| /* |
| * |
| * YeAH TCP |
| * |
| * For further details look at: |
| * http://wil.cs.caltech.edu/pfldnet2007/paper/YeAH_TCP.pdf |
| * |
| */ |
| |
| #include "tcp_yeah.h" |
| |
| /* Default values of the Vegas variables, in fixed-point representation |
| * with V_PARAM_SHIFT bits to the right of the binary point. |
| */ |
| #define V_PARAM_SHIFT 1 |
| |
| #define TCP_YEAH_ALPHA 80 //lin number of packets queued at the bottleneck |
| #define TCP_YEAH_GAMMA 1 //lin fraction of queue to be removed per rtt |
| #define TCP_YEAH_DELTA 3 //log minimum fraction of cwnd to be removed on loss |
| #define TCP_YEAH_EPSILON 1 //log maximum fraction to be removed on early decongestion |
| #define TCP_YEAH_PHY 8 //lin maximum delta from base |
| #define TCP_YEAH_RHO 16 //lin minumum number of consecutive rtt to consider competition on loss |
| #define TCP_YEAH_ZETA 50 //lin minimum number of state switchs to reset reno_count |
| |
| #define TCP_SCALABLE_AI_CNT 100U |
| |
| /* YeAH variables */ |
| struct yeah { |
| /* Vegas */ |
| u32 beg_snd_nxt; /* right edge during last RTT */ |
| u32 beg_snd_una; /* left edge during last RTT */ |
| u32 beg_snd_cwnd; /* saves the size of the cwnd */ |
| u8 doing_vegas_now;/* if true, do vegas for this RTT */ |
| u16 cntRTT; /* # of RTTs measured within last RTT */ |
| u32 minRTT; /* min of RTTs measured within last RTT (in usec) */ |
| u32 baseRTT; /* the min of all Vegas RTT measurements seen (in usec) */ |
| |
| /* YeAH */ |
| u32 lastQ; |
| u32 doing_reno_now; |
| |
| u32 reno_count; |
| u32 fast_count; |
| |
| u32 pkts_acked; |
| }; |
| |
| static void tcp_yeah_init(struct sock *sk) |
| { |
| struct tcp_sock *tp = tcp_sk(sk); |
| struct yeah *yeah = inet_csk_ca(sk); |
| |
| tcp_vegas_init(sk); |
| |
| yeah->doing_reno_now = 0; |
| yeah->lastQ = 0; |
| |
| yeah->reno_count = 2; |
| |
| /* Ensure the MD arithmetic works. This is somewhat pedantic, |
| * since I don't think we will see a cwnd this large. :) */ |
| tp->snd_cwnd_clamp = min_t(u32, tp->snd_cwnd_clamp, 0xffffffff/128); |
| |
| } |
| |
| |
| static void tcp_yeah_pkts_acked(struct sock *sk, u32 pkts_acked, ktime_t last) |
| { |
| const struct inet_connection_sock *icsk = inet_csk(sk); |
| struct yeah *yeah = inet_csk_ca(sk); |
| |
| if (icsk->icsk_ca_state == TCP_CA_Open) |
| yeah->pkts_acked = pkts_acked; |
| |
| tcp_vegas_pkts_acked(sk, pkts_acked, last); |
| } |
| |
| static void tcp_yeah_cong_avoid(struct sock *sk, u32 ack, |
| u32 seq_rtt, u32 in_flight, int flag) |
| { |
| struct tcp_sock *tp = tcp_sk(sk); |
| struct yeah *yeah = inet_csk_ca(sk); |
| |
| if (!tcp_is_cwnd_limited(sk, in_flight)) |
| return; |
| |
| if (tp->snd_cwnd <= tp->snd_ssthresh) { |
| tcp_slow_start(tp); |
| } else if (!yeah->doing_reno_now) { |
| /* Scalable */ |
| |
| tp->snd_cwnd_cnt+=yeah->pkts_acked; |
| if (tp->snd_cwnd_cnt > min(tp->snd_cwnd, TCP_SCALABLE_AI_CNT)){ |
| if (tp->snd_cwnd < tp->snd_cwnd_clamp) |
| tp->snd_cwnd++; |
| tp->snd_cwnd_cnt = 0; |
| } |
| |
| yeah->pkts_acked = 1; |
| |
| } else { |
| /* Reno */ |
| |
| if (tp->snd_cwnd_cnt < tp->snd_cwnd) |
| tp->snd_cwnd_cnt++; |
| |
| if (tp->snd_cwnd_cnt >= tp->snd_cwnd) { |
| tp->snd_cwnd++; |
| tp->snd_cwnd_cnt = 0; |
| } |
| } |
| |
| /* The key players are v_beg_snd_una and v_beg_snd_nxt. |
| * |
| * These are so named because they represent the approximate values |
| * of snd_una and snd_nxt at the beginning of the current RTT. More |
| * precisely, they represent the amount of data sent during the RTT. |
| * At the end of the RTT, when we receive an ACK for v_beg_snd_nxt, |
| * we will calculate that (v_beg_snd_nxt - v_beg_snd_una) outstanding |
| * bytes of data have been ACKed during the course of the RTT, giving |
| * an "actual" rate of: |
| * |
| * (v_beg_snd_nxt - v_beg_snd_una) / (rtt duration) |
| * |
| * Unfortunately, v_beg_snd_una is not exactly equal to snd_una, |
| * because delayed ACKs can cover more than one segment, so they |
| * don't line up yeahly with the boundaries of RTTs. |
| * |
| * Another unfortunate fact of life is that delayed ACKs delay the |
| * advance of the left edge of our send window, so that the number |
| * of bytes we send in an RTT is often less than our cwnd will allow. |
| * So we keep track of our cwnd separately, in v_beg_snd_cwnd. |
| */ |
| |
| if (after(ack, yeah->beg_snd_nxt)) { |
| |
| /* We do the Vegas calculations only if we got enough RTT |
| * samples that we can be reasonably sure that we got |
| * at least one RTT sample that wasn't from a delayed ACK. |
| * If we only had 2 samples total, |
| * then that means we're getting only 1 ACK per RTT, which |
| * means they're almost certainly delayed ACKs. |
| * If we have 3 samples, we should be OK. |
| */ |
| |
| if (yeah->cntRTT > 2) { |
| u32 rtt, queue; |
| u64 bw; |
| |
| /* We have enough RTT samples, so, using the Vegas |
| * algorithm, we determine if we should increase or |
| * decrease cwnd, and by how much. |
| */ |
| |
| /* Pluck out the RTT we are using for the Vegas |
| * calculations. This is the min RTT seen during the |
| * last RTT. Taking the min filters out the effects |
| * of delayed ACKs, at the cost of noticing congestion |
| * a bit later. |
| */ |
| rtt = yeah->minRTT; |
| |
| /* Compute excess number of packets above bandwidth |
| * Avoid doing full 64 bit divide. |
| */ |
| bw = tp->snd_cwnd; |
| bw *= rtt - yeah->baseRTT; |
| do_div(bw, rtt); |
| queue = bw; |
| |
| if (queue > TCP_YEAH_ALPHA || |
| rtt - yeah->baseRTT > (yeah->baseRTT / TCP_YEAH_PHY)) { |
| if (queue > TCP_YEAH_ALPHA |
| && tp->snd_cwnd > yeah->reno_count) { |
| u32 reduction = min(queue / TCP_YEAH_GAMMA , |
| tp->snd_cwnd >> TCP_YEAH_EPSILON); |
| |
| tp->snd_cwnd -= reduction; |
| |
| tp->snd_cwnd = max(tp->snd_cwnd, |
| yeah->reno_count); |
| |
| tp->snd_ssthresh = tp->snd_cwnd; |
| } |
| |
| if (yeah->reno_count <= 2) |
| yeah->reno_count = max(tp->snd_cwnd>>1, 2U); |
| else |
| yeah->reno_count++; |
| |
| yeah->doing_reno_now = min(yeah->doing_reno_now + 1, |
| 0xffffffU); |
| } else { |
| yeah->fast_count++; |
| |
| if (yeah->fast_count > TCP_YEAH_ZETA) { |
| yeah->reno_count = 2; |
| yeah->fast_count = 0; |
| } |
| |
| yeah->doing_reno_now = 0; |
| } |
| |
| yeah->lastQ = queue; |
| |
| } |
| |
| /* Save the extent of the current window so we can use this |
| * at the end of the next RTT. |
| */ |
| yeah->beg_snd_una = yeah->beg_snd_nxt; |
| yeah->beg_snd_nxt = tp->snd_nxt; |
| yeah->beg_snd_cwnd = tp->snd_cwnd; |
| |
| /* Wipe the slate clean for the next RTT. */ |
| yeah->cntRTT = 0; |
| yeah->minRTT = 0x7fffffff; |
| } |
| } |
| |
| static u32 tcp_yeah_ssthresh(struct sock *sk) { |
| const struct tcp_sock *tp = tcp_sk(sk); |
| struct yeah *yeah = inet_csk_ca(sk); |
| u32 reduction; |
| |
| if (yeah->doing_reno_now < TCP_YEAH_RHO) { |
| reduction = yeah->lastQ; |
| |
| reduction = min( reduction, max(tp->snd_cwnd>>1, 2U) ); |
| |
| reduction = max( reduction, tp->snd_cwnd >> TCP_YEAH_DELTA); |
| } else |
| reduction = max(tp->snd_cwnd>>1,2U); |
| |
| yeah->fast_count = 0; |
| yeah->reno_count = max(yeah->reno_count>>1, 2U); |
| |
| return tp->snd_cwnd - reduction; |
| } |
| |
| static struct tcp_congestion_ops tcp_yeah = { |
| .flags = TCP_CONG_RTT_STAMP, |
| .init = tcp_yeah_init, |
| .ssthresh = tcp_yeah_ssthresh, |
| .cong_avoid = tcp_yeah_cong_avoid, |
| .min_cwnd = tcp_reno_min_cwnd, |
| .set_state = tcp_vegas_state, |
| .cwnd_event = tcp_vegas_cwnd_event, |
| .get_info = tcp_vegas_get_info, |
| .pkts_acked = tcp_yeah_pkts_acked, |
| |
| .owner = THIS_MODULE, |
| .name = "yeah", |
| }; |
| |
| static int __init tcp_yeah_register(void) |
| { |
| BUG_ON(sizeof(struct yeah) > ICSK_CA_PRIV_SIZE); |
| tcp_register_congestion_control(&tcp_yeah); |
| return 0; |
| } |
| |
| static void __exit tcp_yeah_unregister(void) |
| { |
| tcp_unregister_congestion_control(&tcp_yeah); |
| } |
| |
| module_init(tcp_yeah_register); |
| module_exit(tcp_yeah_unregister); |
| |
| MODULE_AUTHOR("Angelo P. Castellani"); |
| MODULE_LICENSE("GPL"); |
| MODULE_DESCRIPTION("YeAH TCP"); |