| /* |
| * Copyright 2015 Advanced Micro Devices, Inc. |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR |
| * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, |
| * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR |
| * OTHER DEALINGS IN THE SOFTWARE. |
| * |
| */ |
| #include <linux/module.h> |
| #include <linux/slab.h> |
| #include <linux/fb.h> |
| #include "linux/delay.h" |
| #include "pp_acpi.h" |
| #include "hwmgr.h" |
| #include <atombios.h> |
| #include "tonga_hwmgr.h" |
| #include "pptable.h" |
| #include "processpptables.h" |
| #include "tonga_processpptables.h" |
| #include "tonga_pptable.h" |
| #include "pp_debug.h" |
| #include "tonga_ppsmc.h" |
| #include "cgs_common.h" |
| #include "pppcielanes.h" |
| #include "tonga_dyn_defaults.h" |
| #include "smumgr.h" |
| #include "tonga_smumgr.h" |
| #include "tonga_clockpowergating.h" |
| #include "tonga_thermal.h" |
| |
| #include "smu/smu_7_1_2_d.h" |
| #include "smu/smu_7_1_2_sh_mask.h" |
| |
| #include "gmc/gmc_8_1_d.h" |
| #include "gmc/gmc_8_1_sh_mask.h" |
| |
| #include "bif/bif_5_0_d.h" |
| #include "bif/bif_5_0_sh_mask.h" |
| |
| #include "cgs_linux.h" |
| #include "eventmgr.h" |
| #include "amd_pcie_helpers.h" |
| |
| #define MC_CG_ARB_FREQ_F0 0x0a |
| #define MC_CG_ARB_FREQ_F1 0x0b |
| #define MC_CG_ARB_FREQ_F2 0x0c |
| #define MC_CG_ARB_FREQ_F3 0x0d |
| |
| #define MC_CG_SEQ_DRAMCONF_S0 0x05 |
| #define MC_CG_SEQ_DRAMCONF_S1 0x06 |
| #define MC_CG_SEQ_YCLK_SUSPEND 0x04 |
| #define MC_CG_SEQ_YCLK_RESUME 0x0a |
| |
| #define PCIE_BUS_CLK 10000 |
| #define TCLK (PCIE_BUS_CLK / 10) |
| |
| #define SMC_RAM_END 0x40000 |
| #define SMC_CG_IND_START 0xc0030000 |
| #define SMC_CG_IND_END 0xc0040000 /* First byte after SMC_CG_IND*/ |
| |
| #define VOLTAGE_SCALE 4 |
| #define VOLTAGE_VID_OFFSET_SCALE1 625 |
| #define VOLTAGE_VID_OFFSET_SCALE2 100 |
| |
| #define VDDC_VDDCI_DELTA 200 |
| #define VDDC_VDDGFX_DELTA 300 |
| |
| #define MC_SEQ_MISC0_GDDR5_SHIFT 28 |
| #define MC_SEQ_MISC0_GDDR5_MASK 0xf0000000 |
| #define MC_SEQ_MISC0_GDDR5_VALUE 5 |
| |
| typedef uint32_t PECI_RegistryValue; |
| |
| /* [2.5%,~2.5%] Clock stretched is multiple of 2.5% vs not and [Fmin, Fmax, LDO_REFSEL, USE_FOR_LOW_FREQ] */ |
| uint16_t PP_ClockStretcherLookupTable[2][4] = { |
| {600, 1050, 3, 0}, |
| {600, 1050, 6, 1} }; |
| |
| /* [FF, SS] type, [] 4 voltage ranges, and [Floor Freq, Boundary Freq, VID min , VID max] */ |
| uint32_t PP_ClockStretcherDDTTable[2][4][4] = { |
| { {265, 529, 120, 128}, {325, 650, 96, 119}, {430, 860, 32, 95}, {0, 0, 0, 31} }, |
| { {275, 550, 104, 112}, {319, 638, 96, 103}, {360, 720, 64, 95}, {384, 768, 32, 63} } }; |
| |
| /* [Use_For_Low_freq] value, [0%, 5%, 10%, 7.14%, 14.28%, 20%] (coming from PWR_CKS_CNTL.stretch_amount reg spec) */ |
| uint8_t PP_ClockStretchAmountConversion[2][6] = { |
| {0, 1, 3, 2, 4, 5}, |
| {0, 2, 4, 5, 6, 5} }; |
| |
| /* Values for the CG_THERMAL_CTRL::DPM_EVENT_SRC field. */ |
| enum DPM_EVENT_SRC { |
| DPM_EVENT_SRC_ANALOG = 0, /* Internal analog trip point */ |
| DPM_EVENT_SRC_EXTERNAL = 1, /* External (GPIO 17) signal */ |
| DPM_EVENT_SRC_DIGITAL = 2, /* Internal digital trip point (DIG_THERM_DPM) */ |
| DPM_EVENT_SRC_ANALOG_OR_EXTERNAL = 3, /* Internal analog or external */ |
| DPM_EVENT_SRC_DIGITAL_OR_EXTERNAL = 4 /* Internal digital or external */ |
| }; |
| typedef enum DPM_EVENT_SRC DPM_EVENT_SRC; |
| |
| const unsigned long PhwTonga_Magic = (unsigned long)(PHM_VIslands_Magic); |
| |
| struct tonga_power_state *cast_phw_tonga_power_state( |
| struct pp_hw_power_state *hw_ps) |
| { |
| if (hw_ps == NULL) |
| return NULL; |
| |
| PP_ASSERT_WITH_CODE((PhwTonga_Magic == hw_ps->magic), |
| "Invalid Powerstate Type!", |
| return NULL); |
| |
| return (struct tonga_power_state *)hw_ps; |
| } |
| |
| const struct tonga_power_state *cast_const_phw_tonga_power_state( |
| const struct pp_hw_power_state *hw_ps) |
| { |
| if (hw_ps == NULL) |
| return NULL; |
| |
| PP_ASSERT_WITH_CODE((PhwTonga_Magic == hw_ps->magic), |
| "Invalid Powerstate Type!", |
| return NULL); |
| |
| return (const struct tonga_power_state *)hw_ps; |
| } |
| |
| int tonga_add_voltage(struct pp_hwmgr *hwmgr, |
| phm_ppt_v1_voltage_lookup_table *look_up_table, |
| phm_ppt_v1_voltage_lookup_record *record) |
| { |
| uint32_t i; |
| PP_ASSERT_WITH_CODE((NULL != look_up_table), |
| "Lookup Table empty.", return -1;); |
| PP_ASSERT_WITH_CODE((0 != look_up_table->count), |
| "Lookup Table empty.", return -1;); |
| PP_ASSERT_WITH_CODE((SMU72_MAX_LEVELS_VDDGFX >= look_up_table->count), |
| "Lookup Table is full.", return -1;); |
| |
| /* This is to avoid entering duplicate calculated records. */ |
| for (i = 0; i < look_up_table->count; i++) { |
| if (look_up_table->entries[i].us_vdd == record->us_vdd) { |
| if (look_up_table->entries[i].us_calculated == 1) |
| return 0; |
| else |
| break; |
| } |
| } |
| |
| look_up_table->entries[i].us_calculated = 1; |
| look_up_table->entries[i].us_vdd = record->us_vdd; |
| look_up_table->entries[i].us_cac_low = record->us_cac_low; |
| look_up_table->entries[i].us_cac_mid = record->us_cac_mid; |
| look_up_table->entries[i].us_cac_high = record->us_cac_high; |
| /* Only increment the count when we're appending, not replacing duplicate entry. */ |
| if (i == look_up_table->count) |
| look_up_table->count++; |
| |
| return 0; |
| } |
| |
| int tonga_notify_smc_display_change(struct pp_hwmgr *hwmgr, bool has_display) |
| { |
| PPSMC_Msg msg = has_display? (PPSMC_Msg)PPSMC_HasDisplay : (PPSMC_Msg)PPSMC_NoDisplay; |
| |
| return (smum_send_msg_to_smc(hwmgr->smumgr, msg) == 0) ? 0 : -1; |
| } |
| |
| uint8_t tonga_get_voltage_id(pp_atomctrl_voltage_table *voltage_table, |
| uint32_t voltage) |
| { |
| uint8_t count = (uint8_t) (voltage_table->count); |
| uint8_t i = 0; |
| |
| PP_ASSERT_WITH_CODE((NULL != voltage_table), |
| "Voltage Table empty.", return 0;); |
| PP_ASSERT_WITH_CODE((0 != count), |
| "Voltage Table empty.", return 0;); |
| |
| for (i = 0; i < count; i++) { |
| /* find first voltage bigger than requested */ |
| if (voltage_table->entries[i].value >= voltage) |
| return i; |
| } |
| |
| /* voltage is bigger than max voltage in the table */ |
| return i - 1; |
| } |
| |
| /** |
| * @brief PhwTonga_GetVoltageOrder |
| * Returns index of requested voltage record in lookup(table) |
| * @param hwmgr - pointer to hardware manager |
| * @param lookupTable - lookup list to search in |
| * @param voltage - voltage to look for |
| * @return 0 on success |
| */ |
| uint8_t tonga_get_voltage_index(phm_ppt_v1_voltage_lookup_table *look_up_table, |
| uint16_t voltage) |
| { |
| uint8_t count = (uint8_t) (look_up_table->count); |
| uint8_t i; |
| |
| PP_ASSERT_WITH_CODE((NULL != look_up_table), "Lookup Table empty.", return 0;); |
| PP_ASSERT_WITH_CODE((0 != count), "Lookup Table empty.", return 0;); |
| |
| for (i = 0; i < count; i++) { |
| /* find first voltage equal or bigger than requested */ |
| if (look_up_table->entries[i].us_vdd >= voltage) |
| return i; |
| } |
| |
| /* voltage is bigger than max voltage in the table */ |
| return i-1; |
| } |
| |
| bool tonga_is_dpm_running(struct pp_hwmgr *hwmgr) |
| { |
| /* |
| * We return the status of Voltage Control instead of checking SCLK/MCLK DPM |
| * because we may have test scenarios that need us intentionly disable SCLK/MCLK DPM, |
| * whereas voltage control is a fundemental change that will not be disabled |
| */ |
| |
| return (0 == PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, |
| FEATURE_STATUS, VOLTAGE_CONTROLLER_ON) ? 1 : 0); |
| } |
| |
| /** |
| * Re-generate the DPM level mask value |
| * @param hwmgr the address of the hardware manager |
| */ |
| static uint32_t tonga_get_dpm_level_enable_mask_value( |
| struct tonga_single_dpm_table * dpm_table) |
| { |
| uint32_t i; |
| uint32_t mask_value = 0; |
| |
| for (i = dpm_table->count; i > 0; i--) { |
| mask_value = mask_value << 1; |
| |
| if (dpm_table->dpm_levels[i-1].enabled) |
| mask_value |= 0x1; |
| else |
| mask_value &= 0xFFFFFFFE; |
| } |
| return mask_value; |
| } |
| |
| /** |
| * Retrieve DPM default values from registry (if available) |
| * |
| * @param hwmgr the address of the powerplay hardware manager. |
| */ |
| void tonga_initialize_dpm_defaults(struct pp_hwmgr *hwmgr) |
| { |
| tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend); |
| phw_tonga_ulv_parm *ulv = &(data->ulv); |
| uint32_t tmp; |
| |
| ulv->ch_ulv_parameter = PPTONGA_CGULVPARAMETER_DFLT; |
| data->voting_rights_clients0 = PPTONGA_VOTINGRIGHTSCLIENTS_DFLT0; |
| data->voting_rights_clients1 = PPTONGA_VOTINGRIGHTSCLIENTS_DFLT1; |
| data->voting_rights_clients2 = PPTONGA_VOTINGRIGHTSCLIENTS_DFLT2; |
| data->voting_rights_clients3 = PPTONGA_VOTINGRIGHTSCLIENTS_DFLT3; |
| data->voting_rights_clients4 = PPTONGA_VOTINGRIGHTSCLIENTS_DFLT4; |
| data->voting_rights_clients5 = PPTONGA_VOTINGRIGHTSCLIENTS_DFLT5; |
| data->voting_rights_clients6 = PPTONGA_VOTINGRIGHTSCLIENTS_DFLT6; |
| data->voting_rights_clients7 = PPTONGA_VOTINGRIGHTSCLIENTS_DFLT7; |
| |
| data->static_screen_threshold_unit = PPTONGA_STATICSCREENTHRESHOLDUNIT_DFLT; |
| data->static_screen_threshold = PPTONGA_STATICSCREENTHRESHOLD_DFLT; |
| |
| phm_cap_unset(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_ABM); |
| phm_cap_set(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_NonABMSupportInPPLib); |
| |
| tmp = 0; |
| if (tmp == 0) |
| phm_cap_set(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_DynamicACTiming); |
| |
| tmp = 0; |
| if (0 != tmp) |
| phm_cap_set(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_DisableMemoryTransition); |
| |
| data->mclk_strobe_mode_threshold = 40000; |
| data->mclk_stutter_mode_threshold = 30000; |
| data->mclk_edc_enable_threshold = 40000; |
| data->mclk_edc_wr_enable_threshold = 40000; |
| |
| tmp = 0; |
| if (tmp != 0) |
| phm_cap_set(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_DisableMCLS); |
| |
| data->pcie_gen_performance.max = PP_PCIEGen1; |
| data->pcie_gen_performance.min = PP_PCIEGen3; |
| data->pcie_gen_power_saving.max = PP_PCIEGen1; |
| data->pcie_gen_power_saving.min = PP_PCIEGen3; |
| |
| data->pcie_lane_performance.max = 0; |
| data->pcie_lane_performance.min = 16; |
| data->pcie_lane_power_saving.max = 0; |
| data->pcie_lane_power_saving.min = 16; |
| |
| tmp = 0; |
| |
| if (tmp) |
| phm_cap_set(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_SclkThrottleLowNotification); |
| |
| phm_cap_set(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_DynamicUVDState); |
| |
| } |
| |
| int tonga_update_sclk_threshold(struct pp_hwmgr *hwmgr) |
| { |
| tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend); |
| |
| int result = 0; |
| uint32_t low_sclk_interrupt_threshold = 0; |
| |
| if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_SclkThrottleLowNotification) |
| && (hwmgr->gfx_arbiter.sclk_threshold != data->low_sclk_interrupt_threshold)) { |
| data->low_sclk_interrupt_threshold = hwmgr->gfx_arbiter.sclk_threshold; |
| low_sclk_interrupt_threshold = data->low_sclk_interrupt_threshold; |
| |
| CONVERT_FROM_HOST_TO_SMC_UL(low_sclk_interrupt_threshold); |
| |
| result = tonga_copy_bytes_to_smc( |
| hwmgr->smumgr, |
| data->dpm_table_start + offsetof(SMU72_Discrete_DpmTable, |
| LowSclkInterruptThreshold), |
| (uint8_t *)&low_sclk_interrupt_threshold, |
| sizeof(uint32_t), |
| data->sram_end |
| ); |
| } |
| |
| return result; |
| } |
| |
| /** |
| * Find SCLK value that is associated with specified virtual_voltage_Id. |
| * |
| * @param hwmgr the address of the powerplay hardware manager. |
| * @param virtual_voltage_Id voltageId to look for. |
| * @param sclk output value . |
| * @return always 0 if success and 2 if association not found |
| */ |
| static int tonga_get_sclk_for_voltage_evv(struct pp_hwmgr *hwmgr, |
| phm_ppt_v1_voltage_lookup_table *lookup_table, |
| uint16_t virtual_voltage_id, uint32_t *sclk) |
| { |
| uint8_t entryId; |
| uint8_t voltageId; |
| struct phm_ppt_v1_information *pptable_info = |
| (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| |
| PP_ASSERT_WITH_CODE(lookup_table->count != 0, "Lookup table is empty", return -1); |
| |
| /* search for leakage voltage ID 0xff01 ~ 0xff08 and sckl */ |
| for (entryId = 0; entryId < pptable_info->vdd_dep_on_sclk->count; entryId++) { |
| voltageId = pptable_info->vdd_dep_on_sclk->entries[entryId].vddInd; |
| if (lookup_table->entries[voltageId].us_vdd == virtual_voltage_id) |
| break; |
| } |
| |
| PP_ASSERT_WITH_CODE(entryId < pptable_info->vdd_dep_on_sclk->count, |
| "Can't find requested voltage id in vdd_dep_on_sclk table!", |
| return -1; |
| ); |
| |
| *sclk = pptable_info->vdd_dep_on_sclk->entries[entryId].clk; |
| |
| return 0; |
| } |
| |
| /** |
| * Get Leakage VDDC based on leakage ID. |
| * |
| * @param hwmgr the address of the powerplay hardware manager. |
| * @return 2 if vddgfx returned is greater than 2V or if BIOS |
| */ |
| int tonga_get_evv_voltage(struct pp_hwmgr *hwmgr) |
| { |
| tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend); |
| struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| phm_ppt_v1_clock_voltage_dependency_table *sclk_table = pptable_info->vdd_dep_on_sclk; |
| uint16_t virtual_voltage_id; |
| uint16_t vddc = 0; |
| uint16_t vddgfx = 0; |
| uint16_t i, j; |
| uint32_t sclk = 0; |
| |
| /* retrieve voltage for leakage ID (0xff01 + i) */ |
| for (i = 0; i < TONGA_MAX_LEAKAGE_COUNT; i++) { |
| virtual_voltage_id = ATOM_VIRTUAL_VOLTAGE_ID0 + i; |
| |
| /* in split mode we should have only vddgfx EVV leakages */ |
| if (data->vdd_gfx_control == TONGA_VOLTAGE_CONTROL_BY_SVID2) { |
| if (0 == tonga_get_sclk_for_voltage_evv(hwmgr, |
| pptable_info->vddgfx_lookup_table, virtual_voltage_id, &sclk)) { |
| if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_ClockStretcher)) { |
| for (j = 1; j < sclk_table->count; j++) { |
| if (sclk_table->entries[j].clk == sclk && |
| sclk_table->entries[j].cks_enable == 0) { |
| sclk += 5000; |
| break; |
| } |
| } |
| } |
| PP_ASSERT_WITH_CODE(0 == atomctrl_get_voltage_evv_on_sclk |
| (hwmgr, VOLTAGE_TYPE_VDDGFX, sclk, |
| virtual_voltage_id, &vddgfx), |
| "Error retrieving EVV voltage value!", continue); |
| |
| /* need to make sure vddgfx is less than 2v or else, it could burn the ASIC. */ |
| PP_ASSERT_WITH_CODE((vddgfx < 2000 && vddgfx != 0), "Invalid VDDGFX value!", return -1); |
| |
| /* the voltage should not be zero nor equal to leakage ID */ |
| if (vddgfx != 0 && vddgfx != virtual_voltage_id) { |
| data->vddcgfx_leakage.actual_voltage[data->vddcgfx_leakage.count] = vddgfx; |
| data->vddcgfx_leakage.leakage_id[data->vddcgfx_leakage.count] = virtual_voltage_id; |
| data->vddcgfx_leakage.count++; |
| } |
| } |
| } else { |
| /* in merged mode we have only vddc EVV leakages */ |
| if (0 == tonga_get_sclk_for_voltage_evv(hwmgr, |
| pptable_info->vddc_lookup_table, |
| virtual_voltage_id, &sclk)) { |
| PP_ASSERT_WITH_CODE(0 == atomctrl_get_voltage_evv_on_sclk |
| (hwmgr, VOLTAGE_TYPE_VDDC, sclk, |
| virtual_voltage_id, &vddc), |
| "Error retrieving EVV voltage value!", continue); |
| |
| /* need to make sure vddc is less than 2v or else, it could burn the ASIC. */ |
| if (vddc > 2000) |
| printk(KERN_ERR "[ powerplay ] Invalid VDDC value! \n"); |
| |
| /* the voltage should not be zero nor equal to leakage ID */ |
| if (vddc != 0 && vddc != virtual_voltage_id) { |
| data->vddc_leakage.actual_voltage[data->vddc_leakage.count] = vddc; |
| data->vddc_leakage.leakage_id[data->vddc_leakage.count] = virtual_voltage_id; |
| data->vddc_leakage.count++; |
| } |
| } |
| } |
| } |
| |
| return 0; |
| } |
| |
| int tonga_enable_sclk_mclk_dpm(struct pp_hwmgr *hwmgr) |
| { |
| tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend); |
| |
| /* enable SCLK dpm */ |
| if (0 == data->sclk_dpm_key_disabled) { |
| PP_ASSERT_WITH_CODE( |
| (0 == smum_send_msg_to_smc(hwmgr->smumgr, |
| PPSMC_MSG_DPM_Enable)), |
| "Failed to enable SCLK DPM during DPM Start Function!", |
| return -1); |
| } |
| |
| /* enable MCLK dpm */ |
| if (0 == data->mclk_dpm_key_disabled) { |
| PP_ASSERT_WITH_CODE( |
| (0 == smum_send_msg_to_smc(hwmgr->smumgr, |
| PPSMC_MSG_MCLKDPM_Enable)), |
| "Failed to enable MCLK DPM during DPM Start Function!", |
| return -1); |
| |
| PHM_WRITE_FIELD(hwmgr->device, MC_SEQ_CNTL_3, CAC_EN, 0x1); |
| |
| cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, |
| ixLCAC_MC0_CNTL, 0x05);/* CH0,1 read */ |
| cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, |
| ixLCAC_MC1_CNTL, 0x05);/* CH2,3 read */ |
| cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, |
| ixLCAC_CPL_CNTL, 0x100005);/*Read */ |
| |
| udelay(10); |
| |
| cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, |
| ixLCAC_MC0_CNTL, 0x400005);/* CH0,1 write */ |
| cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, |
| ixLCAC_MC1_CNTL, 0x400005);/* CH2,3 write */ |
| cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, |
| ixLCAC_CPL_CNTL, 0x500005);/* write */ |
| |
| } |
| |
| return 0; |
| } |
| |
| int tonga_start_dpm(struct pp_hwmgr *hwmgr) |
| { |
| tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend); |
| |
| /* enable general power management */ |
| PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT, GLOBAL_PWRMGT_EN, 1); |
| /* enable sclk deep sleep */ |
| PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SCLK_PWRMGT_CNTL, DYNAMIC_PM_EN, 1); |
| |
| /* prepare for PCIE DPM */ |
| cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, data->soft_regs_start + |
| offsetof(SMU72_SoftRegisters, VoltageChangeTimeout), 0x1000); |
| |
| PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__PCIE, SWRST_COMMAND_1, RESETLC, 0x0); |
| |
| PP_ASSERT_WITH_CODE( |
| (0 == smum_send_msg_to_smc(hwmgr->smumgr, |
| PPSMC_MSG_Voltage_Cntl_Enable)), |
| "Failed to enable voltage DPM during DPM Start Function!", |
| return -1); |
| |
| if (0 != tonga_enable_sclk_mclk_dpm(hwmgr)) { |
| PP_ASSERT_WITH_CODE(0, "Failed to enable Sclk DPM and Mclk DPM!", return -1); |
| } |
| |
| /* enable PCIE dpm */ |
| if (0 == data->pcie_dpm_key_disabled) { |
| PP_ASSERT_WITH_CODE( |
| (0 == smum_send_msg_to_smc(hwmgr->smumgr, |
| PPSMC_MSG_PCIeDPM_Enable)), |
| "Failed to enable pcie DPM during DPM Start Function!", |
| return -1 |
| ); |
| } |
| |
| if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_Falcon_QuickTransition)) { |
| smum_send_msg_to_smc(hwmgr->smumgr, |
| PPSMC_MSG_EnableACDCGPIOInterrupt); |
| } |
| |
| return 0; |
| } |
| |
| int tonga_disable_sclk_mclk_dpm(struct pp_hwmgr *hwmgr) |
| { |
| tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend); |
| |
| /* disable SCLK dpm */ |
| if (0 == data->sclk_dpm_key_disabled) { |
| /* Checking if DPM is running. If we discover hang because of this, we should skip this message.*/ |
| PP_ASSERT_WITH_CODE( |
| (0 == tonga_is_dpm_running(hwmgr)), |
| "Trying to Disable SCLK DPM when DPM is disabled", |
| return -1 |
| ); |
| |
| PP_ASSERT_WITH_CODE( |
| (0 == smum_send_msg_to_smc(hwmgr->smumgr, |
| PPSMC_MSG_DPM_Disable)), |
| "Failed to disable SCLK DPM during DPM stop Function!", |
| return -1); |
| } |
| |
| /* disable MCLK dpm */ |
| if (0 == data->mclk_dpm_key_disabled) { |
| /* Checking if DPM is running. If we discover hang because of this, we should skip this message. */ |
| PP_ASSERT_WITH_CODE( |
| (0 == tonga_is_dpm_running(hwmgr)), |
| "Trying to Disable MCLK DPM when DPM is disabled", |
| return -1 |
| ); |
| |
| PP_ASSERT_WITH_CODE( |
| (0 == smum_send_msg_to_smc(hwmgr->smumgr, |
| PPSMC_MSG_MCLKDPM_Disable)), |
| "Failed to Disable MCLK DPM during DPM stop Function!", |
| return -1); |
| } |
| |
| return 0; |
| } |
| |
| int tonga_stop_dpm(struct pp_hwmgr *hwmgr) |
| { |
| tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend); |
| |
| PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT, GLOBAL_PWRMGT_EN, 0); |
| /* disable sclk deep sleep*/ |
| PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SCLK_PWRMGT_CNTL, DYNAMIC_PM_EN, 0); |
| |
| /* disable PCIE dpm */ |
| if (0 == data->pcie_dpm_key_disabled) { |
| /* Checking if DPM is running. If we discover hang because of this, we should skip this message.*/ |
| PP_ASSERT_WITH_CODE( |
| (0 == tonga_is_dpm_running(hwmgr)), |
| "Trying to Disable PCIE DPM when DPM is disabled", |
| return -1 |
| ); |
| PP_ASSERT_WITH_CODE( |
| (0 == smum_send_msg_to_smc(hwmgr->smumgr, |
| PPSMC_MSG_PCIeDPM_Disable)), |
| "Failed to disable pcie DPM during DPM stop Function!", |
| return -1); |
| } |
| |
| if (0 != tonga_disable_sclk_mclk_dpm(hwmgr)) |
| PP_ASSERT_WITH_CODE(0, "Failed to disable Sclk DPM and Mclk DPM!", return -1); |
| |
| /* Checking if DPM is running. If we discover hang because of this, we should skip this message.*/ |
| PP_ASSERT_WITH_CODE( |
| (0 == tonga_is_dpm_running(hwmgr)), |
| "Trying to Disable Voltage CNTL when DPM is disabled", |
| return -1 |
| ); |
| |
| PP_ASSERT_WITH_CODE( |
| (0 == smum_send_msg_to_smc(hwmgr->smumgr, |
| PPSMC_MSG_Voltage_Cntl_Disable)), |
| "Failed to disable voltage DPM during DPM stop Function!", |
| return -1); |
| |
| return 0; |
| } |
| |
| int tonga_enable_sclk_control(struct pp_hwmgr *hwmgr) |
| { |
| PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SCLK_PWRMGT_CNTL, SCLK_PWRMGT_OFF, 0); |
| |
| return 0; |
| } |
| |
| /** |
| * Send a message to the SMC and return a parameter |
| * |
| * @param hwmgr: the address of the powerplay hardware manager. |
| * @param msg: the message to send. |
| * @param parameter: pointer to the received parameter |
| * @return The response that came from the SMC. |
| */ |
| PPSMC_Result tonga_send_msg_to_smc_return_parameter( |
| struct pp_hwmgr *hwmgr, |
| PPSMC_Msg msg, |
| uint32_t *parameter) |
| { |
| int result; |
| |
| result = smum_send_msg_to_smc(hwmgr->smumgr, msg); |
| |
| if ((0 == result) && parameter) { |
| *parameter = cgs_read_register(hwmgr->device, mmSMC_MSG_ARG_0); |
| } |
| |
| return result; |
| } |
| |
| /** |
| * force DPM power State |
| * |
| * @param hwmgr: the address of the powerplay hardware manager. |
| * @param n : DPM level |
| * @return The response that came from the SMC. |
| */ |
| int tonga_dpm_force_state(struct pp_hwmgr *hwmgr, uint32_t n) |
| { |
| tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend); |
| uint32_t level_mask = 1 << n; |
| |
| /* Checking if DPM is running. If we discover hang because of this, we should skip this message. */ |
| PP_ASSERT_WITH_CODE(0 == tonga_is_dpm_running(hwmgr), |
| "Trying to force SCLK when DPM is disabled", return -1;); |
| if (0 == data->sclk_dpm_key_disabled) |
| return (0 == smum_send_msg_to_smc_with_parameter( |
| hwmgr->smumgr, |
| (PPSMC_Msg)(PPSMC_MSG_SCLKDPM_SetEnabledMask), |
| level_mask) ? 0 : 1); |
| |
| return 0; |
| } |
| |
| /** |
| * force DPM power State |
| * |
| * @param hwmgr: the address of the powerplay hardware manager. |
| * @param n : DPM level |
| * @return The response that came from the SMC. |
| */ |
| int tonga_dpm_force_state_mclk(struct pp_hwmgr *hwmgr, uint32_t n) |
| { |
| tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend); |
| uint32_t level_mask = 1 << n; |
| |
| /* Checking if DPM is running. If we discover hang because of this, we should skip this message. */ |
| PP_ASSERT_WITH_CODE(0 == tonga_is_dpm_running(hwmgr), |
| "Trying to Force MCLK when DPM is disabled", return -1;); |
| if (0 == data->mclk_dpm_key_disabled) |
| return (0 == smum_send_msg_to_smc_with_parameter( |
| hwmgr->smumgr, |
| (PPSMC_Msg)(PPSMC_MSG_MCLKDPM_SetEnabledMask), |
| level_mask) ? 0 : 1); |
| |
| return 0; |
| } |
| |
| /** |
| * force DPM power State |
| * |
| * @param hwmgr: the address of the powerplay hardware manager. |
| * @param n : DPM level |
| * @return The response that came from the SMC. |
| */ |
| int tonga_dpm_force_state_pcie(struct pp_hwmgr *hwmgr, uint32_t n) |
| { |
| tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend); |
| |
| /* Checking if DPM is running. If we discover hang because of this, we should skip this message.*/ |
| PP_ASSERT_WITH_CODE(0 == tonga_is_dpm_running(hwmgr), |
| "Trying to Force PCIE level when DPM is disabled", return -1;); |
| if (0 == data->pcie_dpm_key_disabled) |
| return (0 == smum_send_msg_to_smc_with_parameter( |
| hwmgr->smumgr, |
| (PPSMC_Msg)(PPSMC_MSG_PCIeDPM_ForceLevel), |
| n) ? 0 : 1); |
| |
| return 0; |
| } |
| |
| /** |
| * Set the initial state by calling SMC to switch to this state directly |
| * |
| * @param hwmgr the address of the powerplay hardware manager. |
| * @return always 0 |
| */ |
| int tonga_set_boot_state(struct pp_hwmgr *hwmgr) |
| { |
| /* |
| * SMC only stores one state that SW will ask to switch too, |
| * so we switch the the just uploaded one |
| */ |
| return (0 == tonga_disable_sclk_mclk_dpm(hwmgr)) ? 0 : 1; |
| } |
| |
| /** |
| * Get the location of various tables inside the FW image. |
| * |
| * @param hwmgr the address of the powerplay hardware manager. |
| * @return always 0 |
| */ |
| int tonga_process_firmware_header(struct pp_hwmgr *hwmgr) |
| { |
| tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend); |
| struct tonga_smumgr *tonga_smu = (struct tonga_smumgr *)(hwmgr->smumgr->backend); |
| |
| uint32_t tmp; |
| int result; |
| bool error = 0; |
| |
| result = tonga_read_smc_sram_dword(hwmgr->smumgr, |
| SMU72_FIRMWARE_HEADER_LOCATION + |
| offsetof(SMU72_Firmware_Header, DpmTable), |
| &tmp, data->sram_end); |
| |
| if (0 == result) { |
| data->dpm_table_start = tmp; |
| } |
| |
| error |= (0 != result); |
| |
| result = tonga_read_smc_sram_dword(hwmgr->smumgr, |
| SMU72_FIRMWARE_HEADER_LOCATION + |
| offsetof(SMU72_Firmware_Header, SoftRegisters), |
| &tmp, data->sram_end); |
| |
| if (0 == result) { |
| data->soft_regs_start = tmp; |
| tonga_smu->ulSoftRegsStart = tmp; |
| } |
| |
| error |= (0 != result); |
| |
| |
| result = tonga_read_smc_sram_dword(hwmgr->smumgr, |
| SMU72_FIRMWARE_HEADER_LOCATION + |
| offsetof(SMU72_Firmware_Header, mcRegisterTable), |
| &tmp, data->sram_end); |
| |
| if (0 == result) { |
| data->mc_reg_table_start = tmp; |
| } |
| |
| result = tonga_read_smc_sram_dword(hwmgr->smumgr, |
| SMU72_FIRMWARE_HEADER_LOCATION + |
| offsetof(SMU72_Firmware_Header, FanTable), |
| &tmp, data->sram_end); |
| |
| if (0 == result) { |
| data->fan_table_start = tmp; |
| } |
| |
| error |= (0 != result); |
| |
| result = tonga_read_smc_sram_dword(hwmgr->smumgr, |
| SMU72_FIRMWARE_HEADER_LOCATION + |
| offsetof(SMU72_Firmware_Header, mcArbDramTimingTable), |
| &tmp, data->sram_end); |
| |
| if (0 == result) { |
| data->arb_table_start = tmp; |
| } |
| |
| error |= (0 != result); |
| |
| |
| result = tonga_read_smc_sram_dword(hwmgr->smumgr, |
| SMU72_FIRMWARE_HEADER_LOCATION + |
| offsetof(SMU72_Firmware_Header, Version), |
| &tmp, data->sram_end); |
| |
| if (0 == result) { |
| hwmgr->microcode_version_info.SMC = tmp; |
| } |
| |
| error |= (0 != result); |
| |
| return error ? 1 : 0; |
| } |
| |
| /** |
| * Read clock related registers. |
| * |
| * @param hwmgr the address of the powerplay hardware manager. |
| * @return always 0 |
| */ |
| int tonga_read_clock_registers(struct pp_hwmgr *hwmgr) |
| { |
| tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend); |
| |
| data->clock_registers.vCG_SPLL_FUNC_CNTL = |
| cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_FUNC_CNTL); |
| data->clock_registers.vCG_SPLL_FUNC_CNTL_2 = |
| cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_FUNC_CNTL_2); |
| data->clock_registers.vCG_SPLL_FUNC_CNTL_3 = |
| cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_FUNC_CNTL_3); |
| data->clock_registers.vCG_SPLL_FUNC_CNTL_4 = |
| cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_FUNC_CNTL_4); |
| data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM = |
| cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_SPREAD_SPECTRUM); |
| data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2 = |
| cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_SPREAD_SPECTRUM_2); |
| data->clock_registers.vDLL_CNTL = |
| cgs_read_register(hwmgr->device, mmDLL_CNTL); |
| data->clock_registers.vMCLK_PWRMGT_CNTL = |
| cgs_read_register(hwmgr->device, mmMCLK_PWRMGT_CNTL); |
| data->clock_registers.vMPLL_AD_FUNC_CNTL = |
| cgs_read_register(hwmgr->device, mmMPLL_AD_FUNC_CNTL); |
| data->clock_registers.vMPLL_DQ_FUNC_CNTL = |
| cgs_read_register(hwmgr->device, mmMPLL_DQ_FUNC_CNTL); |
| data->clock_registers.vMPLL_FUNC_CNTL = |
| cgs_read_register(hwmgr->device, mmMPLL_FUNC_CNTL); |
| data->clock_registers.vMPLL_FUNC_CNTL_1 = |
| cgs_read_register(hwmgr->device, mmMPLL_FUNC_CNTL_1); |
| data->clock_registers.vMPLL_FUNC_CNTL_2 = |
| cgs_read_register(hwmgr->device, mmMPLL_FUNC_CNTL_2); |
| data->clock_registers.vMPLL_SS1 = |
| cgs_read_register(hwmgr->device, mmMPLL_SS1); |
| data->clock_registers.vMPLL_SS2 = |
| cgs_read_register(hwmgr->device, mmMPLL_SS2); |
| |
| return 0; |
| } |
| |
| /** |
| * Find out if memory is GDDR5. |
| * |
| * @param hwmgr the address of the powerplay hardware manager. |
| * @return always 0 |
| */ |
| int tonga_get_memory_type(struct pp_hwmgr *hwmgr) |
| { |
| tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend); |
| uint32_t temp; |
| |
| temp = cgs_read_register(hwmgr->device, mmMC_SEQ_MISC0); |
| |
| data->is_memory_GDDR5 = (MC_SEQ_MISC0_GDDR5_VALUE == |
| ((temp & MC_SEQ_MISC0_GDDR5_MASK) >> |
| MC_SEQ_MISC0_GDDR5_SHIFT)); |
| |
| return 0; |
| } |
| |
| /** |
| * Enables Dynamic Power Management by SMC |
| * |
| * @param hwmgr the address of the powerplay hardware manager. |
| * @return always 0 |
| */ |
| int tonga_enable_acpi_power_management(struct pp_hwmgr *hwmgr) |
| { |
| PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT, STATIC_PM_EN, 1); |
| |
| return 0; |
| } |
| |
| /** |
| * Initialize PowerGating States for different engines |
| * |
| * @param hwmgr the address of the powerplay hardware manager. |
| * @return always 0 |
| */ |
| int tonga_init_power_gate_state(struct pp_hwmgr *hwmgr) |
| { |
| tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend); |
| |
| data->uvd_power_gated = 0; |
| data->vce_power_gated = 0; |
| data->samu_power_gated = 0; |
| data->acp_power_gated = 0; |
| data->pg_acp_init = 1; |
| |
| return 0; |
| } |
| |
| /** |
| * Checks if DPM is enabled |
| * |
| * @param hwmgr the address of the powerplay hardware manager. |
| * @return always 0 |
| */ |
| int tonga_check_for_dpm_running(struct pp_hwmgr *hwmgr) |
| { |
| /* |
| * We return the status of Voltage Control instead of checking SCLK/MCLK DPM |
| * because we may have test scenarios that need us intentionly disable SCLK/MCLK DPM, |
| * whereas voltage control is a fundemental change that will not be disabled |
| */ |
| return (0 == tonga_is_dpm_running(hwmgr) ? 0 : 1); |
| } |
| |
| /** |
| * Checks if DPM is stopped |
| * |
| * @param hwmgr the address of the powerplay hardware manager. |
| * @return always 0 |
| */ |
| int tonga_check_for_dpm_stopped(struct pp_hwmgr *hwmgr) |
| { |
| tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend); |
| |
| if (0 != tonga_is_dpm_running(hwmgr)) { |
| /* If HW Virtualization is enabled, dpm_table_start will not have a valid value */ |
| if (!data->dpm_table_start) { |
| return 1; |
| } |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * Remove repeated voltage values and create table with unique values. |
| * |
| * @param hwmgr the address of the powerplay hardware manager. |
| * @param voltage_table the pointer to changing voltage table |
| * @return 1 in success |
| */ |
| |
| static int tonga_trim_voltage_table(struct pp_hwmgr *hwmgr, |
| pp_atomctrl_voltage_table *voltage_table) |
| { |
| uint32_t table_size, i, j; |
| uint16_t vvalue; |
| bool bVoltageFound = 0; |
| pp_atomctrl_voltage_table *table; |
| |
| PP_ASSERT_WITH_CODE((NULL != voltage_table), "Voltage Table empty.", return -1;); |
| table_size = sizeof(pp_atomctrl_voltage_table); |
| table = kzalloc(table_size, GFP_KERNEL); |
| |
| if (NULL == table) |
| return -ENOMEM; |
| |
| memset(table, 0x00, table_size); |
| table->mask_low = voltage_table->mask_low; |
| table->phase_delay = voltage_table->phase_delay; |
| |
| for (i = 0; i < voltage_table->count; i++) { |
| vvalue = voltage_table->entries[i].value; |
| bVoltageFound = 0; |
| |
| for (j = 0; j < table->count; j++) { |
| if (vvalue == table->entries[j].value) { |
| bVoltageFound = 1; |
| break; |
| } |
| } |
| |
| if (!bVoltageFound) { |
| table->entries[table->count].value = vvalue; |
| table->entries[table->count].smio_low = |
| voltage_table->entries[i].smio_low; |
| table->count++; |
| } |
| } |
| |
| memcpy(table, voltage_table, sizeof(pp_atomctrl_voltage_table)); |
| |
| kfree(table); |
| |
| return 0; |
| } |
| |
| static int tonga_get_svi2_vdd_ci_voltage_table( |
| struct pp_hwmgr *hwmgr, |
| phm_ppt_v1_clock_voltage_dependency_table *voltage_dependency_table) |
| { |
| uint32_t i; |
| int result; |
| tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend); |
| pp_atomctrl_voltage_table *vddci_voltage_table = &(data->vddci_voltage_table); |
| |
| PP_ASSERT_WITH_CODE((0 != voltage_dependency_table->count), |
| "Voltage Dependency Table empty.", return -1;); |
| |
| vddci_voltage_table->mask_low = 0; |
| vddci_voltage_table->phase_delay = 0; |
| vddci_voltage_table->count = voltage_dependency_table->count; |
| |
| for (i = 0; i < voltage_dependency_table->count; i++) { |
| vddci_voltage_table->entries[i].value = |
| voltage_dependency_table->entries[i].vddci; |
| vddci_voltage_table->entries[i].smio_low = 0; |
| } |
| |
| result = tonga_trim_voltage_table(hwmgr, vddci_voltage_table); |
| PP_ASSERT_WITH_CODE((0 == result), |
| "Failed to trim VDDCI table.", return result;); |
| |
| return 0; |
| } |
| |
| |
| |
| static int tonga_get_svi2_vdd_voltage_table( |
| struct pp_hwmgr *hwmgr, |
| phm_ppt_v1_voltage_lookup_table *look_up_table, |
| pp_atomctrl_voltage_table *voltage_table) |
| { |
| uint8_t i = 0; |
| |
| PP_ASSERT_WITH_CODE((0 != look_up_table->count), |
| "Voltage Lookup Table empty.", return -1;); |
| |
| voltage_table->mask_low = 0; |
| voltage_table->phase_delay = 0; |
| |
| voltage_table->count = look_up_table->count; |
| |
| for (i = 0; i < voltage_table->count; i++) { |
| voltage_table->entries[i].value = look_up_table->entries[i].us_vdd; |
| voltage_table->entries[i].smio_low = 0; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * -------------------------------------------------------- Voltage Tables -------------------------------------------------------------------------- |
| * If the voltage table would be bigger than what will fit into the state table on the SMC keep only the higher entries. |
| */ |
| |
| static void tonga_trim_voltage_table_to_fit_state_table( |
| struct pp_hwmgr *hwmgr, |
| uint32_t max_voltage_steps, |
| pp_atomctrl_voltage_table *voltage_table) |
| { |
| unsigned int i, diff; |
| |
| if (voltage_table->count <= max_voltage_steps) { |
| return; |
| } |
| |
| diff = voltage_table->count - max_voltage_steps; |
| |
| for (i = 0; i < max_voltage_steps; i++) { |
| voltage_table->entries[i] = voltage_table->entries[i + diff]; |
| } |
| |
| voltage_table->count = max_voltage_steps; |
| |
| return; |
| } |
| |
| /** |
| * Create Voltage Tables. |
| * |
| * @param hwmgr the address of the powerplay hardware manager. |
| * @return always 0 |
| */ |
| int tonga_construct_voltage_tables(struct pp_hwmgr *hwmgr) |
| { |
| tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend); |
| struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| int result; |
| |
| /* MVDD has only GPIO voltage control */ |
| if (TONGA_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) { |
| result = atomctrl_get_voltage_table_v3(hwmgr, |
| VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_GPIO_LUT, &(data->mvdd_voltage_table)); |
| PP_ASSERT_WITH_CODE((0 == result), |
| "Failed to retrieve MVDD table.", return result;); |
| } |
| |
| if (TONGA_VOLTAGE_CONTROL_BY_GPIO == data->vdd_ci_control) { |
| /* GPIO voltage */ |
| result = atomctrl_get_voltage_table_v3(hwmgr, |
| VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_GPIO_LUT, &(data->vddci_voltage_table)); |
| PP_ASSERT_WITH_CODE((0 == result), |
| "Failed to retrieve VDDCI table.", return result;); |
| } else if (TONGA_VOLTAGE_CONTROL_BY_SVID2 == data->vdd_ci_control) { |
| /* SVI2 voltage */ |
| result = tonga_get_svi2_vdd_ci_voltage_table(hwmgr, |
| pptable_info->vdd_dep_on_mclk); |
| PP_ASSERT_WITH_CODE((0 == result), |
| "Failed to retrieve SVI2 VDDCI table from dependancy table.", return result;); |
| } |
| |
| if (TONGA_VOLTAGE_CONTROL_BY_SVID2 == data->vdd_gfx_control) { |
| /* VDDGFX has only SVI2 voltage control */ |
| result = tonga_get_svi2_vdd_voltage_table(hwmgr, |
| pptable_info->vddgfx_lookup_table, &(data->vddgfx_voltage_table)); |
| PP_ASSERT_WITH_CODE((0 == result), |
| "Failed to retrieve SVI2 VDDGFX table from lookup table.", return result;); |
| } |
| |
| if (TONGA_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) { |
| /* VDDC has only SVI2 voltage control */ |
| result = tonga_get_svi2_vdd_voltage_table(hwmgr, |
| pptable_info->vddc_lookup_table, &(data->vddc_voltage_table)); |
| PP_ASSERT_WITH_CODE((0 == result), |
| "Failed to retrieve SVI2 VDDC table from lookup table.", return result;); |
| } |
| |
| PP_ASSERT_WITH_CODE( |
| (data->vddc_voltage_table.count <= (SMU72_MAX_LEVELS_VDDC)), |
| "Too many voltage values for VDDC. Trimming to fit state table.", |
| tonga_trim_voltage_table_to_fit_state_table(hwmgr, |
| SMU72_MAX_LEVELS_VDDC, &(data->vddc_voltage_table)); |
| ); |
| |
| PP_ASSERT_WITH_CODE( |
| (data->vddgfx_voltage_table.count <= (SMU72_MAX_LEVELS_VDDGFX)), |
| "Too many voltage values for VDDGFX. Trimming to fit state table.", |
| tonga_trim_voltage_table_to_fit_state_table(hwmgr, |
| SMU72_MAX_LEVELS_VDDGFX, &(data->vddgfx_voltage_table)); |
| ); |
| |
| PP_ASSERT_WITH_CODE( |
| (data->vddci_voltage_table.count <= (SMU72_MAX_LEVELS_VDDCI)), |
| "Too many voltage values for VDDCI. Trimming to fit state table.", |
| tonga_trim_voltage_table_to_fit_state_table(hwmgr, |
| SMU72_MAX_LEVELS_VDDCI, &(data->vddci_voltage_table)); |
| ); |
| |
| PP_ASSERT_WITH_CODE( |
| (data->mvdd_voltage_table.count <= (SMU72_MAX_LEVELS_MVDD)), |
| "Too many voltage values for MVDD. Trimming to fit state table.", |
| tonga_trim_voltage_table_to_fit_state_table(hwmgr, |
| SMU72_MAX_LEVELS_MVDD, &(data->mvdd_voltage_table)); |
| ); |
| |
| return 0; |
| } |
| |
| /** |
| * Vddc table preparation for SMC. |
| * |
| * @param hwmgr the address of the hardware manager |
| * @param table the SMC DPM table structure to be populated |
| * @return always 0 |
| */ |
| static int tonga_populate_smc_vddc_table(struct pp_hwmgr *hwmgr, |
| SMU72_Discrete_DpmTable *table) |
| { |
| unsigned int count; |
| tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend); |
| |
| if (TONGA_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) { |
| table->VddcLevelCount = data->vddc_voltage_table.count; |
| for (count = 0; count < table->VddcLevelCount; count++) { |
| table->VddcTable[count] = |
| PP_HOST_TO_SMC_US(data->vddc_voltage_table.entries[count].value * VOLTAGE_SCALE); |
| } |
| CONVERT_FROM_HOST_TO_SMC_UL(table->VddcLevelCount); |
| } |
| return 0; |
| } |
| |
| /** |
| * VddGfx table preparation for SMC. |
| * |
| * @param hwmgr the address of the hardware manager |
| * @param table the SMC DPM table structure to be populated |
| * @return always 0 |
| */ |
| static int tonga_populate_smc_vdd_gfx_table(struct pp_hwmgr *hwmgr, |
| SMU72_Discrete_DpmTable *table) |
| { |
| unsigned int count; |
| tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend); |
| |
| if (TONGA_VOLTAGE_CONTROL_BY_SVID2 == data->vdd_gfx_control) { |
| table->VddGfxLevelCount = data->vddgfx_voltage_table.count; |
| for (count = 0; count < data->vddgfx_voltage_table.count; count++) { |
| table->VddGfxTable[count] = |
| PP_HOST_TO_SMC_US(data->vddgfx_voltage_table.entries[count].value * VOLTAGE_SCALE); |
| } |
| CONVERT_FROM_HOST_TO_SMC_UL(table->VddGfxLevelCount); |
| } |
| return 0; |
| } |
| |
| /** |
| * Vddci table preparation for SMC. |
| * |
| * @param *hwmgr The address of the hardware manager. |
| * @param *table The SMC DPM table structure to be populated. |
| * @return 0 |
| */ |
| static int tonga_populate_smc_vdd_ci_table(struct pp_hwmgr *hwmgr, |
| SMU72_Discrete_DpmTable *table) |
| { |
| tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend); |
| uint32_t count; |
| |
| table->VddciLevelCount = data->vddci_voltage_table.count; |
| for (count = 0; count < table->VddciLevelCount; count++) { |
| if (TONGA_VOLTAGE_CONTROL_BY_SVID2 == data->vdd_ci_control) { |
| table->VddciTable[count] = |
| PP_HOST_TO_SMC_US(data->vddci_voltage_table.entries[count].value * VOLTAGE_SCALE); |
| } else if (TONGA_VOLTAGE_CONTROL_BY_GPIO == data->vdd_ci_control) { |
| table->SmioTable1.Pattern[count].Voltage = |
| PP_HOST_TO_SMC_US(data->vddci_voltage_table.entries[count].value * VOLTAGE_SCALE); |
| /* Index into DpmTable.Smio. Drive bits from Smio entry to get this voltage level. */ |
| table->SmioTable1.Pattern[count].Smio = |
| (uint8_t) count; |
| table->Smio[count] |= |
| data->vddci_voltage_table.entries[count].smio_low; |
| table->VddciTable[count] = |
| PP_HOST_TO_SMC_US(data->vddci_voltage_table.entries[count].value * VOLTAGE_SCALE); |
| } |
| } |
| |
| table->SmioMask1 = data->vddci_voltage_table.mask_low; |
| CONVERT_FROM_HOST_TO_SMC_UL(table->VddciLevelCount); |
| |
| return 0; |
| } |
| |
| /** |
| * Mvdd table preparation for SMC. |
| * |
| * @param *hwmgr The address of the hardware manager. |
| * @param *table The SMC DPM table structure to be populated. |
| * @return 0 |
| */ |
| static int tonga_populate_smc_mvdd_table(struct pp_hwmgr *hwmgr, |
| SMU72_Discrete_DpmTable *table) |
| { |
| tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend); |
| uint32_t count; |
| |
| if (TONGA_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) { |
| table->MvddLevelCount = data->mvdd_voltage_table.count; |
| for (count = 0; count < table->MvddLevelCount; count++) { |
| table->SmioTable2.Pattern[count].Voltage = |
| PP_HOST_TO_SMC_US(data->mvdd_voltage_table.entries[count].value * VOLTAGE_SCALE); |
| /* Index into DpmTable.Smio. Drive bits from Smio entry to get this voltage level.*/ |
| table->SmioTable2.Pattern[count].Smio = |
| (uint8_t) count; |
| table->Smio[count] |= |
| data->mvdd_voltage_table.entries[count].smio_low; |
| } |
| table->SmioMask2 = data->vddci_voltage_table.mask_low; |
| |
| CONVERT_FROM_HOST_TO_SMC_UL(table->MvddLevelCount); |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * Convert a voltage value in mv unit to VID number required by SMU firmware |
| */ |
| static uint8_t convert_to_vid(uint16_t vddc) |
| { |
| return (uint8_t) ((6200 - (vddc * VOLTAGE_SCALE)) / 25); |
| } |
| |
| |
| /** |
| * Preparation of vddc and vddgfx CAC tables for SMC. |
| * |
| * @param hwmgr the address of the hardware manager |
| * @param table the SMC DPM table structure to be populated |
| * @return always 0 |
| */ |
| static int tonga_populate_cac_tables(struct pp_hwmgr *hwmgr, |
| SMU72_Discrete_DpmTable *table) |
| { |
| uint32_t count; |
| uint8_t index; |
| int result = 0; |
| tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend); |
| struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| struct phm_ppt_v1_voltage_lookup_table *vddgfx_lookup_table = pptable_info->vddgfx_lookup_table; |
| struct phm_ppt_v1_voltage_lookup_table *vddc_lookup_table = pptable_info->vddc_lookup_table; |
| |
| /* pTables is already swapped, so in order to use the value from it, we need to swap it back. */ |
| uint32_t vddcLevelCount = PP_SMC_TO_HOST_UL(table->VddcLevelCount); |
| uint32_t vddgfxLevelCount = PP_SMC_TO_HOST_UL(table->VddGfxLevelCount); |
| |
| for (count = 0; count < vddcLevelCount; count++) { |
| /* We are populating vddc CAC data to BapmVddc table in split and merged mode */ |
| index = tonga_get_voltage_index(vddc_lookup_table, |
| data->vddc_voltage_table.entries[count].value); |
| table->BapmVddcVidLoSidd[count] = |
| convert_to_vid(vddc_lookup_table->entries[index].us_cac_low); |
| table->BapmVddcVidHiSidd[count] = |
| convert_to_vid(vddc_lookup_table->entries[index].us_cac_mid); |
| table->BapmVddcVidHiSidd2[count] = |
| convert_to_vid(vddc_lookup_table->entries[index].us_cac_high); |
| } |
| |
| if ((data->vdd_gfx_control == TONGA_VOLTAGE_CONTROL_BY_SVID2)) { |
| /* We are populating vddgfx CAC data to BapmVddgfx table in split mode */ |
| for (count = 0; count < vddgfxLevelCount; count++) { |
| index = tonga_get_voltage_index(vddgfx_lookup_table, |
| data->vddgfx_voltage_table.entries[count].value); |
| table->BapmVddGfxVidLoSidd[count] = |
| convert_to_vid(vddgfx_lookup_table->entries[index].us_cac_low); |
| table->BapmVddGfxVidHiSidd[count] = |
| convert_to_vid(vddgfx_lookup_table->entries[index].us_cac_mid); |
| table->BapmVddGfxVidHiSidd2[count] = |
| convert_to_vid(vddgfx_lookup_table->entries[index].us_cac_high); |
| } |
| } else { |
| for (count = 0; count < vddcLevelCount; count++) { |
| index = tonga_get_voltage_index(vddc_lookup_table, |
| data->vddc_voltage_table.entries[count].value); |
| table->BapmVddGfxVidLoSidd[count] = |
| convert_to_vid(vddc_lookup_table->entries[index].us_cac_low); |
| table->BapmVddGfxVidHiSidd[count] = |
| convert_to_vid(vddc_lookup_table->entries[index].us_cac_mid); |
| table->BapmVddGfxVidHiSidd2[count] = |
| convert_to_vid(vddc_lookup_table->entries[index].us_cac_high); |
| } |
| } |
| |
| return result; |
| } |
| |
| |
| /** |
| * Preparation of voltage tables for SMC. |
| * |
| * @param hwmgr the address of the hardware manager |
| * @param table the SMC DPM table structure to be populated |
| * @return always 0 |
| */ |
| |
| int tonga_populate_smc_voltage_tables(struct pp_hwmgr *hwmgr, |
| SMU72_Discrete_DpmTable *table) |
| { |
| int result; |
| |
| result = tonga_populate_smc_vddc_table(hwmgr, table); |
| PP_ASSERT_WITH_CODE(0 == result, |
| "can not populate VDDC voltage table to SMC", return -1); |
| |
| result = tonga_populate_smc_vdd_ci_table(hwmgr, table); |
| PP_ASSERT_WITH_CODE(0 == result, |
| "can not populate VDDCI voltage table to SMC", return -1); |
| |
| result = tonga_populate_smc_vdd_gfx_table(hwmgr, table); |
| PP_ASSERT_WITH_CODE(0 == result, |
| "can not populate VDDGFX voltage table to SMC", return -1); |
| |
| result = tonga_populate_smc_mvdd_table(hwmgr, table); |
| PP_ASSERT_WITH_CODE(0 == result, |
| "can not populate MVDD voltage table to SMC", return -1); |
| |
| result = tonga_populate_cac_tables(hwmgr, table); |
| PP_ASSERT_WITH_CODE(0 == result, |
| "can not populate CAC voltage tables to SMC", return -1); |
| |
| return 0; |
| } |
| |
| /** |
| * Populates the SMC VRConfig field in DPM table. |
| * |
| * @param hwmgr the address of the hardware manager |
| * @param table the SMC DPM table structure to be populated |
| * @return always 0 |
| */ |
| static int tonga_populate_vr_config(struct pp_hwmgr *hwmgr, |
| SMU72_Discrete_DpmTable *table) |
| { |
| tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend); |
| uint16_t config; |
| |
| if (TONGA_VOLTAGE_CONTROL_BY_SVID2 == data->vdd_gfx_control) { |
| /* Splitted mode */ |
| config = VR_SVI2_PLANE_1; |
| table->VRConfig |= (config<<VRCONF_VDDGFX_SHIFT); |
| |
| if (TONGA_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) { |
| config = VR_SVI2_PLANE_2; |
| table->VRConfig |= config; |
| } else { |
| printk(KERN_ERR "[ powerplay ] VDDC and VDDGFX should be both on SVI2 control in splitted mode! \n"); |
| } |
| } else { |
| /* Merged mode */ |
| config = VR_MERGED_WITH_VDDC; |
| table->VRConfig |= (config<<VRCONF_VDDGFX_SHIFT); |
| |
| /* Set Vddc Voltage Controller */ |
| if (TONGA_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) { |
| config = VR_SVI2_PLANE_1; |
| table->VRConfig |= config; |
| } else { |
| printk(KERN_ERR "[ powerplay ] VDDC should be on SVI2 control in merged mode! \n"); |
| } |
| } |
| |
| /* Set Vddci Voltage Controller */ |
| if (TONGA_VOLTAGE_CONTROL_BY_SVID2 == data->vdd_ci_control) { |
| config = VR_SVI2_PLANE_2; /* only in merged mode */ |
| table->VRConfig |= (config<<VRCONF_VDDCI_SHIFT); |
| } else if (TONGA_VOLTAGE_CONTROL_BY_GPIO == data->vdd_ci_control) { |
| config = VR_SMIO_PATTERN_1; |
| table->VRConfig |= (config<<VRCONF_VDDCI_SHIFT); |
| } |
| |
| /* Set Mvdd Voltage Controller */ |
| if (TONGA_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) { |
| config = VR_SMIO_PATTERN_2; |
| table->VRConfig |= (config<<VRCONF_MVDD_SHIFT); |
| } |
| |
| return 0; |
| } |
| |
| static int tonga_get_dependecy_volt_by_clk(struct pp_hwmgr *hwmgr, |
| phm_ppt_v1_clock_voltage_dependency_table *allowed_clock_voltage_table, |
| uint32_t clock, SMU_VoltageLevel *voltage, uint32_t *mvdd) |
| { |
| uint32_t i = 0; |
| tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend); |
| struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| |
| /* clock - voltage dependency table is empty table */ |
| if (allowed_clock_voltage_table->count == 0) |
| return -1; |
| |
| for (i = 0; i < allowed_clock_voltage_table->count; i++) { |
| /* find first sclk bigger than request */ |
| if (allowed_clock_voltage_table->entries[i].clk >= clock) { |
| voltage->VddGfx = tonga_get_voltage_index(pptable_info->vddgfx_lookup_table, |
| allowed_clock_voltage_table->entries[i].vddgfx); |
| |
| voltage->Vddc = tonga_get_voltage_index(pptable_info->vddc_lookup_table, |
| allowed_clock_voltage_table->entries[i].vddc); |
| |
| if (allowed_clock_voltage_table->entries[i].vddci) { |
| voltage->Vddci = tonga_get_voltage_id(&data->vddci_voltage_table, |
| allowed_clock_voltage_table->entries[i].vddci); |
| } else { |
| voltage->Vddci = tonga_get_voltage_id(&data->vddci_voltage_table, |
| allowed_clock_voltage_table->entries[i].vddc - data->vddc_vddci_delta); |
| } |
| |
| if (allowed_clock_voltage_table->entries[i].mvdd) { |
| *mvdd = (uint32_t) allowed_clock_voltage_table->entries[i].mvdd; |
| } |
| |
| voltage->Phases = 1; |
| return 0; |
| } |
| } |
| |
| /* sclk is bigger than max sclk in the dependence table */ |
| voltage->VddGfx = tonga_get_voltage_index(pptable_info->vddgfx_lookup_table, |
| allowed_clock_voltage_table->entries[i-1].vddgfx); |
| voltage->Vddc = tonga_get_voltage_index(pptable_info->vddc_lookup_table, |
| allowed_clock_voltage_table->entries[i-1].vddc); |
| |
| if (allowed_clock_voltage_table->entries[i-1].vddci) { |
| voltage->Vddci = tonga_get_voltage_id(&data->vddci_voltage_table, |
| allowed_clock_voltage_table->entries[i-1].vddci); |
| } |
| if (allowed_clock_voltage_table->entries[i-1].mvdd) { |
| *mvdd = (uint32_t) allowed_clock_voltage_table->entries[i-1].mvdd; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * Call SMC to reset S0/S1 to S1 and Reset SMIO to initial value |
| * |
| * @param hwmgr the address of the powerplay hardware manager. |
| * @return always 0 |
| */ |
| int tonga_reset_to_default(struct pp_hwmgr *hwmgr) |
| { |
| return (smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_ResetToDefaults) == 0) ? 0 : 1; |
| } |
| |
| int tonga_populate_memory_timing_parameters( |
| struct pp_hwmgr *hwmgr, |
| uint32_t engine_clock, |
| uint32_t memory_clock, |
| struct SMU72_Discrete_MCArbDramTimingTableEntry *arb_regs |
| ) |
| { |
| uint32_t dramTiming; |
| uint32_t dramTiming2; |
| uint32_t burstTime; |
| int result; |
| |
| result = atomctrl_set_engine_dram_timings_rv770(hwmgr, |
| engine_clock, memory_clock); |
| |
| PP_ASSERT_WITH_CODE(result == 0, |
| "Error calling VBIOS to set DRAM_TIMING.", return result); |
| |
| dramTiming = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING); |
| dramTiming2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2); |
| burstTime = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0); |
| |
| arb_regs->McArbDramTiming = PP_HOST_TO_SMC_UL(dramTiming); |
| arb_regs->McArbDramTiming2 = PP_HOST_TO_SMC_UL(dramTiming2); |
| arb_regs->McArbBurstTime = (uint8_t)burstTime; |
| |
| return 0; |
| } |
| |
| /** |
| * Setup parameters for the MC ARB. |
| * |
| * @param hwmgr the address of the powerplay hardware manager. |
| * @return always 0 |
| * This function is to be called from the SetPowerState table. |
| */ |
| int tonga_program_memory_timing_parameters(struct pp_hwmgr *hwmgr) |
| { |
| tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend); |
| int result = 0; |
| SMU72_Discrete_MCArbDramTimingTable arb_regs; |
| uint32_t i, j; |
| |
| memset(&arb_regs, 0x00, sizeof(SMU72_Discrete_MCArbDramTimingTable)); |
| |
| for (i = 0; i < data->dpm_table.sclk_table.count; i++) { |
| for (j = 0; j < data->dpm_table.mclk_table.count; j++) { |
| result = tonga_populate_memory_timing_parameters |
| (hwmgr, data->dpm_table.sclk_table.dpm_levels[i].value, |
| data->dpm_table.mclk_table.dpm_levels[j].value, |
| &arb_regs.entries[i][j]); |
| |
| if (0 != result) { |
| break; |
| } |
| } |
| } |
| |
| if (0 == result) { |
| result = tonga_copy_bytes_to_smc( |
| hwmgr->smumgr, |
| data->arb_table_start, |
| (uint8_t *)&arb_regs, |
| sizeof(SMU72_Discrete_MCArbDramTimingTable), |
| data->sram_end |
| ); |
| } |
| |
| return result; |
| } |
| |
| static int tonga_populate_smc_link_level(struct pp_hwmgr *hwmgr, SMU72_Discrete_DpmTable *table) |
| { |
| tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend); |
| struct tonga_dpm_table *dpm_table = &data->dpm_table; |
| uint32_t i; |
| |
| /* Index (dpm_table->pcie_speed_table.count) is reserved for PCIE boot level. */ |
| for (i = 0; i <= dpm_table->pcie_speed_table.count; i++) { |
| table->LinkLevel[i].PcieGenSpeed = |
| (uint8_t)dpm_table->pcie_speed_table.dpm_levels[i].value; |
| table->LinkLevel[i].PcieLaneCount = |
| (uint8_t)encode_pcie_lane_width(dpm_table->pcie_speed_table.dpm_levels[i].param1); |
| table->LinkLevel[i].EnabledForActivity = |
| 1; |
| table->LinkLevel[i].SPC = |
| (uint8_t)(data->pcie_spc_cap & 0xff); |
| table->LinkLevel[i].DownThreshold = |
| PP_HOST_TO_SMC_UL(5); |
| table->LinkLevel[i].UpThreshold = |
| PP_HOST_TO_SMC_UL(30); |
| } |
| |
| data->smc_state_table.LinkLevelCount = |
| (uint8_t)dpm_table->pcie_speed_table.count; |
| data->dpm_level_enable_mask.pcie_dpm_enable_mask = |
| tonga_get_dpm_level_enable_mask_value(&dpm_table->pcie_speed_table); |
| |
| return 0; |
| } |
| |
| static int tonga_populate_smc_uvd_level(struct pp_hwmgr *hwmgr, |
| SMU72_Discrete_DpmTable *table) |
| { |
| int result = 0; |
| |
| uint8_t count; |
| pp_atomctrl_clock_dividers_vi dividers; |
| tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend); |
| struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = pptable_info->mm_dep_table; |
| |
| table->UvdLevelCount = (uint8_t) (mm_table->count); |
| table->UvdBootLevel = 0; |
| |
| for (count = 0; count < table->UvdLevelCount; count++) { |
| table->UvdLevel[count].VclkFrequency = mm_table->entries[count].vclk; |
| table->UvdLevel[count].DclkFrequency = mm_table->entries[count].dclk; |
| table->UvdLevel[count].MinVoltage.Vddc = |
| tonga_get_voltage_index(pptable_info->vddc_lookup_table, |
| mm_table->entries[count].vddc); |
| table->UvdLevel[count].MinVoltage.VddGfx = |
| (data->vdd_gfx_control == TONGA_VOLTAGE_CONTROL_BY_SVID2) ? |
| tonga_get_voltage_index(pptable_info->vddgfx_lookup_table, |
| mm_table->entries[count].vddgfx) : 0; |
| table->UvdLevel[count].MinVoltage.Vddci = |
| tonga_get_voltage_id(&data->vddci_voltage_table, |
| mm_table->entries[count].vddc - data->vddc_vddci_delta); |
| table->UvdLevel[count].MinVoltage.Phases = 1; |
| |
| /* retrieve divider value for VBIOS */ |
| result = atomctrl_get_dfs_pll_dividers_vi(hwmgr, |
| table->UvdLevel[count].VclkFrequency, ÷rs); |
| PP_ASSERT_WITH_CODE((0 == result), |
| "can not find divide id for Vclk clock", return result); |
| |
| table->UvdLevel[count].VclkDivider = (uint8_t)dividers.pll_post_divider; |
| |
| result = atomctrl_get_dfs_pll_dividers_vi(hwmgr, |
| table->UvdLevel[count].DclkFrequency, ÷rs); |
| PP_ASSERT_WITH_CODE((0 == result), |
| "can not find divide id for Dclk clock", return result); |
| |
| table->UvdLevel[count].DclkDivider = (uint8_t)dividers.pll_post_divider; |
| |
| CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].VclkFrequency); |
| CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].DclkFrequency); |
| //CONVERT_FROM_HOST_TO_SMC_UL((uint32_t)table->UvdLevel[count].MinVoltage); |
| } |
| |
| return result; |
| |
| } |
| |
| static int tonga_populate_smc_vce_level(struct pp_hwmgr *hwmgr, |
| SMU72_Discrete_DpmTable *table) |
| { |
| int result = 0; |
| |
| uint8_t count; |
| pp_atomctrl_clock_dividers_vi dividers; |
| tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend); |
| struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = pptable_info->mm_dep_table; |
| |
| table->VceLevelCount = (uint8_t) (mm_table->count); |
| table->VceBootLevel = 0; |
| |
| for (count = 0; count < table->VceLevelCount; count++) { |
| table->VceLevel[count].Frequency = |
| mm_table->entries[count].eclk; |
| table->VceLevel[count].MinVoltage.Vddc = |
| tonga_get_voltage_index(pptable_info->vddc_lookup_table, |
| mm_table->entries[count].vddc); |
| table->VceLevel[count].MinVoltage.VddGfx = |
| (data->vdd_gfx_control == TONGA_VOLTAGE_CONTROL_BY_SVID2) ? |
| tonga_get_voltage_index(pptable_info->vddgfx_lookup_table, |
| mm_table->entries[count].vddgfx) : 0; |
| table->VceLevel[count].MinVoltage.Vddci = |
| tonga_get_voltage_id(&data->vddci_voltage_table, |
| mm_table->entries[count].vddc - data->vddc_vddci_delta); |
| table->VceLevel[count].MinVoltage.Phases = 1; |
| |
| /* retrieve divider value for VBIOS */ |
| result = atomctrl_get_dfs_pll_dividers_vi(hwmgr, |
| table->VceLevel[count].Frequency, ÷rs); |
| PP_ASSERT_WITH_CODE((0 == result), |
| "can not find divide id for VCE engine clock", return result); |
| |
| table->VceLevel[count].Divider = (uint8_t)dividers.pll_post_divider; |
| |
| CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].Frequency); |
| } |
| |
| return result; |
| } |
| |
| static int tonga_populate_smc_acp_level(struct pp_hwmgr *hwmgr, |
| SMU72_Discrete_DpmTable *table) |
| { |
| int result = 0; |
| uint8_t count; |
| pp_atomctrl_clock_dividers_vi dividers; |
| tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend); |
| struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = pptable_info->mm_dep_table; |
| |
| table->AcpLevelCount = (uint8_t) (mm_table->count); |
| table->AcpBootLevel = 0; |
| |
| for (count = 0; count < table->AcpLevelCount; count++) { |
| table->AcpLevel[count].Frequency = |
| pptable_info->mm_dep_table->entries[count].aclk; |
| table->AcpLevel[count].MinVoltage.Vddc = |
| tonga_get_voltage_index(pptable_info->vddc_lookup_table, |
| mm_table->entries[count].vddc); |
| table->AcpLevel[count].MinVoltage.VddGfx = |
| (data->vdd_gfx_control == TONGA_VOLTAGE_CONTROL_BY_SVID2) ? |
| tonga_get_voltage_index(pptable_info->vddgfx_lookup_table, |
| mm_table->entries[count].vddgfx) : 0; |
| table->AcpLevel[count].MinVoltage.Vddci = |
| tonga_get_voltage_id(&data->vddci_voltage_table, |
| mm_table->entries[count].vddc - data->vddc_vddci_delta); |
| table->AcpLevel[count].MinVoltage.Phases = 1; |
| |
| /* retrieve divider value for VBIOS */ |
| result = atomctrl_get_dfs_pll_dividers_vi(hwmgr, |
| table->AcpLevel[count].Frequency, ÷rs); |
| PP_ASSERT_WITH_CODE((0 == result), |
| "can not find divide id for engine clock", return result); |
| |
| table->AcpLevel[count].Divider = (uint8_t)dividers.pll_post_divider; |
| |
| CONVERT_FROM_HOST_TO_SMC_UL(table->AcpLevel[count].Frequency); |
| } |
| |
| return result; |
| } |
| |
| static int tonga_populate_smc_samu_level(struct pp_hwmgr *hwmgr, |
| SMU72_Discrete_DpmTable *table) |
| { |
| int result = 0; |
| uint8_t count; |
| pp_atomctrl_clock_dividers_vi dividers; |
| tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend); |
| struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = pptable_info->mm_dep_table; |
| |
| table->SamuBootLevel = 0; |
| table->SamuLevelCount = (uint8_t) (mm_table->count); |
| |
| for (count = 0; count < table->SamuLevelCount; count++) { |
| /* not sure whether we need evclk or not */ |
| table->SamuLevel[count].Frequency = |
| pptable_info->mm_dep_table->entries[count].samclock; |
| table->SamuLevel[count].MinVoltage.Vddc = |
| tonga_get_voltage_index(pptable_info->vddc_lookup_table, |
| mm_table->entries[count].vddc); |
| table->SamuLevel[count].MinVoltage.VddGfx = |
| (data->vdd_gfx_control == TONGA_VOLTAGE_CONTROL_BY_SVID2) ? |
| tonga_get_voltage_index(pptable_info->vddgfx_lookup_table, |
| mm_table->entries[count].vddgfx) : 0; |
| table->SamuLevel[count].MinVoltage.Vddci = |
| tonga_get_voltage_id(&data->vddci_voltage_table, |
| mm_table->entries[count].vddc - data->vddc_vddci_delta); |
| table->SamuLevel[count].MinVoltage.Phases = 1; |
| |
| /* retrieve divider value for VBIOS */ |
| result = atomctrl_get_dfs_pll_dividers_vi(hwmgr, |
| table->SamuLevel[count].Frequency, ÷rs); |
| PP_ASSERT_WITH_CODE((0 == result), |
| "can not find divide id for samu clock", return result); |
| |
| table->SamuLevel[count].Divider = (uint8_t)dividers.pll_post_divider; |
| |
| CONVERT_FROM_HOST_TO_SMC_UL(table->SamuLevel[count].Frequency); |
| } |
| |
| return result; |
| } |
| |
| /** |
| * Populates the SMC MCLK structure using the provided memory clock |
| * |
| * @param hwmgr the address of the hardware manager |
| * @param memory_clock the memory clock to use to populate the structure |
| * @param sclk the SMC SCLK structure to be populated |
| */ |
| static int tonga_calculate_mclk_params( |
| struct pp_hwmgr *hwmgr, |
| uint32_t memory_clock, |
| SMU72_Discrete_MemoryLevel *mclk, |
| bool strobe_mode, |
| bool dllStateOn |
| ) |
| { |
| const tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend); |
| uint32_t dll_cntl = data->clock_registers.vDLL_CNTL; |
| uint32_t mclk_pwrmgt_cntl = data->clock_registers.vMCLK_PWRMGT_CNTL; |
| uint32_t mpll_ad_func_cntl = data->clock_registers.vMPLL_AD_FUNC_CNTL; |
| uint32_t mpll_dq_func_cntl = data->clock_registers.vMPLL_DQ_FUNC_CNTL; |
| uint32_t mpll_func_cntl = data->clock_registers.vMPLL_FUNC_CNTL; |
| uint32_t mpll_func_cntl_1 = data->clock_registers.vMPLL_FUNC_CNTL_1; |
| uint32_t mpll_func_cntl_2 = data->clock_registers.vMPLL_FUNC_CNTL_2; |
| uint32_t mpll_ss1 = data->clock_registers.vMPLL_SS1; |
| uint32_t mpll_ss2 = data->clock_registers.vMPLL_SS2; |
| |
| pp_atomctrl_memory_clock_param mpll_param; |
| int result; |
| |
| result = atomctrl_get_memory_pll_dividers_si(hwmgr, |
| memory_clock, &mpll_param, strobe_mode); |
| PP_ASSERT_WITH_CODE(0 == result, |
| "Error retrieving Memory Clock Parameters from VBIOS.", return result); |
| |
| /* MPLL_FUNC_CNTL setup*/ |
| mpll_func_cntl = PHM_SET_FIELD(mpll_func_cntl, MPLL_FUNC_CNTL, BWCTRL, mpll_param.bw_ctrl); |
| |
| /* MPLL_FUNC_CNTL_1 setup*/ |
| mpll_func_cntl_1 = PHM_SET_FIELD(mpll_func_cntl_1, |
| MPLL_FUNC_CNTL_1, CLKF, mpll_param.mpll_fb_divider.cl_kf); |
| mpll_func_cntl_1 = PHM_SET_FIELD(mpll_func_cntl_1, |
| MPLL_FUNC_CNTL_1, CLKFRAC, mpll_param.mpll_fb_divider.clk_frac); |
| mpll_func_cntl_1 = PHM_SET_FIELD(mpll_func_cntl_1, |
| MPLL_FUNC_CNTL_1, VCO_MODE, mpll_param.vco_mode); |
| |
| /* MPLL_AD_FUNC_CNTL setup*/ |
| mpll_ad_func_cntl = PHM_SET_FIELD(mpll_ad_func_cntl, |
| MPLL_AD_FUNC_CNTL, YCLK_POST_DIV, mpll_param.mpll_post_divider); |
| |
| if (data->is_memory_GDDR5) { |
| /* MPLL_DQ_FUNC_CNTL setup*/ |
| mpll_dq_func_cntl = PHM_SET_FIELD(mpll_dq_func_cntl, |
| MPLL_DQ_FUNC_CNTL, YCLK_SEL, mpll_param.yclk_sel); |
| mpll_dq_func_cntl = PHM_SET_FIELD(mpll_dq_func_cntl, |
| MPLL_DQ_FUNC_CNTL, YCLK_POST_DIV, mpll_param.mpll_post_divider); |
| } |
| |
| if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_MemorySpreadSpectrumSupport)) { |
| /* |
| ************************************ |
| Fref = Reference Frequency |
| NF = Feedback divider ratio |
| NR = Reference divider ratio |
| Fnom = Nominal VCO output frequency = Fref * NF / NR |
| Fs = Spreading Rate |
| D = Percentage down-spread / 2 |
| Fint = Reference input frequency to PFD = Fref / NR |
| NS = Spreading rate divider ratio = int(Fint / (2 * Fs)) |
| CLKS = NS - 1 = ISS_STEP_NUM[11:0] |
| NV = D * Fs / Fnom * 4 * ((Fnom/Fref * NR) ^ 2) |
| CLKV = 65536 * NV = ISS_STEP_SIZE[25:0] |
| ************************************* |
| */ |
| pp_atomctrl_internal_ss_info ss_info; |
| uint32_t freq_nom; |
| uint32_t tmp; |
| uint32_t reference_clock = atomctrl_get_mpll_reference_clock(hwmgr); |
| |
| /* for GDDR5 for all modes and DDR3 */ |
| if (1 == mpll_param.qdr) |
| freq_nom = memory_clock * 4 * (1 << mpll_param.mpll_post_divider); |
| else |
| freq_nom = memory_clock * 2 * (1 << mpll_param.mpll_post_divider); |
| |
| /* tmp = (freq_nom / reference_clock * reference_divider) ^ 2 Note: S.I. reference_divider = 1*/ |
| tmp = (freq_nom / reference_clock); |
| tmp = tmp * tmp; |
| |
| if (0 == atomctrl_get_memory_clock_spread_spectrum(hwmgr, freq_nom, &ss_info)) { |
| /* ss_info.speed_spectrum_percentage -- in unit of 0.01% */ |
| /* ss.Info.speed_spectrum_rate -- in unit of khz */ |
| /* CLKS = reference_clock / (2 * speed_spectrum_rate * reference_divider) * 10 */ |
| /* = reference_clock * 5 / speed_spectrum_rate */ |
| uint32_t clks = reference_clock * 5 / ss_info.speed_spectrum_rate; |
| |
| /* CLKV = 65536 * speed_spectrum_percentage / 2 * spreadSpecrumRate / freq_nom * 4 / 100000 * ((freq_nom / reference_clock) ^ 2) */ |
| /* = 131 * speed_spectrum_percentage * speed_spectrum_rate / 100 * ((freq_nom / reference_clock) ^ 2) / freq_nom */ |
| uint32_t clkv = |
| (uint32_t)((((131 * ss_info.speed_spectrum_percentage * |
| ss_info.speed_spectrum_rate) / 100) * tmp) / freq_nom); |
| |
| mpll_ss1 = PHM_SET_FIELD(mpll_ss1, MPLL_SS1, CLKV, clkv); |
| mpll_ss2 = PHM_SET_FIELD(mpll_ss2, MPLL_SS2, CLKS, clks); |
| } |
| } |
| |
| /* MCLK_PWRMGT_CNTL setup */ |
| mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl, |
| MCLK_PWRMGT_CNTL, DLL_SPEED, mpll_param.dll_speed); |
| mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl, |
| MCLK_PWRMGT_CNTL, MRDCK0_PDNB, dllStateOn); |
| mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl, |
| MCLK_PWRMGT_CNTL, MRDCK1_PDNB, dllStateOn); |
| |
| |
| /* Save the result data to outpupt memory level structure */ |
| mclk->MclkFrequency = memory_clock; |
| mclk->MpllFuncCntl = mpll_func_cntl; |
| mclk->MpllFuncCntl_1 = mpll_func_cntl_1; |
| mclk->MpllFuncCntl_2 = mpll_func_cntl_2; |
| mclk->MpllAdFuncCntl = mpll_ad_func_cntl; |
| mclk->MpllDqFuncCntl = mpll_dq_func_cntl; |
| mclk->MclkPwrmgtCntl = mclk_pwrmgt_cntl; |
| mclk->DllCntl = dll_cntl; |
| mclk->MpllSs1 = mpll_ss1; |
| mclk->MpllSs2 = mpll_ss2; |
| |
| return 0; |
| } |
| |
| static uint8_t tonga_get_mclk_frequency_ratio(uint32_t memory_clock, |
| bool strobe_mode) |
| { |
| uint8_t mc_para_index; |
| |
| if (strobe_mode) { |
| if (memory_clock < 12500) { |
| mc_para_index = 0x00; |
| } else if (memory_clock > 47500) { |
| mc_para_index = 0x0f; |
| } else { |
| mc_para_index = (uint8_t)((memory_clock - 10000) / 2500); |
| } |
| } else { |
| if (memory_clock < 65000) { |
| mc_para_index = 0x00; |
| } else if (memory_clock > 135000) { |
| mc_para_index = 0x0f; |
| } else { |
| mc_para_index = (uint8_t)((memory_clock - 60000) / 5000); |
| } |
| } |
| |
| return mc_para_index; |
| } |
| |
| static uint8_t tonga_get_ddr3_mclk_frequency_ratio(uint32_t memory_clock) |
| { |
| uint8_t mc_para_index; |
| |
| if (memory_clock < 10000) { |
| mc_para_index = 0; |
| } else if (memory_clock >= 80000) { |
| mc_para_index = 0x0f; |
| } else { |
| mc_para_index = (uint8_t)((memory_clock - 10000) / 5000 + 1); |
| } |
| |
| return mc_para_index; |
| } |
| |
| static int tonga_populate_single_memory_level( |
| struct pp_hwmgr *hwmgr, |
| uint32_t memory_clock, |
| SMU72_Discrete_MemoryLevel *memory_level |
| ) |
| { |
| uint32_t minMvdd = 0; |
| tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend); |
| struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| int result = 0; |
| bool dllStateOn; |
| struct cgs_display_info info = {0}; |
| |
| |
| if (NULL != pptable_info->vdd_dep_on_mclk) { |
| result = tonga_get_dependecy_volt_by_clk(hwmgr, |
| pptable_info->vdd_dep_on_mclk, memory_clock, &memory_level->MinVoltage, &minMvdd); |
| PP_ASSERT_WITH_CODE((0 == result), |
| "can not find MinVddc voltage value from memory VDDC voltage dependency table", return result); |
| } |
| |
| if (data->mvdd_control == TONGA_VOLTAGE_CONTROL_NONE) { |
| memory_level->MinMvdd = data->vbios_boot_state.mvdd_bootup_value; |
| } else { |
| memory_level->MinMvdd = minMvdd; |
| } |
| memory_level->EnabledForThrottle = 1; |
| memory_level->EnabledForActivity = 0; |
| memory_level->UpHyst = 0; |
| memory_level->DownHyst = 100; |
| memory_level->VoltageDownHyst = 0; |
| |
| /* Indicates maximum activity level for this performance level.*/ |
| memory_level->ActivityLevel = (uint16_t)data->mclk_activity_target; |
| memory_level->StutterEnable = 0; |
| memory_level->StrobeEnable = 0; |
| memory_level->EdcReadEnable = 0; |
| memory_level->EdcWriteEnable = 0; |
| memory_level->RttEnable = 0; |
| |
| /* default set to low watermark. Highest level will be set to high later.*/ |
| memory_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW; |
| |
| cgs_get_active_displays_info(hwmgr->device, &info); |
| data->display_timing.num_existing_displays = info.display_count; |
| |
| if ((data->mclk_stutter_mode_threshold != 0) && |
| (memory_clock <= data->mclk_stutter_mode_threshold) && |
| (data->is_uvd_enabled == 0) |
| #if defined(LINUX) |
| && (PHM_READ_FIELD(hwmgr->device, DPG_PIPE_STUTTER_CONTROL, STUTTER_ENABLE) & 0x1) |
| && (data->display_timing.num_existing_displays <= 2) |
| && (data->display_timing.num_existing_displays != 0) |
| #endif |
| ) |
| memory_level->StutterEnable = 1; |
| |
| /* decide strobe mode*/ |
| memory_level->StrobeEnable = (data->mclk_strobe_mode_threshold != 0) && |
| (memory_clock <= data->mclk_strobe_mode_threshold); |
| |
| /* decide EDC mode and memory clock ratio*/ |
| if (data->is_memory_GDDR5) { |
| memory_level->StrobeRatio = tonga_get_mclk_frequency_ratio(memory_clock, |
| memory_level->StrobeEnable); |
| |
| if ((data->mclk_edc_enable_threshold != 0) && |
| (memory_clock > data->mclk_edc_enable_threshold)) { |
| memory_level->EdcReadEnable = 1; |
| } |
| |
| if ((data->mclk_edc_wr_enable_threshold != 0) && |
| (memory_clock > data->mclk_edc_wr_enable_threshold)) { |
| memory_level->EdcWriteEnable = 1; |
| } |
| |
| if (memory_level->StrobeEnable) { |
| if (tonga_get_mclk_frequency_ratio(memory_clock, 1) >= |
| ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC7) >> 16) & 0xf)) { |
| dllStateOn = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC5) >> 1) & 0x1) ? 1 : 0; |
| } else { |
| dllStateOn = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC6) >> 1) & 0x1) ? 1 : 0; |
| } |
| |
| } else { |
| dllStateOn = data->dll_defaule_on; |
| } |
| } else { |
| memory_level->StrobeRatio = |
| tonga_get_ddr3_mclk_frequency_ratio(memory_clock); |
| dllStateOn = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC5) >> 1) & 0x1) ? 1 : 0; |
| } |
| |
| result = tonga_calculate_mclk_params(hwmgr, |
| memory_clock, memory_level, memory_level->StrobeEnable, dllStateOn); |
| |
| if (0 == result) { |
| CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MinMvdd); |
| /* MCLK frequency in units of 10KHz*/ |
| CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MclkFrequency); |
| /* Indicates maximum activity level for this performance level.*/ |
| CONVERT_FROM_HOST_TO_SMC_US(memory_level->ActivityLevel); |
| CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl); |
| CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl_1); |
| CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl_2); |
| CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllAdFuncCntl); |
| CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllDqFuncCntl); |
| CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MclkPwrmgtCntl); |
| CONVERT_FROM_HOST_TO_SMC_UL(memory_level->DllCntl); |
| CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllSs1); |
| CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllSs2); |
| } |
| |
| return result; |
| } |
| |
| /** |
| * Populates the SMC MVDD structure using the provided memory clock. |
| * |
| * @param hwmgr the address of the hardware manager |
| * @param mclk the MCLK value to be used in the decision if MVDD should be high or low. |
| * @param voltage the SMC VOLTAGE structure to be populated |
| */ |
| int tonga_populate_mvdd_value(struct pp_hwmgr *hwmgr, uint32_t mclk, SMIO_Pattern *smio_pattern) |
| { |
| const tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend); |
| struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| uint32_t i = 0; |
| |
| if (TONGA_VOLTAGE_CONTROL_NONE != data->mvdd_control) { |
| /* find mvdd value which clock is more than request */ |
| for (i = 0; i < pptable_info->vdd_dep_on_mclk->count; i++) { |
| if (mclk <= pptable_info->vdd_dep_on_mclk->entries[i].clk) { |
| /* Always round to higher voltage. */ |
| smio_pattern->Voltage = data->mvdd_voltage_table.entries[i].value; |
| break; |
| } |
| } |
| |
| PP_ASSERT_WITH_CODE(i < pptable_info->vdd_dep_on_mclk->count, |
| "MVDD Voltage is outside the supported range.", return -1); |
| |
| } else { |
| return -1; |
| } |
| |
| return 0; |
| } |
| |
| |
| static int tonga_populate_smv_acpi_level(struct pp_hwmgr *hwmgr, |
| SMU72_Discrete_DpmTable *table) |
| { |
| int result = 0; |
| const tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend); |
| pp_atomctrl_clock_dividers_vi dividers; |
| SMIO_Pattern voltage_level; |
| uint32_t spll_func_cntl = data->clock_registers.vCG_SPLL_FUNC_CNTL; |
| uint32_t spll_func_cntl_2 = data->clock_registers.vCG_SPLL_FUNC_CNTL_2; |
| uint32_t dll_cntl = data->clock_registers.vDLL_CNTL; |
| uint32_t mclk_pwrmgt_cntl = data->clock_registers.vMCLK_PWRMGT_CNTL; |
| |
| /* The ACPI state should not do DPM on DC (or ever).*/ |
| table->ACPILevel.Flags &= ~PPSMC_SWSTATE_FLAG_DC; |
| |
| table->ACPILevel.MinVoltage = data->smc_state_table.GraphicsLevel[0].MinVoltage; |
| |
| /* assign zero for now*/ |
| table->ACPILevel.SclkFrequency = atomctrl_get_reference_clock(hwmgr); |
| |
| /* get the engine clock dividers for this clock value*/ |
| result = atomctrl_get_engine_pll_dividers_vi(hwmgr, |
| table->ACPILevel.SclkFrequency, ÷rs); |
| |
| PP_ASSERT_WITH_CODE(result == 0, |
| "Error retrieving Engine Clock dividers from VBIOS.", return result); |
| |
| /* divider ID for required SCLK*/ |
| table->ACPILevel.SclkDid = (uint8_t)dividers.pll_post_divider; |
| table->ACPILevel.DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW; |
| table->ACPILevel.DeepSleepDivId = 0; |
| |
| spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, |
| CG_SPLL_FUNC_CNTL, SPLL_PWRON, 0); |
| spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, |
| CG_SPLL_FUNC_CNTL, SPLL_RESET, 1); |
| spll_func_cntl_2 = PHM_SET_FIELD(spll_func_cntl_2, |
| CG_SPLL_FUNC_CNTL_2, SCLK_MUX_SEL, 4); |
| |
| table->ACPILevel.CgSpllFuncCntl = spll_func_cntl; |
| table->ACPILevel.CgSpllFuncCntl2 = spll_func_cntl_2; |
| table->ACPILevel.CgSpllFuncCntl3 = data->clock_registers.vCG_SPLL_FUNC_CNTL_3; |
| table->ACPILevel.CgSpllFuncCntl4 = data->clock_registers.vCG_SPLL_FUNC_CNTL_4; |
| table->ACPILevel.SpllSpreadSpectrum = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM; |
| table->ACPILevel.SpllSpreadSpectrum2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2; |
| table->ACPILevel.CcPwrDynRm = 0; |
| table->ACPILevel.CcPwrDynRm1 = 0; |
| |
| |
| /* For various features to be enabled/disabled while this level is active.*/ |
| CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.Flags); |
| /* SCLK frequency in units of 10KHz*/ |
| CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SclkFrequency); |
| CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl); |
| CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl2); |
| CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl3); |
| CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl4); |
| CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum); |
| CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum2); |
| CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm); |
| CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm1); |
| |
| /* table->MemoryACPILevel.MinVddcPhases = table->ACPILevel.MinVddcPhases;*/ |
| table->MemoryACPILevel.MinVoltage = data->smc_state_table.MemoryLevel[0].MinVoltage; |
| |
| /* CONVERT_FROM_HOST_TO_SMC_UL(table->MemoryACPILevel.MinVoltage);*/ |
| |
| if (0 == tonga_populate_mvdd_value(hwmgr, 0, &voltage_level)) |
| table->MemoryACPILevel.MinMvdd = |
| PP_HOST_TO_SMC_UL(voltage_level.Voltage * VOLTAGE_SCALE); |
| else |
| table->MemoryACPILevel.MinMvdd = 0; |
| |
| /* Force reset on DLL*/ |
| mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl, |
| MCLK_PWRMGT_CNTL, MRDCK0_RESET, 0x1); |
| mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl, |
| MCLK_PWRMGT_CNTL, MRDCK1_RESET, 0x1); |
| |
| /* Disable DLL in ACPIState*/ |
| mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl, |
| MCLK_PWRMGT_CNTL, MRDCK0_PDNB, 0); |
| mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl, |
| MCLK_PWRMGT_CNTL, MRDCK1_PDNB, 0); |
| |
| /* Enable DLL bypass signal*/ |
| dll_cntl = PHM_SET_FIELD(dll_cntl, |
| DLL_CNTL, MRDCK0_BYPASS, 0); |
| dll_cntl = PHM_SET_FIELD(dll_cntl, |
| DLL_CNTL, MRDCK1_BYPASS, 0); |
| |
| table->MemoryACPILevel.DllCntl = |
| PP_HOST_TO_SMC_UL(dll_cntl); |
| table->MemoryACPILevel.MclkPwrmgtCntl = |
| PP_HOST_TO_SMC_UL(mclk_pwrmgt_cntl); |
| table->MemoryACPILevel.MpllAdFuncCntl = |
| PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_AD_FUNC_CNTL); |
| table->MemoryACPILevel.MpllDqFuncCntl = |
| PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_DQ_FUNC_CNTL); |
| table->MemoryACPILevel.MpllFuncCntl = |
| PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL); |
| table->MemoryACPILevel.MpllFuncCntl_1 = |
| PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL_1); |
| table->MemoryACPILevel.MpllFuncCntl_2 = |
| PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL_2); |
| table->MemoryACPILevel.MpllSs1 = |
| PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_SS1); |
| table->MemoryACPILevel.MpllSs2 = |
| PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_SS2); |
| |
| table->MemoryACPILevel.EnabledForThrottle = 0; |
| table->MemoryACPILevel.EnabledForActivity = 0; |
| table->MemoryACPILevel.UpHyst = 0; |
| table->MemoryACPILevel.DownHyst = 100; |
| table->MemoryACPILevel.VoltageDownHyst = 0; |
| /* Indicates maximum activity level for this performance level.*/ |
| table->MemoryACPILevel.ActivityLevel = PP_HOST_TO_SMC_US((uint16_t)data->mclk_activity_target); |
| |
| table->MemoryACPILevel.StutterEnable = 0; |
| table->MemoryACPILevel.StrobeEnable = 0; |
| table->MemoryACPILevel.EdcReadEnable = 0; |
| table->MemoryACPILevel.EdcWriteEnable = 0; |
| table->MemoryACPILevel.RttEnable = 0; |
| |
| return result; |
| } |
| |
| static int tonga_find_boot_level(struct tonga_single_dpm_table *table, uint32_t value, uint32_t *boot_level) |
| { |
| int result = 0; |
| uint32_t i; |
| |
| for (i = 0; i < table->count; i++) { |
| if (value == table->dpm_levels[i].value) { |
| *boot_level = i; |
| result = 0; |
| } |
| } |
| return result; |
| } |
| |
| static int tonga_populate_smc_boot_level(struct pp_hwmgr *hwmgr, |
| SMU72_Discrete_DpmTable *table) |
| { |
| int result = 0; |
| tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend); |
| |
| table->GraphicsBootLevel = 0; /* 0 == DPM[0] (low), etc. */ |
| table->MemoryBootLevel = 0; /* 0 == DPM[0] (low), etc. */ |
| |
| /* find boot level from dpm table*/ |
| result = tonga_find_boot_level(&(data->dpm_table.sclk_table), |
| data->vbios_boot_state.sclk_bootup_value, |
| (uint32_t *)&(data->smc_state_table.GraphicsBootLevel)); |
| |
| if (0 != result) { |
| data->smc_state_table.GraphicsBootLevel = 0; |
| printk(KERN_ERR "[ powerplay ] VBIOS did not find boot engine clock value \ |
| in dependency table. Using Graphics DPM level 0!"); |
| result = 0; |
| } |
| |
| result = tonga_find_boot_level(&(data->dpm_table.mclk_table), |
| data->vbios_boot_state.mclk_bootup_value, |
| (uint32_t *)&(data->smc_state_table.MemoryBootLevel)); |
| |
| if (0 != result) { |
| data->smc_state_table.MemoryBootLevel = 0; |
| printk(KERN_ERR "[ powerplay ] VBIOS did not find boot engine clock value \ |
| in dependency table. Using Memory DPM level 0!"); |
| result = 0; |
| } |
| |
| table->BootVoltage.Vddc = |
| tonga_get_voltage_id(&(data->vddc_voltage_table), |
| data->vbios_boot_state.vddc_bootup_value); |
| table->BootVoltage.VddGfx = |
| tonga_get_voltage_id(&(data->vddgfx_voltage_table), |
| data->vbios_boot_state.vddgfx_bootup_value); |
| table->BootVoltage.Vddci = |
| tonga_get_voltage_id(&(data->vddci_voltage_table), |
| data->vbios_boot_state.vddci_bootup_value); |
| table->BootMVdd = data->vbios_boot_state.mvdd_bootup_value; |
| |
| CONVERT_FROM_HOST_TO_SMC_US(table->BootMVdd); |
| |
| return result; |
| } |
| |
| |
| /** |
| * Calculates the SCLK dividers using the provided engine clock |
| * |
| * @param hwmgr the address of the hardware manager |
| * @param engine_clock the engine clock to use to populate the structure |
| * @param sclk the SMC SCLK structure to be populated |
| */ |
| int tonga_calculate_sclk_params(struct pp_hwmgr *hwmgr, |
| uint32_t engine_clock, SMU72_Discrete_GraphicsLevel *sclk) |
| { |
| const tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend); |
| pp_atomctrl_clock_dividers_vi dividers; |
| uint32_t spll_func_cntl = data->clock_registers.vCG_SPLL_FUNC_CNTL; |
| uint32_t spll_func_cntl_3 = data->clock_registers.vCG_SPLL_FUNC_CNTL_3; |
| uint32_t spll_func_cntl_4 = data->clock_registers.vCG_SPLL_FUNC_CNTL_4; |
| uint32_t cg_spll_spread_spectrum = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM; |
| uint32_t cg_spll_spread_spectrum_2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2; |
| uint32_t reference_clock; |
| uint32_t reference_divider; |
| uint32_t fbdiv; |
| int result; |
| |
| /* get the engine clock dividers for this clock value*/ |
| result = atomctrl_get_engine_pll_dividers_vi(hwmgr, engine_clock, ÷rs); |
| |
| PP_ASSERT_WITH_CODE(result == 0, |
| "Error retrieving Engine Clock dividers from VBIOS.", return result); |
| |
| /* To get FBDIV we need to multiply this by 16384 and divide it by Fref.*/ |
| reference_clock = atomctrl_get_reference_clock(hwmgr); |
| |
| reference_divider = 1 + dividers.uc_pll_ref_div; |
| |
| /* low 14 bits is fraction and high 12 bits is divider*/ |
| fbdiv = dividers.ul_fb_div.ul_fb_divider & 0x3FFFFFF; |
| |
| /* SPLL_FUNC_CNTL setup*/ |
| spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, |
| CG_SPLL_FUNC_CNTL, SPLL_REF_DIV, dividers.uc_pll_ref_div); |
| spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, |
| CG_SPLL_FUNC_CNTL, SPLL_PDIV_A, dividers.uc_pll_post_div); |
| |
| /* SPLL_FUNC_CNTL_3 setup*/ |
| spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3, |
| CG_SPLL_FUNC_CNTL_3, SPLL_FB_DIV, fbdiv); |
| |
| /* set to use fractional accumulation*/ |
| spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3, |
| CG_SPLL_FUNC_CNTL_3, SPLL_DITHEN, 1); |
| |
| if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_EngineSpreadSpectrumSupport)) { |
| pp_atomctrl_internal_ss_info ss_info; |
| |
| uint32_t vcoFreq = engine_clock * dividers.uc_pll_post_div; |
| if (0 == atomctrl_get_engine_clock_spread_spectrum(hwmgr, vcoFreq, &ss_info)) { |
| /* |
| * ss_info.speed_spectrum_percentage -- in unit of 0.01% |
| * ss_info.speed_spectrum_rate -- in unit of khz |
| */ |
| /* clks = reference_clock * 10 / (REFDIV + 1) / speed_spectrum_rate / 2 */ |
| uint32_t clkS = reference_clock * 5 / (reference_divider * ss_info.speed_spectrum_rate); |
| |
| /* clkv = 2 * D * fbdiv / NS */ |
| uint32_t clkV = 4 * ss_info.speed_spectrum_percentage * fbdiv / (clkS * 10000); |
| |
| cg_spll_spread_spectrum = |
| PHM_SET_FIELD(cg_spll_spread_spectrum, CG_SPLL_SPREAD_SPECTRUM, CLKS, clkS); |
| cg_spll_spread_spectrum = |
| PHM_SET_FIELD(cg_spll_spread_spectrum, CG_SPLL_SPREAD_SPECTRUM, SSEN, 1); |
| cg_spll_spread_spectrum_2 = |
| PHM_SET_FIELD(cg_spll_spread_spectrum_2, CG_SPLL_SPREAD_SPECTRUM_2, CLKV, clkV); |
| } |
| } |
| |
| sclk->SclkFrequency = engine_clock; |
| sclk->CgSpllFuncCntl3 = spll_func_cntl_3; |
| sclk->CgSpllFuncCntl4 = spll_func_cntl_4; |
| sclk->SpllSpreadSpectrum = cg_spll_spread_spectrum; |
| sclk->SpllSpreadSpectrum2 = cg_spll_spread_spectrum_2; |
| sclk->SclkDid = (uint8_t)dividers.pll_post_divider; |
| |
| return 0; |
| } |
| |
| /** |
| * Populates single SMC SCLK structure using the provided engine clock |
| * |
| * @param hwmgr the address of the hardware manager |
| * @param engine_clock the engine clock to use to populate the structure |
| * @param sclk the SMC SCLK structure to be populated |
| */ |
| static int tonga_populate_single_graphic_level(struct pp_hwmgr *hwmgr, uint32_t engine_clock, uint16_t sclk_activity_level_threshold, SMU72_Discrete_GraphicsLevel *graphic_level) |
| { |
| int result; |
| uint32_t threshold; |
| uint32_t mvdd; |
| tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend); |
| struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| |
| result = tonga_calculate_sclk_params(hwmgr, engine_clock, graphic_level); |
| |
| |
| /* populate graphics levels*/ |
| result = tonga_get_dependecy_volt_by_clk(hwmgr, |
| pptable_info->vdd_dep_on_sclk, engine_clock, |
| &graphic_level->MinVoltage, &mvdd); |
| PP_ASSERT_WITH_CODE((0 == result), |
| "can not find VDDC voltage value for VDDC \ |
| engine clock dependency table", return result); |
| |
| /* SCLK frequency in units of 10KHz*/ |
| graphic_level->SclkFrequency = engine_clock; |
| |
| /* Indicates maximum activity level for this performance level. 50% for now*/ |
| graphic_level->ActivityLevel = sclk_activity_level_threshold; |
| |
| graphic_level->CcPwrDynRm = 0; |
| graphic_level->CcPwrDynRm1 = 0; |
| /* this level can be used if activity is high enough.*/ |
| graphic_level->EnabledForActivity = 0; |
| /* this level can be used for throttling.*/ |
| graphic_level->EnabledForThrottle = 1; |
| graphic_level->UpHyst = 0; |
| graphic_level->DownHyst = 0; |
| graphic_level->VoltageDownHyst = 0; |
| graphic_level->PowerThrottle = 0; |
| |
| threshold = engine_clock * data->fast_watemark_threshold / 100; |
| /* |
| *get the DAL clock. do it in funture. |
| PECI_GetMinClockSettings(hwmgr->peci, &minClocks); |
| data->display_timing.min_clock_insr = minClocks.engineClockInSR; |
| |
| if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SclkDeepSleep)) |
| { |
| graphic_level->DeepSleepDivId = PhwTonga_GetSleepDividerIdFromClock(hwmgr, engine_clock, minClocks.engineClockInSR); |
| } |
| */ |
| |
| /* Default to slow, highest DPM level will be set to PPSMC_DISPLAY_WATERMARK_LOW later.*/ |
| graphic_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW; |
| |
| if (0 == result) { |
| /* CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->MinVoltage);*/ |
| /* CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->MinVddcPhases);*/ |
| CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->SclkFrequency); |
| CONVERT_FROM_HOST_TO_SMC_US(graphic_level->ActivityLevel); |
| CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CgSpllFuncCntl3); |
| CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CgSpllFuncCntl4); |
| CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->SpllSpreadSpectrum); |
| CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->SpllSpreadSpectrum2); |
| CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CcPwrDynRm); |
| CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CcPwrDynRm1); |
| } |
| |
| return result; |
| } |
| |
| /** |
| * Populates all SMC SCLK levels' structure based on the trimmed allowed dpm engine clock states |
| * |
| * @param hwmgr the address of the hardware manager |
| */ |
| static int tonga_populate_all_graphic_levels(struct pp_hwmgr *hwmgr) |
| { |
| tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend); |
| struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| struct tonga_dpm_table *dpm_table = &data->dpm_table; |
| phm_ppt_v1_pcie_table *pcie_table = pptable_info->pcie_table; |
| uint8_t pcie_entry_count = (uint8_t) data->dpm_table.pcie_speed_table.count; |
| int result = 0; |
| uint32_t level_array_adress = data->dpm_table_start + |
| offsetof(SMU72_Discrete_DpmTable, GraphicsLevel); |
| uint32_t level_array_size = sizeof(SMU72_Discrete_GraphicsLevel) * |
| SMU72_MAX_LEVELS_GRAPHICS; /* 64 -> long; 32 -> int*/ |
| SMU72_Discrete_GraphicsLevel *levels = data->smc_state_table.GraphicsLevel; |
| uint32_t i, maxEntry; |
| uint8_t highest_pcie_level_enabled = 0, lowest_pcie_level_enabled = 0, mid_pcie_level_enabled = 0, count = 0; |
| PECI_RegistryValue reg_value; |
| memset(levels, 0x00, level_array_size); |
| |
| for (i = 0; i < dpm_table->sclk_table.count; i++) { |
| result = tonga_populate_single_graphic_level(hwmgr, |
| dpm_table->sclk_table.dpm_levels[i].value, |
| (uint16_t)data->activity_target[i], |
| &(data->smc_state_table.GraphicsLevel[i])); |
| |
| if (0 != result) |
| return result; |
| |
| /* Making sure only DPM level 0-1 have Deep Sleep Div ID populated. */ |
| if (i > 1) |
| data->smc_state_table.GraphicsLevel[i].DeepSleepDivId = 0; |
| |
| if (0 == i) { |
| reg_value = 0; |
| if (reg_value != 0) |
| data->smc_state_table.GraphicsLevel[0].UpHyst = (uint8_t)reg_value; |
| } |
| |
| if (1 == i) { |
| reg_value = 0; |
| if (reg_value != 0) |
| data->smc_state_table.GraphicsLevel[1].UpHyst = (uint8_t)reg_value; |
| } |
| } |
| |
| /* Only enable level 0 for now. */ |
| data->smc_state_table.GraphicsLevel[0].EnabledForActivity = 1; |
| |
| /* set highest level watermark to high */ |
| if (dpm_table->sclk_table.count > 1) |
| data->smc_state_table.GraphicsLevel[dpm_table->sclk_table.count-1].DisplayWatermark = |
| PPSMC_DISPLAY_WATERMARK_HIGH; |
| |
| data->smc_state_table.GraphicsDpmLevelCount = |
| (uint8_t)dpm_table->sclk_table.count; |
| data->dpm_level_enable_mask.sclk_dpm_enable_mask = |
| tonga_get_dpm_level_enable_mask_value(&dpm_table->sclk_table); |
| |
| if (pcie_table != NULL) { |
| PP_ASSERT_WITH_CODE((pcie_entry_count >= 1), |
| "There must be 1 or more PCIE levels defined in PPTable.", return -1); |
| maxEntry = pcie_entry_count - 1; /* for indexing, we need to decrement by 1.*/ |
| for (i = 0; i < dpm_table->sclk_table.count; i++) { |
| data->smc_state_table.GraphicsLevel[i].pcieDpmLevel = |
| (uint8_t) ((i < maxEntry) ? i : maxEntry); |
| } |
| } else { |
| if (0 == data->dpm_level_enable_mask.pcie_dpm_enable_mask) |
| printk(KERN_ERR "[ powerplay ] Pcie Dpm Enablemask is 0!"); |
| |
| while (data->dpm_level_enable_mask.pcie_dpm_enable_mask && |
| ((data->dpm_level_enable_mask.pcie_dpm_enable_mask & |
| (1<<(highest_pcie_level_enabled+1))) != 0)) { |
| highest_pcie_level_enabled++; |
| } |
| |
| while (data->dpm_level_enable_mask.pcie_dpm_enable_mask && |
| ((data->dpm_level_enable_mask.pcie_dpm_enable_mask & |
| (1<<lowest_pcie_level_enabled)) == 0)) { |
| lowest_pcie_level_enabled++; |
| } |
| |
| while ((count < highest_pcie_level_enabled) && |
| ((data->dpm_level_enable_mask.pcie_dpm_enable_mask & |
| (1<<(lowest_pcie_level_enabled+1+count))) == 0)) { |
| count++; |
| } |
| mid_pcie_level_enabled = (lowest_pcie_level_enabled+1+count) < highest_pcie_level_enabled ? |
| (lowest_pcie_level_enabled+1+count) : highest_pcie_level_enabled; |
| |
| |
| /* set pcieDpmLevel to highest_pcie_level_enabled*/ |
| for (i = 2; i < dpm_table->sclk_table.count; i++) { |
| data->smc_state_table.GraphicsLevel[i].pcieDpmLevel = highest_pcie_level_enabled; |
| } |
| |
| /* set pcieDpmLevel to lowest_pcie_level_enabled*/ |
| data->smc_state_table.GraphicsLevel[0].pcieDpmLevel = lowest_pcie_level_enabled; |
| |
| /* set pcieDpmLevel to mid_pcie_level_enabled*/ |
| data->smc_state_table.GraphicsLevel[1].pcieDpmLevel = mid_pcie_level_enabled; |
| } |
| /* level count will send to smc once at init smc table and never change*/ |
| result = tonga_copy_bytes_to_smc(hwmgr->smumgr, level_array_adress, (uint8_t *)levels, (uint32_t)level_array_size, data->sram_end); |
| |
| if (0 != result) |
| return result; |
| |
| return 0; |
| } |
| |
| /** |
| * Populates all SMC MCLK levels' structure based on the trimmed allowed dpm memory clock states |
| * |
| * @param hwmgr the address of the hardware manager |
| */ |
| |
| static int tonga_populate_all_memory_levels(struct pp_hwmgr *hwmgr) |
| { |
| tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend); |
| struct tonga_dpm_table *dpm_table = &data->dpm_table; |
| int result; |
| /* populate MCLK dpm table to SMU7 */ |
| uint32_t level_array_adress = data->dpm_table_start + offsetof(SMU72_Discrete_DpmTable, MemoryLevel); |
| uint32_t level_array_size = sizeof(SMU72_Discrete_MemoryLevel) * SMU72_MAX_LEVELS_MEMORY; |
| SMU72_Discrete_MemoryLevel *levels = data->smc_state_table.MemoryLevel; |
| uint32_t i; |
| |
| memset(levels, 0x00, level_array_size); |
| |
| for (i = 0; i < dpm_table->mclk_table.count; i++) { |
| PP_ASSERT_WITH_CODE((0 != dpm_table->mclk_table.dpm_levels[i].value), |
| "can not populate memory level as memory clock is zero", return -1); |
| result = tonga_populate_single_memory_level(hwmgr, dpm_table->mclk_table.dpm_levels[i].value, |
| &(data->smc_state_table.MemoryLevel[i])); |
| if (0 != result) { |
| return result; |
| } |
| } |
| |
| /* Only enable level 0 for now.*/ |
| data->smc_state_table.MemoryLevel[0].EnabledForActivity = 1; |
| |
| /* |
| * in order to prevent MC activity from stutter mode to push DPM up. |
| * the UVD change complements this by putting the MCLK in a higher state |
| * by default such that we are not effected by up threshold or and MCLK DPM latency. |
| */ |
| data->smc_state_table.MemoryLevel[0].ActivityLevel = 0x1F; |
| CONVERT_FROM_HOST_TO_SMC_US(data->smc_state_table.MemoryLevel[0].ActivityLevel); |
| |
| data->smc_state_table.MemoryDpmLevelCount = (uint8_t)dpm_table->mclk_table.count; |
| data->dpm_level_enable_mask.mclk_dpm_enable_mask = tonga_get_dpm_level_enable_mask_value(&dpm_table->mclk_table); |
| /* set highest level watermark to high*/ |
| data->smc_state_table.MemoryLevel[dpm_table->mclk_table.count-1].DisplayWatermark = PPSMC_DISPLAY_WATERMARK_HIGH; |
| |
| /* level count will send to smc once at init smc table and never change*/ |
| result = tonga_copy_bytes_to_smc(hwmgr->smumgr, |
| level_array_adress, (uint8_t *)levels, (uint32_t)level_array_size, data->sram_end); |
| |
| if (0 != result) { |
| return result; |
| } |
| |
| return 0; |
| } |
| |
| struct TONGA_DLL_SPEED_SETTING { |
| uint16_t Min; /* Minimum Data Rate*/ |
| uint16_t Max; /* Maximum Data Rate*/ |
| uint32_t dll_speed; /* The desired DLL_SPEED setting*/ |
| }; |
| |
| static int tonga_populate_clock_stretcher_data_table(struct pp_hwmgr *hwmgr) |
| { |
| return 0; |
| } |
| |
| /* ---------------------------------------- ULV related functions ----------------------------------------------------*/ |
| |
| |
| static int tonga_reset_single_dpm_table( |
| struct pp_hwmgr *hwmgr, |
| struct tonga_single_dpm_table *dpm_table, |
| uint32_t count) |
| { |
| uint32_t i; |
| if (!(count <= MAX_REGULAR_DPM_NUMBER)) |
| printk(KERN_ERR "[ powerplay ] Fatal error, can not set up single DPM \ |
| table entries to exceed max number! \n"); |
| |
| dpm_table->count = count; |
| for (i = 0; i < MAX_REGULAR_DPM_NUMBER; i++) { |
| dpm_table->dpm_levels[i].enabled = 0; |
| } |
| |
| return 0; |
| } |
| |
| static void tonga_setup_pcie_table_entry( |
| struct tonga_single_dpm_table *dpm_table, |
| uint32_t index, uint32_t pcie_gen, |
| uint32_t pcie_lanes) |
| { |
| dpm_table->dpm_levels[index].value = pcie_gen; |
| dpm_table->dpm_levels[index].param1 = pcie_lanes; |
| dpm_table->dpm_levels[index].enabled = 1; |
| } |
| |
| static int tonga_setup_default_pcie_tables(struct pp_hwmgr *hwmgr) |
| { |
| tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend); |
| struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| phm_ppt_v1_pcie_table *pcie_table = pptable_info->pcie_table; |
| uint32_t i, maxEntry; |
| |
| if (data->use_pcie_performance_levels && !data->use_pcie_power_saving_levels) { |
| data->pcie_gen_power_saving = data->pcie_gen_performance; |
| data->pcie_lane_power_saving = data->pcie_lane_performance; |
| } else if (!data->use_pcie_performance_levels && data->use_pcie_power_saving_levels) { |
| data->pcie_gen_performance = data->pcie_gen_power_saving; |
| data->pcie_lane_performance = data->pcie_lane_power_saving; |
| } |
| |
| tonga_reset_single_dpm_table(hwmgr, &data->dpm_table.pcie_speed_table, SMU72_MAX_LEVELS_LINK); |
| |
| if (pcie_table != NULL) { |
| /* |
| * maxEntry is used to make sure we reserve one PCIE level for boot level (fix for A+A PSPP issue). |
| * If PCIE table from PPTable have ULV entry + 8 entries, then ignore the last entry. |
| */ |
| maxEntry = (SMU72_MAX_LEVELS_LINK < pcie_table->count) ? |
| SMU72_MAX_LEVELS_LINK : pcie_table->count; |
| for (i = 1; i < maxEntry; i++) { |
| tonga_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, i-1, |
| get_pcie_gen_support(data->pcie_gen_cap, pcie_table->entries[i].gen_speed), |
| get_pcie_lane_support(data->pcie_lane_cap, PP_Max_PCIELane)); |
| } |
| data->dpm_table.pcie_speed_table.count = maxEntry - 1; |
| } else { |
| /* Hardcode Pcie Table */ |
| tonga_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 0, |
| get_pcie_gen_support(data->pcie_gen_cap, PP_Min_PCIEGen), |
| get_pcie_lane_support(data->pcie_lane_cap, PP_Max_PCIELane)); |
| tonga_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 1, |
| get_pcie_gen_support(data->pcie_gen_cap, PP_Min_PCIEGen), |
| get_pcie_lane_support(data->pcie_lane_cap, PP_Max_PCIELane)); |
| tonga_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 2, |
| get_pcie_gen_support(data->pcie_gen_cap, PP_Max_PCIEGen), |
| get_pcie_lane_support(data->pcie_lane_cap, PP_Max_PCIELane)); |
| tonga_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 3, |
| get_pcie_gen_support(data->pcie_gen_cap, PP_Max_PCIEGen), |
| get_pcie_lane_support(data->pcie_lane_cap, PP_Max_PCIELane)); |
| tonga_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 4, |
| get_pcie_gen_support(data->pcie_gen_cap, PP_Max_PCIEGen), |
| get_pcie_lane_support(data->pcie_lane_cap, PP_Max_PCIELane)); |
| tonga_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 5, |
| get_pcie_gen_support(data->pcie_gen_cap, PP_Max_PCIEGen), |
| get_pcie_lane_support(data->pcie_lane_cap, PP_Max_PCIELane)); |
| data->dpm_table.pcie_speed_table.count = 6; |
| } |
| /* Populate last level for boot PCIE level, but do not increment count. */ |
| tonga_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, |
| data->dpm_table.pcie_speed_table.count, |
| get_pcie_gen_support(data->pcie_gen_cap, PP_Min_PCIEGen), |
| get_pcie_lane_support(data->pcie_lane_cap, PP_Max_PCIELane)); |
| |
| return 0; |
| |
| } |
| |
| /* |
| * This function is to initalize all DPM state tables for SMU7 based on the dependency table. |
| * Dynamic state patching function will then trim these state tables to the allowed range based |
| * on the power policy or external client requests, such as UVD request, etc. |
| */ |
| static int tonga_setup_default_dpm_tables(struct pp_hwmgr *hwmgr) |
| { |
| tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend); |
| struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| uint32_t i; |
| |
| phm_ppt_v1_clock_voltage_dependency_table *allowed_vdd_sclk_table = |
| pptable_info->vdd_dep_on_sclk; |
| phm_ppt_v1_clock_voltage_dependency_table *allowed_vdd_mclk_table = |
| pptable_info->vdd_dep_on_mclk; |
| |
| PP_ASSERT_WITH_CODE(allowed_vdd_sclk_table != NULL, |
| "SCLK dependency table is missing. This table is mandatory", return -1); |
| PP_ASSERT_WITH_CODE(allowed_vdd_sclk_table->count >= 1, |
| "SCLK dependency table has to have is missing. This table is mandatory", return -1); |
| |
| PP_ASSERT_WITH_CODE(allowed_vdd_mclk_table != NULL, |
| "MCLK dependency table is missing. This table is mandatory", return -1); |
| PP_ASSERT_WITH_CODE(allowed_vdd_mclk_table->count >= 1, |
| "VMCLK dependency table has to have is missing. This table is mandatory", return -1); |
| |
| /* clear the state table to reset everything to default */ |
| memset(&(data->dpm_table), 0x00, sizeof(data->dpm_table)); |
| tonga_reset_single_dpm_table(hwmgr, &data->dpm_table.sclk_table, SMU72_MAX_LEVELS_GRAPHICS); |
| tonga_reset_single_dpm_table(hwmgr, &data->dpm_table.mclk_table, SMU72_MAX_LEVELS_MEMORY); |
| /* tonga_reset_single_dpm_table(hwmgr, &tonga_hwmgr->dpm_table.VddcTable, SMU72_MAX_LEVELS_VDDC); */ |
| /* tonga_reset_single_dpm_table(hwmgr, &tonga_hwmgr->dpm_table.vdd_gfx_table, SMU72_MAX_LEVELS_VDDGFX);*/ |
| /* tonga_reset_single_dpm_table(hwmgr, &tonga_hwmgr->dpm_table.vdd_ci_table, SMU72_MAX_LEVELS_VDDCI);*/ |
| /* tonga_reset_single_dpm_table(hwmgr, &tonga_hwmgr->dpm_table.mvdd_table, SMU72_MAX_LEVELS_MVDD);*/ |
| |
| PP_ASSERT_WITH_CODE(allowed_vdd_sclk_table != NULL, |
| "SCLK dependency table is missing. This table is mandatory", return -1); |
| /* Initialize Sclk DPM table based on allow Sclk values*/ |
| data->dpm_table.sclk_table.count = 0; |
| |
| for (i = 0; i < allowed_vdd_sclk_table->count; i++) { |
| if (i == 0 || data->dpm_table.sclk_table.dpm_levels[data->dpm_table.sclk_table.count-1].value != |
| allowed_vdd_sclk_table->entries[i].clk) { |
| data->dpm_table.sclk_table.dpm_levels[data->dpm_table.sclk_table.count].value = |
| allowed_vdd_sclk_table->entries[i].clk; |
| data->dpm_table.sclk_table.dpm_levels[data->dpm_table.sclk_table.count].enabled = 1; /*(i==0) ? 1 : 0; to do */ |
| data->dpm_table.sclk_table.count++; |
| } |
| } |
| |
| PP_ASSERT_WITH_CODE(allowed_vdd_mclk_table != NULL, |
| "MCLK dependency table is missing. This table is mandatory", return -1); |
| /* Initialize Mclk DPM table based on allow Mclk values */ |
| data->dpm_table.mclk_table.count = 0; |
| for (i = 0; i < allowed_vdd_mclk_table->count; i++) { |
| if (i == 0 || data->dpm_table.mclk_table.dpm_levels[data->dpm_table.mclk_table.count-1].value != |
| allowed_vdd_mclk_table->entries[i].clk) { |
| data->dpm_table.mclk_table.dpm_levels[data->dpm_table.mclk_table.count].value = |
| allowed_vdd_mclk_table->entries[i].clk; |
| data->dpm_table.mclk_table.dpm_levels[data->dpm_table.mclk_table.count].enabled = 1; /*(i==0) ? 1 : 0; */ |
| data->dpm_table.mclk_table.count++; |
| } |
| } |
| |
| /* Initialize Vddc DPM table based on allow Vddc values. And populate corresponding std values. */ |
| for (i = 0; i < allowed_vdd_sclk_table->count; i++) { |
| data->dpm_table.vddc_table.dpm_levels[i].value = allowed_vdd_mclk_table->entries[i].vddc; |
| /* tonga_hwmgr->dpm_table.VddcTable.dpm_levels[i].param1 = stdVoltageTable->entries[i].Leakage; */ |
| /* param1 is for corresponding std voltage */ |
| data->dpm_table.vddc_table.dpm_levels[i].enabled = 1; |
| } |
| data->dpm_table.vddc_table.count = allowed_vdd_sclk_table->count; |
| |
| if (NULL != allowed_vdd_mclk_table) { |
| /* Initialize Vddci DPM table based on allow Mclk values */ |
| for (i = 0; i < allowed_vdd_mclk_table->count; i++) { |
| data->dpm_table.vdd_ci_table.dpm_levels[i].value = allowed_vdd_mclk_table->entries[i].vddci; |
| data->dpm_table.vdd_ci_table.dpm_levels[i].enabled = 1; |
| data->dpm_table.mvdd_table.dpm_levels[i].value = allowed_vdd_mclk_table->entries[i].mvdd; |
| data->dpm_table.mvdd_table.dpm_levels[i].enabled = 1; |
| } |
| data->dpm_table.vdd_ci_table.count = allowed_vdd_mclk_table->count; |
| data->dpm_table.mvdd_table.count = allowed_vdd_mclk_table->count; |
| } |
| |
| /* setup PCIE gen speed levels*/ |
| tonga_setup_default_pcie_tables(hwmgr); |
| |
| /* save a copy of the default DPM table*/ |
| memcpy(&(data->golden_dpm_table), &(data->dpm_table), sizeof(struct tonga_dpm_table)); |
| |
| return 0; |
| } |
| |
| int tonga_populate_smc_initial_state(struct pp_hwmgr *hwmgr, |
| const struct tonga_power_state *bootState) |
| { |
| tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend); |
| struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| uint8_t count, level; |
| |
| count = (uint8_t) (pptable_info->vdd_dep_on_sclk->count); |
| for (level = 0; level < count; level++) { |
| if (pptable_info->vdd_dep_on_sclk->entries[level].clk >= |
| bootState->performance_levels[0].engine_clock) { |
| data->smc_state_table.GraphicsBootLevel = level; |
| break; |
| } |
| } |
| |
| count = (uint8_t) (pptable_info->vdd_dep_on_mclk->count); |
| for (level = 0; level < count; level++) { |
| if (pptable_info->vdd_dep_on_mclk->entries[level].clk >= |
| bootState->performance_levels[0].memory_clock) { |
| data->smc_state_table.MemoryBootLevel = level; |
| break; |
| } |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * Initializes the SMC table and uploads it |
| * |
| * @param hwmgr the address of the powerplay hardware manager. |
| * @param pInput the pointer to input data (PowerState) |
| * @return always 0 |
| */ |
| int tonga_init_smc_table(struct pp_hwmgr *hwmgr) |
| { |
| int result; |
| tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend); |
| struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| SMU72_Discrete_DpmTable *table = &(data->smc_state_table); |
| const phw_tonga_ulv_parm *ulv = &(data->ulv); |
| uint8_t i; |
| PECI_RegistryValue reg_value; |
| pp_atomctrl_gpio_pin_assignment gpio_pin_assignment; |
| |
| result = tonga_setup_default_dpm_tables(hwmgr); |
| PP_ASSERT_WITH_CODE(0 == result, |
| "Failed to setup default DPM tables!", return result;); |
| memset(&(data->smc_state_table), 0x00, sizeof(data->smc_state_table)); |
| if (TONGA_VOLTAGE_CONTROL_NONE != data->voltage_control) { |
| tonga_populate_smc_voltage_tables(hwmgr, table); |
| } |
| |
| if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_AutomaticDCTransition)) { |
| table->SystemFlags |= PPSMC_SYSTEMFLAG_GPIO_DC; |
| } |
| |
| if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_StepVddc)) { |
| table->SystemFlags |= PPSMC_SYSTEMFLAG_STEPVDDC; |
| } |
| |
| if (data->is_memory_GDDR5) { |
| table->SystemFlags |= PPSMC_SYSTEMFLAG_GDDR5; |
| } |
| |
| i = PHM_READ_FIELD(hwmgr->device, CC_MC_MAX_CHANNEL, NOOFCHAN); |
| |
| if (i == 1 || i == 0) { |
| table->SystemFlags |= PPSMC_SYSTEMFLAG_12CHANNEL; |
| } |
| |
| if (ulv->ulv_supported && pptable_info->us_ulv_voltage_offset) { |
| PP_ASSERT_WITH_CODE(0 == result, |
| "Failed to initialize ULV state!", return result;); |
| |
| cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, |
| ixCG_ULV_PARAMETER, ulv->ch_ulv_parameter); |
| } |
| |
| result = tonga_populate_smc_link_level(hwmgr, table); |
| PP_ASSERT_WITH_CODE(0 == result, |
| "Failed to initialize Link Level!", return result;); |
| |
| result = tonga_populate_all_graphic_levels(hwmgr); |
| PP_ASSERT_WITH_CODE(0 == result, |
| "Failed to initialize Graphics Level!", return result;); |
| |
| result = tonga_populate_all_memory_levels(hwmgr); |
| PP_ASSERT_WITH_CODE(0 == result, |
| "Failed to initialize Memory Level!", return result;); |
| |
| result = tonga_populate_smv_acpi_level(hwmgr, table); |
| PP_ASSERT_WITH_CODE(0 == result, |
| "Failed to initialize ACPI Level!", return result;); |
| |
| result = tonga_populate_smc_vce_level(hwmgr, table); |
| PP_ASSERT_WITH_CODE(0 == result, |
| "Failed to initialize VCE Level!", return result;); |
| |
| result = tonga_populate_smc_acp_level(hwmgr, table); |
| PP_ASSERT_WITH_CODE(0 == result, |
| "Failed to initialize ACP Level!", return result;); |
| |
| result = tonga_populate_smc_samu_level(hwmgr, table); |
| PP_ASSERT_WITH_CODE(0 == result, |
| "Failed to initialize SAMU Level!", return result;); |
| |
| /* Since only the initial state is completely set up at this point (the other states are just copies of the boot state) we only */ |
| /* need to populate the ARB settings for the initial state. */ |
| result = tonga_program_memory_timing_parameters(hwmgr); |
| PP_ASSERT_WITH_CODE(0 == result, |
| "Failed to Write ARB settings for the initial state.", return result;); |
| |
| result = tonga_populate_smc_uvd_level(hwmgr, table); |
| PP_ASSERT_WITH_CODE(0 == result, |
| "Failed to initialize UVD Level!", return result;); |
| |
| result = tonga_populate_smc_boot_level(hwmgr, table); |
| PP_ASSERT_WITH_CODE(0 == result, |
| "Failed to initialize Boot Level!", return result;); |
| |
| if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_ClockStretcher)) { |
| result = tonga_populate_clock_stretcher_data_table(hwmgr); |
| PP_ASSERT_WITH_CODE(0 == result, |
| "Failed to populate Clock Stretcher Data Table!", return result;); |
| } |
| table->GraphicsVoltageChangeEnable = 1; |
| table->GraphicsThermThrottleEnable = 1; |
| table->GraphicsInterval = 1; |
| table->VoltageInterval = 1; |
| table->ThermalInterval = 1; |
| table->TemperatureLimitHigh = |
| pptable_info->cac_dtp_table->usTargetOperatingTemp * |
| TONGA_Q88_FORMAT_CONVERSION_UNIT; |
| table->TemperatureLimitLow = |
| (pptable_info->cac_dtp_table->usTargetOperatingTemp - 1) * |
| TONGA_Q88_FORMAT_CONVERSION_UNIT; |
| table->MemoryVoltageChangeEnable = 1; |
| table->MemoryInterval = 1; |
| table->VoltageResponseTime = 0; |
| table->PhaseResponseTime = 0; |
| table->MemoryThermThrottleEnable = 1; |
| |
| /* |
| * Cail reads current link status and reports it as cap (we cannot change this due to some previous issues we had) |
| * SMC drops the link status to lowest level after enabling DPM by PowerPlay. After pnp or toggling CF, driver gets reloaded again |
| * but this time Cail reads current link status which was set to low by SMC and reports it as cap to powerplay |
| * To avoid it, we set PCIeBootLinkLevel to highest dpm level |
| */ |
| PP_ASSERT_WITH_CODE((1 <= data->dpm_table.pcie_speed_table.count), |
| "There must be 1 or more PCIE levels defined in PPTable.", |
| return -1); |
| |
| table->PCIeBootLinkLevel = (uint8_t) (data->dpm_table.pcie_speed_table.count); |
| |
| table->PCIeGenInterval = 1; |
| |
| result = tonga_populate_vr_config(hwmgr, table); |
| PP_ASSERT_WITH_CODE(0 == result, |
| "Failed to populate VRConfig setting!", return result); |
| |
| table->ThermGpio = 17; |
| table->SclkStepSize = 0x4000; |
| |
| reg_value = 0; |
| if ((0 == reg_value) && |
| (0 == atomctrl_get_pp_assign_pin(hwmgr, |
| VDDC_VRHOT_GPIO_PINID, &gpio_pin_assignment))) { |
| table->VRHotGpio = gpio_pin_assignment.uc_gpio_pin_bit_shift; |
| phm_cap_set(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_RegulatorHot); |
| } else { |
| table->VRHotGpio = TONGA_UNUSED_GPIO_PIN; |
| phm_cap_unset(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_RegulatorHot); |
| } |
| |
| /* ACDC Switch GPIO */ |
| reg_value = 0; |
| if ((0 == reg_value) && |
| (0 == atomctrl_get_pp_assign_pin(hwmgr, |
| PP_AC_DC_SWITCH_GPIO_PINID, &gpio_pin_assignment))) { |
| table->AcDcGpio = gpio_pin_assignment.uc_gpio_pin_bit_shift; |
| phm_cap_set(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_AutomaticDCTransition); |
| } else { |
| table->AcDcGpio = TONGA_UNUSED_GPIO_PIN; |
| phm_cap_unset(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_AutomaticDCTransition); |
| } |
| |
| phm_cap_unset(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_Falcon_QuickTransition); |
| |
| reg_value = 0; |
| if (1 == reg_value) { |
| phm_cap_unset(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_AutomaticDCTransition); |
| phm_cap_set(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_Falcon_QuickTransition); |
| } |
| |
| reg_value = 0; |
| if ((0 == reg_value) && |
| (0 == atomctrl_get_pp_assign_pin(hwmgr, |
| THERMAL_INT_OUTPUT_GPIO_PINID, &gpio_pin_assignment))) { |
| phm_cap_set(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_ThermalOutGPIO); |
| |
| table->ThermOutGpio = gpio_pin_assignment.uc_gpio_pin_bit_shift; |
| |
| table->ThermOutPolarity = |
| (0 == (cgs_read_register(hwmgr->device, mmGPIOPAD_A) & |
| (1 << gpio_pin_assignment.uc_gpio_pin_bit_shift))) ? 1:0; |
| |
| table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_ONLY; |
| |
| /* if required, combine VRHot/PCC with thermal out GPIO*/ |
| if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_RegulatorHot) && |
| phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_CombinePCCWithThermalSignal)){ |
| table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_VRHOT; |
| } |
| } else { |
| phm_cap_unset(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_ThermalOutGPIO); |
| |
| table->ThermOutGpio = 17; |
| table->ThermOutPolarity = 1; |
| table->ThermOutMode = SMU7_THERM_OUT_MODE_DISABLE; |
| } |
| |
| for (i = 0; i < SMU72_MAX_ENTRIES_SMIO; i++) { |
| table->Smio[i] = PP_HOST_TO_SMC_UL(table->Smio[i]); |
| } |
| CONVERT_FROM_HOST_TO_SMC_UL(table->SystemFlags); |
| CONVERT_FROM_HOST_TO_SMC_UL(table->VRConfig); |
| CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask1); |
| CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask2); |
| CONVERT_FROM_HOST_TO_SMC_UL(table->SclkStepSize); |
| CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitHigh); |
| CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitLow); |
| CONVERT_FROM_HOST_TO_SMC_US(table->VoltageResponseTime); |
| CONVERT_FROM_HOST_TO_SMC_US(table->PhaseResponseTime); |
| |
| /* Upload all dpm data to SMC memory.(dpm level, dpm level count etc) */ |
| result = tonga_copy_bytes_to_smc(hwmgr->smumgr, data->dpm_table_start + |
| offsetof(SMU72_Discrete_DpmTable, SystemFlags), |
| (uint8_t *)&(table->SystemFlags), |
| sizeof(SMU72_Discrete_DpmTable)-3 * sizeof(SMU72_PIDController), |
| data->sram_end); |
| |
| PP_ASSERT_WITH_CODE(0 == result, |
| "Failed to upload dpm data to SMC memory!", return result;); |
| |
| return result; |
| } |
| |
| /* Look up the voltaged based on DAL's requested level. and then send the requested VDDC voltage to SMC*/ |
| static void tonga_apply_dal_minimum_voltage_request(struct pp_hwmgr *hwmgr) |
| { |
| return; |
| } |
| |
| int tonga_upload_dpm_level_enable_mask(struct pp_hwmgr *hwmgr) |
| { |
| PPSMC_Result result; |
| tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend); |
| |
| /* Apply minimum voltage based on DAL's request level */ |
| tonga_apply_dal_minimum_voltage_request(hwmgr); |
| |
| if (0 == data->sclk_dpm_key_disabled) { |
| /* Checking if DPM is running. If we discover hang because of this, we should skip this message.*/ |
| if (0 != tonga_is_dpm_running(hwmgr)) |
| printk(KERN_ERR "[ powerplay ] Trying to set Enable Mask when DPM is disabled \n"); |
| |
| if (0 != data->dpm_level_enable_mask.sclk_dpm_enable_mask) { |
| result = smum_send_msg_to_smc_with_parameter( |
| hwmgr->smumgr, |
| (PPSMC_Msg)PPSMC_MSG_SCLKDPM_SetEnabledMask, |
| data->dpm_level_enable_mask.sclk_dpm_enable_mask); |
| PP_ASSERT_WITH_CODE((0 == result), |
| "Set Sclk Dpm enable Mask failed", return -1); |
| } |
| } |
| |
| if (0 == data->mclk_dpm_key_disabled) { |
| /* Checking if DPM is running. If we discover hang because of this, we should skip this message.*/ |
| if (0 != tonga_is_dpm_running(hwmgr)) |
| printk(KERN_ERR "[ powerplay ] Trying to set Enable Mask when DPM is disabled \n"); |
| |
| if (0 != data->dpm_level_enable_mask.mclk_dpm_enable_mask) { |
| result = smum_send_msg_to_smc_with_parameter( |
| hwmgr->smumgr, |
| (PPSMC_Msg)PPSMC_MSG_MCLKDPM_SetEnabledMask, |
| data->dpm_level_enable_mask.mclk_dpm_enable_mask); |
| PP_ASSERT_WITH_CODE((0 == result), |
| "Set Mclk Dpm enable Mask failed", return -1); |
| } |
| } |
| |
| return 0; |
| } |
| |
| |
| int tonga_force_dpm_highest(struct pp_hwmgr *hwmgr) |
| { |
| uint32_t level, tmp; |
| tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend); |
| |
| if (0 == data->pcie_dpm_key_disabled) { |
| /* PCIE */ |
| if (data->dpm_level_enable_mask.pcie_dpm_enable_mask != 0) { |
| level = 0; |
| tmp = data->dpm_level_enable_mask.pcie_dpm_enable_mask; |
| while (tmp >>= 1) |
| level++ ; |
| |
| if (0 != level) { |
| PP_ASSERT_WITH_CODE((0 == tonga_dpm_force_state_pcie(hwmgr, level)), |
| "force highest pcie dpm state failed!", return -1); |
| } |
| } |
| } |
| |
| if (0 == data->sclk_dpm_key_disabled) { |
| /* SCLK */ |
| if (data->dpm_level_enable_mask.sclk_dpm_enable_mask != 0) { |
| level = 0; |
| tmp = data->dpm_level_enable_mask.sclk_dpm_enable_mask; |
| while (tmp >>= 1) |
| level++ ; |
| |
| if (0 != level) { |
| PP_ASSERT_WITH_CODE((0 == tonga_dpm_force_state(hwmgr, level)), |
| "force highest sclk dpm state failed!", return -1); |
| if (PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, |
| CGS_IND_REG__SMC, TARGET_AND_CURRENT_PROFILE_INDEX, CURR_SCLK_INDEX) != level) |
| printk(KERN_ERR "[ powerplay ] Target_and_current_Profile_Index. \ |
| Curr_Sclk_Index does not match the level \n"); |
| |
| } |
| } |
| } |
| |
| if (0 == data->mclk_dpm_key_disabled) { |
| /* MCLK */ |
| if (data->dpm_level_enable_mask.mclk_dpm_enable_mask != 0) { |
| level = 0; |
| tmp = data->dpm_level_enable_mask.mclk_dpm_enable_mask; |
| while (tmp >>= 1) |
| level++ ; |
| |
| if (0 != level) { |
| PP_ASSERT_WITH_CODE((0 == tonga_dpm_force_state_mclk(hwmgr, level)), |
| "force highest mclk dpm state failed!", return -1); |
| if (PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, |
| TARGET_AND_CURRENT_PROFILE_INDEX, CURR_MCLK_INDEX) != level) |
| printk(KERN_ERR "[ powerplay ] Target_and_current_Profile_Index. \ |
| Curr_Mclk_Index does not match the level \n"); |
| } |
| } |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * Find the MC microcode version and store it in the HwMgr struct |
| * |
| * @param hwmgr the address of the powerplay hardware manager. |
| * @return always 0 |
| */ |
| int tonga_get_mc_microcode_version (struct pp_hwmgr *hwmgr) |
| { |
| cgs_write_register(hwmgr->device, mmMC_SEQ_IO_DEBUG_INDEX, 0x9F); |
| |
| hwmgr->microcode_version_info.MC = cgs_read_register(hwmgr->device, mmMC_SEQ_IO_DEBUG_DATA); |
| |
| return 0; |
| } |
| |
| /** |
| * Initialize Dynamic State Adjustment Rule Settings |
| * |
| * @param hwmgr the address of the powerplay hardware manager. |
| */ |
| int tonga_initializa_dynamic_state_adjustment_rule_settings(struct pp_hwmgr *hwmgr) |
| { |
| uint32_t table_size; |
| struct phm_clock_voltage_dependency_table *table_clk_vlt; |
| struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| |
| hwmgr->dyn_state.mclk_sclk_ratio = 4; |
| hwmgr->dyn_state.sclk_mclk_delta = 15000; /* 150 MHz */ |
| hwmgr->dyn_state.vddc_vddci_delta = 200; /* 200mV */ |
| |
| /* initialize vddc_dep_on_dal_pwrl table */ |
| table_size = sizeof(uint32_t) + 4 * sizeof(struct phm_clock_voltage_dependency_record); |
| table_clk_vlt = (struct phm_clock_voltage_dependency_table *)kzalloc(table_size, GFP_KERNEL); |
| |
| if (NULL == table_clk_vlt) { |
| printk(KERN_ERR "[ powerplay ] Can not allocate space for vddc_dep_on_dal_pwrl! \n"); |
| return -ENOMEM; |
| } else { |
| table_clk_vlt->count = 4; |
| table_clk_vlt->entries[0].clk = PP_DAL_POWERLEVEL_ULTRALOW; |
| table_clk_vlt->entries[0].v = 0; |
| table_clk_vlt->entries[1].clk = PP_DAL_POWERLEVEL_LOW; |
| table_clk_vlt->entries[1].v = 720; |
| table_clk_vlt->entries[2].clk = PP_DAL_POWERLEVEL_NOMINAL; |
| table_clk_vlt->entries[2].v = 810; |
| table_clk_vlt->entries[3].clk = PP_DAL_POWERLEVEL_PERFORMANCE; |
| table_clk_vlt->entries[3].v = 900; |
| pptable_info->vddc_dep_on_dal_pwrl = table_clk_vlt; |
| hwmgr->dyn_state.vddc_dep_on_dal_pwrl = table_clk_vlt; |
| } |
| |
| return 0; |
| } |
| |
| static int tonga_set_private_var_based_on_pptale(struct pp_hwmgr *hwmgr) |
| { |
| tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend); |
| struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| |
| phm_ppt_v1_clock_voltage_dependency_table *allowed_sclk_vdd_table = |
| pptable_info->vdd_dep_on_sclk; |
| phm_ppt_v1_clock_voltage_dependency_table *allowed_mclk_vdd_table = |
| pptable_info->vdd_dep_on_mclk; |
| |
| PP_ASSERT_WITH_CODE(allowed_sclk_vdd_table != NULL, |
| "VDD dependency on SCLK table is missing. \ |
| This table is mandatory", return -1); |
| PP_ASSERT_WITH_CODE(allowed_sclk_vdd_table->count >= 1, |
| "VDD dependency on SCLK table has to have is missing. \ |
| This table is mandatory", return -1); |
| |
| PP_ASSERT_WITH_CODE(allowed_mclk_vdd_table != NULL, |
| "VDD dependency on MCLK table is missing. \ |
| This table is mandatory", return -1); |
| PP_ASSERT_WITH_CODE(allowed_mclk_vdd_table->count >= 1, |
| "VDD dependency on MCLK table has to have is missing. \ |
| This table is mandatory", return -1); |
| |
| data->min_vddc_in_pp_table = (uint16_t)allowed_sclk_vdd_table->entries[0].vddc; |
| data->max_vddc_in_pp_table = (uint16_t)allowed_sclk_vdd_table->entries[allowed_sclk_vdd_table->count - 1].vddc; |
| |
| pptable_info->max_clock_voltage_on_ac.sclk = |
| allowed_sclk_vdd_table->entries[allowed_sclk_vdd_table->count - 1].clk; |
| pptable_info->max_clock_voltage_on_ac.mclk = |
| allowed_mclk_vdd_table->entries[allowed_mclk_vdd_table->count - 1].clk; |
| pptable_info->max_clock_voltage_on_ac.vddc = |
| allowed_sclk_vdd_table->entries[allowed_sclk_vdd_table->count - 1].vddc; |
| pptable_info->max_clock_voltage_on_ac.vddci = |
| allowed_mclk_vdd_table->entries[allowed_mclk_vdd_table->count - 1].vddci; |
| |
| hwmgr->dyn_state.max_clock_voltage_on_ac.sclk = |
| pptable_info->max_clock_voltage_on_ac.sclk; |
| hwmgr->dyn_state.max_clock_voltage_on_ac.mclk = |
| pptable_info->max_clock_voltage_on_ac.mclk; |
| hwmgr->dyn_state.max_clock_voltage_on_ac.vddc = |
| pptable_info->max_clock_voltage_on_ac.vddc; |
| hwmgr->dyn_state.max_clock_voltage_on_ac.vddci = |
| pptable_info->max_clock_voltage_on_ac.vddci; |
| |
| return 0; |
| } |
| |
| int tonga_unforce_dpm_levels(struct pp_hwmgr *hwmgr) |
| { |
| tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend); |
| int result = 1; |
| |
| PP_ASSERT_WITH_CODE (0 == tonga_is_dpm_running(hwmgr), |
| "Trying to Unforce DPM when DPM is disabled. Returning without sending SMC message.", |
| return result); |
| |
| if (0 == data->pcie_dpm_key_disabled) { |
| PP_ASSERT_WITH_CODE((0 == smum_send_msg_to_smc( |
| hwmgr->smumgr, |
| PPSMC_MSG_PCIeDPM_UnForceLevel)), |
| "unforce pcie level failed!", |
| return -1); |
| } |
| |
| result = tonga_upload_dpm_level_enable_mask(hwmgr); |
| |
| return result; |
| } |
| |
| static uint32_t tonga_get_lowest_enable_level( |
| struct pp_hwmgr *hwmgr, uint32_t level_mask) |
| { |
| uint32_t level = 0; |
| |
| while (0 == (level_mask & (1 << level))) |
| level++; |
| |
| return level; |
| } |
| |
| static int tonga_force_dpm_lowest(struct pp_hwmgr *hwmgr) |
| { |
| uint32_t level; |
| tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend); |
| |
| if (0 == data->pcie_dpm_key_disabled) { |
| /* PCIE */ |
| if (data->dpm_level_enable_mask.pcie_dpm_enable_mask != 0) { |
| level = tonga_get_lowest_enable_level(hwmgr, |
| data->dpm_level_enable_mask.pcie_dpm_enable_mask); |
| PP_ASSERT_WITH_CODE((0 == tonga_dpm_force_state_pcie(hwmgr, level)), |
| "force lowest pcie dpm state failed!", return -1); |
| } |
| } |
| |
| if (0 == data->sclk_dpm_key_disabled) { |
| /* SCLK */ |
| if (0 != data->dpm_level_enable_mask.sclk_dpm_enable_mask) { |
| level = tonga_get_lowest_enable_level(hwmgr, |
| data->dpm_level_enable_mask.sclk_dpm_enable_mask); |
| |
| PP_ASSERT_WITH_CODE((0 == tonga_dpm_force_state(hwmgr, level)), |
| "force sclk dpm state failed!", return -1); |
| |
| if (PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, |
| CGS_IND_REG__SMC, TARGET_AND_CURRENT_PROFILE_INDEX, CURR_SCLK_INDEX) != level) |
| printk(KERN_ERR "[ powerplay ] Target_and_current_Profile_Index. \ |
| Curr_Sclk_Index does not match the level \n"); |
| } |
| } |
| |
| if (0 == data->mclk_dpm_key_disabled) { |
| /* MCLK */ |
| if (data->dpm_level_enable_mask.mclk_dpm_enable_mask != 0) { |
| level = tonga_get_lowest_enable_level(hwmgr, |
| data->dpm_level_enable_mask.mclk_dpm_enable_mask); |
| PP_ASSERT_WITH_CODE((0 == tonga_dpm_force_state_mclk(hwmgr, level)), |
| "force lowest mclk dpm state failed!", return -1); |
| if (PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, |
| TARGET_AND_CURRENT_PROFILE_INDEX, CURR_MCLK_INDEX) != level) |
| printk(KERN_ERR "[ powerplay ] Target_and_current_Profile_Index. \ |
| Curr_Mclk_Index does not match the level \n"); |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int tonga_patch_voltage_dependency_tables_with_lookup_table(struct pp_hwmgr *hwmgr) |
| { |
| uint8_t entryId; |
| uint8_t voltageId; |
| tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend); |
| struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| |
| phm_ppt_v1_clock_voltage_dependency_table *sclk_table = pptable_info->vdd_dep_on_sclk; |
| phm_ppt_v1_clock_voltage_dependency_table *mclk_table = pptable_info->vdd_dep_on_mclk; |
| phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = pptable_info->mm_dep_table; |
| |
| if (data->vdd_gfx_control == TONGA_VOLTAGE_CONTROL_BY_SVID2) { |
| for (entryId = 0; entryId < sclk_table->count; ++entryId) { |
| voltageId = sclk_table->entries[entryId].vddInd; |
| sclk_table->entries[entryId].vddgfx = |
| pptable_info->vddgfx_lookup_table->entries[voltageId].us_vdd; |
| } |
| } else { |
| for (entryId = 0; entryId < sclk_table->count; ++entryId) { |
| voltageId = sclk_table->entries[entryId].vddInd; |
| sclk_table->entries[entryId].vddc = |
| pptable_info->vddc_lookup_table->entries[voltageId].us_vdd; |
| } |
| } |
| |
| for (entryId = 0; entryId < mclk_table->count; ++entryId) { |
| voltageId = mclk_table->entries[entryId].vddInd; |
| mclk_table->entries[entryId].vddc = |
| pptable_info->vddc_lookup_table->entries[voltageId].us_vdd; |
| } |
| |
| for (entryId = 0; entryId < mm_table->count; ++entryId) { |
| voltageId = mm_table->entries[entryId].vddcInd; |
| mm_table->entries[entryId].vddc = |
| pptable_info->vddc_lookup_table->entries[voltageId].us_vdd; |
| } |
| |
| return 0; |
| |
| } |
| |
| static int tonga_calc_voltage_dependency_tables(struct pp_hwmgr *hwmgr) |
| { |
| uint8_t entryId; |
| phm_ppt_v1_voltage_lookup_record v_record; |
| tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend); |
| struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| |
| phm_ppt_v1_clock_voltage_dependency_table *sclk_table = pptable_info->vdd_dep_on_sclk; |
| phm_ppt_v1_clock_voltage_dependency_table *mclk_table = pptable_info->vdd_dep_on_mclk; |
| |
| if (data->vdd_gfx_control == TONGA_VOLTAGE_CONTROL_BY_SVID2) { |
| for (entryId = 0; entryId < sclk_table->count; ++entryId) { |
| if (sclk_table->entries[entryId].vdd_offset & (1 << 15)) |
| v_record.us_vdd = sclk_table->entries[entryId].vddgfx + |
| sclk_table->entries[entryId].vdd_offset - 0xFFFF; |
| else |
| v_record.us_vdd = sclk_table->entries[entryId].vddgfx + |
| sclk_table->entries[entryId].vdd_offset; |
| |
| sclk_table->entries[entryId].vddc = |
| v_record.us_cac_low = v_record.us_cac_mid = |
| v_record.us_cac_high = v_record.us_vdd; |
| |
| tonga_add_voltage(hwmgr, pptable_info->vddc_lookup_table, &v_record); |
| } |
| |
| for (entryId = 0; entryId < mclk_table->count; ++entryId) { |
| if (mclk_table->entries[entryId].vdd_offset & (1 << 15)) |
| v_record.us_vdd = mclk_table->entries[entryId].vddc + |
| mclk_table->entries[entryId].vdd_offset - 0xFFFF; |
| else |
| v_record.us_vdd = mclk_table->entries[entryId].vddc + |
| mclk_table->entries[entryId].vdd_offset; |
| |
| mclk_table->entries[entryId].vddgfx = v_record.us_cac_low = |
| v_record.us_cac_mid = v_record.us_cac_high = v_record.us_vdd; |
| tonga_add_voltage(hwmgr, pptable_info->vddgfx_lookup_table, &v_record); |
| } |
| } |
| |
| return 0; |
| |
| } |
| |
| static int tonga_calc_mm_voltage_dependency_table(struct pp_hwmgr *hwmgr) |
| { |
| uint32_t entryId; |
| phm_ppt_v1_voltage_lookup_record v_record; |
| tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend); |
| struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = pptable_info->mm_dep_table; |
| |
| if (data->vdd_gfx_control == TONGA_VOLTAGE_CONTROL_BY_SVID2) { |
| for (entryId = 0; entryId < mm_table->count; entryId++) { |
| if (mm_table->entries[entryId].vddgfx_offset & (1 << 15)) |
| v_record.us_vdd = mm_table->entries[entryId].vddc + |
| mm_table->entries[entryId].vddgfx_offset - 0xFFFF; |
| else |
| v_record.us_vdd = mm_table->entries[entryId].vddc + |
| mm_table->entries[entryId].vddgfx_offset; |
| |
| /* Add the calculated VDDGFX to the VDDGFX lookup table */ |
| mm_table->entries[entryId].vddgfx = v_record.us_cac_low = |
| v_record.us_cac_mid = v_record.us_cac_high = v_record.us_vdd; |
| tonga_add_voltage(hwmgr, pptable_info->vddgfx_lookup_table, &v_record); |
| } |
| } |
| return 0; |
| } |
| |
| |
| /** |
| * Change virtual leakage voltage to actual value. |
| * |
| * @param hwmgr the address of the powerplay hardware manager. |
| * @param pointer to changing voltage |
| * @param pointer to leakage table |
| */ |
| static void tonga_patch_with_vdd_leakage(struct pp_hwmgr *hwmgr, |
| uint16_t *voltage, phw_tonga_leakage_voltage *pLeakageTable) |
| { |
| uint32_t leakage_index; |
| |
| /* search for leakage voltage ID 0xff01 ~ 0xff08 */ |
| for (leakage_index = 0; leakage_index < pLeakageTable->count; leakage_index++) { |
| /* if this voltage matches a leakage voltage ID */ |
| /* patch with actual leakage voltage */ |
| if (pLeakageTable->leakage_id[leakage_index] == *voltage) { |
| *voltage = pLeakageTable->actual_voltage[leakage_index]; |
| break; |
| } |
| } |
| |
| if (*voltage > ATOM_VIRTUAL_VOLTAGE_ID0) |
| printk(KERN_ERR "[ powerplay ] Voltage value looks like a Leakage ID but it's not patched \n"); |
| } |
| |
| /** |
| * Patch voltage lookup table by EVV leakages. |
| * |
| * @param hwmgr the address of the powerplay hardware manager. |
| * @param pointer to voltage lookup table |
| * @param pointer to leakage table |
| * @return always 0 |
| */ |
| static int tonga_patch_lookup_table_with_leakage(struct pp_hwmgr *hwmgr, |
| phm_ppt_v1_voltage_lookup_table *lookup_table, |
| phw_tonga_leakage_voltage *pLeakageTable) |
| { |
| uint32_t i; |
| |
| for (i = 0; i < lookup_table->count; i++) { |
| tonga_patch_with_vdd_leakage(hwmgr, |
| &lookup_table->entries[i].us_vdd, pLeakageTable); |
| } |
| |
| return 0; |
| } |
| |
| static int tonga_patch_clock_voltage_lomits_with_vddc_leakage(struct pp_hwmgr *hwmgr, |
| phw_tonga_leakage_voltage *pLeakageTable, uint16_t *Vddc) |
| { |
| struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| |
| tonga_patch_with_vdd_leakage(hwmgr, (uint16_t *)Vddc, pLeakageTable); |
| hwmgr->dyn_state.max_clock_voltage_on_dc.vddc = |
| pptable_info->max_clock_voltage_on_dc.vddc; |
| |
| return 0; |
| } |
| |
| static int tonga_patch_clock_voltage_limits_with_vddgfx_leakage( |
| struct pp_hwmgr *hwmgr, phw_tonga_leakage_voltage *pLeakageTable, |
| uint16_t *Vddgfx) |
| { |
| tonga_patch_with_vdd_leakage(hwmgr, (uint16_t *)Vddgfx, pLeakageTable); |
| return 0; |
| } |
| |
| int tonga_sort_lookup_table(struct pp_hwmgr *hwmgr, |
| phm_ppt_v1_voltage_lookup_table *lookup_table) |
| { |
| uint32_t table_size, i, j; |
| phm_ppt_v1_voltage_lookup_record tmp_voltage_lookup_record; |
| table_size = lookup_table->count; |
| |
| PP_ASSERT_WITH_CODE(0 != lookup_table->count, |
| "Lookup table is empty", return -1); |
| |
| /* Sorting voltages */ |
| for (i = 0; i < table_size - 1; i++) { |
| for (j = i + 1; j > 0; j--) { |
| if (lookup_table->entries[j].us_vdd < lookup_table->entries[j-1].us_vdd) { |
| tmp_voltage_lookup_record = lookup_table->entries[j-1]; |
| lookup_table->entries[j-1] = lookup_table->entries[j]; |
| lookup_table->entries[j] = tmp_voltage_lookup_record; |
| } |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int tonga_complete_dependency_tables(struct pp_hwmgr *hwmgr) |
| { |
| int result = 0; |
| int tmp_result; |
| tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend); |
| struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| |
| if (data->vdd_gfx_control == TONGA_VOLTAGE_CONTROL_BY_SVID2) { |
| tmp_result = tonga_patch_lookup_table_with_leakage(hwmgr, |
| pptable_info->vddgfx_lookup_table, &(data->vddcgfx_leakage)); |
| if (tmp_result != 0) |
| result = tmp_result; |
| |
| tmp_result = tonga_patch_clock_voltage_limits_with_vddgfx_leakage(hwmgr, |
| &(data->vddcgfx_leakage), &pptable_info->max_clock_voltage_on_dc.vddgfx); |
| if (tmp_result != 0) |
| result = tmp_result; |
| } else { |
| tmp_result = tonga_patch_lookup_table_with_leakage(hwmgr, |
| pptable_info->vddc_lookup_table, &(data->vddc_leakage)); |
| if (tmp_result != 0) |
| result = tmp_result; |
| |
| tmp_result = tonga_patch_clock_voltage_lomits_with_vddc_leakage(hwmgr, |
| &(data->vddc_leakage), &pptable_info->max_clock_voltage_on_dc.vddc); |
| if (tmp_result != 0) |
| result = tmp_result; |
| } |
| |
| tmp_result = tonga_patch_voltage_dependency_tables_with_lookup_table(hwmgr); |
| if (tmp_result != 0) |
| result = tmp_result; |
| |
| tmp_result = tonga_calc_voltage_dependency_tables(hwmgr); |
| if (tmp_result != 0) |
| result = tmp_result; |
| |
| tmp_result = tonga_calc_mm_voltage_dependency_table(hwmgr); |
| if (tmp_result != 0) |
| result = tmp_result; |
| |
| tmp_result = tonga_sort_lookup_table(hwmgr, pptable_info->vddgfx_lookup_table); |
| if (tmp_result != 0) |
| result = tmp_result; |
| |
| tmp_result = tonga_sort_lookup_table(hwmgr, pptable_info->vddc_lookup_table); |
| if (tmp_result != 0) |
| result = tmp_result; |
| |
| return result; |
| } |
| |
| int tonga_init_sclk_threshold(struct pp_hwmgr *hwmgr) |
| { |
| tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend); |
| data->low_sclk_interrupt_threshold = 0; |
| |
| return 0; |
| } |
| |
| int tonga_setup_asic_task(struct pp_hwmgr *hwmgr) |
| { |
| int tmp_result, result = 0; |
| |
| tmp_result = tonga_read_clock_registers(hwmgr); |
| PP_ASSERT_WITH_CODE((0 == tmp_result), |
| "Failed to read clock registers!", result = tmp_result); |
| |
| tmp_result = tonga_get_memory_type(hwmgr); |
| PP_ASSERT_WITH_CODE((0 == tmp_result), |
| "Failed to get memory type!", result = tmp_result); |
| |
| tmp_result = tonga_enable_acpi_power_management(hwmgr); |
| PP_ASSERT_WITH_CODE((0 == tmp_result), |
| "Failed to enable ACPI power management!", result = tmp_result); |
| |
| tmp_result = tonga_init_power_gate_state(hwmgr); |
| PP_ASSERT_WITH_CODE((0 == tmp_result), |
| "Failed to init power gate state!", result = tmp_result); |
| |
| tmp_result = tonga_get_mc_microcode_version(hwmgr); |
| PP_ASSERT_WITH_CODE((0 == tmp_result), |
| "Failed to get MC microcode version!", result = tmp_result); |
| |
| tmp_result = tonga_init_sclk_threshold(hwmgr); |
| PP_ASSERT_WITH_CODE((0 == tmp_result), |
| "Failed to init sclk threshold!", result = tmp_result); |
| |
| return result; |
| } |
| |
| /** |
| * Enable voltage control |
| * |
| * @param hwmgr the address of the powerplay hardware manager. |
| * @return always 0 |
| */ |
| int tonga_enable_voltage_control(struct pp_hwmgr *hwmgr) |
| { |
| /* enable voltage control */ |
| PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT, VOLT_PWRMGT_EN, 1); |
| |
| return 0; |
| } |
| |
| /** |
| * Checks if we want to support voltage control |
| * |
| * @param hwmgr the address of the powerplay hardware manager. |
| */ |
| bool cf_tonga_voltage_control(const struct pp_hwmgr *hwmgr) |
| { |
| const struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend); |
| |
| return(TONGA_VOLTAGE_CONTROL_NONE != data->voltage_control); |
| } |
| |
| /*---------------------------MC----------------------------*/ |
| |
| uint8_t tonga_get_memory_modile_index(struct pp_hwmgr *hwmgr) |
| { |
| return (uint8_t) (0xFF & (cgs_read_register(hwmgr->device, mmBIOS_SCRATCH_4) >> 16)); |
| } |
| |
| bool tonga_check_s0_mc_reg_index(uint16_t inReg, uint16_t *outReg) |
| { |
| bool result = 1; |
| |
| switch (inReg) { |
| case mmMC_SEQ_RAS_TIMING: |
| *outReg = mmMC_SEQ_RAS_TIMING_LP; |
| break; |
| |
| case mmMC_SEQ_DLL_STBY: |
| *outReg = mmMC_SEQ_DLL_STBY_LP; |
| break; |
| |
| case mmMC_SEQ_G5PDX_CMD0: |
| *outReg = mmMC_SEQ_G5PDX_CMD0_LP; |
| break; |
| |
| case mmMC_SEQ_G5PDX_CMD1: |
| *outReg = mmMC_SEQ_G5PDX_CMD1_LP; |
| break; |
| |
| case mmMC_SEQ_G5PDX_CTRL: |
| *outReg = mmMC_SEQ_G5PDX_CTRL_LP; |
| break; |
| |
| case mmMC_SEQ_CAS_TIMING: |
| *outReg = mmMC_SEQ_CAS_TIMING_LP; |
| break; |
| |
| case mmMC_SEQ_MISC_TIMING: |
| *outReg = mmMC_SEQ_MISC_TIMING_LP; |
| break; |
| |
| case mmMC_SEQ_MISC_TIMING2: |
| *outReg = mmMC_SEQ_MISC_TIMING2_LP; |
| break; |
| |
| case mmMC_SEQ_PMG_DVS_CMD: |
| *outReg = mmMC_SEQ_PMG_DVS_CMD_LP; |
| break; |
| |
| case mmMC_SEQ_PMG_DVS_CTL: |
| *outReg = mmMC_SEQ_PMG_DVS_CTL_LP; |
| break; |
| |
| case mmMC_SEQ_RD_CTL_D0: |
| *outReg = mmMC_SEQ_RD_CTL_D0_LP; |
| break; |
| |
| case mmMC_SEQ_RD_CTL_D1: |
| *outReg = mmMC_SEQ_RD_CTL_D1_LP; |
| break; |
| |
| case mmMC_SEQ_WR_CTL_D0: |
| *outReg = mmMC_SEQ_WR_CTL_D0_LP; |
| break; |
| |
| case mmMC_SEQ_WR_CTL_D1: |
| *outReg = mmMC_SEQ_WR_CTL_D1_LP; |
| break; |
| |
| case mmMC_PMG_CMD_EMRS: |
| *outReg = mmMC_SEQ_PMG_CMD_EMRS_LP; |
| break; |
| |
| case mmMC_PMG_CMD_MRS: |
| *outReg = mmMC_SEQ_PMG_CMD_MRS_LP; |
| break; |
| |
| case mmMC_PMG_CMD_MRS1: |
| *outReg = mmMC_SEQ_PMG_CMD_MRS1_LP; |
| break; |
| |
| case mmMC_SEQ_PMG_TIMING: |
| *outReg = mmMC_SEQ_PMG_TIMING_LP; |
| break; |
| |
| case mmMC_PMG_CMD_MRS2: |
| *outReg = mmMC_SEQ_PMG_CMD_MRS2_LP; |
| break; |
| |
| case mmMC_SEQ_WR_CTL_2: |
| *outReg = mmMC_SEQ_WR_CTL_2_LP; |
| break; |
| |
| default: |
| result = 0; |
| break; |
| } |
| |
| return result; |
| } |
| |
| int tonga_set_s0_mc_reg_index(phw_tonga_mc_reg_table *table) |
| { |
| uint32_t i; |
| uint16_t address; |
| |
| for (i = 0; i < table->last; i++) { |
| table->mc_reg_address[i].s0 = |
| tonga_check_s0_mc_reg_index(table->mc_reg_address[i].s1, &address) |
| ? address : table->mc_reg_address[i].s1; |
| } |
| return 0; |
| } |
| |
| int tonga_copy_vbios_smc_reg_table(const pp_atomctrl_mc_reg_table *table, phw_tonga_mc_reg_table *ni_table) |
| { |
| uint8_t i, j; |
| |
| PP_ASSERT_WITH_CODE((table->last <= SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE), |
| "Invalid VramInfo table.", return -1); |
| PP_ASSERT_WITH_CODE((table->num_entries <= MAX_AC_TIMING_ENTRIES), |
| "Invalid VramInfo table.", return -1); |
| |
| for (i = 0; i < table->last; i++) { |
| ni_table->mc_reg_address[i].s1 = table->mc_reg_address[i].s1; |
| } |
| ni_table->last = table->last; |
| |
| for (i = 0; i < table->num_entries; i++) { |
| ni_table->mc_reg_table_entry[i].mclk_max = |
| table->mc_reg_table_entry[i].mclk_max; |
| for (j = 0; j < table->last; j++) { |
| ni_table->mc_reg_table_entry[i].mc_data[j] = |
| table->mc_reg_table_entry[i].mc_data[j]; |
| } |
| } |
| |
| ni_table->num_entries = table->num_entries; |
| |
| return 0; |
| } |
| |
| /** |
| * VBIOS omits some information to reduce size, we need to recover them here. |
| * 1. when we see mmMC_SEQ_MISC1, bit[31:16] EMRS1, need to be write to mmMC_PMG_CMD_EMRS /_LP[15:0]. |
| * Bit[15:0] MRS, need to be update mmMC_PMG_CMD_MRS/_LP[15:0] |
| * 2. when we see mmMC_SEQ_RESERVE_M, bit[15:0] EMRS2, need to be write to mmMC_PMG_CMD_MRS1/_LP[15:0]. |
| * 3. need to set these data for each clock range |
| * |
| * @param hwmgr the address of the powerplay hardware manager. |
| * @param table the address of MCRegTable |
| * @return always 0 |
| */ |
| int tonga_set_mc_special_registers(struct pp_hwmgr *hwmgr, phw_tonga_mc_reg_table *table) |
| { |
| uint8_t i, j, k; |
| uint32_t temp_reg; |
| const tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend); |
| |
| for (i = 0, j = table->last; i < table->last; i++) { |
| PP_ASSERT_WITH_CODE((j < SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE), |
| "Invalid VramInfo table.", return -1); |
| switch (table->mc_reg_address[i].s1) { |
| /* |
| * mmMC_SEQ_MISC1, bit[31:16] EMRS1, need to be write to mmMC_PMG_CMD_EMRS /_LP[15:0]. |
| * Bit[15:0] MRS, need to be update mmMC_PMG_CMD_MRS/_LP[15:0] |
| */ |
| case mmMC_SEQ_MISC1: |
| temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_EMRS); |
| table->mc_reg_address[j].s1 = mmMC_PMG_CMD_EMRS; |
| table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_EMRS_LP; |
| for (k = 0; k < table->num_entries; k++) { |
| table->mc_reg_table_entry[k].mc_data[j] = |
| ((temp_reg & 0xffff0000)) | |
| ((table->mc_reg_table_entry[k].mc_data[i] & 0xffff0000) >> 16); |
| } |
| j++; |
| PP_ASSERT_WITH_CODE((j < SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE), |
| "Invalid VramInfo table.", return -1); |
| |
| temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS); |
| table->mc_reg_address[j].s1 = mmMC_PMG_CMD_MRS; |
| table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_MRS_LP; |
| for (k = 0; k < table->num_entries; k++) { |
| table->mc_reg_table_entry[k].mc_data[j] = |
| (temp_reg & 0xffff0000) | |
| (table->mc_reg_table_entry[k].mc_data[i] & 0x0000ffff); |
| |
| if (!data->is_memory_GDDR5) { |
| table->mc_reg_table_entry[k].mc_data[j] |= 0x100; |
| } |
| } |
| j++; |
| PP_ASSERT_WITH_CODE((j <= SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE), |
| "Invalid VramInfo table.", return -1); |
| |
| if (!data->is_memory_GDDR5) { |
| table->mc_reg_address[j].s1 = mmMC_PMG_AUTO_CMD; |
| table->mc_reg_address[j].s0 = mmMC_PMG_AUTO_CMD; |
| for (k = 0; k < table->num_entries; k++) { |
| table->mc_reg_table_entry[k].mc_data[j] = |
| (table->mc_reg_table_entry[k].mc_data[i] & 0xffff0000) >> 16; |
| } |
| j++; |
| PP_ASSERT_WITH_CODE((j <= SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE), |
| "Invalid VramInfo table.", return -1); |
| } |
| |
| break; |
| |
| case mmMC_SEQ_RESERVE_M: |
| temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS1); |
| table->mc_reg_address[j].s1 = mmMC_PMG_CMD_MRS1; |
| table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_MRS1_LP; |
| for (k = 0; k < table->num_entries; k++) { |
| table->mc_reg_table_entry[k].mc_data[j] = |
| (temp_reg & 0xffff0000) | |
| (table->mc_reg_table_entry[k].mc_data[i] & 0x0000ffff); |
| } |
| j++; |
| PP_ASSERT_WITH_CODE((j <= SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE), |
| "Invalid VramInfo table.", return -1); |
| break; |
| |
| default: |
| break; |
| } |
| |
| } |
| |
| table->last = j; |
| |
| return 0; |
| } |
| |
| int tonga_set_valid_flag(phw_tonga_mc_reg_table *table) |
| { |
| uint8_t i, j; |
| for (i = 0; i < table->last; i++) { |
| for (j = 1; j < table->num_entries; j++) { |
| if (table->mc_reg_table_entry[j-1].mc_data[i] != |
| table->mc_reg_table_entry[j].mc_data[i]) { |
| table->validflag |= (1<<i); |
| break; |
| } |
| } |
| } |
| |
| return 0; |
| } |
| |
| int tonga_initialize_mc_reg_table(struct pp_hwmgr *hwmgr) |
| { |
| int result; |
| tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend); |
| pp_atomctrl_mc_reg_table *table; |
| phw_tonga_mc_reg_table *ni_table = &data->tonga_mc_reg_table; |
| uint8_t module_index = tonga_get_memory_modile_index(hwmgr); |
| |
| table = kzalloc(sizeof(pp_atomctrl_mc_reg_table), GFP_KERNEL); |
| |
| if (NULL == table) |
| return -ENOMEM; |
| |
| /* Program additional LP registers that are no longer programmed by VBIOS */ |
| cgs_write_register(hwmgr->device, mmMC_SEQ_RAS_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_RAS_TIMING)); |
| cgs_write_register(hwmgr->device, mmMC_SEQ_CAS_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_CAS_TIMING)); |
| cgs_write_register(hwmgr->device, mmMC_SEQ_DLL_STBY_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_DLL_STBY)); |
| cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD0_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD0)); |
| cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD1_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD1)); |
| cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CTRL_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CTRL)); |
| cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CMD_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CMD)); |
| cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CTL_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CTL)); |
| cgs_write_register(hwmgr->device, mmMC_SEQ_MISC_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_MISC_TIMING)); |
| cgs_write_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2)); |
| cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_EMRS_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_EMRS)); |
| cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS)); |
| cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS1_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS1)); |
| cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_D0_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_D0)); |
| cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1)); |
| cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0)); |
| cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1)); |
| cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_TIMING)); |
| cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS2_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS2)); |
| cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_2_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_2)); |
| |
| memset(table, 0x00, sizeof(pp_atomctrl_mc_reg_table)); |
| |
| result = atomctrl_initialize_mc_reg_table(hwmgr, module_index, table); |
| |
| if (0 == result) |
| result = tonga_copy_vbios_smc_reg_table(table, ni_table); |
| |
| if (0 == result) { |
| tonga_set_s0_mc_reg_index(ni_table); |
| result = tonga_set_mc_special_registers(hwmgr, ni_table); |
| } |
| |
| if (0 == result) |
| tonga_set_valid_flag(ni_table); |
| |
| kfree(table); |
| return result; |
| } |
| |
| /* |
| * Copy one arb setting to another and then switch the active set. |
| * arbFreqSrc and arbFreqDest is one of the MC_CG_ARB_FREQ_Fx constants. |
| */ |
| int tonga_copy_and_switch_arb_sets(struct pp_hwmgr *hwmgr, |
| uint32_t arbFreqSrc, uint32_t arbFreqDest) |
| { |
| uint32_t mc_arb_dram_timing; |
| uint32_t mc_arb_dram_timing2; |
| uint32_t burst_time; |
| uint32_t mc_cg_config; |
| |
| switch (arbFreqSrc) { |
| case MC_CG_ARB_FREQ_F0: |
| mc_arb_dram_timing = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING); |
| mc_arb_dram_timing2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2); |
| burst_time = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0); |
| break; |
| |
| case MC_CG_ARB_FREQ_F1: |
| mc_arb_dram_timing = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING_1); |
| mc_arb_dram_timing2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2_1); |
| burst_time = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE1); |
| break; |
| |
| default: |
| return -1; |
| } |
| |
| switch (arbFreqDest) { |
| case MC_CG_ARB_FREQ_F0: |
| cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING, mc_arb_dram_timing); |
| cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2, mc_arb_dram_timing2); |
| PHM_WRITE_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0, burst_time); |
| break; |
| |
| case MC_CG_ARB_FREQ_F1: |
| cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING_1, mc_arb_dram_timing); |
| cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2_1, mc_arb_dram_timing2); |
| PHM_WRITE_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE1, burst_time); |
| break; |
| |
| default: |
| return -1; |
| } |
| |
| mc_cg_config = cgs_read_register(hwmgr->device, mmMC_CG_CONFIG); |
| mc_cg_config |= 0x0000000F; |
| cgs_write_register(hwmgr->device, mmMC_CG_CONFIG, mc_cg_config); |
| PHM_WRITE_FIELD(hwmgr->device, MC_ARB_CG, CG_ARB_REQ, arbFreqDest); |
| |
| return 0; |
| } |
| |
| /** |
| * Initial switch from ARB F0->F1 |
| * |
| * @param hwmgr the address of the powerplay hardware manager. |
| * @return always 0 |
| * This function is to be called from the SetPowerState table. |
| */ |
| int tonga_initial_switch_from_arb_f0_to_f1(struct pp_hwmgr *hwmgr) |
| { |
| return tonga_copy_and_switch_arb_sets(hwmgr, MC_CG_ARB_FREQ_F0, MC_CG_ARB_FREQ_F1); |
| } |
| |
| /** |
| * Initialize the ARB DRAM timing table's index field. |
| * |
| * @param hwmgr the address of the powerplay hardware manager. |
| * @return always 0 |
| */ |
| int tonga_init_arb_table_index(struct pp_hwmgr *hwmgr) |
| { |
| const tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend); |
| uint32_t tmp; |
| int result; |
| |
| /* |
| * This is a read-modify-write on the first byte of the ARB table. |
| * The first byte in the SMU72_Discrete_MCArbDramTimingTable structure is the field 'current'. |
| * This solution is ugly, but we never write the whole table only individual fields in it. |
| * In reality this field should not be in that structure but in a soft register. |
| */ |
| result = tonga_read_smc_sram_dword(hwmgr->smumgr, |
| data->arb_table_start, &tmp, data->sram_end); |
| |
| if (0 != result) |
| return result; |
| |
| tmp &= 0x00FFFFFF; |
| tmp |= ((uint32_t)MC_CG_ARB_FREQ_F1) << 24; |
| |
| return tonga_write_smc_sram_dword(hwmgr->smumgr, |
| data->arb_table_start, tmp, data->sram_end); |
| } |
| |
| int tonga_populate_mc_reg_address(struct pp_hwmgr *hwmgr, SMU72_Discrete_MCRegisters *mc_reg_table) |
| { |
| const struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend); |
| |
| uint32_t i, j; |
| |
| for (i = 0, j = 0; j < data->tonga_mc_reg_table.last; j++) { |
| if (data->tonga_mc_reg_table.validflag & 1<<j) { |
| PP_ASSERT_WITH_CODE(i < SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE, |
| "Index of mc_reg_table->address[] array out of boundary", return -1); |
| mc_reg_table->address[i].s0 = |
| PP_HOST_TO_SMC_US(data->tonga_mc_reg_table.mc_reg_address[j].s0); |
| mc_reg_table->address[i].s1 = |
| PP_HOST_TO_SMC_US(data->tonga_mc_reg_table.mc_reg_address[j].s1); |
| i++; |
| } |
| } |
| |
| mc_reg_table->last = (uint8_t)i; |
| |
| return 0; |
| } |
| |
| /*convert register values from driver to SMC format */ |
| void tonga_convert_mc_registers( |
| const phw_tonga_mc_reg_entry * pEntry, |
| SMU72_Discrete_MCRegisterSet *pData, |
| uint32_t numEntries, uint32_t validflag) |
| { |
| uint32_t i, j; |
| |
| for (i = 0, j = 0; j < numEntries; j++) { |
| if (validflag & 1<<j) { |
| pData->value[i] = PP_HOST_TO_SMC_UL(pEntry->mc_data[j]); |
| i++; |
| } |
| } |
| } |
| |
| /* find the entry in the memory range table, then populate the value to SMC's tonga_mc_reg_table */ |
| int tonga_convert_mc_reg_table_entry_to_smc( |
| struct pp_hwmgr *hwmgr, |
| const uint32_t memory_clock, |
| SMU72_Discrete_MCRegisterSet *mc_reg_table_data |
| ) |
| { |
| const tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend); |
| uint32_t i = 0; |
| |
| for (i = 0; i < data->tonga_mc_reg_table.num_entries; i++) { |
| if (memory_clock <= |
| data->tonga_mc_reg_table.mc_reg_table_entry[i].mclk_max) { |
| break; |
| } |
| } |
| |
| if ((i == data->tonga_mc_reg_table.num_entries) && (i > 0)) |
| --i; |
| |
| tonga_convert_mc_registers(&data->tonga_mc_reg_table.mc_reg_table_entry[i], |
| mc_reg_table_data, data->tonga_mc_reg_table.last, data->tonga_mc_reg_table.validflag); |
| |
| return 0; |
| } |
| |
| int tonga_convert_mc_reg_table_to_smc(struct pp_hwmgr *hwmgr, |
| SMU72_Discrete_MCRegisters *mc_reg_table) |
| { |
| int result = 0; |
| tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend); |
| int res; |
| uint32_t i; |
| |
| for (i = 0; i < data->dpm_table.mclk_table.count; i++) { |
| res = tonga_convert_mc_reg_table_entry_to_smc( |
| hwmgr, |
| data->dpm_table.mclk_table.dpm_levels[i].value, |
| &mc_reg_table->data[i] |
| ); |
| |
| if (0 != res) |
| result = res; |
| } |
| |
| return result; |
| } |
| |
| int tonga_populate_initial_mc_reg_table(struct pp_hwmgr *hwmgr) |
| { |
| int result; |
| struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend); |
| |
| memset(&data->mc_reg_table, 0x00, sizeof(SMU72_Discrete_MCRegisters)); |
| result = tonga_populate_mc_reg_address(hwmgr, &(data->mc_reg_table)); |
| PP_ASSERT_WITH_CODE(0 == result, |
| "Failed to initialize MCRegTable for the MC register addresses!", return result;); |
| |
| result = tonga_convert_mc_reg_table_to_smc(hwmgr, &data->mc_reg_table); |
| PP_ASSERT_WITH_CODE(0 == result, |
| "Failed to initialize MCRegTable for driver state!", return result;); |
| |
| return tonga_copy_bytes_to_smc(hwmgr->smumgr, data->mc_reg_table_start, |
| (uint8_t *)&data->mc_reg_table, sizeof(SMU72_Discrete_MCRegisters), data->sram_end); |
| } |
| |
| /** |
| * Programs static screed detection parameters |
| * |
| * @param hwmgr the address of the powerplay hardware manager. |
| * @return always 0 |
| */ |
| int tonga_program_static_screen_threshold_parameters(struct pp_hwmgr *hwmgr) |
| { |
| tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend); |
| |
| /* Set static screen threshold unit*/ |
| PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, |
| CGS_IND_REG__SMC, CG_STATIC_SCREEN_PARAMETER, STATIC_SCREEN_THRESHOLD_UNIT, |
| data->static_screen_threshold_unit); |
| /* Set static screen threshold*/ |
| PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, |
| CGS_IND_REG__SMC, CG_STATIC_SCREEN_PARAMETER, STATIC_SCREEN_THRESHOLD, |
| data->static_screen_threshold); |
| |
| return 0; |
| } |
| |
| /** |
| * Setup display gap for glitch free memory clock switching. |
| * |
| * @param hwmgr the address of the powerplay hardware manager. |
| * @return always 0 |
| */ |
| int tonga_enable_display_gap(struct pp_hwmgr *hwmgr) |
| { |
| uint32_t display_gap = cgs_read_ind_register(hwmgr->device, |
| CGS_IND_REG__SMC, ixCG_DISPLAY_GAP_CNTL); |
| |
| display_gap = PHM_SET_FIELD(display_gap, |
| CG_DISPLAY_GAP_CNTL, DISP_GAP, DISPLAY_GAP_IGNORE); |
| |
| display_gap = PHM_SET_FIELD(display_gap, |
| CG_DISPLAY_GAP_CNTL, DISP_GAP_MCHG, DISPLAY_GAP_VBLANK); |
| |
| cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, |
| ixCG_DISPLAY_GAP_CNTL, display_gap); |
| |
| return 0; |
| } |
| |
| /** |
| * Programs activity state transition voting clients |
| * |
| * @param hwmgr the address of the powerplay hardware manager. |
| * @return always 0 |
| */ |
| int tonga_program_voting_clients(struct pp_hwmgr *hwmgr) |
| { |
| tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend); |
| |
| /* Clear reset for voting clients before enabling DPM */ |
| PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, |
| SCLK_PWRMGT_CNTL, RESET_SCLK_CNT, 0); |
| PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, |
| SCLK_PWRMGT_CNTL, RESET_BUSY_CNT, 0); |
| |
| cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, |
| ixCG_FREQ_TRAN_VOTING_0, data->voting_rights_clients0); |
| cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, |
| ixCG_FREQ_TRAN_VOTING_1, data->voting_rights_clients1); |
| cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, |
| ixCG_FREQ_TRAN_VOTING_2, data->voting_rights_clients2); |
| cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, |
| ixCG_FREQ_TRAN_VOTING_3, data->voting_rights_clients3); |
| cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, |
| ixCG_FREQ_TRAN_VOTING_4, data->voting_rights_clients4); |
| cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, |
| ixCG_FREQ_TRAN_VOTING_5, data->voting_rights_clients5); |
| cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, |
| ixCG_FREQ_TRAN_VOTING_6, data->voting_rights_clients6); |
| cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, |
| ixCG_FREQ_TRAN_VOTING_7, data->voting_rights_clients7); |
| |
| return 0; |
| } |
| |
| |
| int tonga_enable_dpm_tasks(struct pp_hwmgr *hwmgr) |
| { |
| int tmp_result, result = 0; |
| |
| tmp_result = tonga_check_for_dpm_stopped(hwmgr); |
| |
| if (cf_tonga_voltage_control(hwmgr)) { |
| tmp_result = tonga_enable_voltage_control(hwmgr); |
| PP_ASSERT_WITH_CODE((0 == tmp_result), |
| "Failed to enable voltage control!", result = tmp_result); |
| |
| tmp_result = tonga_construct_voltage_tables(hwmgr); |
| PP_ASSERT_WITH_CODE((0 == tmp_result), |
| "Failed to contruct voltage tables!", result = tmp_result); |
| } |
| |
| tmp_result = tonga_initialize_mc_reg_table(hwmgr); |
| PP_ASSERT_WITH_CODE((0 == tmp_result), |
| "Failed to initialize MC reg table!", result = tmp_result); |
| |
| tmp_result = tonga_program_static_screen_threshold_parameters(hwmgr); |
| PP_ASSERT_WITH_CODE((0 == tmp_result), |
| "Failed to program static screen threshold parameters!", result = tmp_result); |
| |
| tmp_result = tonga_enable_display_gap(hwmgr); |
| PP_ASSERT_WITH_CODE((0 == tmp_result), |
| "Failed to enable display gap!", result = tmp_result); |
| |
| tmp_result = tonga_program_voting_clients(hwmgr); |
| PP_ASSERT_WITH_CODE((0 == tmp_result), |
| "Failed to program voting clients!", result = tmp_result); |
| |
| tmp_result = tonga_process_firmware_header(hwmgr); |
| PP_ASSERT_WITH_CODE((0 == tmp_result), |
| "Failed to process firmware header!", result = tmp_result); |
| |
| tmp_result = tonga_initial_switch_from_arb_f0_to_f1(hwmgr); |
| PP_ASSERT_WITH_CODE((0 == tmp_result), |
| "Failed to initialize switch from ArbF0 to F1!", result = tmp_result); |
| |
| tmp_result = tonga_init_smc_table(hwmgr); |
| PP_ASSERT_WITH_CODE((0 == tmp_result), |
| "Failed to initialize SMC table!", result = tmp_result); |
| |
| tmp_result = tonga_init_arb_table_index(hwmgr); |
| PP_ASSERT_WITH_CODE((0 == tmp_result), |
| "Failed to initialize ARB table index!", result = tmp_result); |
| |
| tmp_result = tonga_populate_initial_mc_reg_table(hwmgr); |
| PP_ASSERT_WITH_CODE((0 == tmp_result), |
| "Failed to populate initialize MC Reg table!", result = tmp_result); |
| |
| tmp_result = tonga_notify_smc_display_change(hwmgr, false); |
| PP_ASSERT_WITH_CODE((0 == tmp_result), |
| "Failed to notify no display!", result = tmp_result); |
| |
| /* enable SCLK control */ |
| tmp_result = tonga_enable_sclk_control(hwmgr); |
| PP_ASSERT_WITH_CODE((0 == tmp_result), |
| "Failed to enable SCLK control!", result = tmp_result); |
| |
| /* enable DPM */ |
| tmp_result = tonga_start_dpm(hwmgr); |
| PP_ASSERT_WITH_CODE((0 == tmp_result), |
| "Failed to start DPM!", result = tmp_result); |
| |
| return result; |
| } |
| |
| int tonga_disable_dpm_tasks(struct pp_hwmgr *hwmgr) |
| { |
| int tmp_result, result = 0; |
| |
| tmp_result = tonga_check_for_dpm_running(hwmgr); |
| PP_ASSERT_WITH_CODE((0 == tmp_result), |
| "SMC is still running!", return 0); |
| |
| tmp_result = tonga_stop_dpm(hwmgr); |
| PP_ASSERT_WITH_CODE((0 == tmp_result), |
| "Failed to stop DPM!", result = tmp_result); |
| |
| tmp_result = tonga_reset_to_default(hwmgr); |
| PP_ASSERT_WITH_CODE((0 == tmp_result), |
| "Failed to reset to default!", result = tmp_result); |
| |
| return result; |
| } |
| |
| int tonga_reset_asic_tasks(struct pp_hwmgr *hwmgr) |
| { |
| int result; |
| |
| result = tonga_set_boot_state(hwmgr); |
| if (0 != result) |
| printk(KERN_ERR "[ powerplay ] Failed to reset asic via set boot state! \n"); |
| |
| return result; |
| } |
| |
| int tonga_hwmgr_backend_fini(struct pp_hwmgr *hwmgr) |
| { |
| if (NULL != hwmgr->dyn_state.vddc_dep_on_dal_pwrl) { |
| kfree(hwmgr->dyn_state.vddc_dep_on_dal_pwrl); |
| hwmgr->dyn_state.vddc_dep_on_dal_pwrl = NULL; |
| } |
| |
| if (NULL != hwmgr->backend) { |
| kfree(hwmgr->backend); |
| hwmgr->backend = NULL; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * Initializes the Volcanic Islands Hardware Manager |
| * |
| * @param hwmgr the address of the powerplay hardware manager. |
| * @return 1 if success; otherwise appropriate error code. |
| */ |
| int tonga_hwmgr_backend_init(struct pp_hwmgr *hwmgr) |
| { |
| int result = 0; |
| SMU72_Discrete_DpmTable *table = NULL; |
| tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend); |
| pp_atomctrl_gpio_pin_assignment gpio_pin_assignment; |
| struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| phw_tonga_ulv_parm *ulv; |
| |
| PP_ASSERT_WITH_CODE((NULL != hwmgr), |
| "Invalid Parameter!", return -1;); |
| |
| data->dll_defaule_on = 0; |
| data->sram_end = SMC_RAM_END; |
| |
| data->activity_target[0] = PPTONGA_TARGETACTIVITY_DFLT; |
| data->activity_target[1] = PPTONGA_TARGETACTIVITY_DFLT; |
| data->activity_target[2] = PPTONGA_TARGETACTIVITY_DFLT; |
| data->activity_target[3] = PPTONGA_TARGETACTIVITY_DFLT; |
| data->activity_target[4] = PPTONGA_TARGETACTIVITY_DFLT; |
| data->activity_target[5] = PPTONGA_TARGETACTIVITY_DFLT; |
| data->activity_target[6] = PPTONGA_TARGETACTIVITY_DFLT; |
| data->activity_target[7] = PPTONGA_TARGETACTIVITY_DFLT; |
| |
| data->vddc_vddci_delta = VDDC_VDDCI_DELTA; |
| data->vddc_vddgfx_delta = VDDC_VDDGFX_DELTA; |
| data->mclk_activity_target = PPTONGA_MCLK_TARGETACTIVITY_DFLT; |
| |
| phm_cap_set(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_DisableVoltageIsland); |
| |
| data->sclk_dpm_key_disabled = 0; |
| data->mclk_dpm_key_disabled = 0; |
| data->pcie_dpm_key_disabled = 0; |
| data->pcc_monitor_enabled = 0; |
| |
| phm_cap_set(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_UnTabledHardwareInterface); |
| |
| data->gpio_debug = 0; |
| data->engine_clock_data = 0; |
| data->memory_clock_data = 0; |
| phm_cap_set(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_DynamicPatchPowerState); |
| |
| /* need to set voltage control types before EVV patching*/ |
| data->voltage_control = TONGA_VOLTAGE_CONTROL_NONE; |
| data->vdd_ci_control = TONGA_VOLTAGE_CONTROL_NONE; |
| data->vdd_gfx_control = TONGA_VOLTAGE_CONTROL_NONE; |
| data->mvdd_control = TONGA_VOLTAGE_CONTROL_NONE; |
| |
| if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr, |
| VOLTAGE_TYPE_VDDC, VOLTAGE_OBJ_SVID2)) { |
| data->voltage_control = TONGA_VOLTAGE_CONTROL_BY_SVID2; |
| } |
| |
| if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_ControlVDDGFX)) { |
| if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr, |
| VOLTAGE_TYPE_VDDGFX, VOLTAGE_OBJ_SVID2)) { |
| data->vdd_gfx_control = TONGA_VOLTAGE_CONTROL_BY_SVID2; |
| } |
| } |
| |
| if (TONGA_VOLTAGE_CONTROL_NONE == data->vdd_gfx_control) { |
| phm_cap_unset(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_ControlVDDGFX); |
| } |
| |
| if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_EnableMVDDControl)) { |
| if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr, |
| VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_GPIO_LUT)) { |
| data->mvdd_control = TONGA_VOLTAGE_CONTROL_BY_GPIO; |
| } |
| } |
| |
| if (TONGA_VOLTAGE_CONTROL_NONE == data->mvdd_control) { |
| phm_cap_unset(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_EnableMVDDControl); |
| } |
| |
| if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_ControlVDDCI)) { |
| if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr, |
| VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_GPIO_LUT)) |
| data->vdd_ci_control = TONGA_VOLTAGE_CONTROL_BY_GPIO; |
| else if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr, |
| VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_SVID2)) |
| data->vdd_ci_control = TONGA_VOLTAGE_CONTROL_BY_SVID2; |
| } |
| |
| if (TONGA_VOLTAGE_CONTROL_NONE == data->vdd_ci_control) |
| phm_cap_unset(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_ControlVDDCI); |
| |
| phm_cap_set(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_TablelessHardwareInterface); |
| |
| if (pptable_info->cac_dtp_table->usClockStretchAmount != 0) |
| phm_cap_set(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_ClockStretcher); |
| |
| /* Initializes DPM default values*/ |
| tonga_initialize_dpm_defaults(hwmgr); |
| |
| /* Get leakage voltage based on leakage ID.*/ |
| PP_ASSERT_WITH_CODE((0 == tonga_get_evv_voltage(hwmgr)), |
| "Get EVV Voltage Failed. Abort Driver loading!", return -1); |
| |
| tonga_complete_dependency_tables(hwmgr); |
| |
| /* Parse pptable data read from VBIOS*/ |
| tonga_set_private_var_based_on_pptale(hwmgr); |
| |
| /* ULV Support*/ |
| ulv = &(data->ulv); |
| ulv->ulv_supported = 0; |
| |
| /* Initalize Dynamic State Adjustment Rule Settings*/ |
| result = tonga_initializa_dynamic_state_adjustment_rule_settings(hwmgr); |
| if (result) |
| printk(KERN_ERR "[ powerplay ] tonga_initializa_dynamic_state_adjustment_rule_settings failed!\n"); |
| data->uvd_enabled = 0; |
| |
| table = &(data->smc_state_table); |
| |
| /* |
| * if ucGPIO_ID=VDDC_PCC_GPIO_PINID in GPIO_LUTable, |
| * Peak Current Control feature is enabled and we should program PCC HW register |
| */ |
| if (0 == atomctrl_get_pp_assign_pin(hwmgr, VDDC_PCC_GPIO_PINID, &gpio_pin_assignment)) { |
| uint32_t temp_reg = cgs_read_ind_register(hwmgr->device, |
| CGS_IND_REG__SMC, ixCNB_PWRMGT_CNTL); |
| |
| switch (gpio_pin_assignment.uc_gpio_pin_bit_shift) { |
| case 0: |
| temp_reg = PHM_SET_FIELD(temp_reg, |
| CNB_PWRMGT_CNTL, GNB_SLOW_MODE, 0x1); |
| break; |
| case 1: |
| temp_reg = PHM_SET_FIELD(temp_reg, |
| CNB_PWRMGT_CNTL, GNB_SLOW_MODE, 0x2); |
| break; |
| case 2: |
| temp_reg = PHM_SET_FIELD(temp_reg, |
| CNB_PWRMGT_CNTL, GNB_SLOW, 0x1); |
| break; |
| case 3: |
| temp_reg = PHM_SET_FIELD(temp_reg, |
| CNB_PWRMGT_CNTL, FORCE_NB_PS1, 0x1); |
| break; |
| case 4: |
| temp_reg = PHM_SET_FIELD(temp_reg, |
| CNB_PWRMGT_CNTL, DPM_ENABLED, 0x1); |
| break; |
| default: |
| printk(KERN_ERR "[ powerplay ] Failed to setup PCC HW register! \ |
| Wrong GPIO assigned for VDDC_PCC_GPIO_PINID! \n"); |
| break; |
| } |
| cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, |
| ixCNB_PWRMGT_CNTL, temp_reg); |
| } |
| |
| phm_cap_set(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_EnableSMU7ThermalManagement); |
| phm_cap_set(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_SMU7); |
| |
| data->vddc_phase_shed_control = 0; |
| |
| if (0 == result) { |
| struct cgs_system_info sys_info = {0}; |
| |
| data->is_tlu_enabled = 0; |
| hwmgr->platform_descriptor.hardwareActivityPerformanceLevels = |
| TONGA_MAX_HARDWARE_POWERLEVELS; |
| hwmgr->platform_descriptor.hardwarePerformanceLevels = 2; |
| hwmgr->platform_descriptor.minimumClocksReductionPercentage = 50; |
| |
| sys_info.size = sizeof(struct cgs_system_info); |
| sys_info.info_id = CGS_SYSTEM_INFO_PCIE_GEN_INFO; |
| result = cgs_query_system_info(hwmgr->device, &sys_info); |
| if (result) |
| data->pcie_gen_cap = 0x30007; |
| else |
| data->pcie_gen_cap = (uint32_t)sys_info.value; |
| if (data->pcie_gen_cap & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN3) |
| data->pcie_spc_cap = 20; |
| sys_info.size = sizeof(struct cgs_system_info); |
| sys_info.info_id = CGS_SYSTEM_INFO_PCIE_MLW; |
| result = cgs_query_system_info(hwmgr->device, &sys_info); |
| if (result) |
| data->pcie_lane_cap = 0x2f0000; |
| else |
| data->pcie_lane_cap = (uint32_t)sys_info.value; |
| } else { |
| /* Ignore return value in here, we are cleaning up a mess. */ |
| tonga_hwmgr_backend_fini(hwmgr); |
| } |
| |
| return result; |
| } |
| |
| static int tonga_force_dpm_level(struct pp_hwmgr *hwmgr, |
| enum amd_dpm_forced_level level) |
| { |
| int ret = 0; |
| |
| switch (level) { |
| case AMD_DPM_FORCED_LEVEL_HIGH: |
| ret = tonga_force_dpm_highest(hwmgr); |
| if (ret) |
| return ret; |
| break; |
| case AMD_DPM_FORCED_LEVEL_LOW: |
| ret = tonga_force_dpm_lowest(hwmgr); |
| if (ret) |
| return ret; |
| break; |
| case AMD_DPM_FORCED_LEVEL_AUTO: |
| ret = tonga_unforce_dpm_levels(hwmgr); |
| if (ret) |
| return ret; |
| break; |
| default: |
| break; |
| } |
| |
| hwmgr->dpm_level = level; |
| return ret; |
| } |
| |
| static int tonga_apply_state_adjust_rules(struct pp_hwmgr *hwmgr, |
| struct pp_power_state *prequest_ps, |
| const struct pp_power_state *pcurrent_ps) |
| { |
| struct tonga_power_state *tonga_ps = |
| cast_phw_tonga_power_state(&prequest_ps->hardware); |
| |
| uint32_t sclk; |
| uint32_t mclk; |
| struct PP_Clocks minimum_clocks = {0}; |
| bool disable_mclk_switching; |
| bool disable_mclk_switching_for_frame_lock; |
| struct cgs_display_info info = {0}; |
| const struct phm_clock_and_voltage_limits *max_limits; |
| uint32_t i; |
| tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend); |
| struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| |
| int32_t count; |
| int32_t stable_pstate_sclk = 0, stable_pstate_mclk = 0; |
| |
| data->battery_state = (PP_StateUILabel_Battery == prequest_ps->classification.ui_label); |
| |
| PP_ASSERT_WITH_CODE(tonga_ps->performance_level_count == 2, |
| "VI should always have 2 performance levels", |
| ); |
| |
| max_limits = (PP_PowerSource_AC == hwmgr->power_source) ? |
| &(hwmgr->dyn_state.max_clock_voltage_on_ac) : |
| &(hwmgr->dyn_state.max_clock_voltage_on_dc); |
| |
| if (PP_PowerSource_DC == hwmgr->power_source) { |
| for (i = 0; i < tonga_ps->performance_level_count; i++) { |
| if (tonga_ps->performance_levels[i].memory_clock > max_limits->mclk) |
| tonga_ps->performance_levels[i].memory_clock = max_limits->mclk; |
| if (tonga_ps->performance_levels[i].engine_clock > max_limits->sclk) |
| tonga_ps->performance_levels[i].engine_clock = max_limits->sclk; |
| } |
| } |
| |
| tonga_ps->vce_clocks.EVCLK = hwmgr->vce_arbiter.evclk; |
| tonga_ps->vce_clocks.ECCLK = hwmgr->vce_arbiter.ecclk; |
| |
| tonga_ps->acp_clk = hwmgr->acp_arbiter.acpclk; |
| |
| cgs_get_active_displays_info(hwmgr->device, &info); |
| |
| /*TO DO result = PHM_CheckVBlankTime(hwmgr, &vblankTooShort);*/ |
| |
| /* TO DO GetMinClockSettings(hwmgr->pPECI, &minimum_clocks); */ |
| |
| if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_StablePState)) { |
| |
| max_limits = &(hwmgr->dyn_state.max_clock_voltage_on_ac); |
| stable_pstate_sclk = (max_limits->sclk * 75) / 100; |
| |
| for (count = pptable_info->vdd_dep_on_sclk->count-1; count >= 0; count--) { |
| if (stable_pstate_sclk >= pptable_info->vdd_dep_on_sclk->entries[count].clk) { |
| stable_pstate_sclk = pptable_info->vdd_dep_on_sclk->entries[count].clk; |
| break; |
| } |
| } |
| |
| if (count < 0) |
| stable_pstate_sclk = pptable_info->vdd_dep_on_sclk->entries[0].clk; |
| |
| stable_pstate_mclk = max_limits->mclk; |
| |
| minimum_clocks.engineClock = stable_pstate_sclk; |
| minimum_clocks.memoryClock = stable_pstate_mclk; |
| } |
| |
| if (minimum_clocks.engineClock < hwmgr->gfx_arbiter.sclk) |
| minimum_clocks.engineClock = hwmgr->gfx_arbiter.sclk; |
| |
| if (minimum_clocks.memoryClock < hwmgr->gfx_arbiter.mclk) |
| minimum_clocks.memoryClock = hwmgr->gfx_arbiter.mclk; |
| |
| tonga_ps->sclk_threshold = hwmgr->gfx_arbiter.sclk_threshold; |
| |
| if (0 != hwmgr->gfx_arbiter.sclk_over_drive) { |
| PP_ASSERT_WITH_CODE((hwmgr->gfx_arbiter.sclk_over_drive <= hwmgr->platform_descriptor.overdriveLimit.engineClock), |
| "Overdrive sclk exceeds limit", |
| hwmgr->gfx_arbiter.sclk_over_drive = hwmgr->platform_descriptor.overdriveLimit.engineClock); |
| |
| if (hwmgr->gfx_arbiter.sclk_over_drive >= hwmgr->gfx_arbiter.sclk) |
| tonga_ps->performance_levels[1].engine_clock = hwmgr->gfx_arbiter.sclk_over_drive; |
| } |
| |
| if (0 != hwmgr->gfx_arbiter.mclk_over_drive) { |
| PP_ASSERT_WITH_CODE((hwmgr->gfx_arbiter.mclk_over_drive <= hwmgr->platform_descriptor.overdriveLimit.memoryClock), |
| "Overdrive mclk exceeds limit", |
| hwmgr->gfx_arbiter.mclk_over_drive = hwmgr->platform_descriptor.overdriveLimit.memoryClock); |
| |
| if (hwmgr->gfx_arbiter.mclk_over_drive >= hwmgr->gfx_arbiter.mclk) |
| tonga_ps->performance_levels[1].memory_clock = hwmgr->gfx_arbiter.mclk_over_drive; |
| } |
| |
| disable_mclk_switching_for_frame_lock = phm_cap_enabled( |
| hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_DisableMclkSwitchingForFrameLock); |
| |
| disable_mclk_switching = (1 < info.display_count) || |
| disable_mclk_switching_for_frame_lock; |
| |
| sclk = tonga_ps->performance_levels[0].engine_clock; |
| mclk = tonga_ps->performance_levels[0].memory_clock; |
| |
| if (disable_mclk_switching) |
| mclk = tonga_ps->performance_levels[tonga_ps->performance_level_count - 1].memory_clock; |
| |
| if (sclk < minimum_clocks.engineClock) |
| sclk = (minimum_clocks.engineClock > max_limits->sclk) ? max_limits->sclk : minimum_clocks.engineClock; |
| |
| if (mclk < minimum_clocks.memoryClock) |
| mclk = (minimum_clocks.memoryClock > max_limits->mclk) ? max_limits->mclk : minimum_clocks.memoryClock; |
| |
| tonga_ps->performance_levels[0].engine_clock = sclk; |
| tonga_ps->performance_levels[0].memory_clock = mclk; |
| |
| tonga_ps->performance_levels[1].engine_clock = |
| (tonga_ps->performance_levels[1].engine_clock >= tonga_ps->performance_levels[0].engine_clock) ? |
| tonga_ps->performance_levels[1].engine_clock : |
| tonga_ps->performance_levels[0].engine_clock; |
| |
| if (disable_mclk_switching) { |
| if (mclk < tonga_ps->performance_levels[1].memory_clock) |
| mclk = tonga_ps->performance_levels[1].memory_clock; |
| |
| tonga_ps->performance_levels[0].memory_clock = mclk; |
| tonga_ps->performance_levels[1].memory_clock = mclk; |
| } else { |
| if (tonga_ps->performance_levels[1].memory_clock < tonga_ps->performance_levels[0].memory_clock) |
| tonga_ps->performance_levels[1].memory_clock = tonga_ps->performance_levels[0].memory_clock; |
| } |
| |
| if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_StablePState)) { |
| for (i=0; i < tonga_ps->performance_level_count; i++) { |
| tonga_ps->performance_levels[i].engine_clock = stable_pstate_sclk; |
| tonga_ps->performance_levels[i].memory_clock = stable_pstate_mclk; |
| tonga_ps->performance_levels[i].pcie_gen = data->pcie_gen_performance.max; |
| tonga_ps->performance_levels[i].pcie_lane = data->pcie_gen_performance.max; |
| } |
| } |
| |
| return 0; |
| } |
| |
| int tonga_get_power_state_size(struct pp_hwmgr *hwmgr) |
| { |
| return sizeof(struct tonga_power_state); |
| } |
| |
| static int tonga_dpm_get_mclk(struct pp_hwmgr *hwmgr, bool low) |
| { |
| struct pp_power_state *ps; |
| struct tonga_power_state *tonga_ps; |
| |
| if (hwmgr == NULL) |
| return -EINVAL; |
| |
| ps = hwmgr->request_ps; |
| |
| if (ps == NULL) |
| return -EINVAL; |
| |
| tonga_ps = cast_phw_tonga_power_state(&ps->hardware); |
| |
| if (low) |
| return tonga_ps->performance_levels[0].memory_clock; |
| else |
| return tonga_ps->performance_levels[tonga_ps->performance_level_count-1].memory_clock; |
| } |
| |
| static int tonga_dpm_get_sclk(struct pp_hwmgr *hwmgr, bool low) |
| { |
| struct pp_power_state *ps; |
| struct tonga_power_state *tonga_ps; |
| |
| if (hwmgr == NULL) |
| return -EINVAL; |
| |
| ps = hwmgr->request_ps; |
| |
| if (ps == NULL) |
| return -EINVAL; |
| |
| tonga_ps = cast_phw_tonga_power_state(&ps->hardware); |
| |
| if (low) |
| return tonga_ps->performance_levels[0].engine_clock; |
| else |
| return tonga_ps->performance_levels[tonga_ps->performance_level_count-1].engine_clock; |
| } |
| |
| static uint16_t tonga_get_current_pcie_speed( |
| struct pp_hwmgr *hwmgr) |
| { |
| uint32_t speed_cntl = 0; |
| |
| speed_cntl = cgs_read_ind_register(hwmgr->device, |
| CGS_IND_REG__PCIE, |
| ixPCIE_LC_SPEED_CNTL); |
| return((uint16_t)PHM_GET_FIELD(speed_cntl, |
| PCIE_LC_SPEED_CNTL, LC_CURRENT_DATA_RATE)); |
| } |
| |
| static int tonga_get_current_pcie_lane_number( |
| struct pp_hwmgr *hwmgr) |
| { |
| uint32_t link_width; |
| |
| link_width = PHM_READ_INDIRECT_FIELD(hwmgr->device, |
| CGS_IND_REG__PCIE, |
| PCIE_LC_LINK_WIDTH_CNTL, |
| LC_LINK_WIDTH_RD); |
| |
| PP_ASSERT_WITH_CODE((7 >= link_width), |
| "Invalid PCIe lane width!", return 0); |
| |
| return decode_pcie_lane_width(link_width); |
| } |
| |
| static int tonga_dpm_patch_boot_state(struct pp_hwmgr *hwmgr, |
| struct pp_hw_power_state *hw_ps) |
| { |
| struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend); |
| struct tonga_power_state *ps = (struct tonga_power_state *)hw_ps; |
| ATOM_FIRMWARE_INFO_V2_2 *fw_info; |
| uint16_t size; |
| uint8_t frev, crev; |
| int index = GetIndexIntoMasterTable(DATA, FirmwareInfo); |
| |
| /* First retrieve the Boot clocks and VDDC from the firmware info table. |
| * We assume here that fw_info is unchanged if this call fails. |
| */ |
| fw_info = (ATOM_FIRMWARE_INFO_V2_2 *)cgs_atom_get_data_table( |
| hwmgr->device, index, |
| &size, &frev, &crev); |
| if (!fw_info) |
| /* During a test, there is no firmware info table. */ |
| return 0; |
| |
| /* Patch the state. */ |
| data->vbios_boot_state.sclk_bootup_value = le32_to_cpu(fw_info->ulDefaultEngineClock); |
| data->vbios_boot_state.mclk_bootup_value = le32_to_cpu(fw_info->ulDefaultMemoryClock); |
| data->vbios_boot_state.mvdd_bootup_value = le16_to_cpu(fw_info->usBootUpMVDDCVoltage); |
| data->vbios_boot_state.vddc_bootup_value = le16_to_cpu(fw_info->usBootUpVDDCVoltage); |
| data->vbios_boot_state.vddci_bootup_value = le16_to_cpu(fw_info->usBootUpVDDCIVoltage); |
| data->vbios_boot_state.pcie_gen_bootup_value = tonga_get_current_pcie_speed(hwmgr); |
| data->vbios_boot_state.pcie_lane_bootup_value = |
| (uint16_t)tonga_get_current_pcie_lane_number(hwmgr); |
| |
| /* set boot power state */ |
| ps->performance_levels[0].memory_clock = data->vbios_boot_state.mclk_bootup_value; |
| ps->performance_levels[0].engine_clock = data->vbios_boot_state.sclk_bootup_value; |
| ps->performance_levels[0].pcie_gen = data->vbios_boot_state.pcie_gen_bootup_value; |
| ps->performance_levels[0].pcie_lane = data->vbios_boot_state.pcie_lane_bootup_value; |
| |
| return 0; |
| } |
| |
| static int tonga_get_pp_table_entry_callback_func(struct pp_hwmgr *hwmgr, |
| void *state, struct pp_power_state *power_state, |
| void *pp_table, uint32_t classification_flag) |
| { |
| struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend); |
| |
| struct tonga_power_state *tonga_ps = |
| (struct tonga_power_state *)(&(power_state->hardware)); |
| |
| struct tonga_performance_level *performance_level; |
| |
| ATOM_Tonga_State *state_entry = (ATOM_Tonga_State *)state; |
| |
| ATOM_Tonga_POWERPLAYTABLE *powerplay_table = |
| (ATOM_Tonga_POWERPLAYTABLE *)pp_table; |
| |
| ATOM_Tonga_SCLK_Dependency_Table *sclk_dep_table = |
| (ATOM_Tonga_SCLK_Dependency_Table *) |
| (((unsigned long)powerplay_table) + |
| le16_to_cpu(powerplay_table->usSclkDependencyTableOffset)); |
| |
| ATOM_Tonga_MCLK_Dependency_Table *mclk_dep_table = |
| (ATOM_Tonga_MCLK_Dependency_Table *) |
| (((unsigned long)powerplay_table) + |
| le16_to_cpu(powerplay_table->usMclkDependencyTableOffset)); |
| |
| /* The following fields are not initialized here: id orderedList allStatesList */ |
| power_state->classification.ui_label = |
| (le16_to_cpu(state_entry->usClassification) & |
| ATOM_PPLIB_CLASSIFICATION_UI_MASK) >> |
| ATOM_PPLIB_CLASSIFICATION_UI_SHIFT; |
| power_state->classification.flags = classification_flag; |
| /* NOTE: There is a classification2 flag in BIOS that is not being used right now */ |
| |
| power_state->classification.temporary_state = false; |
| power_state->classification.to_be_deleted = false; |
| |
| power_state->validation.disallowOnDC = |
| (0 != (le32_to_cpu(state_entry->ulCapsAndSettings) & ATOM_Tonga_DISALLOW_ON_DC)); |
| |
| power_state->pcie.lanes = 0; |
| |
| power_state->display.disableFrameModulation = false; |
| power_state->display.limitRefreshrate = false; |
| power_state->display.enableVariBright = |
| (0 != (le32_to_cpu(state_entry->ulCapsAndSettings) & ATOM_Tonga_ENABLE_VARIBRIGHT)); |
| |
| power_state->validation.supportedPowerLevels = 0; |
| power_state->uvd_clocks.VCLK = 0; |
| power_state->uvd_clocks.DCLK = 0; |
| power_state->temperatures.min = 0; |
| power_state->temperatures.max = 0; |
| |
| performance_level = &(tonga_ps->performance_levels |
| [tonga_ps->performance_level_count++]); |
| |
| PP_ASSERT_WITH_CODE( |
| (tonga_ps->performance_level_count < SMU72_MAX_LEVELS_GRAPHICS), |
| "Performance levels exceeds SMC limit!", |
| return -1); |
| |
| PP_ASSERT_WITH_CODE( |
| (tonga_ps->performance_level_count <= |
| hwmgr->platform_descriptor.hardwareActivityPerformanceLevels), |
| "Performance levels exceeds Driver limit!", |
| return -1); |
| |
| /* Performance levels are arranged from low to high. */ |
| performance_level->memory_clock = |
| le32_to_cpu(mclk_dep_table->entries[state_entry->ucMemoryClockIndexLow].ulMclk); |
| |
| performance_level->engine_clock = |
| le32_to_cpu(sclk_dep_table->entries[state_entry->ucEngineClockIndexLow].ulSclk); |
| |
| performance_level->pcie_gen = get_pcie_gen_support( |
| data->pcie_gen_cap, |
| state_entry->ucPCIEGenLow); |
| |
| performance_level->pcie_lane = get_pcie_lane_support( |
| data->pcie_lane_cap, |
| state_entry->ucPCIELaneHigh); |
| |
| performance_level = |
| &(tonga_ps->performance_levels[tonga_ps->performance_level_count++]); |
| |
| performance_level->memory_clock = |
| le32_to_cpu(mclk_dep_table->entries[state_entry->ucMemoryClockIndexHigh].ulMclk); |
| |
| performance_level->engine_clock = |
| le32_to_cpu(sclk_dep_table->entries[state_entry->ucEngineClockIndexHigh].ulSclk); |
| |
| performance_level->pcie_gen = get_pcie_gen_support( |
| data->pcie_gen_cap, |
| state_entry->ucPCIEGenHigh); |
| |
| performance_level->pcie_lane = get_pcie_lane_support( |
| data->pcie_lane_cap, |
| state_entry->ucPCIELaneHigh); |
| |
| return 0; |
| } |
| |
| static int tonga_get_pp_table_entry(struct pp_hwmgr *hwmgr, |
| unsigned long entry_index, struct pp_power_state *ps) |
| { |
| int result; |
| struct tonga_power_state *tonga_ps; |
| struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend); |
| |
| struct phm_ppt_v1_information *table_info = |
| (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| |
| struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table = |
| table_info->vdd_dep_on_mclk; |
| |
| ps->hardware.magic = PhwTonga_Magic; |
| |
| tonga_ps = cast_phw_tonga_power_state(&(ps->hardware)); |
| |
| result = tonga_get_powerplay_table_entry(hwmgr, entry_index, ps, |
| tonga_get_pp_table_entry_callback_func); |
| |
| /* This is the earliest time we have all the dependency table and the VBIOS boot state |
| * as PP_Tables_GetPowerPlayTableEntry retrieves the VBIOS boot state |
| * if there is only one VDDCI/MCLK level, check if it's the same as VBIOS boot state |
| */ |
| if (dep_mclk_table != NULL && dep_mclk_table->count == 1) { |
| if (dep_mclk_table->entries[0].clk != |
| data->vbios_boot_state.mclk_bootup_value) |
| printk(KERN_ERR "Single MCLK entry VDDCI/MCLK dependency table " |
| "does not match VBIOS boot MCLK level"); |
| if (dep_mclk_table->entries[0].vddci != |
| data->vbios_boot_state.vddci_bootup_value) |
| printk(KERN_ERR "Single VDDCI entry VDDCI/MCLK dependency table " |
| "does not match VBIOS boot VDDCI level"); |
| } |
| |
| /* set DC compatible flag if this state supports DC */ |
| if (!ps->validation.disallowOnDC) |
| tonga_ps->dc_compatible = true; |
| |
| if (ps->classification.flags & PP_StateClassificationFlag_ACPI) |
| data->acpi_pcie_gen = tonga_ps->performance_levels[0].pcie_gen; |
| else if (ps->classification.flags & PP_StateClassificationFlag_Boot) { |
| if (data->bacos.best_match == 0xffff) { |
| /* For V.I. use boot state as base BACO state */ |
| data->bacos.best_match = PP_StateClassificationFlag_Boot; |
| data->bacos.performance_level = tonga_ps->performance_levels[0]; |
| } |
| } |
| |
| tonga_ps->uvd_clocks.VCLK = ps->uvd_clocks.VCLK; |
| tonga_ps->uvd_clocks.DCLK = ps->uvd_clocks.DCLK; |
| |
| if (!result) { |
| uint32_t i; |
| |
| switch (ps->classification.ui_label) { |
| case PP_StateUILabel_Performance: |
| data->use_pcie_performance_levels = true; |
| |
| for (i = 0; i < tonga_ps->performance_level_count; i++) { |
| if (data->pcie_gen_performance.max < |
| tonga_ps->performance_levels[i].pcie_gen) |
| data->pcie_gen_performance.max = |
| tonga_ps->performance_levels[i].pcie_gen; |
| |
| if (data->pcie_gen_performance.min > |
| tonga_ps->performance_levels[i].pcie_gen) |
| data->pcie_gen_performance.min = |
| tonga_ps->performance_levels[i].pcie_gen; |
| |
| if (data->pcie_lane_performance.max < |
| tonga_ps->performance_levels[i].pcie_lane) |
| data->pcie_lane_performance.max = |
| tonga_ps->performance_levels[i].pcie_lane; |
| |
| if (data->pcie_lane_performance.min > |
| tonga_ps->performance_levels[i].pcie_lane) |
| data->pcie_lane_performance.min = |
| tonga_ps->performance_levels[i].pcie_lane; |
| } |
| break; |
| case PP_StateUILabel_Battery: |
| data->use_pcie_power_saving_levels = true; |
| |
| for (i = 0; i < tonga_ps->performance_level_count; i++) { |
| if (data->pcie_gen_power_saving.max < |
| tonga_ps->performance_levels[i].pcie_gen) |
| data->pcie_gen_power_saving.max = |
| tonga_ps->performance_levels[i].pcie_gen; |
| |
| if (data->pcie_gen_power_saving.min > |
| tonga_ps->performance_levels[i].pcie_gen) |
| data->pcie_gen_power_saving.min = |
| tonga_ps->performance_levels[i].pcie_gen; |
| |
| if (data->pcie_lane_power_saving.max < |
| tonga_ps->performance_levels[i].pcie_lane) |
| data->pcie_lane_power_saving.max = |
| tonga_ps->performance_levels[i].pcie_lane; |
| |
| if (data->pcie_lane_power_saving.min > |
| tonga_ps->performance_levels[i].pcie_lane) |
| data->pcie_lane_power_saving.min = |
| tonga_ps->performance_levels[i].pcie_lane; |
| } |
| break; |
| default: |
| break; |
| } |
| } |
| return 0; |
| } |
| |
| static void |
| tonga_print_current_perforce_level(struct pp_hwmgr *hwmgr, struct seq_file *m) |
| { |
| uint32_t sclk, mclk, activity_percent; |
| uint32_t offset; |
| struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend); |
| |
| smum_send_msg_to_smc(hwmgr->smumgr, (PPSMC_Msg)(PPSMC_MSG_API_GetSclkFrequency)); |
| |
| sclk = cgs_read_register(hwmgr->device, mmSMC_MSG_ARG_0); |
| |
| smum_send_msg_to_smc(hwmgr->smumgr, (PPSMC_Msg)(PPSMC_MSG_API_GetMclkFrequency)); |
| |
| mclk = cgs_read_register(hwmgr->device, mmSMC_MSG_ARG_0); |
| seq_printf(m, "\n [ mclk ]: %u MHz\n\n [ sclk ]: %u MHz\n", mclk/100, sclk/100); |
| |
| |
| offset = data->soft_regs_start + offsetof(SMU72_SoftRegisters, AverageGraphicsActivity); |
| activity_percent = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset); |
| activity_percent += 0x80; |
| activity_percent >>= 8; |
| |
| seq_printf(m, "\n [GPU load]: %u%%\n\n", activity_percent > 100 ? 100 : activity_percent); |
| |
| } |
| |
| static int tonga_find_dpm_states_clocks_in_dpm_table(struct pp_hwmgr *hwmgr, const void *input) |
| { |
| const struct phm_set_power_state_input *states = (const struct phm_set_power_state_input *)input; |
| const struct tonga_power_state *tonga_ps = cast_const_phw_tonga_power_state(states->pnew_state); |
| struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend); |
| struct tonga_single_dpm_table *psclk_table = &(data->dpm_table.sclk_table); |
| uint32_t sclk = tonga_ps->performance_levels[tonga_ps->performance_level_count-1].engine_clock; |
| struct tonga_single_dpm_table *pmclk_table = &(data->dpm_table.mclk_table); |
| uint32_t mclk = tonga_ps->performance_levels[tonga_ps->performance_level_count-1].memory_clock; |
| struct PP_Clocks min_clocks = {0}; |
| uint32_t i; |
| struct cgs_display_info info = {0}; |
| |
| data->need_update_smu7_dpm_table = 0; |
| |
| for (i = 0; i < psclk_table->count; i++) { |
| if (sclk == psclk_table->dpm_levels[i].value) |
| break; |
| } |
| |
| if (i >= psclk_table->count) |
| data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_SCLK; |
| else { |
| /* TODO: Check SCLK in DAL's minimum clocks in case DeepSleep divider update is required.*/ |
| if(data->display_timing.min_clock_insr != min_clocks.engineClockInSR) |
| data->need_update_smu7_dpm_table |= DPMTABLE_UPDATE_SCLK; |
| } |
| |
| for (i=0; i < pmclk_table->count; i++) { |
| if (mclk == pmclk_table->dpm_levels[i].value) |
| break; |
| } |
| |
| if (i >= pmclk_table->count) |
| data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_MCLK; |
| |
| cgs_get_active_displays_info(hwmgr->device, &info); |
| |
| if (data->display_timing.num_existing_displays != info.display_count) |
| data->need_update_smu7_dpm_table |= DPMTABLE_UPDATE_MCLK; |
| |
| return 0; |
| } |
| |
| static uint16_t tonga_get_maximum_link_speed(struct pp_hwmgr *hwmgr, const struct tonga_power_state *hw_ps) |
| { |
| uint32_t i; |
| uint32_t sclk, max_sclk = 0; |
| struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend); |
| struct tonga_dpm_table *pdpm_table = &data->dpm_table; |
| |
| for (i = 0; i < hw_ps->performance_level_count; i++) { |
| sclk = hw_ps->performance_levels[i].engine_clock; |
| if (max_sclk < sclk) |
| max_sclk = sclk; |
| } |
| |
| for (i = 0; i < pdpm_table->sclk_table.count; i++) { |
| if (pdpm_table->sclk_table.dpm_levels[i].value == max_sclk) |
| return (uint16_t) ((i >= pdpm_table->pcie_speed_table.count) ? |
| pdpm_table->pcie_speed_table.dpm_levels[pdpm_table->pcie_speed_table.count-1].value : |
| pdpm_table->pcie_speed_table.dpm_levels[i].value); |
| } |
| |
| return 0; |
| } |
| |
| static int tonga_request_link_speed_change_before_state_change(struct pp_hwmgr *hwmgr, const void *input) |
| { |
| const struct phm_set_power_state_input *states = (const struct phm_set_power_state_input *)input; |
| struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend); |
| const struct tonga_power_state *tonga_nps = cast_const_phw_tonga_power_state(states->pnew_state); |
| const struct tonga_power_state *tonga_cps = cast_const_phw_tonga_power_state(states->pcurrent_state); |
| |
| uint16_t target_link_speed = tonga_get_maximum_link_speed(hwmgr, tonga_nps); |
| uint16_t current_link_speed; |
| |
| if (data->force_pcie_gen == PP_PCIEGenInvalid) |
| current_link_speed = tonga_get_maximum_link_speed(hwmgr, tonga_cps); |
| else |
| current_link_speed = data->force_pcie_gen; |
| |
| data->force_pcie_gen = PP_PCIEGenInvalid; |
| data->pspp_notify_required = false; |
| if (target_link_speed > current_link_speed) { |
| switch(target_link_speed) { |
| case PP_PCIEGen3: |
| if (0 == acpi_pcie_perf_request(hwmgr->device, PCIE_PERF_REQ_GEN3, false)) |
| break; |
| data->force_pcie_gen = PP_PCIEGen2; |
| if (current_link_speed == PP_PCIEGen2) |
| break; |
| case PP_PCIEGen2: |
| if (0 == acpi_pcie_perf_request(hwmgr->device, PCIE_PERF_REQ_GEN2, false)) |
| break; |
| default: |
| data->force_pcie_gen = tonga_get_current_pcie_speed(hwmgr); |
| break; |
| } |
| } else { |
| if (target_link_speed < current_link_speed) |
| data->pspp_notify_required = true; |
| } |
| |
| return 0; |
| } |
| |
| static int tonga_freeze_sclk_mclk_dpm(struct pp_hwmgr *hwmgr) |
| { |
| struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend); |
| |
| if (0 == data->need_update_smu7_dpm_table) |
| return 0; |
| |
| if ((0 == data->sclk_dpm_key_disabled) && |
| (data->need_update_smu7_dpm_table & |
| (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_UPDATE_SCLK))) { |
| PP_ASSERT_WITH_CODE( |
| true == tonga_is_dpm_running(hwmgr), |
| "Trying to freeze SCLK DPM when DPM is disabled", |
| ); |
| PP_ASSERT_WITH_CODE( |
| 0 == smum_send_msg_to_smc(hwmgr->smumgr, |
| PPSMC_MSG_SCLKDPM_FreezeLevel), |
| "Failed to freeze SCLK DPM during FreezeSclkMclkDPM Function!", |
| return -1); |
| } |
| |
| if ((0 == data->mclk_dpm_key_disabled) && |
| (data->need_update_smu7_dpm_table & |
| DPMTABLE_OD_UPDATE_MCLK)) { |
| PP_ASSERT_WITH_CODE(true == tonga_is_dpm_running(hwmgr), |
| "Trying to freeze MCLK DPM when DPM is disabled", |
| ); |
| PP_ASSERT_WITH_CODE( |
| 0 == smum_send_msg_to_smc(hwmgr->smumgr, |
| PPSMC_MSG_MCLKDPM_FreezeLevel), |
| "Failed to freeze MCLK DPM during FreezeSclkMclkDPM Function!", |
| return -1); |
| } |
| |
| return 0; |
| } |
| |
| static int tonga_populate_and_upload_sclk_mclk_dpm_levels(struct pp_hwmgr *hwmgr, const void *input) |
| { |
| int result = 0; |
| |
| const struct phm_set_power_state_input *states = (const struct phm_set_power_state_input *)input; |
| const struct tonga_power_state *tonga_ps = cast_const_phw_tonga_power_state(states->pnew_state); |
| struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend); |
| uint32_t sclk = tonga_ps->performance_levels[tonga_ps->performance_level_count-1].engine_clock; |
| uint32_t mclk = tonga_ps->performance_levels[tonga_ps->performance_level_count-1].memory_clock; |
| struct tonga_dpm_table *pdpm_table = &data->dpm_table; |
| |
| struct tonga_dpm_table *pgolden_dpm_table = &data->golden_dpm_table; |
| uint32_t dpm_count, clock_percent; |
| uint32_t i; |
| |
| if (0 == data->need_update_smu7_dpm_table) |
| return 0; |
| |
| if (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_SCLK) { |
| pdpm_table->sclk_table.dpm_levels[pdpm_table->sclk_table.count-1].value = sclk; |
| |
| if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_OD6PlusinACSupport) || |
| phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_OD6PlusinDCSupport)) { |
| /* Need to do calculation based on the golden DPM table |
| * as the Heatmap GPU Clock axis is also based on the default values |
| */ |
| PP_ASSERT_WITH_CODE( |
| (pgolden_dpm_table->sclk_table.dpm_levels[pgolden_dpm_table->sclk_table.count-1].value != 0), |
| "Divide by 0!", |
| return -1); |
| dpm_count = pdpm_table->sclk_table.count < 2 ? 0 : pdpm_table->sclk_table.count-2; |
| for (i = dpm_count; i > 1; i--) { |
| if (sclk > pgolden_dpm_table->sclk_table.dpm_levels[pgolden_dpm_table->sclk_table.count-1].value) { |
| clock_percent = ((sclk - pgolden_dpm_table->sclk_table.dpm_levels[pgolden_dpm_table->sclk_table.count-1].value)*100) / |
| pgolden_dpm_table->sclk_table.dpm_levels[pgolden_dpm_table->sclk_table.count-1].value; |
| |
| pdpm_table->sclk_table.dpm_levels[i].value = |
| pgolden_dpm_table->sclk_table.dpm_levels[i].value + |
| (pgolden_dpm_table->sclk_table.dpm_levels[i].value * clock_percent)/100; |
| |
| } else if (pgolden_dpm_table->sclk_table.dpm_levels[pdpm_table->sclk_table.count-1].value > sclk) { |
| clock_percent = ((pgolden_dpm_table->sclk_table.dpm_levels[pgolden_dpm_table->sclk_table.count-1].value - sclk)*100) / |
| pgolden_dpm_table->sclk_table.dpm_levels[pgolden_dpm_table->sclk_table.count-1].value; |
| |
| pdpm_table->sclk_table.dpm_levels[i].value = |
| pgolden_dpm_table->sclk_table.dpm_levels[i].value - |
| (pgolden_dpm_table->sclk_table.dpm_levels[i].value * clock_percent)/100; |
| } else |
| pdpm_table->sclk_table.dpm_levels[i].value = |
| pgolden_dpm_table->sclk_table.dpm_levels[i].value; |
| } |
| } |
| } |
| |
| if (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK) { |
| pdpm_table->mclk_table.dpm_levels[pdpm_table->mclk_table.count-1].value = mclk; |
| |
| if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_OD6PlusinACSupport) || |
| phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_OD6PlusinDCSupport)) { |
| |
| PP_ASSERT_WITH_CODE( |
| (pgolden_dpm_table->mclk_table.dpm_levels[pgolden_dpm_table->mclk_table.count-1].value != 0), |
| "Divide by 0!", |
| return -1); |
| dpm_count = pdpm_table->mclk_table.count < 2? 0 : pdpm_table->mclk_table.count-2; |
| for (i = dpm_count; i > 1; i--) { |
| if (mclk > pgolden_dpm_table->mclk_table.dpm_levels[pgolden_dpm_table->mclk_table.count-1].value) { |
| clock_percent = ((mclk - pgolden_dpm_table->mclk_table.dpm_levels[pgolden_dpm_table->mclk_table.count-1].value)*100) / |
| pgolden_dpm_table->mclk_table.dpm_levels[pgolden_dpm_table->mclk_table.count-1].value; |
| |
| pdpm_table->mclk_table.dpm_levels[i].value = |
| pgolden_dpm_table->mclk_table.dpm_levels[i].value + |
| (pgolden_dpm_table->mclk_table.dpm_levels[i].value * clock_percent)/100; |
| |
| } else if (pgolden_dpm_table->mclk_table.dpm_levels[pdpm_table->mclk_table.count-1].value > mclk) { |
| clock_percent = ((pgolden_dpm_table->mclk_table.dpm_levels[pgolden_dpm_table->mclk_table.count-1].value - mclk)*100) / |
| pgolden_dpm_table->mclk_table.dpm_levels[pgolden_dpm_table->mclk_table.count-1].value; |
| |
| pdpm_table->mclk_table.dpm_levels[i].value = |
| pgolden_dpm_table->mclk_table.dpm_levels[i].value - |
| (pgolden_dpm_table->mclk_table.dpm_levels[i].value * clock_percent)/100; |
| } else |
| pdpm_table->mclk_table.dpm_levels[i].value = pgolden_dpm_table->mclk_table.dpm_levels[i].value; |
| } |
| } |
| } |
| |
| if (data->need_update_smu7_dpm_table & (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_UPDATE_SCLK)) { |
| result = tonga_populate_all_memory_levels(hwmgr); |
| PP_ASSERT_WITH_CODE((0 == result), |
| "Failed to populate SCLK during PopulateNewDPMClocksStates Function!", |
| return result); |
| } |
| |
| if (data->need_update_smu7_dpm_table & (DPMTABLE_OD_UPDATE_MCLK + DPMTABLE_UPDATE_MCLK)) { |
| /*populate MCLK dpm table to SMU7 */ |
| result = tonga_populate_all_memory_levels(hwmgr); |
| PP_ASSERT_WITH_CODE((0 == result), |
| "Failed to populate MCLK during PopulateNewDPMClocksStates Function!", |
| return result); |
| } |
| |
| return result; |
| } |
| |
| static int tonga_trim_single_dpm_states(struct pp_hwmgr *hwmgr, |
| struct tonga_single_dpm_table * pdpm_table, |
| uint32_t low_limit, uint32_t high_limit) |
| { |
| uint32_t i; |
| |
| for (i = 0; i < pdpm_table->count; i++) { |
| if ((pdpm_table->dpm_levels[i].value < low_limit) || |
| (pdpm_table->dpm_levels[i].value > high_limit)) |
| pdpm_table->dpm_levels[i].enabled = false; |
| else |
| pdpm_table->dpm_levels[i].enabled = true; |
| } |
| return 0; |
| } |
| |
| static int tonga_trim_dpm_states(struct pp_hwmgr *hwmgr, const struct tonga_power_state *hw_state) |
| { |
| int result = 0; |
| struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend); |
| uint32_t high_limit_count; |
| |
| PP_ASSERT_WITH_CODE((hw_state->performance_level_count >= 1), |
| "power state did not have any performance level", |
| return -1); |
| |
| high_limit_count = (1 == hw_state->performance_level_count) ? 0: 1; |
| |
| tonga_trim_single_dpm_states(hwmgr, |
| &(data->dpm_table.sclk_table), |
| hw_state->performance_levels[0].engine_clock, |
| hw_state->performance_levels[high_limit_count].engine_clock); |
| |
| tonga_trim_single_dpm_states(hwmgr, |
| &(data->dpm_table.mclk_table), |
| hw_state->performance_levels[0].memory_clock, |
| hw_state->performance_levels[high_limit_count].memory_clock); |
| |
| return result; |
| } |
| |
| static int tonga_generate_dpm_level_enable_mask(struct pp_hwmgr *hwmgr, const void *input) |
| { |
| int result; |
| const struct phm_set_power_state_input *states = (const struct phm_set_power_state_input *)input; |
| struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend); |
| const struct tonga_power_state *tonga_ps = cast_const_phw_tonga_power_state(states->pnew_state); |
| |
| result = tonga_trim_dpm_states(hwmgr, tonga_ps); |
| if (0 != result) |
| return result; |
| |
| data->dpm_level_enable_mask.sclk_dpm_enable_mask = tonga_get_dpm_level_enable_mask_value(&data->dpm_table.sclk_table); |
| data->dpm_level_enable_mask.mclk_dpm_enable_mask = tonga_get_dpm_level_enable_mask_value(&data->dpm_table.mclk_table); |
| data->last_mclk_dpm_enable_mask = data->dpm_level_enable_mask.mclk_dpm_enable_mask; |
| if (data->uvd_enabled) |
| data->dpm_level_enable_mask.mclk_dpm_enable_mask &= 0xFFFFFFFE; |
| |
| data->dpm_level_enable_mask.pcie_dpm_enable_mask = tonga_get_dpm_level_enable_mask_value(&data->dpm_table.pcie_speed_table); |
| |
| return 0; |
| } |
| |
| int tonga_enable_disable_vce_dpm(struct pp_hwmgr *hwmgr, bool enable) |
| { |
| return smum_send_msg_to_smc(hwmgr->smumgr, enable ? |
| (PPSMC_Msg)PPSMC_MSG_VCEDPM_Enable : |
| (PPSMC_Msg)PPSMC_MSG_VCEDPM_Disable); |
| } |
| |
| int tonga_enable_disable_uvd_dpm(struct pp_hwmgr *hwmgr, bool enable) |
| { |
| return smum_send_msg_to_smc(hwmgr->smumgr, enable ? |
| (PPSMC_Msg)PPSMC_MSG_UVDDPM_Enable : |
| (PPSMC_Msg)PPSMC_MSG_UVDDPM_Disable); |
| } |
| |
| int tonga_update_uvd_dpm(struct pp_hwmgr *hwmgr, bool bgate) |
| { |
| struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend); |
| uint32_t mm_boot_level_offset, mm_boot_level_value; |
| struct phm_ppt_v1_information *ptable_information = (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| |
| if (!bgate) { |
| data->smc_state_table.UvdBootLevel = (uint8_t) (ptable_information->mm_dep_table->count - 1); |
| mm_boot_level_offset = data->dpm_table_start + offsetof(SMU72_Discrete_DpmTable, UvdBootLevel); |
| mm_boot_level_offset /= 4; |
| mm_boot_level_offset *= 4; |
| mm_boot_level_value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, mm_boot_level_offset); |
| mm_boot_level_value &= 0x00FFFFFF; |
| mm_boot_level_value |= data->smc_state_table.UvdBootLevel << 24; |
| cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value); |
| |
| if (!phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_UVDDPM) || |
| phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_StablePState)) |
| smum_send_msg_to_smc_with_parameter(hwmgr->smumgr, |
| PPSMC_MSG_UVDDPM_SetEnabledMask, |
| (uint32_t)(1 << data->smc_state_table.UvdBootLevel)); |
| } |
| |
| return tonga_enable_disable_uvd_dpm(hwmgr, !bgate); |
| } |
| |
| int tonga_update_vce_dpm(struct pp_hwmgr *hwmgr, const void *input) |
| { |
| const struct phm_set_power_state_input *states = (const struct phm_set_power_state_input *)input; |
| struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend); |
| const struct tonga_power_state *tonga_nps = cast_const_phw_tonga_power_state(states->pnew_state); |
| const struct tonga_power_state *tonga_cps = cast_const_phw_tonga_power_state(states->pcurrent_state); |
| |
| uint32_t mm_boot_level_offset, mm_boot_level_value; |
| struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| |
| if (tonga_nps->vce_clocks.EVCLK > 0 && (tonga_cps == NULL || tonga_cps->vce_clocks.EVCLK == 0)) { |
| data->smc_state_table.VceBootLevel = (uint8_t) (pptable_info->mm_dep_table->count - 1); |
| |
| mm_boot_level_offset = data->dpm_table_start + offsetof(SMU72_Discrete_DpmTable, VceBootLevel); |
| mm_boot_level_offset /= 4; |
| mm_boot_level_offset *= 4; |
| mm_boot_level_value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, mm_boot_level_offset); |
| mm_boot_level_value &= 0xFF00FFFF; |
| mm_boot_level_value |= data->smc_state_table.VceBootLevel << 16; |
| cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value); |
| |
| if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_StablePState)) |
| smum_send_msg_to_smc_with_parameter(hwmgr->smumgr, |
| PPSMC_MSG_VCEDPM_SetEnabledMask, |
| (uint32_t)(1 << data->smc_state_table.VceBootLevel)); |
| |
| tonga_enable_disable_vce_dpm(hwmgr, true); |
| } else if (tonga_nps->vce_clocks.EVCLK == 0 && tonga_cps != NULL && tonga_cps->vce_clocks.EVCLK > 0) |
| tonga_enable_disable_vce_dpm(hwmgr, false); |
| |
| return 0; |
| } |
| |
| static int tonga_update_and_upload_mc_reg_table(struct pp_hwmgr *hwmgr) |
| { |
| struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend); |
| |
| uint32_t address; |
| int32_t result; |
| |
| if (0 == (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK)) |
| return 0; |
| |
| |
| memset(&data->mc_reg_table, 0, sizeof(SMU72_Discrete_MCRegisters)); |
| |
| result = tonga_convert_mc_reg_table_to_smc(hwmgr, &(data->mc_reg_table)); |
| |
| if(result != 0) |
| return result; |
| |
| |
| address = data->mc_reg_table_start + (uint32_t)offsetof(SMU72_Discrete_MCRegisters, data[0]); |
| |
| return tonga_copy_bytes_to_smc(hwmgr->smumgr, address, |
| (uint8_t *)&data->mc_reg_table.data[0], |
| sizeof(SMU72_Discrete_MCRegisterSet) * data->dpm_table.mclk_table.count, |
| data->sram_end); |
| } |
| |
| static int tonga_program_memory_timing_parameters_conditionally(struct pp_hwmgr *hwmgr) |
| { |
| struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend); |
| |
| if (data->need_update_smu7_dpm_table & |
| (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_OD_UPDATE_MCLK)) |
| return tonga_program_memory_timing_parameters(hwmgr); |
| |
| return 0; |
| } |
| |
| static int tonga_unfreeze_sclk_mclk_dpm(struct pp_hwmgr *hwmgr) |
| { |
| struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend); |
| |
| if (0 == data->need_update_smu7_dpm_table) |
| return 0; |
| |
| if ((0 == data->sclk_dpm_key_disabled) && |
| (data->need_update_smu7_dpm_table & |
| (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_UPDATE_SCLK))) { |
| |
| PP_ASSERT_WITH_CODE(true == tonga_is_dpm_running(hwmgr), |
| "Trying to Unfreeze SCLK DPM when DPM is disabled", |
| ); |
| PP_ASSERT_WITH_CODE( |
| 0 == smum_send_msg_to_smc(hwmgr->smumgr, |
| PPSMC_MSG_SCLKDPM_UnfreezeLevel), |
| "Failed to unfreeze SCLK DPM during UnFreezeSclkMclkDPM Function!", |
| return -1); |
| } |
| |
| if ((0 == data->mclk_dpm_key_disabled) && |
| (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK)) { |
| |
| PP_ASSERT_WITH_CODE( |
| true == tonga_is_dpm_running(hwmgr), |
| "Trying to Unfreeze MCLK DPM when DPM is disabled", |
| ); |
| PP_ASSERT_WITH_CODE( |
| 0 == smum_send_msg_to_smc(hwmgr->smumgr, |
| PPSMC_MSG_SCLKDPM_UnfreezeLevel), |
| "Failed to unfreeze MCLK DPM during UnFreezeSclkMclkDPM Function!", |
| return -1); |
| } |
| |
| data->need_update_smu7_dpm_table = 0; |
| |
| return 0; |
| } |
| |
| static int tonga_notify_link_speed_change_after_state_change(struct pp_hwmgr *hwmgr, const void *input) |
| { |
| const struct phm_set_power_state_input *states = (const struct phm_set_power_state_input *)input; |
| struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend); |
| const struct tonga_power_state *tonga_ps = cast_const_phw_tonga_power_state(states->pnew_state); |
| uint16_t target_link_speed = tonga_get_maximum_link_speed(hwmgr, tonga_ps); |
| uint8_t request; |
| |
| if (data->pspp_notify_required || |
| data->pcie_performance_request) { |
| if (target_link_speed == PP_PCIEGen3) |
| request = PCIE_PERF_REQ_GEN3; |
| else if (target_link_speed == PP_PCIEGen2) |
| request = PCIE_PERF_REQ_GEN2; |
| else |
| request = PCIE_PERF_REQ_GEN1; |
| |
| if(request == PCIE_PERF_REQ_GEN1 && tonga_get_current_pcie_speed(hwmgr) > 0) { |
| data->pcie_performance_request = false; |
| return 0; |
| } |
| |
| if (0 != acpi_pcie_perf_request(hwmgr->device, request, false)) { |
| if (PP_PCIEGen2 == target_link_speed) |
| printk("PSPP request to switch to Gen2 from Gen3 Failed!"); |
| else |
| printk("PSPP request to switch to Gen1 from Gen2 Failed!"); |
| } |
| } |
| |
| data->pcie_performance_request = false; |
| return 0; |
| } |
| |
| static int tonga_set_power_state_tasks(struct pp_hwmgr *hwmgr, const void *input) |
| { |
| int tmp_result, result = 0; |
| |
| tmp_result = tonga_find_dpm_states_clocks_in_dpm_table(hwmgr, input); |
| PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to find DPM states clocks in DPM table!", result = tmp_result); |
| |
| if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_PCIEPerformanceRequest)) { |
| tmp_result = tonga_request_link_speed_change_before_state_change(hwmgr, input); |
| PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to request link speed change before state change!", result = tmp_result); |
| } |
| |
| tmp_result = tonga_freeze_sclk_mclk_dpm(hwmgr); |
| PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to freeze SCLK MCLK DPM!", result = tmp_result); |
| |
| tmp_result = tonga_populate_and_upload_sclk_mclk_dpm_levels(hwmgr, input); |
| PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to populate and upload SCLK MCLK DPM levels!", result = tmp_result); |
| |
| tmp_result = tonga_generate_dpm_level_enable_mask(hwmgr, input); |
| PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to generate DPM level enabled mask!", result = tmp_result); |
| |
| tmp_result = tonga_update_vce_dpm(hwmgr, input); |
| PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to update VCE DPM!", result = tmp_result); |
| |
| tmp_result = tonga_update_sclk_threshold(hwmgr); |
| PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to update SCLK threshold!", result = tmp_result); |
| |
| tmp_result = tonga_update_and_upload_mc_reg_table(hwmgr); |
| PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to upload MC reg table!", result = tmp_result); |
| |
| tmp_result = tonga_program_memory_timing_parameters_conditionally(hwmgr); |
| PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to program memory timing parameters!", result = tmp_result); |
| |
| tmp_result = tonga_unfreeze_sclk_mclk_dpm(hwmgr); |
| PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to unfreeze SCLK MCLK DPM!", result = tmp_result); |
| |
| tmp_result = tonga_upload_dpm_level_enable_mask(hwmgr); |
| PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to upload DPM level enabled mask!", result = tmp_result); |
| |
| if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_PCIEPerformanceRequest)) { |
| tmp_result = tonga_notify_link_speed_change_after_state_change(hwmgr, input); |
| PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to notify link speed change after state change!", result = tmp_result); |
| } |
| |
| return result; |
| } |
| |
| /** |
| * Set maximum target operating fan output PWM |
| * |
| * @param pHwMgr: the address of the powerplay hardware manager. |
| * @param usMaxFanPwm: max operating fan PWM in percents |
| * @return The response that came from the SMC. |
| */ |
| static int tonga_set_max_fan_pwm_output(struct pp_hwmgr *hwmgr, uint16_t us_max_fan_pwm) |
| { |
| hwmgr->thermal_controller.advanceFanControlParameters.usMaxFanPWM = us_max_fan_pwm; |
| |
| if (phm_is_hw_access_blocked(hwmgr)) |
| return 0; |
| |
| return (0 == smum_send_msg_to_smc_with_parameter(hwmgr->smumgr, PPSMC_MSG_SetFanPwmMax, us_max_fan_pwm) ? 0 : -1); |
| } |
| |
| int tonga_notify_smc_display_config_after_ps_adjustment(struct pp_hwmgr *hwmgr) |
| { |
| uint32_t num_active_displays = 0; |
| struct cgs_display_info info = {0}; |
| info.mode_info = NULL; |
| |
| cgs_get_active_displays_info(hwmgr->device, &info); |
| |
| num_active_displays = info.display_count; |
| |
| if (num_active_displays > 1) /* to do && (pHwMgr->pPECI->displayConfiguration.bMultiMonitorInSync != TRUE)) */ |
| tonga_notify_smc_display_change(hwmgr, false); |
| else |
| tonga_notify_smc_display_change(hwmgr, true); |
| |
| return 0; |
| } |
| |
| /** |
| * Programs the display gap |
| * |
| * @param hwmgr the address of the powerplay hardware manager. |
| * @return always OK |
| */ |
| int tonga_program_display_gap(struct pp_hwmgr *hwmgr) |
| { |
| struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend); |
| uint32_t num_active_displays = 0; |
| uint32_t display_gap = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_DISPLAY_GAP_CNTL); |
| uint32_t display_gap2; |
| uint32_t pre_vbi_time_in_us; |
| uint32_t frame_time_in_us; |
| uint32_t ref_clock; |
| uint32_t refresh_rate = 0; |
| struct cgs_display_info info = {0}; |
| struct cgs_mode_info mode_info; |
| |
| info.mode_info = &mode_info; |
| |
| cgs_get_active_displays_info(hwmgr->device, &info); |
| num_active_displays = info.display_count; |
| |
| display_gap = PHM_SET_FIELD(display_gap, CG_DISPLAY_GAP_CNTL, DISP_GAP, (num_active_displays > 0)? DISPLAY_GAP_VBLANK_OR_WM : DISPLAY_GAP_IGNORE); |
| cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_DISPLAY_GAP_CNTL, display_gap); |
| |
| ref_clock = mode_info.ref_clock; |
| refresh_rate = mode_info.refresh_rate; |
| |
| if(0 == refresh_rate) |
| refresh_rate = 60; |
| |
| frame_time_in_us = 1000000 / refresh_rate; |
| |
| pre_vbi_time_in_us = frame_time_in_us - 200 - mode_info.vblank_time_us; |
| display_gap2 = pre_vbi_time_in_us * (ref_clock / 100); |
| |
| cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_DISPLAY_GAP_CNTL2, display_gap2); |
| |
| cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, data->soft_regs_start + offsetof(SMU72_SoftRegisters, PreVBlankGap), 0x64); |
| |
| cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, data->soft_regs_start + offsetof(SMU72_SoftRegisters, VBlankTimeout), (frame_time_in_us - pre_vbi_time_in_us)); |
| |
| if (num_active_displays == 1) |
| tonga_notify_smc_display_change(hwmgr, true); |
| |
| return 0; |
| } |
| |
| int tonga_display_configuration_changed_task(struct pp_hwmgr *hwmgr) |
| { |
| |
| tonga_program_display_gap(hwmgr); |
| |
| /* to do PhwTonga_CacUpdateDisplayConfiguration(pHwMgr); */ |
| return 0; |
| } |
| |
| /** |
| * Set maximum target operating fan output RPM |
| * |
| * @param pHwMgr: the address of the powerplay hardware manager. |
| * @param usMaxFanRpm: max operating fan RPM value. |
| * @return The response that came from the SMC. |
| */ |
| static int tonga_set_max_fan_rpm_output(struct pp_hwmgr *hwmgr, uint16_t us_max_fan_pwm) |
| { |
| hwmgr->thermal_controller.advanceFanControlParameters.usMaxFanRPM = us_max_fan_pwm; |
| |
| if (phm_is_hw_access_blocked(hwmgr)) |
| return 0; |
| |
| return (0 == smum_send_msg_to_smc_with_parameter(hwmgr->smumgr, PPSMC_MSG_SetFanRpmMax, us_max_fan_pwm) ? 0 : -1); |
| } |
| |
| uint32_t tonga_get_xclk(struct pp_hwmgr *hwmgr) |
| { |
| uint32_t reference_clock; |
| uint32_t tc; |
| uint32_t divide; |
| |
| ATOM_FIRMWARE_INFO *fw_info; |
| uint16_t size; |
| uint8_t frev, crev; |
| int index = GetIndexIntoMasterTable(DATA, FirmwareInfo); |
| |
| tc = PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_CLKPIN_CNTL_2, MUX_TCLK_TO_XCLK); |
| |
| if (tc) |
| return TCLK; |
| |
| fw_info = (ATOM_FIRMWARE_INFO *)cgs_atom_get_data_table(hwmgr->device, index, |
| &size, &frev, &crev); |
| |
| if (!fw_info) |
| return 0; |
| |
| reference_clock = le16_to_cpu(fw_info->usMinPixelClockPLL_Output); |
| |
| divide = PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_CLKPIN_CNTL, XTALIN_DIVIDE); |
| |
| if (0 != divide) |
| return reference_clock / 4; |
| |
| return reference_clock; |
| } |
| |
| int tonga_dpm_set_interrupt_state(void *private_data, |
| unsigned src_id, unsigned type, |
| int enabled) |
| { |
| uint32_t cg_thermal_int; |
| struct pp_hwmgr *hwmgr = ((struct pp_eventmgr *)private_data)->hwmgr; |
| |
| if (hwmgr == NULL) |
| return -EINVAL; |
| |
| switch (type) { |
| case AMD_THERMAL_IRQ_LOW_TO_HIGH: |
| if (enabled) { |
| cg_thermal_int = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_THERMAL_INT); |
| cg_thermal_int |= CG_THERMAL_INT_CTRL__THERM_INTH_MASK_MASK; |
| cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_THERMAL_INT, cg_thermal_int); |
| } else { |
| cg_thermal_int = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_THERMAL_INT); |
| cg_thermal_int &= ~CG_THERMAL_INT_CTRL__THERM_INTH_MASK_MASK; |
| cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_THERMAL_INT, cg_thermal_int); |
| } |
| break; |
| |
| case AMD_THERMAL_IRQ_HIGH_TO_LOW: |
| if (enabled) { |
| cg_thermal_int = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_THERMAL_INT); |
| cg_thermal_int |= CG_THERMAL_INT_CTRL__THERM_INTL_MASK_MASK; |
| cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_THERMAL_INT, cg_thermal_int); |
| } else { |
| cg_thermal_int = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_THERMAL_INT); |
| cg_thermal_int &= ~CG_THERMAL_INT_CTRL__THERM_INTL_MASK_MASK; |
| cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_THERMAL_INT, cg_thermal_int); |
| } |
| break; |
| default: |
| break; |
| } |
| return 0; |
| } |
| |
| int tonga_register_internal_thermal_interrupt(struct pp_hwmgr *hwmgr, |
| const void *thermal_interrupt_info) |
| { |
| int result; |
| const struct pp_interrupt_registration_info *info = |
| (const struct pp_interrupt_registration_info *)thermal_interrupt_info; |
| |
| if (info == NULL) |
| return -EINVAL; |
| |
| result = cgs_add_irq_source(hwmgr->device, 230, AMD_THERMAL_IRQ_LAST, |
| tonga_dpm_set_interrupt_state, |
| info->call_back, info->context); |
| |
| if (result) |
| return -EINVAL; |
| |
| result = cgs_add_irq_source(hwmgr->device, 231, AMD_THERMAL_IRQ_LAST, |
| tonga_dpm_set_interrupt_state, |
| info->call_back, info->context); |
| |
| if (result) |
| return -EINVAL; |
| |
| return 0; |
| } |
| |
| bool tonga_check_smc_update_required_for_display_configuration(struct pp_hwmgr *hwmgr) |
| { |
| struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend); |
| bool is_update_required = false; |
| struct cgs_display_info info = {0,0,NULL}; |
| |
| cgs_get_active_displays_info(hwmgr->device, &info); |
| |
| if (data->display_timing.num_existing_displays != info.display_count) |
| is_update_required = true; |
| /* TO DO NEED TO GET DEEP SLEEP CLOCK FROM DAL |
| if (phm_cap_enabled(hwmgr->hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SclkDeepSleep)) { |
| cgs_get_min_clock_settings(hwmgr->device, &min_clocks); |
| if(min_clocks.engineClockInSR != data->display_timing.minClockInSR) |
| is_update_required = true; |
| */ |
| return is_update_required; |
| } |
| |
| static inline bool tonga_are_power_levels_equal(const struct tonga_performance_level *pl1, |
| const struct tonga_performance_level *pl2) |
| { |
| return ((pl1->memory_clock == pl2->memory_clock) && |
| (pl1->engine_clock == pl2->engine_clock) && |
| (pl1->pcie_gen == pl2->pcie_gen) && |
| (pl1->pcie_lane == pl2->pcie_lane)); |
| } |
| |
| int tonga_check_states_equal(struct pp_hwmgr *hwmgr, const struct pp_hw_power_state *pstate1, const struct pp_hw_power_state *pstate2, bool *equal) |
| { |
| const struct tonga_power_state *psa = cast_const_phw_tonga_power_state(pstate1); |
| const struct tonga_power_state *psb = cast_const_phw_tonga_power_state(pstate2); |
| int i; |
| |
| if (equal == NULL || psa == NULL || psb == NULL) |
| return -EINVAL; |
| |
| /* If the two states don't even have the same number of performance levels they cannot be the same state. */ |
| if (psa->performance_level_count != psb->performance_level_count) { |
| *equal = false; |
| return 0; |
| } |
| |
| for (i = 0; i < psa->performance_level_count; i++) { |
| if (!tonga_are_power_levels_equal(&(psa->performance_levels[i]), &(psb->performance_levels[i]))) { |
| /* If we have found even one performance level pair that is different the states are different. */ |
| *equal = false; |
| return 0; |
| } |
| } |
| |
| /* If all performance levels are the same try to use the UVD clocks to break the tie.*/ |
| *equal = ((psa->uvd_clocks.VCLK == psb->uvd_clocks.VCLK) && (psa->uvd_clocks.DCLK == psb->uvd_clocks.DCLK)); |
| *equal &= ((psa->vce_clocks.EVCLK == psb->vce_clocks.EVCLK) && (psa->vce_clocks.ECCLK == psb->vce_clocks.ECCLK)); |
| *equal &= (psa->sclk_threshold == psb->sclk_threshold); |
| *equal &= (psa->acp_clk == psb->acp_clk); |
| |
| return 0; |
| } |
| |
| static int tonga_set_fan_control_mode(struct pp_hwmgr *hwmgr, uint32_t mode) |
| { |
| if (mode) { |
| /* stop auto-manage */ |
| if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_MicrocodeFanControl)) |
| tonga_fan_ctrl_stop_smc_fan_control(hwmgr); |
| tonga_fan_ctrl_set_static_mode(hwmgr, mode); |
| } else |
| /* restart auto-manage */ |
| tonga_fan_ctrl_reset_fan_speed_to_default(hwmgr); |
| |
| return 0; |
| } |
| |
| static int tonga_get_fan_control_mode(struct pp_hwmgr *hwmgr) |
| { |
| if (hwmgr->fan_ctrl_is_in_default_mode) |
| return hwmgr->fan_ctrl_default_mode; |
| else |
| return PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, |
| CG_FDO_CTRL2, FDO_PWM_MODE); |
| } |
| |
| static const struct pp_hwmgr_func tonga_hwmgr_funcs = { |
| .backend_init = &tonga_hwmgr_backend_init, |
| .backend_fini = &tonga_hwmgr_backend_fini, |
| .asic_setup = &tonga_setup_asic_task, |
| .dynamic_state_management_enable = &tonga_enable_dpm_tasks, |
| .apply_state_adjust_rules = tonga_apply_state_adjust_rules, |
| .force_dpm_level = &tonga_force_dpm_level, |
| .power_state_set = tonga_set_power_state_tasks, |
| .get_power_state_size = tonga_get_power_state_size, |
| .get_mclk = tonga_dpm_get_mclk, |
| .get_sclk = tonga_dpm_get_sclk, |
| .patch_boot_state = tonga_dpm_patch_boot_state, |
| .get_pp_table_entry = tonga_get_pp_table_entry, |
| .get_num_of_pp_table_entries = tonga_get_number_of_powerplay_table_entries, |
| .print_current_perforce_level = tonga_print_current_perforce_level, |
| .powerdown_uvd = tonga_phm_powerdown_uvd, |
| .powergate_uvd = tonga_phm_powergate_uvd, |
| .powergate_vce = tonga_phm_powergate_vce, |
| .disable_clock_power_gating = tonga_phm_disable_clock_power_gating, |
| .notify_smc_display_config_after_ps_adjustment = tonga_notify_smc_display_config_after_ps_adjustment, |
| .display_config_changed = tonga_display_configuration_changed_task, |
| .set_max_fan_pwm_output = tonga_set_max_fan_pwm_output, |
| .set_max_fan_rpm_output = tonga_set_max_fan_rpm_output, |
| .get_temperature = tonga_thermal_get_temperature, |
| .stop_thermal_controller = tonga_thermal_stop_thermal_controller, |
| .get_fan_speed_info = tonga_fan_ctrl_get_fan_speed_info, |
| .get_fan_speed_percent = tonga_fan_ctrl_get_fan_speed_percent, |
| .set_fan_speed_percent = tonga_fan_ctrl_set_fan_speed_percent, |
| .reset_fan_speed_to_default = tonga_fan_ctrl_reset_fan_speed_to_default, |
| .get_fan_speed_rpm = tonga_fan_ctrl_get_fan_speed_rpm, |
| .set_fan_speed_rpm = tonga_fan_ctrl_set_fan_speed_rpm, |
| .uninitialize_thermal_controller = tonga_thermal_ctrl_uninitialize_thermal_controller, |
| .register_internal_thermal_interrupt = tonga_register_internal_thermal_interrupt, |
| .check_smc_update_required_for_display_configuration = tonga_check_smc_update_required_for_display_configuration, |
| .check_states_equal = tonga_check_states_equal, |
| .set_fan_control_mode = tonga_set_fan_control_mode, |
| .get_fan_control_mode = tonga_get_fan_control_mode, |
| }; |
| |
| int tonga_hwmgr_init(struct pp_hwmgr *hwmgr) |
| { |
| tonga_hwmgr *data; |
| |
| data = kzalloc (sizeof(tonga_hwmgr), GFP_KERNEL); |
| if (data == NULL) |
| return -ENOMEM; |
| memset(data, 0x00, sizeof(tonga_hwmgr)); |
| |
| hwmgr->backend = data; |
| hwmgr->hwmgr_func = &tonga_hwmgr_funcs; |
| hwmgr->pptable_func = &tonga_pptable_funcs; |
| pp_tonga_thermal_initialize(hwmgr); |
| return 0; |
| } |
| |