blob: db4877bbb9aa5626702bf6068de92accdaa9e81a [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* Performance event support for s390x - CPU-measurement Counter Sets
*
* Copyright IBM Corp. 2019, 2021
* Author(s): Hendrik Brueckner <brueckner@linux.ibm.com>
* Thomas Richer <tmricht@linux.ibm.com>
*/
#define KMSG_COMPONENT "cpum_cf_diag"
#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
#include <linux/kernel.h>
#include <linux/kernel_stat.h>
#include <linux/percpu.h>
#include <linux/notifier.h>
#include <linux/init.h>
#include <linux/export.h>
#include <linux/slab.h>
#include <linux/processor.h>
#include <linux/miscdevice.h>
#include <linux/mutex.h>
#include <asm/ctl_reg.h>
#include <asm/irq.h>
#include <asm/cpu_mcf.h>
#include <asm/timex.h>
#include <asm/debug.h>
#include <asm/perf_cpum_cf_diag.h>
#define CF_DIAG_CTRSET_DEF 0xfeef /* Counter set header mark */
#define CF_DIAG_MIN_INTERVAL 60 /* Minimum counter set read */
/* interval in seconds */
static unsigned long cf_diag_interval = CF_DIAG_MIN_INTERVAL;
static unsigned int cf_diag_cpu_speed;
static debug_info_t *cf_diag_dbg;
struct cf_diag_csd { /* Counter set data per CPU */
size_t used; /* Bytes used in data/start */
unsigned char start[PAGE_SIZE]; /* Counter set at event start */
unsigned char data[PAGE_SIZE]; /* Counter set at event delete */
unsigned int sets; /* # Counter set saved in data */
};
static DEFINE_PER_CPU(struct cf_diag_csd, cf_diag_csd);
/* Counter sets are stored as data stream in a page sized memory buffer and
* exported to user space via raw data attached to the event sample data.
* Each counter set starts with an eight byte header consisting of:
* - a two byte eye catcher (0xfeef)
* - a one byte counter set number
* - a two byte counter set size (indicates the number of counters in this set)
* - a three byte reserved value (must be zero) to make the header the same
* size as a counter value.
* All counter values are eight byte in size.
*
* All counter sets are followed by a 64 byte trailer.
* The trailer consists of a:
* - flag field indicating valid fields when corresponding bit set
* - the counter facility first and second version number
* - the CPU speed if nonzero
* - the time stamp the counter sets have been collected
* - the time of day (TOD) base value
* - the machine type.
*
* The counter sets are saved when the process is prepared to be executed on a
* CPU and saved again when the process is going to be removed from a CPU.
* The difference of both counter sets are calculated and stored in the event
* sample data area.
*/
struct cf_ctrset_entry { /* CPU-M CF counter set entry (8 byte) */
unsigned int def:16; /* 0-15 Data Entry Format */
unsigned int set:16; /* 16-31 Counter set identifier */
unsigned int ctr:16; /* 32-47 Number of stored counters */
unsigned int res1:16; /* 48-63 Reserved */
};
struct cf_trailer_entry { /* CPU-M CF_DIAG trailer (64 byte) */
/* 0 - 7 */
union {
struct {
unsigned int clock_base:1; /* TOD clock base set */
unsigned int speed:1; /* CPU speed set */
/* Measurement alerts */
unsigned int mtda:1; /* Loss of MT ctr. data alert */
unsigned int caca:1; /* Counter auth. change alert */
unsigned int lcda:1; /* Loss of counter data alert */
};
unsigned long flags; /* 0-63 All indicators */
};
/* 8 - 15 */
unsigned int cfvn:16; /* 64-79 Ctr First Version */
unsigned int csvn:16; /* 80-95 Ctr Second Version */
unsigned int cpu_speed:32; /* 96-127 CPU speed */
/* 16 - 23 */
unsigned long timestamp; /* 128-191 Timestamp (TOD) */
/* 24 - 55 */
union {
struct {
unsigned long progusage1;
unsigned long progusage2;
unsigned long progusage3;
unsigned long tod_base;
};
unsigned long progusage[4];
};
/* 56 - 63 */
unsigned int mach_type:16; /* Machine type */
unsigned int res1:16; /* Reserved */
unsigned int res2:32; /* Reserved */
};
/* Create the trailer data at the end of a page. */
static void cf_diag_trailer(struct cf_trailer_entry *te)
{
struct cpu_cf_events *cpuhw = this_cpu_ptr(&cpu_cf_events);
struct cpuid cpuid;
te->cfvn = cpuhw->info.cfvn; /* Counter version numbers */
te->csvn = cpuhw->info.csvn;
get_cpu_id(&cpuid); /* Machine type */
te->mach_type = cpuid.machine;
te->cpu_speed = cf_diag_cpu_speed;
if (te->cpu_speed)
te->speed = 1;
te->clock_base = 1; /* Save clock base */
te->tod_base = tod_clock_base.tod;
te->timestamp = get_tod_clock_fast();
}
/*
* Change the CPUMF state to active.
* Enable and activate the CPU-counter sets according
* to the per-cpu control state.
*/
static void cf_diag_enable(struct pmu *pmu)
{
struct cpu_cf_events *cpuhw = this_cpu_ptr(&cpu_cf_events);
int err;
debug_sprintf_event(cf_diag_dbg, 5,
"%s pmu %p cpu %d flags %#x state %#llx\n",
__func__, pmu, smp_processor_id(), cpuhw->flags,
cpuhw->state);
if (cpuhw->flags & PMU_F_ENABLED)
return;
err = lcctl(cpuhw->state);
if (err) {
pr_err("Enabling the performance measuring unit "
"failed with rc=%x\n", err);
return;
}
cpuhw->flags |= PMU_F_ENABLED;
}
/*
* Change the CPUMF state to inactive.
* Disable and enable (inactive) the CPU-counter sets according
* to the per-cpu control state.
*/
static void cf_diag_disable(struct pmu *pmu)
{
struct cpu_cf_events *cpuhw = this_cpu_ptr(&cpu_cf_events);
u64 inactive;
int err;
debug_sprintf_event(cf_diag_dbg, 5,
"%s pmu %p cpu %d flags %#x state %#llx\n",
__func__, pmu, smp_processor_id(), cpuhw->flags,
cpuhw->state);
if (!(cpuhw->flags & PMU_F_ENABLED))
return;
inactive = cpuhw->state & ~((1 << CPUMF_LCCTL_ENABLE_SHIFT) - 1);
err = lcctl(inactive);
if (err) {
pr_err("Disabling the performance measuring unit "
"failed with rc=%x\n", err);
return;
}
cpuhw->flags &= ~PMU_F_ENABLED;
}
/* Number of perf events counting hardware events */
static atomic_t cf_diag_events = ATOMIC_INIT(0);
/* Used to avoid races in calling reserve/release_cpumf_hardware */
static DEFINE_MUTEX(cf_diag_reserve_mutex);
/* Release the PMU if event is the last perf event */
static void cf_diag_perf_event_destroy(struct perf_event *event)
{
debug_sprintf_event(cf_diag_dbg, 5,
"%s event %p cpu %d cf_diag_events %d\n",
__func__, event, smp_processor_id(),
atomic_read(&cf_diag_events));
if (atomic_dec_return(&cf_diag_events) == 0)
__kernel_cpumcf_end();
}
static int get_authctrsets(void)
{
struct cpu_cf_events *cpuhw;
unsigned long auth = 0;
enum cpumf_ctr_set i;
cpuhw = &get_cpu_var(cpu_cf_events);
for (i = CPUMF_CTR_SET_BASIC; i < CPUMF_CTR_SET_MAX; ++i) {
if (cpuhw->info.auth_ctl & cpumf_ctr_ctl[i])
auth |= cpumf_ctr_ctl[i];
}
put_cpu_var(cpu_cf_events);
return auth;
}
/* Setup the event. Test for authorized counter sets and only include counter
* sets which are authorized at the time of the setup. Including unauthorized
* counter sets result in specification exception (and panic).
*/
static int __hw_perf_event_init(struct perf_event *event)
{
struct perf_event_attr *attr = &event->attr;
int err = 0;
debug_sprintf_event(cf_diag_dbg, 5, "%s event %p cpu %d\n", __func__,
event, event->cpu);
event->hw.config = attr->config;
/* Add all authorized counter sets to config_base. The
* the hardware init function is either called per-cpu or just once
* for all CPUS (event->cpu == -1). This depends on the whether
* counting is started for all CPUs or on a per workload base where
* the perf event moves from one CPU to another CPU.
* Checking the authorization on any CPU is fine as the hardware
* applies the same authorization settings to all CPUs.
*/
event->hw.config_base = get_authctrsets();
/* No authorized counter sets, nothing to count/sample */
if (!event->hw.config_base) {
err = -EINVAL;
goto out;
}
/* Set sample_period to indicate sampling */
event->hw.sample_period = attr->sample_period;
local64_set(&event->hw.period_left, event->hw.sample_period);
event->hw.last_period = event->hw.sample_period;
out:
debug_sprintf_event(cf_diag_dbg, 5, "%s err %d config_base %#lx\n",
__func__, err, event->hw.config_base);
return err;
}
/* Return 0 if the CPU-measurement counter facility is currently free
* and an error otherwise.
*/
static int cf_diag_perf_event_inuse(void)
{
int err = 0;
if (!atomic_inc_not_zero(&cf_diag_events)) {
mutex_lock(&cf_diag_reserve_mutex);
if (atomic_read(&cf_diag_events) == 0 &&
__kernel_cpumcf_begin())
err = -EBUSY;
else
err = atomic_inc_return(&cf_diag_events);
mutex_unlock(&cf_diag_reserve_mutex);
}
return err;
}
static int cf_diag_event_init(struct perf_event *event)
{
struct perf_event_attr *attr = &event->attr;
int err = -ENOENT;
debug_sprintf_event(cf_diag_dbg, 5,
"%s event %p cpu %d config %#llx type:%u "
"sample_type %#llx cf_diag_events %d\n", __func__,
event, event->cpu, attr->config, event->pmu->type,
attr->sample_type, atomic_read(&cf_diag_events));
if (event->attr.config != PERF_EVENT_CPUM_CF_DIAG ||
event->attr.type != event->pmu->type)
goto out;
/* Raw events are used to access counters directly,
* hence do not permit excludes.
* This event is usesless without PERF_SAMPLE_RAW to return counter set
* values as raw data.
*/
if (attr->exclude_kernel || attr->exclude_user || attr->exclude_hv ||
!(attr->sample_type & (PERF_SAMPLE_CPU | PERF_SAMPLE_RAW))) {
err = -EOPNOTSUPP;
goto out;
}
/* Initialize for using the CPU-measurement counter facility */
err = cf_diag_perf_event_inuse();
if (err < 0)
goto out;
event->destroy = cf_diag_perf_event_destroy;
err = __hw_perf_event_init(event);
if (unlikely(err))
event->destroy(event);
out:
debug_sprintf_event(cf_diag_dbg, 5, "%s err %d\n", __func__, err);
return err;
}
static void cf_diag_read(struct perf_event *event)
{
debug_sprintf_event(cf_diag_dbg, 5, "%s event %p\n", __func__, event);
}
/* Return the maximum possible counter set size (in number of 8 byte counters)
* depending on type and model number.
*/
static size_t cf_diag_ctrset_size(enum cpumf_ctr_set ctrset,
struct cpumf_ctr_info *info)
{
size_t ctrset_size = 0;
switch (ctrset) {
case CPUMF_CTR_SET_BASIC:
if (info->cfvn >= 1)
ctrset_size = 6;
break;
case CPUMF_CTR_SET_USER:
if (info->cfvn == 1)
ctrset_size = 6;
else if (info->cfvn >= 3)
ctrset_size = 2;
break;
case CPUMF_CTR_SET_CRYPTO:
if (info->csvn >= 1 && info->csvn <= 5)
ctrset_size = 16;
else if (info->csvn == 6)
ctrset_size = 20;
break;
case CPUMF_CTR_SET_EXT:
if (info->csvn == 1)
ctrset_size = 32;
else if (info->csvn == 2)
ctrset_size = 48;
else if (info->csvn >= 3 && info->csvn <= 5)
ctrset_size = 128;
else if (info->csvn == 6)
ctrset_size = 160;
break;
case CPUMF_CTR_SET_MT_DIAG:
if (info->csvn > 3)
ctrset_size = 48;
break;
case CPUMF_CTR_SET_MAX:
break;
}
return ctrset_size;
}
/* Calculate memory needed to store all counter sets together with header and
* trailer data. This is independend of the counter set authorization which
* can vary depending on the configuration.
*/
static size_t cf_diag_ctrset_maxsize(struct cpumf_ctr_info *info)
{
size_t max_size = sizeof(struct cf_trailer_entry);
enum cpumf_ctr_set i;
for (i = CPUMF_CTR_SET_BASIC; i < CPUMF_CTR_SET_MAX; ++i) {
size_t size = cf_diag_ctrset_size(i, info);
if (size)
max_size += size * sizeof(u64) +
sizeof(struct cf_ctrset_entry);
}
debug_sprintf_event(cf_diag_dbg, 5, "%s max_size %zu\n", __func__,
max_size);
return max_size;
}
/* Read a counter set. The counter set number determines which counter set and
* the CPUM-CF first and second version number determine the number of
* available counters in this counter set.
* Each counter set starts with header containing the counter set number and
* the number of 8 byte counters.
*
* The functions returns the number of bytes occupied by this counter set
* including the header.
* If there is no counter in the counter set, this counter set is useless and
* zero is returned on this case.
*/
static size_t cf_diag_getctrset(struct cf_ctrset_entry *ctrdata, int ctrset,
size_t room)
{
struct cpu_cf_events *cpuhw = this_cpu_ptr(&cpu_cf_events);
size_t ctrset_size, need = 0;
int rc = 3; /* Assume write failure */
ctrdata->def = CF_DIAG_CTRSET_DEF;
ctrdata->set = ctrset;
ctrdata->res1 = 0;
ctrset_size = cf_diag_ctrset_size(ctrset, &cpuhw->info);
if (ctrset_size) { /* Save data */
need = ctrset_size * sizeof(u64) + sizeof(*ctrdata);
if (need <= room)
rc = ctr_stcctm(ctrset, ctrset_size,
(u64 *)(ctrdata + 1));
if (rc != 3)
ctrdata->ctr = ctrset_size;
else
need = 0;
}
debug_sprintf_event(cf_diag_dbg, 6,
"%s ctrset %d ctrset_size %zu cfvn %d csvn %d"
" need %zd rc %d\n",
__func__, ctrset, ctrset_size, cpuhw->info.cfvn,
cpuhw->info.csvn, need, rc);
return need;
}
/* Read out all counter sets and save them in the provided data buffer.
* The last 64 byte host an artificial trailer entry.
*/
static size_t cf_diag_getctr(void *data, size_t sz, unsigned long auth)
{
struct cf_trailer_entry *trailer;
size_t offset = 0, done;
int i;
memset(data, 0, sz);
sz -= sizeof(*trailer); /* Always room for trailer */
for (i = CPUMF_CTR_SET_BASIC; i < CPUMF_CTR_SET_MAX; ++i) {
struct cf_ctrset_entry *ctrdata = data + offset;
if (!(auth & cpumf_ctr_ctl[i]))
continue; /* Counter set not authorized */
done = cf_diag_getctrset(ctrdata, i, sz - offset);
offset += done;
debug_sprintf_event(cf_diag_dbg, 6,
"%s ctrset %d offset %zu done %zu\n",
__func__, i, offset, done);
}
trailer = data + offset;
cf_diag_trailer(trailer);
return offset + sizeof(*trailer);
}
/* Calculate the difference for each counter in a counter set. */
static void cf_diag_diffctrset(u64 *pstart, u64 *pstop, int counters)
{
for (; --counters >= 0; ++pstart, ++pstop)
if (*pstop >= *pstart)
*pstop -= *pstart;
else
*pstop = *pstart - *pstop;
}
/* Scan the counter sets and calculate the difference of each counter
* in each set. The result is the increment of each counter during the
* period the counter set has been activated.
*
* Return true on success.
*/
static int cf_diag_diffctr(struct cf_diag_csd *csd, unsigned long auth)
{
struct cf_trailer_entry *trailer_start, *trailer_stop;
struct cf_ctrset_entry *ctrstart, *ctrstop;
size_t offset = 0;
auth &= (1 << CPUMF_LCCTL_ENABLE_SHIFT) - 1;
do {
ctrstart = (struct cf_ctrset_entry *)(csd->start + offset);
ctrstop = (struct cf_ctrset_entry *)(csd->data + offset);
if (memcmp(ctrstop, ctrstart, sizeof(*ctrstop))) {
pr_err("cpum_cf_diag counter set compare error "
"in set %i\n", ctrstart->set);
return 0;
}
auth &= ~cpumf_ctr_ctl[ctrstart->set];
if (ctrstart->def == CF_DIAG_CTRSET_DEF) {
cf_diag_diffctrset((u64 *)(ctrstart + 1),
(u64 *)(ctrstop + 1), ctrstart->ctr);
offset += ctrstart->ctr * sizeof(u64) +
sizeof(*ctrstart);
}
debug_sprintf_event(cf_diag_dbg, 6,
"%s set %d ctr %d offset %zu auth %lx\n",
__func__, ctrstart->set, ctrstart->ctr,
offset, auth);
} while (ctrstart->def && auth);
/* Save time_stamp from start of event in stop's trailer */
trailer_start = (struct cf_trailer_entry *)(csd->start + offset);
trailer_stop = (struct cf_trailer_entry *)(csd->data + offset);
trailer_stop->progusage[0] = trailer_start->timestamp;
return 1;
}
/* Create perf event sample with the counter sets as raw data. The sample
* is then pushed to the event subsystem and the function checks for
* possible event overflows. If an event overflow occurs, the PMU is
* stopped.
*
* Return non-zero if an event overflow occurred.
*/
static int cf_diag_push_sample(struct perf_event *event,
struct cf_diag_csd *csd)
{
struct perf_sample_data data;
struct perf_raw_record raw;
struct pt_regs regs;
int overflow;
/* Setup perf sample */
perf_sample_data_init(&data, 0, event->hw.last_period);
memset(&regs, 0, sizeof(regs));
memset(&raw, 0, sizeof(raw));
if (event->attr.sample_type & PERF_SAMPLE_CPU)
data.cpu_entry.cpu = event->cpu;
if (event->attr.sample_type & PERF_SAMPLE_RAW) {
raw.frag.size = csd->used;
raw.frag.data = csd->data;
raw.size = csd->used;
data.raw = &raw;
}
overflow = perf_event_overflow(event, &data, &regs);
debug_sprintf_event(cf_diag_dbg, 6,
"%s event %p cpu %d sample_type %#llx raw %d "
"ov %d\n", __func__, event, event->cpu,
event->attr.sample_type, raw.size, overflow);
if (overflow)
event->pmu->stop(event, 0);
perf_event_update_userpage(event);
return overflow;
}
static void cf_diag_start(struct perf_event *event, int flags)
{
struct cpu_cf_events *cpuhw = this_cpu_ptr(&cpu_cf_events);
struct cf_diag_csd *csd = this_cpu_ptr(&cf_diag_csd);
struct hw_perf_event *hwc = &event->hw;
debug_sprintf_event(cf_diag_dbg, 5,
"%s event %p cpu %d flags %#x hwc-state %#x\n",
__func__, event, event->cpu, flags, hwc->state);
if (WARN_ON_ONCE(!(hwc->state & PERF_HES_STOPPED)))
return;
/* (Re-)enable and activate all counter sets */
lcctl(0); /* Reset counter sets */
hwc->state = 0;
ctr_set_multiple_enable(&cpuhw->state, hwc->config_base);
lcctl(cpuhw->state); /* Enable counter sets */
csd->used = cf_diag_getctr(csd->start, sizeof(csd->start),
event->hw.config_base);
ctr_set_multiple_start(&cpuhw->state, hwc->config_base);
/* Function cf_diag_enable() starts the counter sets. */
}
static void cf_diag_stop(struct perf_event *event, int flags)
{
struct cpu_cf_events *cpuhw = this_cpu_ptr(&cpu_cf_events);
struct cf_diag_csd *csd = this_cpu_ptr(&cf_diag_csd);
struct hw_perf_event *hwc = &event->hw;
debug_sprintf_event(cf_diag_dbg, 5,
"%s event %p cpu %d flags %#x hwc-state %#x\n",
__func__, event, event->cpu, flags, hwc->state);
/* Deactivate all counter sets */
ctr_set_multiple_stop(&cpuhw->state, hwc->config_base);
local64_inc(&event->count);
csd->used = cf_diag_getctr(csd->data, sizeof(csd->data),
event->hw.config_base);
if (cf_diag_diffctr(csd, event->hw.config_base))
cf_diag_push_sample(event, csd);
hwc->state |= PERF_HES_STOPPED;
}
static int cf_diag_add(struct perf_event *event, int flags)
{
struct cpu_cf_events *cpuhw = this_cpu_ptr(&cpu_cf_events);
int err = 0;
debug_sprintf_event(cf_diag_dbg, 5,
"%s event %p cpu %d flags %#x cpuhw %p\n",
__func__, event, event->cpu, flags, cpuhw);
if (cpuhw->flags & PMU_F_IN_USE) {
err = -EAGAIN;
goto out;
}
event->hw.state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
cpuhw->flags |= PMU_F_IN_USE;
if (flags & PERF_EF_START)
cf_diag_start(event, PERF_EF_RELOAD);
out:
debug_sprintf_event(cf_diag_dbg, 5, "%s err %d\n", __func__, err);
return err;
}
static void cf_diag_del(struct perf_event *event, int flags)
{
struct cpu_cf_events *cpuhw = this_cpu_ptr(&cpu_cf_events);
debug_sprintf_event(cf_diag_dbg, 5,
"%s event %p cpu %d flags %#x\n",
__func__, event, event->cpu, flags);
cf_diag_stop(event, PERF_EF_UPDATE);
ctr_set_multiple_stop(&cpuhw->state, event->hw.config_base);
ctr_set_multiple_disable(&cpuhw->state, event->hw.config_base);
cpuhw->flags &= ~PMU_F_IN_USE;
}
/* Default counter set events and format attribute groups */
CPUMF_EVENT_ATTR(CF_DIAG, CF_DIAG, PERF_EVENT_CPUM_CF_DIAG);
static struct attribute *cf_diag_events_attr[] = {
CPUMF_EVENT_PTR(CF_DIAG, CF_DIAG),
NULL,
};
PMU_FORMAT_ATTR(event, "config:0-63");
static struct attribute *cf_diag_format_attr[] = {
&format_attr_event.attr,
NULL,
};
static struct attribute_group cf_diag_events_group = {
.name = "events",
.attrs = cf_diag_events_attr,
};
static struct attribute_group cf_diag_format_group = {
.name = "format",
.attrs = cf_diag_format_attr,
};
static const struct attribute_group *cf_diag_attr_groups[] = {
&cf_diag_events_group,
&cf_diag_format_group,
NULL,
};
/* Performance monitoring unit for s390x */
static struct pmu cf_diag = {
.task_ctx_nr = perf_sw_context,
.pmu_enable = cf_diag_enable,
.pmu_disable = cf_diag_disable,
.event_init = cf_diag_event_init,
.add = cf_diag_add,
.del = cf_diag_del,
.start = cf_diag_start,
.stop = cf_diag_stop,
.read = cf_diag_read,
.attr_groups = cf_diag_attr_groups
};
/* Get the CPU speed, try sampling facility first and CPU attributes second. */
static void cf_diag_get_cpu_speed(void)
{
if (cpum_sf_avail()) { /* Sampling facility first */
struct hws_qsi_info_block si;
memset(&si, 0, sizeof(si));
if (!qsi(&si)) {
cf_diag_cpu_speed = si.cpu_speed;
return;
}
}
if (test_facility(34)) { /* CPU speed extract static part */
unsigned long mhz = __ecag(ECAG_CPU_ATTRIBUTE, 0);
if (mhz != -1UL)
cf_diag_cpu_speed = mhz & 0xffffffff;
}
}
/* Code to create device and file I/O operations */
static atomic_t ctrset_opencnt = ATOMIC_INIT(0); /* Excl. access */
static int cf_diag_open(struct inode *inode, struct file *file)
{
int err = 0;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
if (atomic_xchg(&ctrset_opencnt, 1))
return -EBUSY;
/* Avoid concurrent access with perf_event_open() system call */
mutex_lock(&cf_diag_reserve_mutex);
if (atomic_read(&cf_diag_events) || __kernel_cpumcf_begin())
err = -EBUSY;
mutex_unlock(&cf_diag_reserve_mutex);
if (err) {
atomic_set(&ctrset_opencnt, 0);
return err;
}
file->private_data = NULL;
debug_sprintf_event(cf_diag_dbg, 2, "%s\n", __func__);
/* nonseekable_open() never fails */
return nonseekable_open(inode, file);
}
/* Variables for ioctl() interface support */
static DEFINE_MUTEX(cf_diag_ctrset_mutex);
static struct cf_diag_ctrset {
unsigned long ctrset; /* Bit mask of counter set to read */
cpumask_t mask; /* CPU mask to read from */
time64_t lastread; /* Epoch counter set last read */
} cf_diag_ctrset;
static void cf_diag_ctrset_clear(void)
{
cpumask_clear(&cf_diag_ctrset.mask);
cf_diag_ctrset.ctrset = 0;
}
static void cf_diag_release_cpu(void *p)
{
struct cpu_cf_events *cpuhw = this_cpu_ptr(&cpu_cf_events);
debug_sprintf_event(cf_diag_dbg, 3, "%s cpu %d\n", __func__,
smp_processor_id());
lcctl(0); /* Reset counter sets */
cpuhw->state = 0; /* Save state in CPU hardware state */
}
/* Release function is also called when application gets terminated without
* doing a proper ioctl(..., S390_HWCTR_STOP, ...) command.
* Since only one application is allowed to open the device, simple stop all
* CPU counter sets.
*/
static int cf_diag_release(struct inode *inode, struct file *file)
{
on_each_cpu(cf_diag_release_cpu, NULL, 1);
cf_diag_ctrset_clear();
atomic_set(&ctrset_opencnt, 0);
__kernel_cpumcf_end();
debug_sprintf_event(cf_diag_dbg, 2, "%s\n", __func__);
return 0;
}
struct cf_diag_call_on_cpu_parm { /* Parm struct for smp_call_on_cpu */
unsigned int sets; /* Counter set bit mask */
atomic_t cpus_ack; /* # CPUs successfully executed func */
};
static int cf_diag_all_copy(unsigned long arg, cpumask_t *mask)
{
struct s390_ctrset_read __user *ctrset_read;
unsigned int cpu, cpus, rc;
void __user *uptr;
ctrset_read = (struct s390_ctrset_read __user *)arg;
uptr = ctrset_read->data;
for_each_cpu(cpu, mask) {
struct cf_diag_csd *csd = per_cpu_ptr(&cf_diag_csd, cpu);
struct s390_ctrset_cpudata __user *ctrset_cpudata;
ctrset_cpudata = uptr;
debug_sprintf_event(cf_diag_dbg, 5, "%s cpu %d used %zd\n",
__func__, cpu, csd->used);
rc = put_user(cpu, &ctrset_cpudata->cpu_nr);
rc |= put_user(csd->sets, &ctrset_cpudata->no_sets);
rc |= copy_to_user(ctrset_cpudata->data, csd->data, csd->used);
if (rc)
return -EFAULT;
uptr += sizeof(struct s390_ctrset_cpudata) + csd->used;
cond_resched();
}
cpus = cpumask_weight(mask);
if (put_user(cpus, &ctrset_read->no_cpus))
return -EFAULT;
debug_sprintf_event(cf_diag_dbg, 5, "%s copied %ld\n",
__func__, uptr - (void __user *)ctrset_read->data);
return 0;
}
static size_t cf_diag_cpuset_read(struct s390_ctrset_setdata *p, int ctrset,
int ctrset_size, size_t room)
{
size_t need = 0;
int rc = -1;
need = sizeof(*p) + sizeof(u64) * ctrset_size;
debug_sprintf_event(cf_diag_dbg, 5,
"%s room %zd need %zd set %#x set_size %d\n",
__func__, room, need, ctrset, ctrset_size);
if (need <= room) {
p->set = cpumf_ctr_ctl[ctrset];
p->no_cnts = ctrset_size;
rc = ctr_stcctm(ctrset, ctrset_size, (u64 *)p->cv);
if (rc == 3) /* Nothing stored */
need = 0;
}
debug_sprintf_event(cf_diag_dbg, 5, "%s need %zd rc %d\n", __func__,
need, rc);
return need;
}
/* Read all counter sets. Since the perf_event_open() system call with
* event cpum_cf_diag/.../ is blocked when this interface is active, reuse
* the perf_event_open() data buffer to store the counter sets.
*/
static void cf_diag_cpu_read(void *parm)
{
struct cpu_cf_events *cpuhw = this_cpu_ptr(&cpu_cf_events);
struct cf_diag_csd *csd = this_cpu_ptr(&cf_diag_csd);
struct cf_diag_call_on_cpu_parm *p = parm;
int set, set_size;
size_t space;
debug_sprintf_event(cf_diag_dbg, 5,
"%s new %#x flags %#x state %#llx\n",
__func__, p->sets, cpuhw->flags,
cpuhw->state);
/* No data saved yet */
csd->used = 0;
csd->sets = 0;
memset(csd->data, 0, sizeof(csd->data));
/* Scan the counter sets */
for (set = CPUMF_CTR_SET_BASIC; set < CPUMF_CTR_SET_MAX; ++set) {
struct s390_ctrset_setdata *sp = (void *)csd->data + csd->used;
if (!(p->sets & cpumf_ctr_ctl[set]))
continue; /* Counter set not in list */
set_size = cf_diag_ctrset_size(set, &cpuhw->info);
space = sizeof(csd->data) - csd->used;
space = cf_diag_cpuset_read(sp, set, set_size, space);
if (space) {
csd->used += space;
csd->sets += 1;
}
debug_sprintf_event(cf_diag_dbg, 5, "%s sp %px space %zd\n",
__func__, sp, space);
}
debug_sprintf_event(cf_diag_dbg, 5, "%s sets %d used %zd\n", __func__,
csd->sets, csd->used);
}
static int cf_diag_all_read(unsigned long arg)
{
struct cf_diag_call_on_cpu_parm p;
cpumask_var_t mask;
time64_t now;
int rc = 0;
debug_sprintf_event(cf_diag_dbg, 5, "%s\n", __func__);
if (!alloc_cpumask_var(&mask, GFP_KERNEL))
return -ENOMEM;
now = ktime_get_seconds();
if (cf_diag_ctrset.lastread + cf_diag_interval > now) {
debug_sprintf_event(cf_diag_dbg, 5, "%s now %lld "
" lastread %lld\n", __func__, now,
cf_diag_ctrset.lastread);
rc = -EAGAIN;
goto out;
} else {
cf_diag_ctrset.lastread = now;
}
p.sets = cf_diag_ctrset.ctrset;
cpumask_and(mask, &cf_diag_ctrset.mask, cpu_online_mask);
on_each_cpu_mask(mask, cf_diag_cpu_read, &p, 1);
rc = cf_diag_all_copy(arg, mask);
out:
free_cpumask_var(mask);
debug_sprintf_event(cf_diag_dbg, 5, "%s rc %d\n", __func__, rc);
return rc;
}
/* Stop all counter sets via ioctl interface */
static void cf_diag_ioctl_off(void *parm)
{
struct cpu_cf_events *cpuhw = this_cpu_ptr(&cpu_cf_events);
struct cf_diag_call_on_cpu_parm *p = parm;
int rc;
debug_sprintf_event(cf_diag_dbg, 5,
"%s new %#x flags %#x state %#llx\n",
__func__, p->sets, cpuhw->flags,
cpuhw->state);
ctr_set_multiple_disable(&cpuhw->state, p->sets);
ctr_set_multiple_stop(&cpuhw->state, p->sets);
rc = lcctl(cpuhw->state); /* Stop counter sets */
if (!cpuhw->state)
cpuhw->flags &= ~PMU_F_IN_USE;
debug_sprintf_event(cf_diag_dbg, 5,
"%s rc %d flags %#x state %#llx\n", __func__,
rc, cpuhw->flags, cpuhw->state);
}
/* Start counter sets on particular CPU */
static void cf_diag_ioctl_on(void *parm)
{
struct cpu_cf_events *cpuhw = this_cpu_ptr(&cpu_cf_events);
struct cf_diag_call_on_cpu_parm *p = parm;
int rc;
debug_sprintf_event(cf_diag_dbg, 5,
"%s new %#x flags %#x state %#llx\n",
__func__, p->sets, cpuhw->flags,
cpuhw->state);
if (!(cpuhw->flags & PMU_F_IN_USE))
cpuhw->state = 0;
cpuhw->flags |= PMU_F_IN_USE;
rc = lcctl(cpuhw->state); /* Reset unused counter sets */
ctr_set_multiple_enable(&cpuhw->state, p->sets);
ctr_set_multiple_start(&cpuhw->state, p->sets);
rc |= lcctl(cpuhw->state); /* Start counter sets */
if (!rc)
atomic_inc(&p->cpus_ack);
debug_sprintf_event(cf_diag_dbg, 5, "%s rc %d state %#llx\n",
__func__, rc, cpuhw->state);
}
static int cf_diag_all_stop(void)
{
struct cf_diag_call_on_cpu_parm p = {
.sets = cf_diag_ctrset.ctrset,
};
cpumask_var_t mask;
if (!alloc_cpumask_var(&mask, GFP_KERNEL))
return -ENOMEM;
cpumask_and(mask, &cf_diag_ctrset.mask, cpu_online_mask);
on_each_cpu_mask(mask, cf_diag_ioctl_off, &p, 1);
free_cpumask_var(mask);
return 0;
}
static int cf_diag_all_start(void)
{
struct cf_diag_call_on_cpu_parm p = {
.sets = cf_diag_ctrset.ctrset,
.cpus_ack = ATOMIC_INIT(0),
};
cpumask_var_t mask;
int rc = 0;
if (!alloc_cpumask_var(&mask, GFP_KERNEL))
return -ENOMEM;
cpumask_and(mask, &cf_diag_ctrset.mask, cpu_online_mask);
on_each_cpu_mask(mask, cf_diag_ioctl_on, &p, 1);
if (atomic_read(&p.cpus_ack) != cpumask_weight(mask)) {
on_each_cpu_mask(mask, cf_diag_ioctl_off, &p, 1);
rc = -EIO;
}
free_cpumask_var(mask);
return rc;
}
/* Return the maximum required space for all possible CPUs in case one
* CPU will be onlined during the START, READ, STOP cycles.
* To find out the size of the counter sets, any one CPU will do. They
* all have the same counter sets.
*/
static size_t cf_diag_needspace(unsigned int sets)
{
struct cpu_cf_events *cpuhw = this_cpu_ptr(&cpu_cf_events);
size_t bytes = 0;
int i;
for (i = CPUMF_CTR_SET_BASIC; i < CPUMF_CTR_SET_MAX; ++i) {
if (!(sets & cpumf_ctr_ctl[i]))
continue;
bytes += cf_diag_ctrset_size(i, &cpuhw->info) * sizeof(u64) +
sizeof(((struct s390_ctrset_setdata *)0)->set) +
sizeof(((struct s390_ctrset_setdata *)0)->no_cnts);
}
bytes = sizeof(((struct s390_ctrset_read *)0)->no_cpus) + nr_cpu_ids *
(bytes + sizeof(((struct s390_ctrset_cpudata *)0)->cpu_nr) +
sizeof(((struct s390_ctrset_cpudata *)0)->no_sets));
debug_sprintf_event(cf_diag_dbg, 5, "%s bytes %ld\n", __func__,
bytes);
return bytes;
}
static long cf_diag_ioctl_read(unsigned long arg)
{
struct s390_ctrset_read read;
int ret = 0;
debug_sprintf_event(cf_diag_dbg, 5, "%s\n", __func__);
if (copy_from_user(&read, (char __user *)arg, sizeof(read)))
return -EFAULT;
ret = cf_diag_all_read(arg);
debug_sprintf_event(cf_diag_dbg, 5, "%s ret %d\n", __func__, ret);
return ret;
}
static long cf_diag_ioctl_stop(void)
{
int ret;
debug_sprintf_event(cf_diag_dbg, 5, "%s\n", __func__);
ret = cf_diag_all_stop();
cf_diag_ctrset_clear();
debug_sprintf_event(cf_diag_dbg, 5, "%s ret %d\n", __func__, ret);
return ret;
}
static long cf_diag_ioctl_start(unsigned long arg)
{
struct s390_ctrset_start __user *ustart;
struct s390_ctrset_start start;
void __user *umask;
unsigned int len;
int ret = 0;
size_t need;
if (cf_diag_ctrset.ctrset)
return -EBUSY;
ustart = (struct s390_ctrset_start __user *)arg;
if (copy_from_user(&start, ustart, sizeof(start)))
return -EFAULT;
if (start.version != S390_HWCTR_START_VERSION)
return -EINVAL;
if (start.counter_sets & ~(cpumf_ctr_ctl[CPUMF_CTR_SET_BASIC] |
cpumf_ctr_ctl[CPUMF_CTR_SET_USER] |
cpumf_ctr_ctl[CPUMF_CTR_SET_CRYPTO] |
cpumf_ctr_ctl[CPUMF_CTR_SET_EXT] |
cpumf_ctr_ctl[CPUMF_CTR_SET_MT_DIAG]))
return -EINVAL; /* Invalid counter set */
if (!start.counter_sets)
return -EINVAL; /* No counter set at all? */
cpumask_clear(&cf_diag_ctrset.mask);
len = min_t(u64, start.cpumask_len, cpumask_size());
umask = (void __user *)start.cpumask;
if (copy_from_user(&cf_diag_ctrset.mask, umask, len))
return -EFAULT;
if (cpumask_empty(&cf_diag_ctrset.mask))
return -EINVAL;
need = cf_diag_needspace(start.counter_sets);
if (put_user(need, &ustart->data_bytes))
ret = -EFAULT;
if (ret)
goto out;
cf_diag_ctrset.ctrset = start.counter_sets;
ret = cf_diag_all_start();
out:
if (ret)
cf_diag_ctrset_clear();
debug_sprintf_event(cf_diag_dbg, 2, "%s sets %#lx need %ld ret %d\n",
__func__, cf_diag_ctrset.ctrset, need, ret);
return ret;
}
static long cf_diag_ioctl(struct file *file, unsigned int cmd,
unsigned long arg)
{
int ret;
debug_sprintf_event(cf_diag_dbg, 2, "%s cmd %#x arg %lx\n", __func__,
cmd, arg);
get_online_cpus();
mutex_lock(&cf_diag_ctrset_mutex);
switch (cmd) {
case S390_HWCTR_START:
ret = cf_diag_ioctl_start(arg);
break;
case S390_HWCTR_STOP:
ret = cf_diag_ioctl_stop();
break;
case S390_HWCTR_READ:
ret = cf_diag_ioctl_read(arg);
break;
default:
ret = -ENOTTY;
break;
}
mutex_unlock(&cf_diag_ctrset_mutex);
put_online_cpus();
debug_sprintf_event(cf_diag_dbg, 2, "%s ret %d\n", __func__, ret);
return ret;
}
static const struct file_operations cf_diag_fops = {
.owner = THIS_MODULE,
.open = cf_diag_open,
.release = cf_diag_release,
.unlocked_ioctl = cf_diag_ioctl,
.compat_ioctl = cf_diag_ioctl,
.llseek = no_llseek
};
static struct miscdevice cf_diag_dev = {
.name = S390_HWCTR_DEVICE,
.minor = MISC_DYNAMIC_MINOR,
.fops = &cf_diag_fops,
};
static int cf_diag_online_cpu(unsigned int cpu)
{
struct cf_diag_call_on_cpu_parm p;
mutex_lock(&cf_diag_ctrset_mutex);
if (!cf_diag_ctrset.ctrset)
goto out;
p.sets = cf_diag_ctrset.ctrset;
cf_diag_ioctl_on(&p);
out:
mutex_unlock(&cf_diag_ctrset_mutex);
return 0;
}
static int cf_diag_offline_cpu(unsigned int cpu)
{
struct cf_diag_call_on_cpu_parm p;
mutex_lock(&cf_diag_ctrset_mutex);
if (!cf_diag_ctrset.ctrset)
goto out;
p.sets = cf_diag_ctrset.ctrset;
cf_diag_ioctl_off(&p);
out:
mutex_unlock(&cf_diag_ctrset_mutex);
return 0;
}
/* Initialize the counter set PMU to generate complete counter set data as
* event raw data. This relies on the CPU Measurement Counter Facility device
* already being loaded and initialized.
*/
static int __init cf_diag_init(void)
{
struct cpumf_ctr_info info;
size_t need;
int rc;
if (!kernel_cpumcf_avail() || !stccm_avail() || qctri(&info))
return -ENODEV;
cf_diag_get_cpu_speed();
/* Make sure the counter set data fits into predefined buffer. */
need = cf_diag_ctrset_maxsize(&info);
if (need > sizeof(((struct cf_diag_csd *)0)->start)) {
pr_err("Insufficient memory for PMU(cpum_cf_diag) need=%zu\n",
need);
return -ENOMEM;
}
rc = misc_register(&cf_diag_dev);
if (rc) {
pr_err("Registration of /dev/" S390_HWCTR_DEVICE
"failed rc=%d\n", rc);
goto out;
}
/* Setup s390dbf facility */
cf_diag_dbg = debug_register(KMSG_COMPONENT, 2, 1, 128);
if (!cf_diag_dbg) {
pr_err("Registration of s390dbf(cpum_cf_diag) failed\n");
rc = -ENOMEM;
goto out_dbf;
}
debug_register_view(cf_diag_dbg, &debug_sprintf_view);
rc = perf_pmu_register(&cf_diag, "cpum_cf_diag", -1);
if (rc) {
pr_err("Registration of PMU(cpum_cf_diag) failed with rc=%i\n",
rc);
goto out_perf;
}
rc = cpuhp_setup_state_nocalls(CPUHP_AP_PERF_S390_CFD_ONLINE,
"perf/s390/cfd:online",
cf_diag_online_cpu, cf_diag_offline_cpu);
if (!rc)
goto out;
pr_err("Registration of CPUHP_AP_PERF_S390_CFD_ONLINE failed rc=%i\n",
rc);
perf_pmu_unregister(&cf_diag);
out_perf:
debug_unregister_view(cf_diag_dbg, &debug_sprintf_view);
debug_unregister(cf_diag_dbg);
out_dbf:
misc_deregister(&cf_diag_dev);
out:
return rc;
}
device_initcall(cf_diag_init);