blob: 9c5fd18f2600faf9e26d8dd6999f2d9b9011c35c [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
//
// Copyright(c) 2020 Intel Corporation. All rights reserved.
//
// Author: Cezary Rojewski <cezary.rojewski@intel.com>
//
#include <linux/devcoredump.h>
#include <linux/dma-mapping.h>
#include <linux/firmware.h>
#include <linux/pci.h>
#include <linux/pxa2xx_ssp.h>
#include "core.h"
#include "messages.h"
#include "registers.h"
static bool catpt_dma_filter(struct dma_chan *chan, void *param)
{
return param == chan->device->dev;
}
/*
* Either engine 0 or 1 can be used for image loading.
* Align with Windows driver equivalent and stick to engine 1.
*/
#define CATPT_DMA_DEVID 1
#define CATPT_DMA_DSP_ADDR_MASK GENMASK(31, 20)
struct dma_chan *catpt_dma_request_config_chan(struct catpt_dev *cdev)
{
struct dma_slave_config config;
struct dma_chan *chan;
dma_cap_mask_t mask;
int ret;
dma_cap_zero(mask);
dma_cap_set(DMA_MEMCPY, mask);
chan = dma_request_channel(mask, catpt_dma_filter, cdev->dev);
if (!chan) {
dev_err(cdev->dev, "request channel failed\n");
return ERR_PTR(-ENODEV);
}
memset(&config, 0, sizeof(config));
config.direction = DMA_MEM_TO_DEV;
config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
config.src_maxburst = 16;
config.dst_maxburst = 16;
ret = dmaengine_slave_config(chan, &config);
if (ret) {
dev_err(cdev->dev, "slave config failed: %d\n", ret);
dma_release_channel(chan);
return ERR_PTR(ret);
}
return chan;
}
static int catpt_dma_memcpy(struct catpt_dev *cdev, struct dma_chan *chan,
dma_addr_t dst_addr, dma_addr_t src_addr,
size_t size)
{
struct dma_async_tx_descriptor *desc;
enum dma_status status;
desc = dmaengine_prep_dma_memcpy(chan, dst_addr, src_addr, size,
DMA_CTRL_ACK);
if (!desc) {
dev_err(cdev->dev, "prep dma memcpy failed\n");
return -EIO;
}
/* enable demand mode for dma channel */
catpt_updatel_shim(cdev, HMDC,
CATPT_HMDC_HDDA(CATPT_DMA_DEVID, chan->chan_id),
CATPT_HMDC_HDDA(CATPT_DMA_DEVID, chan->chan_id));
dmaengine_submit(desc);
status = dma_wait_for_async_tx(desc);
/* regardless of status, disable access to HOST memory in demand mode */
catpt_updatel_shim(cdev, HMDC,
CATPT_HMDC_HDDA(CATPT_DMA_DEVID, chan->chan_id), 0);
return (status == DMA_COMPLETE) ? 0 : -EPROTO;
}
int catpt_dma_memcpy_todsp(struct catpt_dev *cdev, struct dma_chan *chan,
dma_addr_t dst_addr, dma_addr_t src_addr,
size_t size)
{
return catpt_dma_memcpy(cdev, chan, dst_addr | CATPT_DMA_DSP_ADDR_MASK,
src_addr, size);
}
int catpt_dma_memcpy_fromdsp(struct catpt_dev *cdev, struct dma_chan *chan,
dma_addr_t dst_addr, dma_addr_t src_addr,
size_t size)
{
return catpt_dma_memcpy(cdev, chan, dst_addr,
src_addr | CATPT_DMA_DSP_ADDR_MASK, size);
}
int catpt_dmac_probe(struct catpt_dev *cdev)
{
struct dw_dma_chip *dmac;
int ret;
dmac = devm_kzalloc(cdev->dev, sizeof(*dmac), GFP_KERNEL);
if (!dmac)
return -ENOMEM;
dmac->regs = cdev->lpe_ba + cdev->spec->host_dma_offset[CATPT_DMA_DEVID];
dmac->dev = cdev->dev;
dmac->irq = cdev->irq;
ret = dma_coerce_mask_and_coherent(cdev->dev, DMA_BIT_MASK(31));
if (ret)
return ret;
/*
* Caller is responsible for putting device in D0 to allow
* for I/O and memory access before probing DW.
*/
ret = dw_dma_probe(dmac);
if (ret)
return ret;
cdev->dmac = dmac;
return 0;
}
void catpt_dmac_remove(struct catpt_dev *cdev)
{
/*
* As do_dma_remove() juggles with pm_runtime_get_xxx() and
* pm_runtime_put_xxx() while both ADSP and DW 'devices' are part of
* the same module, caller makes sure pm_runtime_disable() is invoked
* before removing DW to prevent postmortem resume and suspend.
*/
dw_dma_remove(cdev->dmac);
}
static void catpt_dsp_set_srampge(struct catpt_dev *cdev, struct resource *sram,
unsigned long mask, unsigned long new)
{
unsigned long old;
u32 off = sram->start;
u32 b = __ffs(mask);
old = catpt_readl_pci(cdev, VDRTCTL0) & mask;
dev_dbg(cdev->dev, "SRAMPGE [0x%08lx] 0x%08lx -> 0x%08lx",
mask, old, new);
if (old == new)
return;
catpt_updatel_pci(cdev, VDRTCTL0, mask, new);
/* wait for SRAM power gating to propagate */
udelay(60);
/*
* Dummy read as the very first access after block enable
* to prevent byte loss in future operations.
*/
for_each_clear_bit_from(b, &new, fls_long(mask)) {
u8 buf[4];
/* newly enabled: new bit=0 while old bit=1 */
if (test_bit(b, &old)) {
dev_dbg(cdev->dev, "sanitize block %ld: off 0x%08x\n",
b - __ffs(mask), off);
memcpy_fromio(buf, cdev->lpe_ba + off, sizeof(buf));
}
off += CATPT_MEMBLOCK_SIZE;
}
}
void catpt_dsp_update_srampge(struct catpt_dev *cdev, struct resource *sram,
unsigned long mask)
{
struct resource *res;
unsigned long new = 0;
/* flag all busy blocks */
for (res = sram->child; res; res = res->sibling) {
u32 h, l;
h = (res->end - sram->start) / CATPT_MEMBLOCK_SIZE;
l = (res->start - sram->start) / CATPT_MEMBLOCK_SIZE;
new |= GENMASK(h, l);
}
/* offset value given mask's start and invert it as ON=b0 */
new = ~(new << __ffs(mask)) & mask;
/* disable core clock gating */
catpt_updatel_pci(cdev, VDRTCTL2, CATPT_VDRTCTL2_DCLCGE, 0);
catpt_dsp_set_srampge(cdev, sram, mask, new);
/* enable core clock gating */
catpt_updatel_pci(cdev, VDRTCTL2, CATPT_VDRTCTL2_DCLCGE,
CATPT_VDRTCTL2_DCLCGE);
}
int catpt_dsp_stall(struct catpt_dev *cdev, bool stall)
{
u32 reg, val;
val = stall ? CATPT_CS_STALL : 0;
catpt_updatel_shim(cdev, CS1, CATPT_CS_STALL, val);
return catpt_readl_poll_shim(cdev, CS1,
reg, (reg & CATPT_CS_STALL) == val,
500, 10000);
}
static int catpt_dsp_reset(struct catpt_dev *cdev, bool reset)
{
u32 reg, val;
val = reset ? CATPT_CS_RST : 0;
catpt_updatel_shim(cdev, CS1, CATPT_CS_RST, val);
return catpt_readl_poll_shim(cdev, CS1,
reg, (reg & CATPT_CS_RST) == val,
500, 10000);
}
void lpt_dsp_pll_shutdown(struct catpt_dev *cdev, bool enable)
{
u32 val;
val = enable ? LPT_VDRTCTL0_APLLSE : 0;
catpt_updatel_pci(cdev, VDRTCTL0, LPT_VDRTCTL0_APLLSE, val);
}
void wpt_dsp_pll_shutdown(struct catpt_dev *cdev, bool enable)
{
u32 val;
val = enable ? WPT_VDRTCTL2_APLLSE : 0;
catpt_updatel_pci(cdev, VDRTCTL2, WPT_VDRTCTL2_APLLSE, val);
}
static int catpt_dsp_select_lpclock(struct catpt_dev *cdev, bool lp, bool waiti)
{
u32 mask, reg, val;
int ret;
mutex_lock(&cdev->clk_mutex);
val = lp ? CATPT_CS_LPCS : 0;
reg = catpt_readl_shim(cdev, CS1) & CATPT_CS_LPCS;
dev_dbg(cdev->dev, "LPCS [0x%08lx] 0x%08x -> 0x%08x",
CATPT_CS_LPCS, reg, val);
if (reg == val) {
mutex_unlock(&cdev->clk_mutex);
return 0;
}
if (waiti) {
/* wait for DSP to signal WAIT state */
ret = catpt_readl_poll_shim(cdev, ISD,
reg, (reg & CATPT_ISD_DCPWM),
500, 10000);
if (ret) {
dev_warn(cdev->dev, "await WAITI timeout\n");
/* no signal - only high clock selection allowed */
if (lp) {
mutex_unlock(&cdev->clk_mutex);
return 0;
}
}
}
ret = catpt_readl_poll_shim(cdev, CLKCTL,
reg, !(reg & CATPT_CLKCTL_CFCIP),
500, 10000);
if (ret)
dev_warn(cdev->dev, "clock change still in progress\n");
/* default to DSP core & audio fabric high clock */
val |= CATPT_CS_DCS_HIGH;
mask = CATPT_CS_LPCS | CATPT_CS_DCS;
catpt_updatel_shim(cdev, CS1, mask, val);
ret = catpt_readl_poll_shim(cdev, CLKCTL,
reg, !(reg & CATPT_CLKCTL_CFCIP),
500, 10000);
if (ret)
dev_warn(cdev->dev, "clock change still in progress\n");
/* update PLL accordingly */
cdev->spec->pll_shutdown(cdev, lp);
mutex_unlock(&cdev->clk_mutex);
return 0;
}
int catpt_dsp_update_lpclock(struct catpt_dev *cdev)
{
struct catpt_stream_runtime *stream;
list_for_each_entry(stream, &cdev->stream_list, node)
if (stream->prepared)
return catpt_dsp_select_lpclock(cdev, false, true);
return catpt_dsp_select_lpclock(cdev, true, true);
}
/* bring registers to their defaults as HW won't reset itself */
static void catpt_dsp_set_regs_defaults(struct catpt_dev *cdev)
{
int i;
catpt_writel_shim(cdev, CS1, CATPT_CS_DEFAULT);
catpt_writel_shim(cdev, ISC, CATPT_ISC_DEFAULT);
catpt_writel_shim(cdev, ISD, CATPT_ISD_DEFAULT);
catpt_writel_shim(cdev, IMC, CATPT_IMC_DEFAULT);
catpt_writel_shim(cdev, IMD, CATPT_IMD_DEFAULT);
catpt_writel_shim(cdev, IPCC, CATPT_IPCC_DEFAULT);
catpt_writel_shim(cdev, IPCD, CATPT_IPCD_DEFAULT);
catpt_writel_shim(cdev, CLKCTL, CATPT_CLKCTL_DEFAULT);
catpt_writel_shim(cdev, CS2, CATPT_CS2_DEFAULT);
catpt_writel_shim(cdev, LTRC, CATPT_LTRC_DEFAULT);
catpt_writel_shim(cdev, HMDC, CATPT_HMDC_DEFAULT);
for (i = 0; i < CATPT_SSP_COUNT; i++) {
catpt_writel_ssp(cdev, i, SSCR0, CATPT_SSC0_DEFAULT);
catpt_writel_ssp(cdev, i, SSCR1, CATPT_SSC1_DEFAULT);
catpt_writel_ssp(cdev, i, SSSR, CATPT_SSS_DEFAULT);
catpt_writel_ssp(cdev, i, SSITR, CATPT_SSIT_DEFAULT);
catpt_writel_ssp(cdev, i, SSDR, CATPT_SSD_DEFAULT);
catpt_writel_ssp(cdev, i, SSTO, CATPT_SSTO_DEFAULT);
catpt_writel_ssp(cdev, i, SSPSP, CATPT_SSPSP_DEFAULT);
catpt_writel_ssp(cdev, i, SSTSA, CATPT_SSTSA_DEFAULT);
catpt_writel_ssp(cdev, i, SSRSA, CATPT_SSRSA_DEFAULT);
catpt_writel_ssp(cdev, i, SSTSS, CATPT_SSTSS_DEFAULT);
catpt_writel_ssp(cdev, i, SSCR2, CATPT_SSCR2_DEFAULT);
catpt_writel_ssp(cdev, i, SSPSP2, CATPT_SSPSP2_DEFAULT);
}
}
int catpt_dsp_power_down(struct catpt_dev *cdev)
{
u32 mask, val;
/* disable core clock gating */
catpt_updatel_pci(cdev, VDRTCTL2, CATPT_VDRTCTL2_DCLCGE, 0);
catpt_dsp_reset(cdev, true);
/* set 24Mhz clock for both SSPs */
catpt_updatel_shim(cdev, CS1, CATPT_CS_SBCS(0) | CATPT_CS_SBCS(1),
CATPT_CS_SBCS(0) | CATPT_CS_SBCS(1));
catpt_dsp_select_lpclock(cdev, true, false);
/* disable MCLK */
catpt_updatel_shim(cdev, CLKCTL, CATPT_CLKCTL_SMOS, 0);
catpt_dsp_set_regs_defaults(cdev);
/* switch clock gating */
mask = CATPT_VDRTCTL2_CGEALL & (~CATPT_VDRTCTL2_DCLCGE);
val = mask & (~CATPT_VDRTCTL2_DTCGE);
catpt_updatel_pci(cdev, VDRTCTL2, mask, val);
/* enable DTCGE separatelly */
catpt_updatel_pci(cdev, VDRTCTL2, CATPT_VDRTCTL2_DTCGE,
CATPT_VDRTCTL2_DTCGE);
/* SRAM power gating all */
catpt_dsp_set_srampge(cdev, &cdev->dram, cdev->spec->dram_mask,
cdev->spec->dram_mask);
catpt_dsp_set_srampge(cdev, &cdev->iram, cdev->spec->iram_mask,
cdev->spec->iram_mask);
mask = cdev->spec->d3srampgd_bit | cdev->spec->d3pgd_bit;
catpt_updatel_pci(cdev, VDRTCTL0, mask, cdev->spec->d3pgd_bit);
catpt_updatel_pci(cdev, PMCS, PCI_PM_CTRL_STATE_MASK, PCI_D3hot);
/* give hw time to drop off */
udelay(50);
/* enable core clock gating */
catpt_updatel_pci(cdev, VDRTCTL2, CATPT_VDRTCTL2_DCLCGE,
CATPT_VDRTCTL2_DCLCGE);
udelay(50);
return 0;
}
int catpt_dsp_power_up(struct catpt_dev *cdev)
{
u32 mask, val;
/* disable core clock gating */
catpt_updatel_pci(cdev, VDRTCTL2, CATPT_VDRTCTL2_DCLCGE, 0);
/* switch clock gating */
mask = CATPT_VDRTCTL2_CGEALL & (~CATPT_VDRTCTL2_DCLCGE);
val = mask & (~CATPT_VDRTCTL2_DTCGE);
catpt_updatel_pci(cdev, VDRTCTL2, mask, val);
catpt_updatel_pci(cdev, PMCS, PCI_PM_CTRL_STATE_MASK, PCI_D0);
/* SRAM power gating none */
mask = cdev->spec->d3srampgd_bit | cdev->spec->d3pgd_bit;
catpt_updatel_pci(cdev, VDRTCTL0, mask, mask);
catpt_dsp_set_srampge(cdev, &cdev->dram, cdev->spec->dram_mask, 0);
catpt_dsp_set_srampge(cdev, &cdev->iram, cdev->spec->iram_mask, 0);
catpt_dsp_set_regs_defaults(cdev);
/* restore MCLK */
catpt_updatel_shim(cdev, CLKCTL, CATPT_CLKCTL_SMOS, CATPT_CLKCTL_SMOS);
catpt_dsp_select_lpclock(cdev, false, false);
/* set 24Mhz clock for both SSPs */
catpt_updatel_shim(cdev, CS1, CATPT_CS_SBCS(0) | CATPT_CS_SBCS(1),
CATPT_CS_SBCS(0) | CATPT_CS_SBCS(1));
catpt_dsp_reset(cdev, false);
/* enable core clock gating */
catpt_updatel_pci(cdev, VDRTCTL2, CATPT_VDRTCTL2_DCLCGE,
CATPT_VDRTCTL2_DCLCGE);
/* generate int deassert msg to fix inversed int logic */
catpt_updatel_shim(cdev, IMC, CATPT_IMC_IPCDB | CATPT_IMC_IPCCD, 0);
return 0;
}
#define CATPT_DUMP_MAGIC 0xcd42
#define CATPT_DUMP_SECTION_ID_FILE 0x00
#define CATPT_DUMP_SECTION_ID_IRAM 0x01
#define CATPT_DUMP_SECTION_ID_DRAM 0x02
#define CATPT_DUMP_SECTION_ID_REGS 0x03
#define CATPT_DUMP_HASH_SIZE 20
struct catpt_dump_section_hdr {
u16 magic;
u8 core_id;
u8 section_id;
u32 size;
};
int catpt_coredump(struct catpt_dev *cdev)
{
struct catpt_dump_section_hdr *hdr;
size_t dump_size, regs_size;
u8 *dump, *pos;
const char *eof;
char *info;
int i;
regs_size = CATPT_SHIM_REGS_SIZE;
regs_size += CATPT_DMA_COUNT * CATPT_DMA_REGS_SIZE;
regs_size += CATPT_SSP_COUNT * CATPT_SSP_REGS_SIZE;
dump_size = resource_size(&cdev->dram);
dump_size += resource_size(&cdev->iram);
dump_size += regs_size;
/* account for header of each section and hash chunk */
dump_size += 4 * sizeof(*hdr) + CATPT_DUMP_HASH_SIZE;
dump = vzalloc(dump_size);
if (!dump)
return -ENOMEM;
pos = dump;
hdr = (struct catpt_dump_section_hdr *)pos;
hdr->magic = CATPT_DUMP_MAGIC;
hdr->core_id = cdev->spec->core_id;
hdr->section_id = CATPT_DUMP_SECTION_ID_FILE;
hdr->size = dump_size - sizeof(*hdr);
pos += sizeof(*hdr);
info = cdev->ipc.config.fw_info;
eof = info + FW_INFO_SIZE_MAX;
/* navigate to fifth info segment (fw hash) */
for (i = 0; i < 4 && info < eof; i++, info++) {
/* info segments are separated by space each */
info = strnchr(info, eof - info, ' ');
if (!info)
break;
}
if (i == 4 && info)
memcpy(pos, info, min_t(u32, eof - info, CATPT_DUMP_HASH_SIZE));
pos += CATPT_DUMP_HASH_SIZE;
hdr = (struct catpt_dump_section_hdr *)pos;
hdr->magic = CATPT_DUMP_MAGIC;
hdr->core_id = cdev->spec->core_id;
hdr->section_id = CATPT_DUMP_SECTION_ID_IRAM;
hdr->size = resource_size(&cdev->iram);
pos += sizeof(*hdr);
memcpy_fromio(pos, cdev->lpe_ba + cdev->iram.start, hdr->size);
pos += hdr->size;
hdr = (struct catpt_dump_section_hdr *)pos;
hdr->magic = CATPT_DUMP_MAGIC;
hdr->core_id = cdev->spec->core_id;
hdr->section_id = CATPT_DUMP_SECTION_ID_DRAM;
hdr->size = resource_size(&cdev->dram);
pos += sizeof(*hdr);
memcpy_fromio(pos, cdev->lpe_ba + cdev->dram.start, hdr->size);
pos += hdr->size;
hdr = (struct catpt_dump_section_hdr *)pos;
hdr->magic = CATPT_DUMP_MAGIC;
hdr->core_id = cdev->spec->core_id;
hdr->section_id = CATPT_DUMP_SECTION_ID_REGS;
hdr->size = regs_size;
pos += sizeof(*hdr);
memcpy_fromio(pos, catpt_shim_addr(cdev), CATPT_SHIM_REGS_SIZE);
pos += CATPT_SHIM_REGS_SIZE;
for (i = 0; i < CATPT_SSP_COUNT; i++) {
memcpy_fromio(pos, catpt_ssp_addr(cdev, i),
CATPT_SSP_REGS_SIZE);
pos += CATPT_SSP_REGS_SIZE;
}
for (i = 0; i < CATPT_DMA_COUNT; i++) {
memcpy_fromio(pos, catpt_dma_addr(cdev, i),
CATPT_DMA_REGS_SIZE);
pos += CATPT_DMA_REGS_SIZE;
}
dev_coredumpv(cdev->dev, dump, dump_size, GFP_KERNEL);
return 0;
}