initialized mark to a given group and fs object.
* These marks may be used for the fsnotify backend to determine which
* event types should be delivered to which group.
*/
int fsnotify_add_mark_locked(struct fsnotify_mark *mark,
void *obj, unsigned int obj_type,
int add_flags)
{
struct fsnotify_group *group = mark->group;
int ret = 0;
fsnotify_group_assert_locked(group);
/*
* LOCKING ORDER!!!!
* group->mark_mutex
* mark->lock
* mark->connector->lock
*/
spin_lock(&mark->lock);
mark->flags |= FSNOTIFY_MARK_FLAG_ALIVE | FSNOTIFY_MARK_FLAG_ATTACHED;
list_add(&mark->g_list, &group->marks_list);
fsnotify_get_mark(mark); /* for g_list */
spin_unlock(&mark->lock);
ret = fsnotify_add_mark_list(mark, obj, obj_type, add_flags);
if (ret)
goto err;
fsnotify_recalc_mask(mark->connector);
return ret;
err:
spin_lock(&mark->lock);
mark->flags &= ~(FSNOTIFY_MARK_FLAG_ALIVE |
FSNOTIFY_MARK_FLAG_ATTACHED);
list_del_init(&mark->g_list);
spin_unlock(&mark->lock);
fsnotify_put_mark(mark);
return ret;
}
int fsnotify_add_mark(struct fsnotify_mark *mark, void *obj,
unsigned int obj_type, int add_flags)
{
int ret;
struct fsnotify_group *group = mark->group;
fsnotify_group_lock(group);
ret = fsnotify_add_mark_locked(mark, obj, obj_type, add_flags);
fsnotify_group_unlock(group);
return ret;
}
EXPORT_SYMBOL_GPL(fsnotify_add_mark);
/*
* Given a list of marks, find the mark associated with given group. If found
* take a reference to that mark and return it, else return NULL.
*/
struct fsnotify_mark *fsnotify_find_mark(void *obj, unsigned int obj_type,
struct fsnotify_group *group)
{
fsnotify_connp_t *connp = fsnotify_object_connp(obj, obj_type);
struct fsnotify_mark_connector *conn;
struct fsnotify_mark *mark;
if (!connp)
return NULL;
conn = fsnotify_grab_connector(connp);
if (!conn)
return NULL;
hlist_for_each_entry(mark, &conn->list, obj_list) {
if (mark->group == group &&
(mark->flags & FSNOTIFY_MARK_FLAG_ATTACHED)) {
fsnotify_get_mark(mark);
spin_unlock(&conn->lock);
return mark;
}
}
spin_unlock(&conn->lock);
return NULL;
}
EXPORT_SYMBOL_GPL(fsnotify_find_mark);
/* Clear any marks in a group with given type mask */
void fsnotify_clear_marks_by_group(struct fsnotify_group *group,
unsigned int obj_type)
{
struct fsnotify_mark *lmark, *mark;
LIST_HEAD(to_free);
struct list_head *head = &to_free;
/* Skip selection step if we want to clear all marks. */
if (obj_type == FSNOTIFY_OBJ_TYPE_ANY) {
head = &group->marks_list;
goto clear;
}
/*
* We have to be really careful here. Anytime we drop mark_mutex, e.g.
* fsnotify_clear_marks_by_inode() can come and free marks. Even in our
* to_free list so we have to use mark_mutex even when accessing that
* list. And freeing mark requires us to drop mark_mutex. So we can
* reliably free only the first mark in the list. That's why we first
* move marks to free to to_free list in one go and then free marks in
* to_free list one by one.
*/
fsnotify_group_lock(group);
list_for_each_entry_safe(mark, lmark, &group->marks_list, g_list) {
if (mark->connector->type == obj_type)
list_move(&mark->g_list, &to_free);
}
fsnotify_group_unlock(group);
clear:
while (1) {
fsnotify_group_lock(group);
if (list_empty(head)) {
fsnotify_group_unlock(group);
break;
}
mark = list_first_entry(head, struct fsnotify_mark, g_list);
fsnotify_get_mark(mark);
fsnotify_detach_mark(mark);
fsnotify_group_unlock(group);
fsnotify_free_mark(mark);
fsnotify_put_mark(mark);
}
}
/* Destroy all marks attached to an object via connector */
void fsnotify_destroy_marks(fsnotify_connp_t *connp)
{
struct fsnotify_mark_connector *conn;
struct fsnotify_mark *mark, *old_mark = NULL;
void *objp;
unsigned int type;
conn = fsnotify_grab_connector(connp);
if (!conn)
return;
/*
* We have to be careful since we can race with e.g.
* fsnotify_clear_marks_by_group() and once we drop the conn->lock, the
* list can get modified. However we are holding mark reference and
* thus our mark cannot be removed from obj_list so we can continue
* iteration after regaining conn->lock.
*/
hlist_for_each_entry(mark, &conn->list, obj_list) {
fsnotify_get_mark(mark);
spin_unlock(&conn->lock);
if (old_mark)
fsnotify_put_mark(old_mark);
old_mark = mark;
fsnotify_destroy_mark(mark, mark->group);
spin_lock(&conn->lock);
}
/*
* Detach list from object now so that we don't pin inode until all
* mark references get dropped. It would lead to strange results such
* as delaying inode deletion or blocking unmount.
*/
objp = fsnotify_detach_connector_from_object(conn, &type);
spin_unlock(&conn->lock);
if (old_mark)
fsnotify_put_mark(old_mark);
fsnotify_drop_object(type, objp);
}
/*
* Nothing fancy, just initialize lists and locks and counters.
*/
void fsnotify_init_mark(struct fsnotify_mark *mark,
struct fsnotify_group *group)
{
memset(mark, 0, sizeof(*mark));
spin_lock_init(&mark->lock);
refcount_set(&mark->refcnt, 1);
fsnotify_get_group(group);
mark->group = group;
WRITE_ONCE(mark->connector, NULL);
}
EXPORT_SYMBOL_GPL(fsnotify_init_mark);
/*
* Destroy all marks in destroy_list, waits for SRCU period to finish before
* actually freeing marks.
*/
static void fsnotify_mark_destroy_workfn(struct work_struct *work)
{
struct fsnotify_mark *mark, *next;
struct list_head private_destroy_list;
spin_lock(&destroy_lock);
/* exchange the list head */
list_replace_init(&destroy_list, &private_destroy_list);
spin_unlock(&destroy_lock);
synchronize_srcu(&fsnotify_mark_srcu);
list_for_each_entry_safe(mark, next, &private_destroy_list, g_list) {
list_del_init(&mark->g_list);
fsnotify_final_mark_destroy(mark);
}
}
/* Wait for all marks queued for destruction to be actually destroyed */
void fsnotify_wait_marks_destroyed(void)
{
flush_delayed_work(&reaper_work);
}
EXPORT_SYMBOL_GPL(fsnotify_wait_marks_destroyed);