blob: 6bb55e663fc36be089198204c623c30c59152bea [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
/* Copyright(c) 2018-2019 Realtek Corporation
*/
#include <linux/devcoredump.h>
#include "main.h"
#include "regd.h"
#include "fw.h"
#include "ps.h"
#include "sec.h"
#include "mac.h"
#include "coex.h"
#include "phy.h"
#include "reg.h"
#include "efuse.h"
#include "tx.h"
#include "debug.h"
#include "bf.h"
bool rtw_disable_lps_deep_mode;
EXPORT_SYMBOL(rtw_disable_lps_deep_mode);
bool rtw_bf_support = true;
unsigned int rtw_debug_mask;
EXPORT_SYMBOL(rtw_debug_mask);
module_param_named(disable_lps_deep, rtw_disable_lps_deep_mode, bool, 0644);
module_param_named(support_bf, rtw_bf_support, bool, 0644);
module_param_named(debug_mask, rtw_debug_mask, uint, 0644);
MODULE_PARM_DESC(disable_lps_deep, "Set Y to disable Deep PS");
MODULE_PARM_DESC(support_bf, "Set Y to enable beamformee support");
MODULE_PARM_DESC(debug_mask, "Debugging mask");
static struct ieee80211_channel rtw_channeltable_2g[] = {
{.center_freq = 2412, .hw_value = 1,},
{.center_freq = 2417, .hw_value = 2,},
{.center_freq = 2422, .hw_value = 3,},
{.center_freq = 2427, .hw_value = 4,},
{.center_freq = 2432, .hw_value = 5,},
{.center_freq = 2437, .hw_value = 6,},
{.center_freq = 2442, .hw_value = 7,},
{.center_freq = 2447, .hw_value = 8,},
{.center_freq = 2452, .hw_value = 9,},
{.center_freq = 2457, .hw_value = 10,},
{.center_freq = 2462, .hw_value = 11,},
{.center_freq = 2467, .hw_value = 12,},
{.center_freq = 2472, .hw_value = 13,},
{.center_freq = 2484, .hw_value = 14,},
};
static struct ieee80211_channel rtw_channeltable_5g[] = {
{.center_freq = 5180, .hw_value = 36,},
{.center_freq = 5200, .hw_value = 40,},
{.center_freq = 5220, .hw_value = 44,},
{.center_freq = 5240, .hw_value = 48,},
{.center_freq = 5260, .hw_value = 52,},
{.center_freq = 5280, .hw_value = 56,},
{.center_freq = 5300, .hw_value = 60,},
{.center_freq = 5320, .hw_value = 64,},
{.center_freq = 5500, .hw_value = 100,},
{.center_freq = 5520, .hw_value = 104,},
{.center_freq = 5540, .hw_value = 108,},
{.center_freq = 5560, .hw_value = 112,},
{.center_freq = 5580, .hw_value = 116,},
{.center_freq = 5600, .hw_value = 120,},
{.center_freq = 5620, .hw_value = 124,},
{.center_freq = 5640, .hw_value = 128,},
{.center_freq = 5660, .hw_value = 132,},
{.center_freq = 5680, .hw_value = 136,},
{.center_freq = 5700, .hw_value = 140,},
{.center_freq = 5720, .hw_value = 144,},
{.center_freq = 5745, .hw_value = 149,},
{.center_freq = 5765, .hw_value = 153,},
{.center_freq = 5785, .hw_value = 157,},
{.center_freq = 5805, .hw_value = 161,},
{.center_freq = 5825, .hw_value = 165,
.flags = IEEE80211_CHAN_NO_HT40MINUS},
};
static struct ieee80211_rate rtw_ratetable[] = {
{.bitrate = 10, .hw_value = 0x00,},
{.bitrate = 20, .hw_value = 0x01,},
{.bitrate = 55, .hw_value = 0x02,},
{.bitrate = 110, .hw_value = 0x03,},
{.bitrate = 60, .hw_value = 0x04,},
{.bitrate = 90, .hw_value = 0x05,},
{.bitrate = 120, .hw_value = 0x06,},
{.bitrate = 180, .hw_value = 0x07,},
{.bitrate = 240, .hw_value = 0x08,},
{.bitrate = 360, .hw_value = 0x09,},
{.bitrate = 480, .hw_value = 0x0a,},
{.bitrate = 540, .hw_value = 0x0b,},
};
u16 rtw_desc_to_bitrate(u8 desc_rate)
{
struct ieee80211_rate rate;
if (WARN(desc_rate >= ARRAY_SIZE(rtw_ratetable), "invalid desc rate\n"))
return 0;
rate = rtw_ratetable[desc_rate];
return rate.bitrate;
}
static struct ieee80211_supported_band rtw_band_2ghz = {
.band = NL80211_BAND_2GHZ,
.channels = rtw_channeltable_2g,
.n_channels = ARRAY_SIZE(rtw_channeltable_2g),
.bitrates = rtw_ratetable,
.n_bitrates = ARRAY_SIZE(rtw_ratetable),
.ht_cap = {0},
.vht_cap = {0},
};
static struct ieee80211_supported_band rtw_band_5ghz = {
.band = NL80211_BAND_5GHZ,
.channels = rtw_channeltable_5g,
.n_channels = ARRAY_SIZE(rtw_channeltable_5g),
/* 5G has no CCK rates */
.bitrates = rtw_ratetable + 4,
.n_bitrates = ARRAY_SIZE(rtw_ratetable) - 4,
.ht_cap = {0},
.vht_cap = {0},
};
struct rtw_watch_dog_iter_data {
struct rtw_dev *rtwdev;
struct rtw_vif *rtwvif;
};
static void rtw_dynamic_csi_rate(struct rtw_dev *rtwdev, struct rtw_vif *rtwvif)
{
struct rtw_bf_info *bf_info = &rtwdev->bf_info;
u8 fix_rate_enable = 0;
u8 new_csi_rate_idx;
if (rtwvif->bfee.role != RTW_BFEE_SU &&
rtwvif->bfee.role != RTW_BFEE_MU)
return;
rtw_chip_cfg_csi_rate(rtwdev, rtwdev->dm_info.min_rssi,
bf_info->cur_csi_rpt_rate,
fix_rate_enable, &new_csi_rate_idx);
if (new_csi_rate_idx != bf_info->cur_csi_rpt_rate)
bf_info->cur_csi_rpt_rate = new_csi_rate_idx;
}
static void rtw_vif_watch_dog_iter(void *data, u8 *mac,
struct ieee80211_vif *vif)
{
struct rtw_watch_dog_iter_data *iter_data = data;
struct rtw_vif *rtwvif = (struct rtw_vif *)vif->drv_priv;
if (vif->type == NL80211_IFTYPE_STATION)
if (vif->bss_conf.assoc)
iter_data->rtwvif = rtwvif;
rtw_dynamic_csi_rate(iter_data->rtwdev, rtwvif);
rtwvif->stats.tx_unicast = 0;
rtwvif->stats.rx_unicast = 0;
rtwvif->stats.tx_cnt = 0;
rtwvif->stats.rx_cnt = 0;
}
/* process TX/RX statistics periodically for hardware,
* the information helps hardware to enhance performance
*/
static void rtw_watch_dog_work(struct work_struct *work)
{
struct rtw_dev *rtwdev = container_of(work, struct rtw_dev,
watch_dog_work.work);
struct rtw_traffic_stats *stats = &rtwdev->stats;
struct rtw_watch_dog_iter_data data = {};
bool busy_traffic = test_bit(RTW_FLAG_BUSY_TRAFFIC, rtwdev->flags);
bool ps_active;
mutex_lock(&rtwdev->mutex);
if (!test_bit(RTW_FLAG_RUNNING, rtwdev->flags))
goto unlock;
ieee80211_queue_delayed_work(rtwdev->hw, &rtwdev->watch_dog_work,
RTW_WATCH_DOG_DELAY_TIME);
if (rtwdev->stats.tx_cnt > 100 || rtwdev->stats.rx_cnt > 100)
set_bit(RTW_FLAG_BUSY_TRAFFIC, rtwdev->flags);
else
clear_bit(RTW_FLAG_BUSY_TRAFFIC, rtwdev->flags);
if (busy_traffic != test_bit(RTW_FLAG_BUSY_TRAFFIC, rtwdev->flags))
rtw_coex_wl_status_change_notify(rtwdev, 0);
if (stats->tx_cnt > RTW_LPS_THRESHOLD ||
stats->rx_cnt > RTW_LPS_THRESHOLD)
ps_active = true;
else
ps_active = false;
ewma_tp_add(&stats->tx_ewma_tp,
(u32)(stats->tx_unicast >> RTW_TP_SHIFT));
ewma_tp_add(&stats->rx_ewma_tp,
(u32)(stats->rx_unicast >> RTW_TP_SHIFT));
stats->tx_throughput = ewma_tp_read(&stats->tx_ewma_tp);
stats->rx_throughput = ewma_tp_read(&stats->rx_ewma_tp);
/* reset tx/rx statictics */
stats->tx_unicast = 0;
stats->rx_unicast = 0;
stats->tx_cnt = 0;
stats->rx_cnt = 0;
if (test_bit(RTW_FLAG_SCANNING, rtwdev->flags))
goto unlock;
/* make sure BB/RF is working for dynamic mech */
rtw_leave_lps(rtwdev);
rtw_phy_dynamic_mechanism(rtwdev);
data.rtwdev = rtwdev;
/* use atomic version to avoid taking local->iflist_mtx mutex */
rtw_iterate_vifs_atomic(rtwdev, rtw_vif_watch_dog_iter, &data);
/* fw supports only one station associated to enter lps, if there are
* more than two stations associated to the AP, then we can not enter
* lps, because fw does not handle the overlapped beacon interval
*
* mac80211 should iterate vifs and determine if driver can enter
* ps by passing IEEE80211_CONF_PS to us, all we need to do is to
* get that vif and check if device is having traffic more than the
* threshold.
*/
if (rtwdev->ps_enabled && data.rtwvif && !ps_active &&
!rtwdev->beacon_loss)
rtw_enter_lps(rtwdev, data.rtwvif->port);
rtwdev->watch_dog_cnt++;
unlock:
mutex_unlock(&rtwdev->mutex);
}
static void rtw_c2h_work(struct work_struct *work)
{
struct rtw_dev *rtwdev = container_of(work, struct rtw_dev, c2h_work);
struct sk_buff *skb, *tmp;
skb_queue_walk_safe(&rtwdev->c2h_queue, skb, tmp) {
skb_unlink(skb, &rtwdev->c2h_queue);
rtw_fw_c2h_cmd_handle(rtwdev, skb);
dev_kfree_skb_any(skb);
}
}
static u8 rtw_acquire_macid(struct rtw_dev *rtwdev)
{
unsigned long mac_id;
mac_id = find_first_zero_bit(rtwdev->mac_id_map, RTW_MAX_MAC_ID_NUM);
if (mac_id < RTW_MAX_MAC_ID_NUM)
set_bit(mac_id, rtwdev->mac_id_map);
return mac_id;
}
int rtw_sta_add(struct rtw_dev *rtwdev, struct ieee80211_sta *sta,
struct ieee80211_vif *vif)
{
struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv;
int i;
si->mac_id = rtw_acquire_macid(rtwdev);
if (si->mac_id >= RTW_MAX_MAC_ID_NUM)
return -ENOSPC;
si->sta = sta;
si->vif = vif;
si->init_ra_lv = 1;
ewma_rssi_init(&si->avg_rssi);
for (i = 0; i < ARRAY_SIZE(sta->txq); i++)
rtw_txq_init(rtwdev, sta->txq[i]);
rtw_update_sta_info(rtwdev, si);
rtw_fw_media_status_report(rtwdev, si->mac_id, true);
rtwdev->sta_cnt++;
rtwdev->beacon_loss = false;
rtw_info(rtwdev, "sta %pM joined with macid %d\n",
sta->addr, si->mac_id);
return 0;
}
void rtw_sta_remove(struct rtw_dev *rtwdev, struct ieee80211_sta *sta,
bool fw_exist)
{
struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv;
int i;
rtw_release_macid(rtwdev, si->mac_id);
if (fw_exist)
rtw_fw_media_status_report(rtwdev, si->mac_id, false);
for (i = 0; i < ARRAY_SIZE(sta->txq); i++)
rtw_txq_cleanup(rtwdev, sta->txq[i]);
kfree(si->mask);
rtwdev->sta_cnt--;
rtw_info(rtwdev, "sta %pM with macid %d left\n",
sta->addr, si->mac_id);
}
struct rtw_fwcd_hdr {
u32 item;
u32 size;
u32 padding1;
u32 padding2;
} __packed;
static int rtw_fwcd_prep(struct rtw_dev *rtwdev)
{
struct rtw_chip_info *chip = rtwdev->chip;
struct rtw_fwcd_desc *desc = &rtwdev->fw.fwcd_desc;
const struct rtw_fwcd_segs *segs = chip->fwcd_segs;
u32 prep_size = chip->fw_rxff_size + sizeof(struct rtw_fwcd_hdr);
u8 i;
if (segs) {
prep_size += segs->num * sizeof(struct rtw_fwcd_hdr);
for (i = 0; i < segs->num; i++)
prep_size += segs->segs[i];
}
desc->data = vmalloc(prep_size);
if (!desc->data)
return -ENOMEM;
desc->size = prep_size;
desc->next = desc->data;
return 0;
}
static u8 *rtw_fwcd_next(struct rtw_dev *rtwdev, u32 item, u32 size)
{
struct rtw_fwcd_desc *desc = &rtwdev->fw.fwcd_desc;
struct rtw_fwcd_hdr *hdr;
u8 *next;
if (!desc->data) {
rtw_dbg(rtwdev, RTW_DBG_FW, "fwcd isn't prepared successfully\n");
return NULL;
}
next = desc->next + sizeof(struct rtw_fwcd_hdr);
if (next - desc->data + size > desc->size) {
rtw_dbg(rtwdev, RTW_DBG_FW, "fwcd isn't prepared enough\n");
return NULL;
}
hdr = (struct rtw_fwcd_hdr *)(desc->next);
hdr->item = item;
hdr->size = size;
hdr->padding1 = 0x01234567;
hdr->padding2 = 0x89abcdef;
desc->next = next + size;
return next;
}
static void rtw_fwcd_dump(struct rtw_dev *rtwdev)
{
struct rtw_fwcd_desc *desc = &rtwdev->fw.fwcd_desc;
rtw_dbg(rtwdev, RTW_DBG_FW, "dump fwcd\n");
/* Data will be freed after lifetime of device coredump. After calling
* dev_coredump, data is supposed to be handled by the device coredump
* framework. Note that a new dump will be discarded if a previous one
* hasn't been released yet.
*/
dev_coredumpv(rtwdev->dev, desc->data, desc->size, GFP_KERNEL);
}
static void rtw_fwcd_free(struct rtw_dev *rtwdev, bool free_self)
{
struct rtw_fwcd_desc *desc = &rtwdev->fw.fwcd_desc;
if (free_self) {
rtw_dbg(rtwdev, RTW_DBG_FW, "free fwcd by self\n");
vfree(desc->data);
}
desc->data = NULL;
desc->next = NULL;
}
static int rtw_fw_dump_crash_log(struct rtw_dev *rtwdev)
{
u32 size = rtwdev->chip->fw_rxff_size;
u32 *buf;
u8 seq;
buf = (u32 *)rtw_fwcd_next(rtwdev, RTW_FWCD_TLV, size);
if (!buf)
return -ENOMEM;
if (rtw_fw_dump_fifo(rtwdev, RTW_FW_FIFO_SEL_RXBUF_FW, 0, size, buf)) {
rtw_dbg(rtwdev, RTW_DBG_FW, "dump fw fifo fail\n");
return -EINVAL;
}
if (GET_FW_DUMP_LEN(buf) == 0) {
rtw_dbg(rtwdev, RTW_DBG_FW, "fw crash dump's length is 0\n");
return -EINVAL;
}
seq = GET_FW_DUMP_SEQ(buf);
if (seq > 0) {
rtw_dbg(rtwdev, RTW_DBG_FW,
"fw crash dump's seq is wrong: %d\n", seq);
return -EINVAL;
}
return 0;
}
int rtw_dump_fw(struct rtw_dev *rtwdev, const u32 ocp_src, u32 size,
u32 fwcd_item)
{
u32 rxff = rtwdev->chip->fw_rxff_size;
u32 dump_size, done_size = 0;
u8 *buf;
int ret;
buf = rtw_fwcd_next(rtwdev, fwcd_item, size);
if (!buf)
return -ENOMEM;
while (size) {
dump_size = size > rxff ? rxff : size;
ret = rtw_ddma_to_fw_fifo(rtwdev, ocp_src + done_size,
dump_size);
if (ret) {
rtw_err(rtwdev,
"ddma fw 0x%x [+0x%x] to fw fifo fail\n",
ocp_src, done_size);
return ret;
}
ret = rtw_fw_dump_fifo(rtwdev, RTW_FW_FIFO_SEL_RXBUF_FW, 0,
dump_size, (u32 *)(buf + done_size));
if (ret) {
rtw_err(rtwdev,
"dump fw 0x%x [+0x%x] from fw fifo fail\n",
ocp_src, done_size);
return ret;
}
size -= dump_size;
done_size += dump_size;
}
return 0;
}
EXPORT_SYMBOL(rtw_dump_fw);
int rtw_dump_reg(struct rtw_dev *rtwdev, const u32 addr, const u32 size)
{
u8 *buf;
u32 i;
if (addr & 0x3) {
WARN(1, "should be 4-byte aligned, addr = 0x%08x\n", addr);
return -EINVAL;
}
buf = rtw_fwcd_next(rtwdev, RTW_FWCD_REG, size);
if (!buf)
return -ENOMEM;
for (i = 0; i < size; i += 4)
*(u32 *)(buf + i) = rtw_read32(rtwdev, addr + i);
return 0;
}
EXPORT_SYMBOL(rtw_dump_reg);
void rtw_vif_assoc_changed(struct rtw_vif *rtwvif,
struct ieee80211_bss_conf *conf)
{
if (conf && conf->assoc) {
rtwvif->aid = conf->aid;
rtwvif->net_type = RTW_NET_MGD_LINKED;
} else {
rtwvif->aid = 0;
rtwvif->net_type = RTW_NET_NO_LINK;
}
}
static void rtw_reset_key_iter(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
struct ieee80211_sta *sta,
struct ieee80211_key_conf *key,
void *data)
{
struct rtw_dev *rtwdev = (struct rtw_dev *)data;
struct rtw_sec_desc *sec = &rtwdev->sec;
rtw_sec_clear_cam(rtwdev, sec, key->hw_key_idx);
}
static void rtw_reset_sta_iter(void *data, struct ieee80211_sta *sta)
{
struct rtw_dev *rtwdev = (struct rtw_dev *)data;
if (rtwdev->sta_cnt == 0) {
rtw_warn(rtwdev, "sta count before reset should not be 0\n");
return;
}
rtw_sta_remove(rtwdev, sta, false);
}
static void rtw_reset_vif_iter(void *data, u8 *mac, struct ieee80211_vif *vif)
{
struct rtw_dev *rtwdev = (struct rtw_dev *)data;
struct rtw_vif *rtwvif = (struct rtw_vif *)vif->drv_priv;
rtw_bf_disassoc(rtwdev, vif, NULL);
rtw_vif_assoc_changed(rtwvif, NULL);
rtw_txq_cleanup(rtwdev, vif->txq);
}
void rtw_fw_recovery(struct rtw_dev *rtwdev)
{
if (!test_bit(RTW_FLAG_RESTARTING, rtwdev->flags))
ieee80211_queue_work(rtwdev->hw, &rtwdev->fw_recovery_work);
}
static void __fw_recovery_work(struct rtw_dev *rtwdev)
{
int ret = 0;
set_bit(RTW_FLAG_RESTARTING, rtwdev->flags);
ret = rtw_fwcd_prep(rtwdev);
if (ret)
goto free;
ret = rtw_fw_dump_crash_log(rtwdev);
if (ret)
goto free;
ret = rtw_chip_dump_fw_crash(rtwdev);
if (ret)
goto free;
rtw_fwcd_dump(rtwdev);
free:
rtw_fwcd_free(rtwdev, !!ret);
rtw_write8(rtwdev, REG_MCU_TST_CFG, 0);
WARN(1, "firmware crash, start reset and recover\n");
rcu_read_lock();
rtw_iterate_keys_rcu(rtwdev, NULL, rtw_reset_key_iter, rtwdev);
rcu_read_unlock();
rtw_iterate_stas_atomic(rtwdev, rtw_reset_sta_iter, rtwdev);
rtw_iterate_vifs_atomic(rtwdev, rtw_reset_vif_iter, rtwdev);
rtw_enter_ips(rtwdev);
}
static void rtw_fw_recovery_work(struct work_struct *work)
{
struct rtw_dev *rtwdev = container_of(work, struct rtw_dev,
fw_recovery_work);
mutex_lock(&rtwdev->mutex);
__fw_recovery_work(rtwdev);
mutex_unlock(&rtwdev->mutex);
ieee80211_restart_hw(rtwdev->hw);
}
struct rtw_txq_ba_iter_data {
};
static void rtw_txq_ba_iter(void *data, struct ieee80211_sta *sta)
{
struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv;
int ret;
u8 tid;
tid = find_first_bit(si->tid_ba, IEEE80211_NUM_TIDS);
while (tid != IEEE80211_NUM_TIDS) {
clear_bit(tid, si->tid_ba);
ret = ieee80211_start_tx_ba_session(sta, tid, 0);
if (ret == -EINVAL) {
struct ieee80211_txq *txq;
struct rtw_txq *rtwtxq;
txq = sta->txq[tid];
rtwtxq = (struct rtw_txq *)txq->drv_priv;
set_bit(RTW_TXQ_BLOCK_BA, &rtwtxq->flags);
}
tid = find_first_bit(si->tid_ba, IEEE80211_NUM_TIDS);
}
}
static void rtw_txq_ba_work(struct work_struct *work)
{
struct rtw_dev *rtwdev = container_of(work, struct rtw_dev, ba_work);
struct rtw_txq_ba_iter_data data;
rtw_iterate_stas_atomic(rtwdev, rtw_txq_ba_iter, &data);
}
void rtw_get_channel_params(struct cfg80211_chan_def *chandef,
struct rtw_channel_params *chan_params)
{
struct ieee80211_channel *channel = chandef->chan;
enum nl80211_chan_width width = chandef->width;
u8 *cch_by_bw = chan_params->cch_by_bw;
u32 primary_freq, center_freq;
u8 center_chan;
u8 bandwidth = RTW_CHANNEL_WIDTH_20;
u8 primary_chan_idx = 0;
u8 i;
center_chan = channel->hw_value;
primary_freq = channel->center_freq;
center_freq = chandef->center_freq1;
/* assign the center channel used while 20M bw is selected */
cch_by_bw[RTW_CHANNEL_WIDTH_20] = channel->hw_value;
switch (width) {
case NL80211_CHAN_WIDTH_20_NOHT:
case NL80211_CHAN_WIDTH_20:
bandwidth = RTW_CHANNEL_WIDTH_20;
primary_chan_idx = RTW_SC_DONT_CARE;
break;
case NL80211_CHAN_WIDTH_40:
bandwidth = RTW_CHANNEL_WIDTH_40;
if (primary_freq > center_freq) {
primary_chan_idx = RTW_SC_20_UPPER;
center_chan -= 2;
} else {
primary_chan_idx = RTW_SC_20_LOWER;
center_chan += 2;
}
break;
case NL80211_CHAN_WIDTH_80:
bandwidth = RTW_CHANNEL_WIDTH_80;
if (primary_freq > center_freq) {
if (primary_freq - center_freq == 10) {
primary_chan_idx = RTW_SC_20_UPPER;
center_chan -= 2;
} else {
primary_chan_idx = RTW_SC_20_UPMOST;
center_chan -= 6;
}
/* assign the center channel used
* while 40M bw is selected
*/
cch_by_bw[RTW_CHANNEL_WIDTH_40] = center_chan + 4;
} else {
if (center_freq - primary_freq == 10) {
primary_chan_idx = RTW_SC_20_LOWER;
center_chan += 2;
} else {
primary_chan_idx = RTW_SC_20_LOWEST;
center_chan += 6;
}
/* assign the center channel used
* while 40M bw is selected
*/
cch_by_bw[RTW_CHANNEL_WIDTH_40] = center_chan - 4;
}
break;
default:
center_chan = 0;
break;
}
chan_params->center_chan = center_chan;
chan_params->bandwidth = bandwidth;
chan_params->primary_chan_idx = primary_chan_idx;
/* assign the center channel used while current bw is selected */
cch_by_bw[bandwidth] = center_chan;
for (i = bandwidth + 1; i <= RTW_MAX_CHANNEL_WIDTH; i++)
cch_by_bw[i] = 0;
}
void rtw_set_channel(struct rtw_dev *rtwdev)
{
struct ieee80211_hw *hw = rtwdev->hw;
struct rtw_hal *hal = &rtwdev->hal;
struct rtw_chip_info *chip = rtwdev->chip;
struct rtw_channel_params ch_param;
u8 center_chan, bandwidth, primary_chan_idx;
u8 i;
rtw_get_channel_params(&hw->conf.chandef, &ch_param);
if (WARN(ch_param.center_chan == 0, "Invalid channel\n"))
return;
center_chan = ch_param.center_chan;
bandwidth = ch_param.bandwidth;
primary_chan_idx = ch_param.primary_chan_idx;
hal->current_band_width = bandwidth;
hal->current_channel = center_chan;
hal->current_band_type = center_chan > 14 ? RTW_BAND_5G : RTW_BAND_2G;
for (i = RTW_CHANNEL_WIDTH_20; i <= RTW_MAX_CHANNEL_WIDTH; i++)
hal->cch_by_bw[i] = ch_param.cch_by_bw[i];
chip->ops->set_channel(rtwdev, center_chan, bandwidth, primary_chan_idx);
if (hal->current_band_type == RTW_BAND_5G) {
rtw_coex_switchband_notify(rtwdev, COEX_SWITCH_TO_5G);
} else {
if (test_bit(RTW_FLAG_SCANNING, rtwdev->flags))
rtw_coex_switchband_notify(rtwdev, COEX_SWITCH_TO_24G);
else
rtw_coex_switchband_notify(rtwdev, COEX_SWITCH_TO_24G_NOFORSCAN);
}
rtw_phy_set_tx_power_level(rtwdev, center_chan);
/* if the channel isn't set for scanning, we will do RF calibration
* in ieee80211_ops::mgd_prepare_tx(). Performing the calibration
* during scanning on each channel takes too long.
*/
if (!test_bit(RTW_FLAG_SCANNING, rtwdev->flags))
rtwdev->need_rfk = true;
}
void rtw_chip_prepare_tx(struct rtw_dev *rtwdev)
{
struct rtw_chip_info *chip = rtwdev->chip;
if (rtwdev->need_rfk) {
rtwdev->need_rfk = false;
chip->ops->phy_calibration(rtwdev);
}
}
static void rtw_vif_write_addr(struct rtw_dev *rtwdev, u32 start, u8 *addr)
{
int i;
for (i = 0; i < ETH_ALEN; i++)
rtw_write8(rtwdev, start + i, addr[i]);
}
void rtw_vif_port_config(struct rtw_dev *rtwdev,
struct rtw_vif *rtwvif,
u32 config)
{
u32 addr, mask;
if (config & PORT_SET_MAC_ADDR) {
addr = rtwvif->conf->mac_addr.addr;
rtw_vif_write_addr(rtwdev, addr, rtwvif->mac_addr);
}
if (config & PORT_SET_BSSID) {
addr = rtwvif->conf->bssid.addr;
rtw_vif_write_addr(rtwdev, addr, rtwvif->bssid);
}
if (config & PORT_SET_NET_TYPE) {
addr = rtwvif->conf->net_type.addr;
mask = rtwvif->conf->net_type.mask;
rtw_write32_mask(rtwdev, addr, mask, rtwvif->net_type);
}
if (config & PORT_SET_AID) {
addr = rtwvif->conf->aid.addr;
mask = rtwvif->conf->aid.mask;
rtw_write32_mask(rtwdev, addr, mask, rtwvif->aid);
}
if (config & PORT_SET_BCN_CTRL) {
addr = rtwvif->conf->bcn_ctrl.addr;
mask = rtwvif->conf->bcn_ctrl.mask;
rtw_write8_mask(rtwdev, addr, mask, rtwvif->bcn_ctrl);
}
}
static u8 hw_bw_cap_to_bitamp(u8 bw_cap)
{
u8 bw = 0;
switch (bw_cap) {
case EFUSE_HW_CAP_IGNORE:
case EFUSE_HW_CAP_SUPP_BW80:
bw |= BIT(RTW_CHANNEL_WIDTH_80);
fallthrough;
case EFUSE_HW_CAP_SUPP_BW40:
bw |= BIT(RTW_CHANNEL_WIDTH_40);
fallthrough;
default:
bw |= BIT(RTW_CHANNEL_WIDTH_20);
break;
}
return bw;
}
static void rtw_hw_config_rf_ant_num(struct rtw_dev *rtwdev, u8 hw_ant_num)
{
struct rtw_hal *hal = &rtwdev->hal;
struct rtw_chip_info *chip = rtwdev->chip;
if (hw_ant_num == EFUSE_HW_CAP_IGNORE ||
hw_ant_num >= hal->rf_path_num)
return;
switch (hw_ant_num) {
case 1:
hal->rf_type = RF_1T1R;
hal->rf_path_num = 1;
if (!chip->fix_rf_phy_num)
hal->rf_phy_num = hal->rf_path_num;
hal->antenna_tx = BB_PATH_A;
hal->antenna_rx = BB_PATH_A;
break;
default:
WARN(1, "invalid hw configuration from efuse\n");
break;
}
}
static u64 get_vht_ra_mask(struct ieee80211_sta *sta)
{
u64 ra_mask = 0;
u16 mcs_map = le16_to_cpu(sta->vht_cap.vht_mcs.rx_mcs_map);
u8 vht_mcs_cap;
int i, nss;
/* 4SS, every two bits for MCS7/8/9 */
for (i = 0, nss = 12; i < 4; i++, mcs_map >>= 2, nss += 10) {
vht_mcs_cap = mcs_map & 0x3;
switch (vht_mcs_cap) {
case 2: /* MCS9 */
ra_mask |= 0x3ffULL << nss;
break;
case 1: /* MCS8 */
ra_mask |= 0x1ffULL << nss;
break;
case 0: /* MCS7 */
ra_mask |= 0x0ffULL << nss;
break;
default:
break;
}
}
return ra_mask;
}
static u8 get_rate_id(u8 wireless_set, enum rtw_bandwidth bw_mode, u8 tx_num)
{
u8 rate_id = 0;
switch (wireless_set) {
case WIRELESS_CCK:
rate_id = RTW_RATEID_B_20M;
break;
case WIRELESS_OFDM:
rate_id = RTW_RATEID_G;
break;
case WIRELESS_CCK | WIRELESS_OFDM:
rate_id = RTW_RATEID_BG;
break;
case WIRELESS_OFDM | WIRELESS_HT:
if (tx_num == 1)
rate_id = RTW_RATEID_GN_N1SS;
else if (tx_num == 2)
rate_id = RTW_RATEID_GN_N2SS;
else if (tx_num == 3)
rate_id = RTW_RATEID_ARFR5_N_3SS;
break;
case WIRELESS_CCK | WIRELESS_OFDM | WIRELESS_HT:
if (bw_mode == RTW_CHANNEL_WIDTH_40) {
if (tx_num == 1)
rate_id = RTW_RATEID_BGN_40M_1SS;
else if (tx_num == 2)
rate_id = RTW_RATEID_BGN_40M_2SS;
else if (tx_num == 3)
rate_id = RTW_RATEID_ARFR5_N_3SS;
else if (tx_num == 4)
rate_id = RTW_RATEID_ARFR7_N_4SS;
} else {
if (tx_num == 1)
rate_id = RTW_RATEID_BGN_20M_1SS;
else if (tx_num == 2)
rate_id = RTW_RATEID_BGN_20M_2SS;
else if (tx_num == 3)
rate_id = RTW_RATEID_ARFR5_N_3SS;
else if (tx_num == 4)
rate_id = RTW_RATEID_ARFR7_N_4SS;
}
break;
case WIRELESS_OFDM | WIRELESS_VHT:
if (tx_num == 1)
rate_id = RTW_RATEID_ARFR1_AC_1SS;
else if (tx_num == 2)
rate_id = RTW_RATEID_ARFR0_AC_2SS;
else if (tx_num == 3)
rate_id = RTW_RATEID_ARFR4_AC_3SS;
else if (tx_num == 4)
rate_id = RTW_RATEID_ARFR6_AC_4SS;
break;
case WIRELESS_CCK | WIRELESS_OFDM | WIRELESS_VHT:
if (bw_mode >= RTW_CHANNEL_WIDTH_80) {
if (tx_num == 1)
rate_id = RTW_RATEID_ARFR1_AC_1SS;
else if (tx_num == 2)
rate_id = RTW_RATEID_ARFR0_AC_2SS;
else if (tx_num == 3)
rate_id = RTW_RATEID_ARFR4_AC_3SS;
else if (tx_num == 4)
rate_id = RTW_RATEID_ARFR6_AC_4SS;
} else {
if (tx_num == 1)
rate_id = RTW_RATEID_ARFR2_AC_2G_1SS;
else if (tx_num == 2)
rate_id = RTW_RATEID_ARFR3_AC_2G_2SS;
else if (tx_num == 3)
rate_id = RTW_RATEID_ARFR4_AC_3SS;
else if (tx_num == 4)
rate_id = RTW_RATEID_ARFR6_AC_4SS;
}
break;
default:
break;
}
return rate_id;
}
#define RA_MASK_CCK_RATES 0x0000f
#define RA_MASK_OFDM_RATES 0x00ff0
#define RA_MASK_HT_RATES_1SS (0xff000ULL << 0)
#define RA_MASK_HT_RATES_2SS (0xff000ULL << 8)
#define RA_MASK_HT_RATES_3SS (0xff000ULL << 16)
#define RA_MASK_HT_RATES (RA_MASK_HT_RATES_1SS | \
RA_MASK_HT_RATES_2SS | \
RA_MASK_HT_RATES_3SS)
#define RA_MASK_VHT_RATES_1SS (0x3ff000ULL << 0)
#define RA_MASK_VHT_RATES_2SS (0x3ff000ULL << 10)
#define RA_MASK_VHT_RATES_3SS (0x3ff000ULL << 20)
#define RA_MASK_VHT_RATES (RA_MASK_VHT_RATES_1SS | \
RA_MASK_VHT_RATES_2SS | \
RA_MASK_VHT_RATES_3SS)
#define RA_MASK_CCK_IN_HT 0x00005
#define RA_MASK_CCK_IN_VHT 0x00005
#define RA_MASK_OFDM_IN_VHT 0x00010
#define RA_MASK_OFDM_IN_HT_2G 0x00010
#define RA_MASK_OFDM_IN_HT_5G 0x00030
static u64 rtw_update_rate_mask(struct rtw_dev *rtwdev,
struct rtw_sta_info *si,
u64 ra_mask, bool is_vht_enable,
u8 wireless_set)
{
struct rtw_hal *hal = &rtwdev->hal;
const struct cfg80211_bitrate_mask *mask = si->mask;
u64 cfg_mask = GENMASK_ULL(63, 0);
u8 rssi_level, band;
if (wireless_set != WIRELESS_CCK) {
rssi_level = si->rssi_level;
if (rssi_level == 0)
ra_mask &= 0xffffffffffffffffULL;
else if (rssi_level == 1)
ra_mask &= 0xfffffffffffffff0ULL;
else if (rssi_level == 2)
ra_mask &= 0xffffffffffffefe0ULL;
else if (rssi_level == 3)
ra_mask &= 0xffffffffffffcfc0ULL;
else if (rssi_level == 4)
ra_mask &= 0xffffffffffff8f80ULL;
else if (rssi_level >= 5)
ra_mask &= 0xffffffffffff0f00ULL;
}
if (!si->use_cfg_mask)
return ra_mask;
band = hal->current_band_type;
if (band == RTW_BAND_2G) {
band = NL80211_BAND_2GHZ;
cfg_mask = mask->control[band].legacy;
} else if (band == RTW_BAND_5G) {
band = NL80211_BAND_5GHZ;
cfg_mask = u64_encode_bits(mask->control[band].legacy,
RA_MASK_OFDM_RATES);
}
if (!is_vht_enable) {
if (ra_mask & RA_MASK_HT_RATES_1SS)
cfg_mask |= u64_encode_bits(mask->control[band].ht_mcs[0],
RA_MASK_HT_RATES_1SS);
if (ra_mask & RA_MASK_HT_RATES_2SS)
cfg_mask |= u64_encode_bits(mask->control[band].ht_mcs[1],
RA_MASK_HT_RATES_2SS);
} else {
if (ra_mask & RA_MASK_VHT_RATES_1SS)
cfg_mask |= u64_encode_bits(mask->control[band].vht_mcs[0],
RA_MASK_VHT_RATES_1SS);
if (ra_mask & RA_MASK_VHT_RATES_2SS)
cfg_mask |= u64_encode_bits(mask->control[band].vht_mcs[1],
RA_MASK_VHT_RATES_2SS);
}
ra_mask &= cfg_mask;
return ra_mask;
}
void rtw_update_sta_info(struct rtw_dev *rtwdev, struct rtw_sta_info *si)
{
struct rtw_dm_info *dm_info = &rtwdev->dm_info;
struct ieee80211_sta *sta = si->sta;
struct rtw_efuse *efuse = &rtwdev->efuse;
struct rtw_hal *hal = &rtwdev->hal;
u8 wireless_set;
u8 bw_mode;
u8 rate_id;
u8 rf_type = RF_1T1R;
u8 stbc_en = 0;
u8 ldpc_en = 0;
u8 tx_num = 1;
u64 ra_mask = 0;
bool is_vht_enable = false;
bool is_support_sgi = false;
if (sta->vht_cap.vht_supported) {
is_vht_enable = true;
ra_mask |= get_vht_ra_mask(sta);
if (sta->vht_cap.cap & IEEE80211_VHT_CAP_RXSTBC_MASK)
stbc_en = VHT_STBC_EN;
if (sta->vht_cap.cap & IEEE80211_VHT_CAP_RXLDPC)
ldpc_en = VHT_LDPC_EN;
} else if (sta->ht_cap.ht_supported) {
ra_mask |= (sta->ht_cap.mcs.rx_mask[1] << 20) |
(sta->ht_cap.mcs.rx_mask[0] << 12);
if (sta->ht_cap.cap & IEEE80211_HT_CAP_RX_STBC)
stbc_en = HT_STBC_EN;
if (sta->ht_cap.cap & IEEE80211_HT_CAP_LDPC_CODING)
ldpc_en = HT_LDPC_EN;
}
if (efuse->hw_cap.nss == 1)
ra_mask &= RA_MASK_VHT_RATES_1SS | RA_MASK_HT_RATES_1SS;
if (hal->current_band_type == RTW_BAND_5G) {
ra_mask |= (u64)sta->supp_rates[NL80211_BAND_5GHZ] << 4;
if (sta->vht_cap.vht_supported) {
ra_mask &= RA_MASK_VHT_RATES | RA_MASK_OFDM_IN_VHT;
wireless_set = WIRELESS_OFDM | WIRELESS_VHT;
} else if (sta->ht_cap.ht_supported) {
ra_mask &= RA_MASK_HT_RATES | RA_MASK_OFDM_IN_HT_5G;
wireless_set = WIRELESS_OFDM | WIRELESS_HT;
} else {
wireless_set = WIRELESS_OFDM;
}
dm_info->rrsr_val_init = RRSR_INIT_5G;
} else if (hal->current_band_type == RTW_BAND_2G) {
ra_mask |= sta->supp_rates[NL80211_BAND_2GHZ];
if (sta->vht_cap.vht_supported) {
ra_mask &= RA_MASK_VHT_RATES | RA_MASK_CCK_IN_VHT |
RA_MASK_OFDM_IN_VHT;
wireless_set = WIRELESS_CCK | WIRELESS_OFDM |
WIRELESS_HT | WIRELESS_VHT;
} else if (sta->ht_cap.ht_supported) {
ra_mask &= RA_MASK_HT_RATES | RA_MASK_CCK_IN_HT |
RA_MASK_OFDM_IN_HT_2G;
wireless_set = WIRELESS_CCK | WIRELESS_OFDM |
WIRELESS_HT;
} else if (sta->supp_rates[0] <= 0xf) {
wireless_set = WIRELESS_CCK;
} else {
wireless_set = WIRELESS_CCK | WIRELESS_OFDM;
}
dm_info->rrsr_val_init = RRSR_INIT_2G;
} else {
rtw_err(rtwdev, "Unknown band type\n");
wireless_set = 0;
}
switch (sta->bandwidth) {
case IEEE80211_STA_RX_BW_80:
bw_mode = RTW_CHANNEL_WIDTH_80;
is_support_sgi = sta->vht_cap.vht_supported &&
(sta->vht_cap.cap & IEEE80211_VHT_CAP_SHORT_GI_80);
break;
case IEEE80211_STA_RX_BW_40:
bw_mode = RTW_CHANNEL_WIDTH_40;
is_support_sgi = sta->ht_cap.ht_supported &&
(sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40);
break;
default:
bw_mode = RTW_CHANNEL_WIDTH_20;
is_support_sgi = sta->ht_cap.ht_supported &&
(sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_20);
break;
}
if (sta->vht_cap.vht_supported && ra_mask & 0xffc00000) {
tx_num = 2;
rf_type = RF_2T2R;
} else if (sta->ht_cap.ht_supported && ra_mask & 0xfff00000) {
tx_num = 2;
rf_type = RF_2T2R;
}
rate_id = get_rate_id(wireless_set, bw_mode, tx_num);
ra_mask = rtw_update_rate_mask(rtwdev, si, ra_mask, is_vht_enable,
wireless_set);
si->bw_mode = bw_mode;
si->stbc_en = stbc_en;
si->ldpc_en = ldpc_en;
si->rf_type = rf_type;
si->wireless_set = wireless_set;
si->sgi_enable = is_support_sgi;
si->vht_enable = is_vht_enable;
si->ra_mask = ra_mask;
si->rate_id = rate_id;
rtw_fw_send_ra_info(rtwdev, si);
}
static int rtw_wait_firmware_completion(struct rtw_dev *rtwdev)
{
struct rtw_chip_info *chip = rtwdev->chip;
struct rtw_fw_state *fw;
fw = &rtwdev->fw;
wait_for_completion(&fw->completion);
if (!fw->firmware)
return -EINVAL;
if (chip->wow_fw_name) {
fw = &rtwdev->wow_fw;
wait_for_completion(&fw->completion);
if (!fw->firmware)
return -EINVAL;
}
return 0;
}
static enum rtw_lps_deep_mode rtw_update_lps_deep_mode(struct rtw_dev *rtwdev,
struct rtw_fw_state *fw)
{
struct rtw_chip_info *chip = rtwdev->chip;
if (rtw_disable_lps_deep_mode || !chip->lps_deep_mode_supported ||
!fw->feature)
return LPS_DEEP_MODE_NONE;
if ((chip->lps_deep_mode_supported & BIT(LPS_DEEP_MODE_PG)) &&
rtw_fw_feature_check(fw, FW_FEATURE_PG))
return LPS_DEEP_MODE_PG;
if ((chip->lps_deep_mode_supported & BIT(LPS_DEEP_MODE_LCLK)) &&
rtw_fw_feature_check(fw, FW_FEATURE_LCLK))
return LPS_DEEP_MODE_LCLK;
return LPS_DEEP_MODE_NONE;
}
static int rtw_power_on(struct rtw_dev *rtwdev)
{
struct rtw_chip_info *chip = rtwdev->chip;
struct rtw_fw_state *fw = &rtwdev->fw;
bool wifi_only;
int ret;
ret = rtw_hci_setup(rtwdev);
if (ret) {
rtw_err(rtwdev, "failed to setup hci\n");
goto err;
}
/* power on MAC before firmware downloaded */
ret = rtw_mac_power_on(rtwdev);
if (ret) {
rtw_err(rtwdev, "failed to power on mac\n");
goto err;
}
ret = rtw_wait_firmware_completion(rtwdev);
if (ret) {
rtw_err(rtwdev, "failed to wait firmware completion\n");
goto err_off;
}
ret = rtw_download_firmware(rtwdev, fw);
if (ret) {
rtw_err(rtwdev, "failed to download firmware\n");
goto err_off;
}
/* config mac after firmware downloaded */
ret = rtw_mac_init(rtwdev);
if (ret) {
rtw_err(rtwdev, "failed to configure mac\n");
goto err_off;
}
chip->ops->phy_set_param(rtwdev);
ret = rtw_hci_start(rtwdev);
if (ret) {
rtw_err(rtwdev, "failed to start hci\n");
goto err_off;
}
/* send H2C after HCI has started */
rtw_fw_send_general_info(rtwdev);
rtw_fw_send_phydm_info(rtwdev);
wifi_only = !rtwdev->efuse.btcoex;
rtw_coex_power_on_setting(rtwdev);
rtw_coex_init_hw_config(rtwdev, wifi_only);
return 0;
err_off:
rtw_mac_power_off(rtwdev);
err:
return ret;
}
void rtw_core_fw_scan_notify(struct rtw_dev *rtwdev, bool start)
{
if (!rtw_fw_feature_check(&rtwdev->fw, FW_FEATURE_NOTIFY_SCAN))
return;
if (start) {
rtw_fw_scan_notify(rtwdev, true);
} else {
reinit_completion(&rtwdev->fw_scan_density);
rtw_fw_scan_notify(rtwdev, false);
if (!wait_for_completion_timeout(&rtwdev->fw_scan_density,
SCAN_NOTIFY_TIMEOUT))
rtw_warn(rtwdev, "firmware failed to report density after scan\n");
}
}
int rtw_core_start(struct rtw_dev *rtwdev)
{
int ret;
ret = rtw_power_on(rtwdev);
if (ret)
return ret;
rtw_sec_enable_sec_engine(rtwdev);
rtwdev->lps_conf.deep_mode = rtw_update_lps_deep_mode(rtwdev, &rtwdev->fw);
rtwdev->lps_conf.wow_deep_mode = rtw_update_lps_deep_mode(rtwdev, &rtwdev->wow_fw);
/* rcr reset after powered on */
rtw_write32(rtwdev, REG_RCR, rtwdev->hal.rcr);
ieee80211_queue_delayed_work(rtwdev->hw, &rtwdev->watch_dog_work,
RTW_WATCH_DOG_DELAY_TIME);
set_bit(RTW_FLAG_RUNNING, rtwdev->flags);
return 0;
}
static void rtw_power_off(struct rtw_dev *rtwdev)
{
rtw_hci_stop(rtwdev);
rtw_coex_power_off_setting(rtwdev);
rtw_mac_power_off(rtwdev);
}
void rtw_core_stop(struct rtw_dev *rtwdev)
{
struct rtw_coex *coex = &rtwdev->coex;
clear_bit(RTW_FLAG_RUNNING, rtwdev->flags);
clear_bit(RTW_FLAG_FW_RUNNING, rtwdev->flags);
mutex_unlock(&rtwdev->mutex);
cancel_work_sync(&rtwdev->c2h_work);
cancel_delayed_work_sync(&rtwdev->watch_dog_work);
cancel_delayed_work_sync(&coex->bt_relink_work);
cancel_delayed_work_sync(&coex->bt_reenable_work);
cancel_delayed_work_sync(&coex->defreeze_work);
cancel_delayed_work_sync(&coex->wl_remain_work);
cancel_delayed_work_sync(&coex->bt_remain_work);
cancel_delayed_work_sync(&coex->wl_connecting_work);
cancel_delayed_work_sync(&coex->bt_multi_link_remain_work);
cancel_delayed_work_sync(&coex->wl_ccklock_work);
mutex_lock(&rtwdev->mutex);
rtw_power_off(rtwdev);
}
static void rtw_init_ht_cap(struct rtw_dev *rtwdev,
struct ieee80211_sta_ht_cap *ht_cap)
{
struct rtw_efuse *efuse = &rtwdev->efuse;
ht_cap->ht_supported = true;
ht_cap->cap = 0;
ht_cap->cap |= IEEE80211_HT_CAP_SGI_20 |
IEEE80211_HT_CAP_MAX_AMSDU |
(1 << IEEE80211_HT_CAP_RX_STBC_SHIFT);
if (rtw_chip_has_rx_ldpc(rtwdev))
ht_cap->cap |= IEEE80211_HT_CAP_LDPC_CODING;
if (rtw_chip_has_tx_stbc(rtwdev))
ht_cap->cap |= IEEE80211_HT_CAP_TX_STBC;
if (efuse->hw_cap.bw & BIT(RTW_CHANNEL_WIDTH_40))
ht_cap->cap |= IEEE80211_HT_CAP_SUP_WIDTH_20_40 |
IEEE80211_HT_CAP_DSSSCCK40 |
IEEE80211_HT_CAP_SGI_40;
ht_cap->ampdu_factor = IEEE80211_HT_MAX_AMPDU_64K;
ht_cap->ampdu_density = IEEE80211_HT_MPDU_DENSITY_16;
ht_cap->mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED;
if (efuse->hw_cap.nss > 1) {
ht_cap->mcs.rx_mask[0] = 0xFF;
ht_cap->mcs.rx_mask[1] = 0xFF;
ht_cap->mcs.rx_mask[4] = 0x01;
ht_cap->mcs.rx_highest = cpu_to_le16(300);
} else {
ht_cap->mcs.rx_mask[0] = 0xFF;
ht_cap->mcs.rx_mask[1] = 0x00;
ht_cap->mcs.rx_mask[4] = 0x01;
ht_cap->mcs.rx_highest = cpu_to_le16(150);
}
}
static void rtw_init_vht_cap(struct rtw_dev *rtwdev,
struct ieee80211_sta_vht_cap *vht_cap)
{
struct rtw_efuse *efuse = &rtwdev->efuse;
u16 mcs_map;
__le16 highest;
if (efuse->hw_cap.ptcl != EFUSE_HW_CAP_IGNORE &&
efuse->hw_cap.ptcl != EFUSE_HW_CAP_PTCL_VHT)
return;
vht_cap->vht_supported = true;
vht_cap->cap = IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454 |
IEEE80211_VHT_CAP_SHORT_GI_80 |
IEEE80211_VHT_CAP_RXSTBC_1 |
IEEE80211_VHT_CAP_HTC_VHT |
IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK |
0;
if (rtwdev->hal.rf_path_num > 1)
vht_cap->cap |= IEEE80211_VHT_CAP_TXSTBC;
vht_cap->cap |= IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE |
IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE;
vht_cap->cap |= (rtwdev->hal.bfee_sts_cap <<
IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT);
if (rtw_chip_has_rx_ldpc(rtwdev))
vht_cap->cap |= IEEE80211_VHT_CAP_RXLDPC;
mcs_map = IEEE80211_VHT_MCS_SUPPORT_0_9 << 0 |
IEEE80211_VHT_MCS_NOT_SUPPORTED << 4 |
IEEE80211_VHT_MCS_NOT_SUPPORTED << 6 |
IEEE80211_VHT_MCS_NOT_SUPPORTED << 8 |
IEEE80211_VHT_MCS_NOT_SUPPORTED << 10 |
IEEE80211_VHT_MCS_NOT_SUPPORTED << 12 |
IEEE80211_VHT_MCS_NOT_SUPPORTED << 14;
if (efuse->hw_cap.nss > 1) {
highest = cpu_to_le16(780);
mcs_map |= IEEE80211_VHT_MCS_SUPPORT_0_9 << 2;
} else {
highest = cpu_to_le16(390);
mcs_map |= IEEE80211_VHT_MCS_NOT_SUPPORTED << 2;
}
vht_cap->vht_mcs.rx_mcs_map = cpu_to_le16(mcs_map);
vht_cap->vht_mcs.tx_mcs_map = cpu_to_le16(mcs_map);
vht_cap->vht_mcs.rx_highest = highest;
vht_cap->vht_mcs.tx_highest = highest;
}
static void rtw_set_supported_band(struct ieee80211_hw *hw,
struct rtw_chip_info *chip)
{
struct rtw_dev *rtwdev = hw->priv;
struct ieee80211_supported_band *sband;
if (chip->band & RTW_BAND_2G) {
sband = kmemdup(&rtw_band_2ghz, sizeof(*sband), GFP_KERNEL);
if (!sband)
goto err_out;
if (chip->ht_supported)
rtw_init_ht_cap(rtwdev, &sband->ht_cap);
hw->wiphy->bands[NL80211_BAND_2GHZ] = sband;
}
if (chip->band & RTW_BAND_5G) {
sband = kmemdup(&rtw_band_5ghz, sizeof(*sband), GFP_KERNEL);
if (!sband)
goto err_out;
if (chip->ht_supported)
rtw_init_ht_cap(rtwdev, &sband->ht_cap);
if (chip->vht_supported)
rtw_init_vht_cap(rtwdev, &sband->vht_cap);
hw->wiphy->bands[NL80211_BAND_5GHZ] = sband;
}
return;
err_out:
rtw_err(rtwdev, "failed to set supported band\n");
}
static void rtw_unset_supported_band(struct ieee80211_hw *hw,
struct rtw_chip_info *chip)
{
kfree(hw->wiphy->bands[NL80211_BAND_2GHZ]);
kfree(hw->wiphy->bands[NL80211_BAND_5GHZ]);
}
static void __update_firmware_feature(struct rtw_dev *rtwdev,
struct rtw_fw_state *fw)
{
u32 feature;
const struct rtw_fw_hdr *fw_hdr =
(const struct rtw_fw_hdr *)fw->firmware->data;
feature = le32_to_cpu(fw_hdr->feature);
fw->feature = feature & FW_FEATURE_SIG ? feature : 0;
}
static void __update_firmware_info(struct rtw_dev *rtwdev,
struct rtw_fw_state *fw)
{
const struct rtw_fw_hdr *fw_hdr =
(const struct rtw_fw_hdr *)fw->firmware->data;
fw->h2c_version = le16_to_cpu(fw_hdr->h2c_fmt_ver);
fw->version = le16_to_cpu(fw_hdr->version);
fw->sub_version = fw_hdr->subversion;
fw->sub_index = fw_hdr->subindex;
__update_firmware_feature(rtwdev, fw);
}
static void __update_firmware_info_legacy(struct rtw_dev *rtwdev,
struct rtw_fw_state *fw)
{
struct rtw_fw_hdr_legacy *legacy =
(struct rtw_fw_hdr_legacy *)fw->firmware->data;
fw->h2c_version = 0;
fw->version = le16_to_cpu(legacy->version);
fw->sub_version = legacy->subversion1;
fw->sub_index = legacy->subversion2;
}
static void update_firmware_info(struct rtw_dev *rtwdev,
struct rtw_fw_state *fw)
{
if (rtw_chip_wcpu_11n(rtwdev))
__update_firmware_info_legacy(rtwdev, fw);
else
__update_firmware_info(rtwdev, fw);
}
static void rtw_load_firmware_cb(const struct firmware *firmware, void *context)
{
struct rtw_fw_state *fw = context;
struct rtw_dev *rtwdev = fw->rtwdev;
if (!firmware || !firmware->data) {
rtw_err(rtwdev, "failed to request firmware\n");
complete_all(&fw->completion);
return;
}
fw->firmware = firmware;
update_firmware_info(rtwdev, fw);
complete_all(&fw->completion);
rtw_info(rtwdev, "Firmware version %u.%u.%u, H2C version %u\n",
fw->version, fw->sub_version, fw->sub_index, fw->h2c_version);
}
static int rtw_load_firmware(struct rtw_dev *rtwdev, enum rtw_fw_type type)
{
const char *fw_name;
struct rtw_fw_state *fw;
int ret;
switch (type) {
case RTW_WOWLAN_FW:
fw = &rtwdev->wow_fw;
fw_name = rtwdev->chip->wow_fw_name;
break;
case RTW_NORMAL_FW:
fw = &rtwdev->fw;
fw_name = rtwdev->chip->fw_name;
break;
default:
rtw_warn(rtwdev, "unsupported firmware type\n");
return -ENOENT;
}
fw->rtwdev = rtwdev;
init_completion(&fw->completion);
ret = request_firmware_nowait(THIS_MODULE, true, fw_name, rtwdev->dev,
GFP_KERNEL, fw, rtw_load_firmware_cb);
if (ret) {
rtw_err(rtwdev, "failed to async firmware request\n");
return ret;
}
return 0;
}
static int rtw_chip_parameter_setup(struct rtw_dev *rtwdev)
{
struct rtw_chip_info *chip = rtwdev->chip;
struct rtw_hal *hal = &rtwdev->hal;
struct rtw_efuse *efuse = &rtwdev->efuse;
switch (rtw_hci_type(rtwdev)) {
case RTW_HCI_TYPE_PCIE:
rtwdev->hci.rpwm_addr = 0x03d9;
rtwdev->hci.cpwm_addr = 0x03da;
break;
default:
rtw_err(rtwdev, "unsupported hci type\n");
return -EINVAL;
}
hal->chip_version = rtw_read32(rtwdev, REG_SYS_CFG1);
hal->cut_version = BIT_GET_CHIP_VER(hal->chip_version);
hal->mp_chip = (hal->chip_version & BIT_RTL_ID) ? 0 : 1;
if (hal->chip_version & BIT_RF_TYPE_ID) {
hal->rf_type = RF_2T2R;
hal->rf_path_num = 2;
hal->antenna_tx = BB_PATH_AB;
hal->antenna_rx = BB_PATH_AB;
} else {
hal->rf_type = RF_1T1R;
hal->rf_path_num = 1;
hal->antenna_tx = BB_PATH_A;
hal->antenna_rx = BB_PATH_A;
}
hal->rf_phy_num = chip->fix_rf_phy_num ? chip->fix_rf_phy_num :
hal->rf_path_num;
efuse->physical_size = chip->phy_efuse_size;
efuse->logical_size = chip->log_efuse_size;
efuse->protect_size = chip->ptct_efuse_size;
/* default use ack */
rtwdev->hal.rcr |= BIT_VHT_DACK;
hal->bfee_sts_cap = 3;
return 0;
}
static int rtw_chip_efuse_enable(struct rtw_dev *rtwdev)
{
struct rtw_fw_state *fw = &rtwdev->fw;
int ret;
ret = rtw_hci_setup(rtwdev);
if (ret) {
rtw_err(rtwdev, "failed to setup hci\n");
goto err;
}
ret = rtw_mac_power_on(rtwdev);
if (ret) {
rtw_err(rtwdev, "failed to power on mac\n");
goto err;
}
rtw_write8(rtwdev, REG_C2HEVT, C2H_HW_FEATURE_DUMP);
wait_for_completion(&fw->completion);
if (!fw->firmware) {
ret = -EINVAL;
rtw_err(rtwdev, "failed to load firmware\n");
goto err;
}
ret = rtw_download_firmware(rtwdev, fw);
if (ret) {
rtw_err(rtwdev, "failed to download firmware\n");
goto err_off;
}
return 0;
err_off:
rtw_mac_power_off(rtwdev);
err:
return ret;
}
static int rtw_dump_hw_feature(struct rtw_dev *rtwdev)
{
struct rtw_efuse *efuse = &rtwdev->efuse;
u8 hw_feature[HW_FEATURE_LEN];
u8 id;
u8 bw;
int i;
id = rtw_read8(rtwdev, REG_C2HEVT);
if (id != C2H_HW_FEATURE_REPORT) {
rtw_err(rtwdev, "failed to read hw feature report\n");
return -EBUSY;
}
for (i = 0; i < HW_FEATURE_LEN; i++)
hw_feature[i] = rtw_read8(rtwdev, REG_C2HEVT + 2 + i);
rtw_write8(rtwdev, REG_C2HEVT, 0);
bw = GET_EFUSE_HW_CAP_BW(hw_feature);
efuse->hw_cap.bw = hw_bw_cap_to_bitamp(bw);
efuse->hw_cap.hci = GET_EFUSE_HW_CAP_HCI(hw_feature);
efuse->hw_cap.nss = GET_EFUSE_HW_CAP_NSS(hw_feature);
efuse->hw_cap.ptcl = GET_EFUSE_HW_CAP_PTCL(hw_feature);
efuse->hw_cap.ant_num = GET_EFUSE_HW_CAP_ANT_NUM(hw_feature);
rtw_hw_config_rf_ant_num(rtwdev, efuse->hw_cap.ant_num);
if (efuse->hw_cap.nss == EFUSE_HW_CAP_IGNORE ||
efuse->hw_cap.nss > rtwdev->hal.rf_path_num)
efuse->hw_cap.nss = rtwdev->hal.rf_path_num;
rtw_dbg(rtwdev, RTW_DBG_EFUSE,
"hw cap: hci=0x%02x, bw=0x%02x, ptcl=0x%02x, ant_num=%d, nss=%d\n",
efuse->hw_cap.hci, efuse->hw_cap.bw, efuse->hw_cap.ptcl,
efuse->hw_cap.ant_num, efuse->hw_cap.nss);
return 0;
}
static void rtw_chip_efuse_disable(struct rtw_dev *rtwdev)
{
rtw_hci_stop(rtwdev);
rtw_mac_power_off(rtwdev);
}
static int rtw_chip_efuse_info_setup(struct rtw_dev *rtwdev)
{
struct rtw_efuse *efuse = &rtwdev->efuse;
int ret;
mutex_lock(&rtwdev->mutex);
/* power on mac to read efuse */
ret = rtw_chip_efuse_enable(rtwdev);
if (ret)
goto out_unlock;
ret = rtw_parse_efuse_map(rtwdev);
if (ret)
goto out_disable;
ret = rtw_dump_hw_feature(rtwdev);
if (ret)
goto out_disable;
ret = rtw_check_supported_rfe(rtwdev);
if (ret)
goto out_disable;
if (efuse->crystal_cap == 0xff)
efuse->crystal_cap = 0;
if (efuse->pa_type_2g == 0xff)
efuse->pa_type_2g = 0;
if (efuse->pa_type_5g == 0xff)
efuse->pa_type_5g = 0;
if (efuse->lna_type_2g == 0xff)
efuse->lna_type_2g = 0;
if (efuse->lna_type_5g == 0xff)
efuse->lna_type_5g = 0;
if (efuse->channel_plan == 0xff)
efuse->channel_plan = 0x7f;
if (efuse->rf_board_option == 0xff)
efuse->rf_board_option = 0;
if (efuse->bt_setting & BIT(0))
efuse->share_ant = true;
if (efuse->regd == 0xff)
efuse->regd = 0;
if (efuse->tx_bb_swing_setting_2g == 0xff)
efuse->tx_bb_swing_setting_2g = 0;
if (efuse->tx_bb_swing_setting_5g == 0xff)
efuse->tx_bb_swing_setting_5g = 0;
efuse->btcoex = (efuse->rf_board_option & 0xe0) == 0x20;
efuse->ext_pa_2g = efuse->pa_type_2g & BIT(4) ? 1 : 0;
efuse->ext_lna_2g = efuse->lna_type_2g & BIT(3) ? 1 : 0;
efuse->ext_pa_5g = efuse->pa_type_5g & BIT(0) ? 1 : 0;
efuse->ext_lna_2g = efuse->lna_type_5g & BIT(3) ? 1 : 0;
out_disable:
rtw_chip_efuse_disable(rtwdev);
out_unlock:
mutex_unlock(&rtwdev->mutex);
return ret;
}
static int rtw_chip_board_info_setup(struct rtw_dev *rtwdev)
{
struct rtw_hal *hal = &rtwdev->hal;
const struct rtw_rfe_def *rfe_def = rtw_get_rfe_def(rtwdev);
if (!rfe_def)
return -ENODEV;
rtw_phy_setup_phy_cond(rtwdev, 0);
rtw_phy_init_tx_power(rtwdev);
if (rfe_def->agc_btg_tbl)
rtw_load_table(rtwdev, rfe_def->agc_btg_tbl);
rtw_load_table(rtwdev, rfe_def->phy_pg_tbl);
rtw_load_table(rtwdev, rfe_def->txpwr_lmt_tbl);
rtw_phy_tx_power_by_rate_config(hal);
rtw_phy_tx_power_limit_config(hal);
return 0;
}
int rtw_chip_info_setup(struct rtw_dev *rtwdev)
{
int ret;
ret = rtw_chip_parameter_setup(rtwdev);
if (ret) {
rtw_err(rtwdev, "failed to setup chip parameters\n");
goto err_out;
}
ret = rtw_chip_efuse_info_setup(rtwdev);
if (ret) {
rtw_err(rtwdev, "failed to setup chip efuse info\n");
goto err_out;
}
ret = rtw_chip_board_info_setup(rtwdev);
if (ret) {
rtw_err(rtwdev, "failed to setup chip board info\n");
goto err_out;
}
return 0;
err_out:
return ret;
}
EXPORT_SYMBOL(rtw_chip_info_setup);
static void rtw_stats_init(struct rtw_dev *rtwdev)
{
struct rtw_traffic_stats *stats = &rtwdev->stats;
struct rtw_dm_info *dm_info = &rtwdev->dm_info;
int i;
ewma_tp_init(&stats->tx_ewma_tp);
ewma_tp_init(&stats->rx_ewma_tp);
for (i = 0; i < RTW_EVM_NUM; i++)
ewma_evm_init(&dm_info->ewma_evm[i]);
for (i = 0; i < RTW_SNR_NUM; i++)
ewma_snr_init(&dm_info->ewma_snr[i]);
}
int rtw_core_init(struct rtw_dev *rtwdev)
{
struct rtw_chip_info *chip = rtwdev->chip;
struct rtw_coex *coex = &rtwdev->coex;
int ret;
INIT_LIST_HEAD(&rtwdev->rsvd_page_list);
INIT_LIST_HEAD(&rtwdev->txqs);
timer_setup(&rtwdev->tx_report.purge_timer,
rtw_tx_report_purge_timer, 0);
rtwdev->tx_wq = alloc_workqueue("rtw_tx_wq", WQ_UNBOUND | WQ_HIGHPRI, 0);
INIT_DELAYED_WORK(&rtwdev->watch_dog_work, rtw_watch_dog_work);
INIT_DELAYED_WORK(&coex->bt_relink_work, rtw_coex_bt_relink_work);
INIT_DELAYED_WORK(&coex->bt_reenable_work, rtw_coex_bt_reenable_work);
INIT_DELAYED_WORK(&coex->defreeze_work, rtw_coex_defreeze_work);
INIT_DELAYED_WORK(&coex->wl_remain_work, rtw_coex_wl_remain_work);
INIT_DELAYED_WORK(&coex->bt_remain_work, rtw_coex_bt_remain_work);
INIT_DELAYED_WORK(&coex->wl_connecting_work, rtw_coex_wl_connecting_work);
INIT_DELAYED_WORK(&coex->bt_multi_link_remain_work,
rtw_coex_bt_multi_link_remain_work);
INIT_DELAYED_WORK(&coex->wl_ccklock_work, rtw_coex_wl_ccklock_work);
INIT_WORK(&rtwdev->tx_work, rtw_tx_work);
INIT_WORK(&rtwdev->c2h_work, rtw_c2h_work);
INIT_WORK(&rtwdev->fw_recovery_work, rtw_fw_recovery_work);
INIT_WORK(&rtwdev->ba_work, rtw_txq_ba_work);
skb_queue_head_init(&rtwdev->c2h_queue);
skb_queue_head_init(&rtwdev->coex.queue);
skb_queue_head_init(&rtwdev->tx_report.queue);
spin_lock_init(&rtwdev->rf_lock);
spin_lock_init(&rtwdev->h2c.lock);
spin_lock_init(&rtwdev->txq_lock);
spin_lock_init(&rtwdev->tx_report.q_lock);
mutex_init(&rtwdev->mutex);
mutex_init(&rtwdev->coex.mutex);
mutex_init(&rtwdev->hal.tx_power_mutex);
init_waitqueue_head(&rtwdev->coex.wait);
init_completion(&rtwdev->lps_leave_check);
init_completion(&rtwdev->fw_scan_density);
rtwdev->sec.total_cam_num = 32;
rtwdev->hal.current_channel = 1;
set_bit(RTW_BC_MC_MACID, rtwdev->mac_id_map);
rtw_stats_init(rtwdev);
/* default rx filter setting */
rtwdev->hal.rcr = BIT_APP_FCS | BIT_APP_MIC | BIT_APP_ICV |
BIT_HTC_LOC_CTRL | BIT_APP_PHYSTS |
BIT_AB | BIT_AM | BIT_APM;
ret = rtw_load_firmware(rtwdev, RTW_NORMAL_FW);
if (ret) {
rtw_warn(rtwdev, "no firmware loaded\n");
return ret;
}
if (chip->wow_fw_name) {
ret = rtw_load_firmware(rtwdev, RTW_WOWLAN_FW);
if (ret) {
rtw_warn(rtwdev, "no wow firmware loaded\n");
wait_for_completion(&rtwdev->fw.completion);
if (rtwdev->fw.firmware)
release_firmware(rtwdev->fw.firmware);
return ret;
}
}
return 0;
}
EXPORT_SYMBOL(rtw_core_init);
void rtw_core_deinit(struct rtw_dev *rtwdev)
{
struct rtw_fw_state *fw = &rtwdev->fw;
struct rtw_fw_state *wow_fw = &rtwdev->wow_fw;
struct rtw_rsvd_page *rsvd_pkt, *tmp;
unsigned long flags;
rtw_wait_firmware_completion(rtwdev);
if (fw->firmware)
release_firmware(fw->firmware);
if (wow_fw->firmware)
release_firmware(wow_fw->firmware);
destroy_workqueue(rtwdev->tx_wq);
spin_lock_irqsave(&rtwdev->tx_report.q_lock, flags);
skb_queue_purge(&rtwdev->tx_report.queue);
skb_queue_purge(&rtwdev->coex.queue);
spin_unlock_irqrestore(&rtwdev->tx_report.q_lock, flags);
list_for_each_entry_safe(rsvd_pkt, tmp, &rtwdev->rsvd_page_list,
build_list) {
list_del(&rsvd_pkt->build_list);
kfree(rsvd_pkt);
}
mutex_destroy(&rtwdev->mutex);
mutex_destroy(&rtwdev->coex.mutex);
mutex_destroy(&rtwdev->hal.tx_power_mutex);
}
EXPORT_SYMBOL(rtw_core_deinit);
int rtw_register_hw(struct rtw_dev *rtwdev, struct ieee80211_hw *hw)
{
struct rtw_hal *hal = &rtwdev->hal;
int max_tx_headroom = 0;
int ret;
/* TODO: USB & SDIO may need extra room? */
max_tx_headroom = rtwdev->chip->tx_pkt_desc_sz;
hw->extra_tx_headroom = max_tx_headroom;
hw->queues = IEEE80211_NUM_ACS;
hw->txq_data_size = sizeof(struct rtw_txq);
hw->sta_data_size = sizeof(struct rtw_sta_info);
hw->vif_data_size = sizeof(struct rtw_vif);
ieee80211_hw_set(hw, SIGNAL_DBM);
ieee80211_hw_set(hw, RX_INCLUDES_FCS);
ieee80211_hw_set(hw, AMPDU_AGGREGATION);
ieee80211_hw_set(hw, MFP_CAPABLE);
ieee80211_hw_set(hw, REPORTS_TX_ACK_STATUS);
ieee80211_hw_set(hw, SUPPORTS_PS);
ieee80211_hw_set(hw, SUPPORTS_DYNAMIC_PS);
ieee80211_hw_set(hw, SUPPORT_FAST_XMIT);
ieee80211_hw_set(hw, SUPPORTS_AMSDU_IN_AMPDU);
ieee80211_hw_set(hw, HAS_RATE_CONTROL);
ieee80211_hw_set(hw, TX_AMSDU);
hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION) |
BIT(NL80211_IFTYPE_AP) |
BIT(NL80211_IFTYPE_ADHOC) |
BIT(NL80211_IFTYPE_MESH_POINT);
hw->wiphy->available_antennas_tx = hal->antenna_tx;
hw->wiphy->available_antennas_rx = hal->antenna_rx;
hw->wiphy->flags |= WIPHY_FLAG_SUPPORTS_TDLS |
WIPHY_FLAG_TDLS_EXTERNAL_SETUP;
hw->wiphy->features |= NL80211_FEATURE_SCAN_RANDOM_MAC_ADDR;
wiphy_ext_feature_set(hw->wiphy, NL80211_EXT_FEATURE_CAN_REPLACE_PTK0);
#ifdef CONFIG_PM
hw->wiphy->wowlan = rtwdev->chip->wowlan_stub;
hw->wiphy->max_sched_scan_ssids = rtwdev->chip->max_sched_scan_ssids;
#endif
rtw_set_supported_band(hw, rtwdev->chip);
SET_IEEE80211_PERM_ADDR(hw, rtwdev->efuse.addr);
rtw_regd_init(rtwdev, rtw_regd_notifier);
ret = ieee80211_register_hw(hw);
if (ret) {
rtw_err(rtwdev, "failed to register hw\n");
return ret;
}
if (regulatory_hint(hw->wiphy, rtwdev->regd.alpha2))
rtw_err(rtwdev, "regulatory_hint fail\n");
rtw_debugfs_init(rtwdev);
rtwdev->bf_info.bfer_mu_cnt = 0;
rtwdev->bf_info.bfer_su_cnt = 0;
return 0;
}
EXPORT_SYMBOL(rtw_register_hw);
void rtw_unregister_hw(struct rtw_dev *rtwdev, struct ieee80211_hw *hw)
{
struct rtw_chip_info *chip = rtwdev->chip;
ieee80211_unregister_hw(hw);
rtw_unset_supported_band(hw, chip);
}
EXPORT_SYMBOL(rtw_unregister_hw);
MODULE_AUTHOR("Realtek Corporation");
MODULE_DESCRIPTION("Realtek 802.11ac wireless core module");
MODULE_LICENSE("Dual BSD/GPL");