| /* drivers/android/pmem.c |
| * |
| * Copyright (C) 2007 Google, Inc. |
| * |
| * This software is licensed under the terms of the GNU General Public |
| * License version 2, as published by the Free Software Foundation, and |
| * may be copied, distributed, and modified under those terms. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| */ |
| |
| #include <linux/miscdevice.h> |
| #include <linux/platform_device.h> |
| #include <linux/fs.h> |
| #include <linux/file.h> |
| #include <linux/mm.h> |
| #include <linux/list.h> |
| #include <linux/debugfs.h> |
| #include <linux/android_pmem.h> |
| #include <linux/mempolicy.h> |
| #include <linux/sched.h> |
| #include <linux/slab.h> |
| #include <linux/io.h> |
| #include <linux/uaccess.h> |
| #include <asm/cacheflush.h> |
| |
| #define PMEM_MAX_DEVICES 10 |
| #define PMEM_MAX_ORDER 128 |
| #define PMEM_MIN_ALLOC PAGE_SIZE |
| |
| #define PMEM_DEBUG 1 |
| |
| /* indicates that a refernce to this file has been taken via get_pmem_file, |
| * the file should not be released until put_pmem_file is called */ |
| #define PMEM_FLAGS_BUSY 0x1 |
| /* indicates that this is a suballocation of a larger master range */ |
| #define PMEM_FLAGS_CONNECTED (0x1 << 1) |
| /* indicates this is a master and not a sub allocation and that it is mmaped */ |
| #define PMEM_FLAGS_MASTERMAP (0x1 << 2) |
| /* submap and unsubmap flags indicate: |
| * 00: subregion has never been mmaped |
| * 10: subregion has been mmaped, reference to the mm was taken |
| * 11: subretion has ben released, refernece to the mm still held |
| * 01: subretion has been released, reference to the mm has been released |
| */ |
| #define PMEM_FLAGS_SUBMAP (0x1 << 3) |
| #define PMEM_FLAGS_UNSUBMAP (0x1 << 4) |
| |
| |
| struct pmem_data { |
| /* in alloc mode: an index into the bitmap |
| * in no_alloc mode: the size of the allocation */ |
| int index; |
| /* see flags above for descriptions */ |
| unsigned int flags; |
| /* protects this data field, if the mm_mmap sem will be held at the |
| * same time as this sem, the mm sem must be taken first (as this is |
| * the order for vma_open and vma_close ops */ |
| struct rw_semaphore sem; |
| /* info about the mmaping process */ |
| struct vm_area_struct *vma; |
| /* task struct of the mapping process */ |
| struct task_struct *task; |
| /* process id of teh mapping process */ |
| pid_t pid; |
| /* file descriptor of the master */ |
| int master_fd; |
| /* file struct of the master */ |
| struct file *master_file; |
| /* a list of currently available regions if this is a suballocation */ |
| struct list_head region_list; |
| /* a linked list of data so we can access them for debugging */ |
| struct list_head list; |
| #if PMEM_DEBUG |
| int ref; |
| #endif |
| }; |
| |
| struct pmem_bits { |
| unsigned allocated:1; /* 1 if allocated, 0 if free */ |
| unsigned order:7; /* size of the region in pmem space */ |
| }; |
| |
| struct pmem_region_node { |
| struct pmem_region region; |
| struct list_head list; |
| }; |
| |
| #define PMEM_DEBUG_MSGS 0 |
| #if PMEM_DEBUG_MSGS |
| #define DLOG(fmt, args...) \ |
| do { printk(KERN_INFO "[%s:%s:%d] "fmt, __FILE__, __func__, __LINE__, \ |
| ##args); } \ |
| while (0) |
| #else |
| #define DLOG(x...) do {} while (0) |
| #endif |
| |
| struct pmem_info { |
| struct miscdevice dev; |
| /* physical start address of the remaped pmem space */ |
| unsigned long base; |
| /* vitual start address of the remaped pmem space */ |
| unsigned char __iomem *vbase; |
| /* total size of the pmem space */ |
| unsigned long size; |
| /* number of entries in the pmem space */ |
| unsigned long num_entries; |
| /* pfn of the garbage page in memory */ |
| unsigned long garbage_pfn; |
| /* index of the garbage page in the pmem space */ |
| int garbage_index; |
| /* the bitmap for the region indicating which entries are allocated |
| * and which are free */ |
| struct pmem_bits *bitmap; |
| /* indicates the region should not be managed with an allocator */ |
| unsigned no_allocator; |
| /* indicates maps of this region should be cached, if a mix of |
| * cached and uncached is desired, set this and open the device with |
| * O_SYNC to get an uncached region */ |
| unsigned cached; |
| unsigned buffered; |
| /* in no_allocator mode the first mapper gets the whole space and sets |
| * this flag */ |
| unsigned allocated; |
| /* for debugging, creates a list of pmem file structs, the |
| * data_list_sem should be taken before pmem_data->sem if both are |
| * needed */ |
| struct semaphore data_list_sem; |
| struct list_head data_list; |
| /* pmem_sem protects the bitmap array |
| * a write lock should be held when modifying entries in bitmap |
| * a read lock should be held when reading data from bits or |
| * dereferencing a pointer into bitmap |
| * |
| * pmem_data->sem protects the pmem data of a particular file |
| * Many of the function that require the pmem_data->sem have a non- |
| * locking version for when the caller is already holding that sem. |
| * |
| * IF YOU TAKE BOTH LOCKS TAKE THEM IN THIS ORDER: |
| * down(pmem_data->sem) => down(bitmap_sem) |
| */ |
| struct rw_semaphore bitmap_sem; |
| |
| long (*ioctl)(struct file *, unsigned int, unsigned long); |
| int (*release)(struct inode *, struct file *); |
| }; |
| |
| static struct pmem_info pmem[PMEM_MAX_DEVICES]; |
| static int id_count; |
| |
| #define PMEM_IS_FREE(id, index) (!(pmem[id].bitmap[index].allocated)) |
| #define PMEM_ORDER(id, index) pmem[id].bitmap[index].order |
| #define PMEM_BUDDY_INDEX(id, index) (index ^ (1 << PMEM_ORDER(id, index))) |
| #define PMEM_NEXT_INDEX(id, index) (index + (1 << PMEM_ORDER(id, index))) |
| #define PMEM_OFFSET(index) (index * PMEM_MIN_ALLOC) |
| #define PMEM_START_ADDR(id, index) (PMEM_OFFSET(index) + pmem[id].base) |
| #define PMEM_LEN(id, index) ((1 << PMEM_ORDER(id, index)) * PMEM_MIN_ALLOC) |
| #define PMEM_END_ADDR(id, index) (PMEM_START_ADDR(id, index) + \ |
| PMEM_LEN(id, index)) |
| #define PMEM_START_VADDR(id, index) (PMEM_OFFSET(id, index) + pmem[id].vbase) |
| #define PMEM_END_VADDR(id, index) (PMEM_START_VADDR(id, index) + \ |
| PMEM_LEN(id, index)) |
| #define PMEM_REVOKED(data) (data->flags & PMEM_FLAGS_REVOKED) |
| #define PMEM_IS_PAGE_ALIGNED(addr) (!((addr) & (~PAGE_MASK))) |
| #define PMEM_IS_SUBMAP(data) ((data->flags & PMEM_FLAGS_SUBMAP) && \ |
| (!(data->flags & PMEM_FLAGS_UNSUBMAP))) |
| |
| static int pmem_release(struct inode *, struct file *); |
| static int pmem_mmap(struct file *, struct vm_area_struct *); |
| static int pmem_open(struct inode *, struct file *); |
| static long pmem_ioctl(struct file *, unsigned int, unsigned long); |
| |
| const struct file_operations pmem_fops = { |
| .release = pmem_release, |
| .mmap = pmem_mmap, |
| .open = pmem_open, |
| .unlocked_ioctl = pmem_ioctl, |
| }; |
| |
| static int get_id(struct file *file) |
| { |
| return MINOR(file->f_dentry->d_inode->i_rdev); |
| } |
| |
| static int is_pmem_file(struct file *file) |
| { |
| int id; |
| |
| if (unlikely(!file || !file->f_dentry || !file->f_dentry->d_inode)) |
| return 0; |
| id = get_id(file); |
| if (unlikely(id >= PMEM_MAX_DEVICES)) |
| return 0; |
| if (unlikely(file->f_dentry->d_inode->i_rdev != |
| MKDEV(MISC_MAJOR, pmem[id].dev.minor))) |
| return 0; |
| return 1; |
| } |
| |
| static int has_allocation(struct file *file) |
| { |
| struct pmem_data *data; |
| /* check is_pmem_file first if not accessed via pmem_file_ops */ |
| |
| if (unlikely(!file->private_data)) |
| return 0; |
| data = file->private_data; |
| if (unlikely(data->index < 0)) |
| return 0; |
| return 1; |
| } |
| |
| static int is_master_owner(struct file *file) |
| { |
| struct file *master_file; |
| struct pmem_data *data; |
| int put_needed, ret = 0; |
| |
| if (!is_pmem_file(file) || !has_allocation(file)) |
| return 0; |
| data = file->private_data; |
| if (PMEM_FLAGS_MASTERMAP & data->flags) |
| return 1; |
| master_file = fget_light(data->master_fd, &put_needed); |
| if (master_file && data->master_file == master_file) |
| ret = 1; |
| fput_light(master_file, put_needed); |
| return ret; |
| } |
| |
| static int pmem_free(int id, int index) |
| { |
| /* caller should hold the write lock on pmem_sem! */ |
| int buddy, curr = index; |
| DLOG("index %d\n", index); |
| |
| if (pmem[id].no_allocator) { |
| pmem[id].allocated = 0; |
| return 0; |
| } |
| /* clean up the bitmap, merging any buddies */ |
| pmem[id].bitmap[curr].allocated = 0; |
| /* find a slots buddy Buddy# = Slot# ^ (1 << order) |
| * if the buddy is also free merge them |
| * repeat until the buddy is not free or end of the bitmap is reached |
| */ |
| do { |
| buddy = PMEM_BUDDY_INDEX(id, curr); |
| if (PMEM_IS_FREE(id, buddy) && |
| PMEM_ORDER(id, buddy) == PMEM_ORDER(id, curr)) { |
| PMEM_ORDER(id, buddy)++; |
| PMEM_ORDER(id, curr)++; |
| curr = min(buddy, curr); |
| } else { |
| break; |
| } |
| } while (curr < pmem[id].num_entries); |
| |
| return 0; |
| } |
| |
| static void pmem_revoke(struct file *file, struct pmem_data *data); |
| |
| static int pmem_release(struct inode *inode, struct file *file) |
| { |
| struct pmem_data *data = file->private_data; |
| struct pmem_region_node *region_node; |
| struct list_head *elt, *elt2; |
| int id = get_id(file), ret = 0; |
| |
| |
| down(&pmem[id].data_list_sem); |
| /* if this file is a master, revoke all the memory in the connected |
| * files */ |
| if (PMEM_FLAGS_MASTERMAP & data->flags) { |
| struct pmem_data *sub_data; |
| list_for_each(elt, &pmem[id].data_list) { |
| sub_data = list_entry(elt, struct pmem_data, list); |
| down_read(&sub_data->sem); |
| if (PMEM_IS_SUBMAP(sub_data) && |
| file == sub_data->master_file) { |
| up_read(&sub_data->sem); |
| pmem_revoke(file, sub_data); |
| } else |
| up_read(&sub_data->sem); |
| } |
| } |
| list_del(&data->list); |
| up(&pmem[id].data_list_sem); |
| |
| |
| down_write(&data->sem); |
| |
| /* if its not a conencted file and it has an allocation, free it */ |
| if (!(PMEM_FLAGS_CONNECTED & data->flags) && has_allocation(file)) { |
| down_write(&pmem[id].bitmap_sem); |
| ret = pmem_free(id, data->index); |
| up_write(&pmem[id].bitmap_sem); |
| } |
| |
| /* if this file is a submap (mapped, connected file), downref the |
| * task struct */ |
| if (PMEM_FLAGS_SUBMAP & data->flags) |
| if (data->task) { |
| put_task_struct(data->task); |
| data->task = NULL; |
| } |
| |
| file->private_data = NULL; |
| |
| list_for_each_safe(elt, elt2, &data->region_list) { |
| region_node = list_entry(elt, struct pmem_region_node, list); |
| list_del(elt); |
| kfree(region_node); |
| } |
| BUG_ON(!list_empty(&data->region_list)); |
| |
| up_write(&data->sem); |
| kfree(data); |
| if (pmem[id].release) |
| ret = pmem[id].release(inode, file); |
| |
| return ret; |
| } |
| |
| static int pmem_open(struct inode *inode, struct file *file) |
| { |
| struct pmem_data *data; |
| int id = get_id(file); |
| int ret = 0; |
| |
| DLOG("current %u file %p(%d)\n", current->pid, file, file_count(file)); |
| /* setup file->private_data to indicate its unmapped */ |
| /* you can only open a pmem device one time */ |
| if (file->private_data != NULL) |
| return -1; |
| data = kmalloc(sizeof(struct pmem_data), GFP_KERNEL); |
| if (!data) { |
| printk("pmem: unable to allocate memory for pmem metadata."); |
| return -1; |
| } |
| data->flags = 0; |
| data->index = -1; |
| data->task = NULL; |
| data->vma = NULL; |
| data->pid = 0; |
| data->master_file = NULL; |
| #if PMEM_DEBUG |
| data->ref = 0; |
| #endif |
| INIT_LIST_HEAD(&data->region_list); |
| init_rwsem(&data->sem); |
| |
| file->private_data = data; |
| INIT_LIST_HEAD(&data->list); |
| |
| down(&pmem[id].data_list_sem); |
| list_add(&data->list, &pmem[id].data_list); |
| up(&pmem[id].data_list_sem); |
| return ret; |
| } |
| |
| static unsigned long pmem_order(unsigned long len) |
| { |
| int i; |
| |
| len = (len + PMEM_MIN_ALLOC - 1)/PMEM_MIN_ALLOC; |
| len--; |
| for (i = 0; i < sizeof(len)*8; i++) |
| if (len >> i == 0) |
| break; |
| return i; |
| } |
| |
| static int pmem_allocate(int id, unsigned long len) |
| { |
| /* caller should hold the write lock on pmem_sem! */ |
| /* return the corresponding pdata[] entry */ |
| int curr = 0; |
| int end = pmem[id].num_entries; |
| int best_fit = -1; |
| unsigned long order = pmem_order(len); |
| |
| if (pmem[id].no_allocator) { |
| DLOG("no allocator"); |
| if ((len > pmem[id].size) || pmem[id].allocated) |
| return -1; |
| pmem[id].allocated = 1; |
| return len; |
| } |
| |
| if (order > PMEM_MAX_ORDER) |
| return -1; |
| DLOG("order %lx\n", order); |
| |
| /* look through the bitmap: |
| * if you find a free slot of the correct order use it |
| * otherwise, use the best fit (smallest with size > order) slot |
| */ |
| while (curr < end) { |
| if (PMEM_IS_FREE(id, curr)) { |
| if (PMEM_ORDER(id, curr) == (unsigned char)order) { |
| /* set the not free bit and clear others */ |
| best_fit = curr; |
| break; |
| } |
| if (PMEM_ORDER(id, curr) > (unsigned char)order && |
| (best_fit < 0 || |
| PMEM_ORDER(id, curr) < PMEM_ORDER(id, best_fit))) |
| best_fit = curr; |
| } |
| curr = PMEM_NEXT_INDEX(id, curr); |
| } |
| |
| /* if best_fit < 0, there are no suitable slots, |
| * return an error |
| */ |
| if (best_fit < 0) { |
| printk("pmem: no space left to allocate!\n"); |
| return -1; |
| } |
| |
| /* now partition the best fit: |
| * split the slot into 2 buddies of order - 1 |
| * repeat until the slot is of the correct order |
| */ |
| while (PMEM_ORDER(id, best_fit) > (unsigned char)order) { |
| int buddy; |
| PMEM_ORDER(id, best_fit) -= 1; |
| buddy = PMEM_BUDDY_INDEX(id, best_fit); |
| PMEM_ORDER(id, buddy) = PMEM_ORDER(id, best_fit); |
| } |
| pmem[id].bitmap[best_fit].allocated = 1; |
| return best_fit; |
| } |
| |
| static pgprot_t phys_mem_access_prot(struct file *file, pgprot_t vma_prot) |
| { |
| int id = get_id(file); |
| #ifdef pgprot_noncached |
| if (pmem[id].cached == 0 || file->f_flags & O_SYNC) |
| return pgprot_noncached(vma_prot); |
| #endif |
| #ifdef pgprot_ext_buffered |
| else if (pmem[id].buffered) |
| return pgprot_ext_buffered(vma_prot); |
| #endif |
| return vma_prot; |
| } |
| |
| static unsigned long pmem_start_addr(int id, struct pmem_data *data) |
| { |
| if (pmem[id].no_allocator) |
| return PMEM_START_ADDR(id, 0); |
| else |
| return PMEM_START_ADDR(id, data->index); |
| |
| } |
| |
| static void *pmem_start_vaddr(int id, struct pmem_data *data) |
| { |
| return pmem_start_addr(id, data) - pmem[id].base + pmem[id].vbase; |
| } |
| |
| static unsigned long pmem_len(int id, struct pmem_data *data) |
| { |
| if (pmem[id].no_allocator) |
| return data->index; |
| else |
| return PMEM_LEN(id, data->index); |
| } |
| |
| static int pmem_map_garbage(int id, struct vm_area_struct *vma, |
| struct pmem_data *data, unsigned long offset, |
| unsigned long len) |
| { |
| int i, garbage_pages = len >> PAGE_SHIFT; |
| |
| vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP | VM_SHARED | VM_WRITE; |
| for (i = 0; i < garbage_pages; i++) { |
| if (vm_insert_pfn(vma, vma->vm_start + offset + (i * PAGE_SIZE), |
| pmem[id].garbage_pfn)) |
| return -EAGAIN; |
| } |
| return 0; |
| } |
| |
| static int pmem_unmap_pfn_range(int id, struct vm_area_struct *vma, |
| struct pmem_data *data, unsigned long offset, |
| unsigned long len) |
| { |
| int garbage_pages; |
| DLOG("unmap offset %lx len %lx\n", offset, len); |
| |
| BUG_ON(!PMEM_IS_PAGE_ALIGNED(len)); |
| |
| garbage_pages = len >> PAGE_SHIFT; |
| zap_page_range(vma, vma->vm_start + offset, len, NULL); |
| pmem_map_garbage(id, vma, data, offset, len); |
| return 0; |
| } |
| |
| static int pmem_map_pfn_range(int id, struct vm_area_struct *vma, |
| struct pmem_data *data, unsigned long offset, |
| unsigned long len) |
| { |
| DLOG("map offset %lx len %lx\n", offset, len); |
| BUG_ON(!PMEM_IS_PAGE_ALIGNED(vma->vm_start)); |
| BUG_ON(!PMEM_IS_PAGE_ALIGNED(vma->vm_end)); |
| BUG_ON(!PMEM_IS_PAGE_ALIGNED(len)); |
| BUG_ON(!PMEM_IS_PAGE_ALIGNED(offset)); |
| |
| if (io_remap_pfn_range(vma, vma->vm_start + offset, |
| (pmem_start_addr(id, data) + offset) >> PAGE_SHIFT, |
| len, vma->vm_page_prot)) { |
| return -EAGAIN; |
| } |
| return 0; |
| } |
| |
| static int pmem_remap_pfn_range(int id, struct vm_area_struct *vma, |
| struct pmem_data *data, unsigned long offset, |
| unsigned long len) |
| { |
| /* hold the mm semp for the vma you are modifying when you call this */ |
| BUG_ON(!vma); |
| zap_page_range(vma, vma->vm_start + offset, len, NULL); |
| return pmem_map_pfn_range(id, vma, data, offset, len); |
| } |
| |
| static void pmem_vma_open(struct vm_area_struct *vma) |
| { |
| struct file *file = vma->vm_file; |
| struct pmem_data *data = file->private_data; |
| int id = get_id(file); |
| /* this should never be called as we don't support copying pmem |
| * ranges via fork */ |
| BUG_ON(!has_allocation(file)); |
| down_write(&data->sem); |
| /* remap the garbage pages, forkers don't get access to the data */ |
| pmem_unmap_pfn_range(id, vma, data, 0, vma->vm_start - vma->vm_end); |
| up_write(&data->sem); |
| } |
| |
| static void pmem_vma_close(struct vm_area_struct *vma) |
| { |
| struct file *file = vma->vm_file; |
| struct pmem_data *data = file->private_data; |
| |
| DLOG("current %u ppid %u file %p count %d\n", current->pid, |
| current->parent->pid, file, file_count(file)); |
| if (unlikely(!is_pmem_file(file) || !has_allocation(file))) { |
| printk(KERN_WARNING "pmem: something is very wrong, you are " |
| "closing a vm backing an allocation that doesn't " |
| "exist!\n"); |
| return; |
| } |
| down_write(&data->sem); |
| if (data->vma == vma) { |
| data->vma = NULL; |
| if ((data->flags & PMEM_FLAGS_CONNECTED) && |
| (data->flags & PMEM_FLAGS_SUBMAP)) |
| data->flags |= PMEM_FLAGS_UNSUBMAP; |
| } |
| /* the kernel is going to free this vma now anyway */ |
| up_write(&data->sem); |
| } |
| |
| static struct vm_operations_struct vm_ops = { |
| .open = pmem_vma_open, |
| .close = pmem_vma_close, |
| }; |
| |
| static int pmem_mmap(struct file *file, struct vm_area_struct *vma) |
| { |
| struct pmem_data *data; |
| int index; |
| unsigned long vma_size = vma->vm_end - vma->vm_start; |
| int ret = 0, id = get_id(file); |
| |
| if (vma->vm_pgoff || !PMEM_IS_PAGE_ALIGNED(vma_size)) { |
| #if PMEM_DEBUG |
| printk(KERN_ERR "pmem: mmaps must be at offset zero, aligned" |
| " and a multiple of pages_size.\n"); |
| #endif |
| return -EINVAL; |
| } |
| |
| data = file->private_data; |
| down_write(&data->sem); |
| /* check this file isn't already mmaped, for submaps check this file |
| * has never been mmaped */ |
| if ((data->flags & PMEM_FLAGS_MASTERMAP) || |
| (data->flags & PMEM_FLAGS_SUBMAP) || |
| (data->flags & PMEM_FLAGS_UNSUBMAP)) { |
| #if PMEM_DEBUG |
| printk(KERN_ERR "pmem: you can only mmap a pmem file once, " |
| "this file is already mmaped. %x\n", data->flags); |
| #endif |
| ret = -EINVAL; |
| goto error; |
| } |
| /* if file->private_data == unalloced, alloc*/ |
| if (data && data->index == -1) { |
| down_write(&pmem[id].bitmap_sem); |
| index = pmem_allocate(id, vma->vm_end - vma->vm_start); |
| up_write(&pmem[id].bitmap_sem); |
| data->index = index; |
| } |
| /* either no space was available or an error occured */ |
| if (!has_allocation(file)) { |
| ret = -EINVAL; |
| printk("pmem: could not find allocation for map.\n"); |
| goto error; |
| } |
| |
| if (pmem_len(id, data) < vma_size) { |
| #if PMEM_DEBUG |
| printk(KERN_WARNING "pmem: mmap size [%lu] does not match" |
| "size of backing region [%lu].\n", vma_size, |
| pmem_len(id, data)); |
| #endif |
| ret = -EINVAL; |
| goto error; |
| } |
| |
| vma->vm_pgoff = pmem_start_addr(id, data) >> PAGE_SHIFT; |
| vma->vm_page_prot = phys_mem_access_prot(file, vma->vm_page_prot); |
| |
| if (data->flags & PMEM_FLAGS_CONNECTED) { |
| struct pmem_region_node *region_node; |
| struct list_head *elt; |
| if (pmem_map_garbage(id, vma, data, 0, vma_size)) { |
| printk("pmem: mmap failed in kernel!\n"); |
| ret = -EAGAIN; |
| goto error; |
| } |
| list_for_each(elt, &data->region_list) { |
| region_node = list_entry(elt, struct pmem_region_node, |
| list); |
| DLOG("remapping file: %p %lx %lx\n", file, |
| region_node->region.offset, |
| region_node->region.len); |
| if (pmem_remap_pfn_range(id, vma, data, |
| region_node->region.offset, |
| region_node->region.len)) { |
| ret = -EAGAIN; |
| goto error; |
| } |
| } |
| data->flags |= PMEM_FLAGS_SUBMAP; |
| get_task_struct(current->group_leader); |
| data->task = current->group_leader; |
| data->vma = vma; |
| #if PMEM_DEBUG |
| data->pid = current->pid; |
| #endif |
| DLOG("submmapped file %p vma %p pid %u\n", file, vma, |
| current->pid); |
| } else { |
| if (pmem_map_pfn_range(id, vma, data, 0, vma_size)) { |
| printk(KERN_INFO "pmem: mmap failed in kernel!\n"); |
| ret = -EAGAIN; |
| goto error; |
| } |
| data->flags |= PMEM_FLAGS_MASTERMAP; |
| data->pid = current->pid; |
| } |
| vma->vm_ops = &vm_ops; |
| error: |
| up_write(&data->sem); |
| return ret; |
| } |
| |
| /* the following are the api for accessing pmem regions by other drivers |
| * from inside the kernel */ |
| int get_pmem_user_addr(struct file *file, unsigned long *start, |
| unsigned long *len) |
| { |
| struct pmem_data *data; |
| if (!is_pmem_file(file) || !has_allocation(file)) { |
| #if PMEM_DEBUG |
| printk(KERN_INFO "pmem: requested pmem data from invalid" |
| "file.\n"); |
| #endif |
| return -1; |
| } |
| data = file->private_data; |
| down_read(&data->sem); |
| if (data->vma) { |
| *start = data->vma->vm_start; |
| *len = data->vma->vm_end - data->vma->vm_start; |
| } else { |
| *start = 0; |
| *len = 0; |
| } |
| up_read(&data->sem); |
| return 0; |
| } |
| |
| int get_pmem_addr(struct file *file, unsigned long *start, |
| unsigned long *vstart, unsigned long *len) |
| { |
| struct pmem_data *data; |
| int id; |
| |
| if (!is_pmem_file(file) || !has_allocation(file)) |
| return -1; |
| |
| data = file->private_data; |
| if (data->index == -1) { |
| #if PMEM_DEBUG |
| printk(KERN_INFO "pmem: requested pmem data from file with no " |
| "allocation.\n"); |
| return -1; |
| #endif |
| } |
| id = get_id(file); |
| |
| down_read(&data->sem); |
| *start = pmem_start_addr(id, data); |
| *len = pmem_len(id, data); |
| *vstart = (unsigned long)pmem_start_vaddr(id, data); |
| up_read(&data->sem); |
| #if PMEM_DEBUG |
| down_write(&data->sem); |
| data->ref++; |
| up_write(&data->sem); |
| #endif |
| return 0; |
| } |
| |
| int get_pmem_file(int fd, unsigned long *start, unsigned long *vstart, |
| unsigned long *len, struct file **filp) |
| { |
| struct file *file; |
| |
| file = fget(fd); |
| if (unlikely(file == NULL)) { |
| printk(KERN_INFO "pmem: requested data from file descriptor " |
| "that doesn't exist."); |
| return -1; |
| } |
| |
| if (get_pmem_addr(file, start, vstart, len)) |
| goto end; |
| |
| if (filp) |
| *filp = file; |
| return 0; |
| end: |
| fput(file); |
| return -1; |
| } |
| |
| void put_pmem_file(struct file *file) |
| { |
| struct pmem_data *data; |
| int id; |
| |
| if (!is_pmem_file(file)) |
| return; |
| id = get_id(file); |
| data = file->private_data; |
| #if PMEM_DEBUG |
| down_write(&data->sem); |
| if (data->ref == 0) { |
| printk("pmem: pmem_put > pmem_get %s (pid %d)\n", |
| pmem[id].dev.name, data->pid); |
| BUG(); |
| } |
| data->ref--; |
| up_write(&data->sem); |
| #endif |
| fput(file); |
| } |
| |
| void flush_pmem_file(struct file *file, unsigned long offset, unsigned long len) |
| { |
| struct pmem_data *data; |
| int id; |
| void *vaddr; |
| struct pmem_region_node *region_node; |
| struct list_head *elt; |
| void *flush_start, *flush_end; |
| |
| if (!is_pmem_file(file) || !has_allocation(file)) |
| return; |
| |
| id = get_id(file); |
| data = file->private_data; |
| if (!pmem[id].cached) |
| return; |
| |
| down_read(&data->sem); |
| vaddr = pmem_start_vaddr(id, data); |
| /* if this isn't a submmapped file, flush the whole thing */ |
| if (unlikely(!(data->flags & PMEM_FLAGS_CONNECTED))) { |
| dmac_flush_range(vaddr, vaddr + pmem_len(id, data)); |
| goto end; |
| } |
| /* otherwise, flush the region of the file we are drawing */ |
| list_for_each(elt, &data->region_list) { |
| region_node = list_entry(elt, struct pmem_region_node, list); |
| if ((offset >= region_node->region.offset) && |
| ((offset + len) <= (region_node->region.offset + |
| region_node->region.len))) { |
| flush_start = vaddr + region_node->region.offset; |
| flush_end = flush_start + region_node->region.len; |
| dmac_flush_range(flush_start, flush_end); |
| break; |
| } |
| } |
| end: |
| up_read(&data->sem); |
| } |
| |
| static int pmem_connect(unsigned long connect, struct file *file) |
| { |
| struct pmem_data *data = file->private_data; |
| struct pmem_data *src_data; |
| struct file *src_file; |
| int ret = 0, put_needed; |
| |
| down_write(&data->sem); |
| /* retrieve the src file and check it is a pmem file with an alloc */ |
| src_file = fget_light(connect, &put_needed); |
| DLOG("connect %p to %p\n", file, src_file); |
| if (!src_file) { |
| printk(KERN_INFO "pmem: src file not found!\n"); |
| ret = -EINVAL; |
| goto err_no_file; |
| } |
| if (unlikely(!is_pmem_file(src_file) || !has_allocation(src_file))) { |
| printk(KERN_INFO "pmem: src file is not a pmem file or has no " |
| "alloc!\n"); |
| ret = -EINVAL; |
| goto err_bad_file; |
| } |
| src_data = src_file->private_data; |
| |
| if (has_allocation(file) && (data->index != src_data->index)) { |
| printk(KERN_INFO "pmem: file is already mapped but doesn't " |
| "match this src_file!\n"); |
| ret = -EINVAL; |
| goto err_bad_file; |
| } |
| data->index = src_data->index; |
| data->flags |= PMEM_FLAGS_CONNECTED; |
| data->master_fd = connect; |
| data->master_file = src_file; |
| |
| err_bad_file: |
| fput_light(src_file, put_needed); |
| err_no_file: |
| up_write(&data->sem); |
| return ret; |
| } |
| |
| static void pmem_unlock_data_and_mm(struct pmem_data *data, |
| struct mm_struct *mm) |
| { |
| up_write(&data->sem); |
| if (mm != NULL) { |
| up_write(&mm->mmap_sem); |
| mmput(mm); |
| } |
| } |
| |
| static int pmem_lock_data_and_mm(struct file *file, struct pmem_data *data, |
| struct mm_struct **locked_mm) |
| { |
| int ret = 0; |
| struct mm_struct *mm = NULL; |
| *locked_mm = NULL; |
| lock_mm: |
| down_read(&data->sem); |
| if (PMEM_IS_SUBMAP(data)) { |
| mm = get_task_mm(data->task); |
| if (!mm) { |
| #if PMEM_DEBUG |
| printk(KERN_DEBUG "pmem: can't remap task is gone!\n"); |
| #endif |
| up_read(&data->sem); |
| return -1; |
| } |
| } |
| up_read(&data->sem); |
| |
| if (mm) |
| down_write(&mm->mmap_sem); |
| |
| down_write(&data->sem); |
| /* check that the file didn't get mmaped before we could take the |
| * data sem, this should be safe b/c you can only submap each file |
| * once */ |
| if (PMEM_IS_SUBMAP(data) && !mm) { |
| pmem_unlock_data_and_mm(data, mm); |
| up_write(&data->sem); |
| goto lock_mm; |
| } |
| /* now check that vma.mm is still there, it could have been |
| * deleted by vma_close before we could get the data->sem */ |
| if ((data->flags & PMEM_FLAGS_UNSUBMAP) && (mm != NULL)) { |
| /* might as well release this */ |
| if (data->flags & PMEM_FLAGS_SUBMAP) { |
| put_task_struct(data->task); |
| data->task = NULL; |
| /* lower the submap flag to show the mm is gone */ |
| data->flags &= ~(PMEM_FLAGS_SUBMAP); |
| } |
| pmem_unlock_data_and_mm(data, mm); |
| return -1; |
| } |
| *locked_mm = mm; |
| return ret; |
| } |
| |
| int pmem_remap(struct pmem_region *region, struct file *file, |
| unsigned operation) |
| { |
| int ret; |
| struct pmem_region_node *region_node; |
| struct mm_struct *mm = NULL; |
| struct list_head *elt, *elt2; |
| int id = get_id(file); |
| struct pmem_data *data = file->private_data; |
| |
| /* pmem region must be aligned on a page boundry */ |
| if (unlikely(!PMEM_IS_PAGE_ALIGNED(region->offset) || |
| !PMEM_IS_PAGE_ALIGNED(region->len))) { |
| #if PMEM_DEBUG |
| printk(KERN_DEBUG "pmem: request for unaligned pmem " |
| "suballocation %lx %lx\n", region->offset, region->len); |
| #endif |
| return -EINVAL; |
| } |
| |
| /* if userspace requests a region of len 0, there's nothing to do */ |
| if (region->len == 0) |
| return 0; |
| |
| /* lock the mm and data */ |
| ret = pmem_lock_data_and_mm(file, data, &mm); |
| if (ret) |
| return 0; |
| |
| /* only the owner of the master file can remap the client fds |
| * that back in it */ |
| if (!is_master_owner(file)) { |
| #if PMEM_DEBUG |
| printk("pmem: remap requested from non-master process\n"); |
| #endif |
| ret = -EINVAL; |
| goto err; |
| } |
| |
| /* check that the requested range is within the src allocation */ |
| if (unlikely((region->offset > pmem_len(id, data)) || |
| (region->len > pmem_len(id, data)) || |
| (region->offset + region->len > pmem_len(id, data)))) { |
| #if PMEM_DEBUG |
| printk(KERN_INFO "pmem: suballoc doesn't fit in src_file!\n"); |
| #endif |
| ret = -EINVAL; |
| goto err; |
| } |
| |
| if (operation == PMEM_MAP) { |
| region_node = kmalloc(sizeof(struct pmem_region_node), |
| GFP_KERNEL); |
| if (!region_node) { |
| ret = -ENOMEM; |
| #if PMEM_DEBUG |
| printk(KERN_INFO "No space to allocate metadata!"); |
| #endif |
| goto err; |
| } |
| region_node->region = *region; |
| list_add(®ion_node->list, &data->region_list); |
| } else if (operation == PMEM_UNMAP) { |
| int found = 0; |
| list_for_each_safe(elt, elt2, &data->region_list) { |
| region_node = list_entry(elt, struct pmem_region_node, |
| list); |
| if (region->len == 0 || |
| (region_node->region.offset == region->offset && |
| region_node->region.len == region->len)) { |
| list_del(elt); |
| kfree(region_node); |
| found = 1; |
| } |
| } |
| if (!found) { |
| #if PMEM_DEBUG |
| printk("pmem: Unmap region does not map any mapped " |
| "region!"); |
| #endif |
| ret = -EINVAL; |
| goto err; |
| } |
| } |
| |
| if (data->vma && PMEM_IS_SUBMAP(data)) { |
| if (operation == PMEM_MAP) |
| ret = pmem_remap_pfn_range(id, data->vma, data, |
| region->offset, region->len); |
| else if (operation == PMEM_UNMAP) |
| ret = pmem_unmap_pfn_range(id, data->vma, data, |
| region->offset, region->len); |
| } |
| |
| err: |
| pmem_unlock_data_and_mm(data, mm); |
| return ret; |
| } |
| |
| static void pmem_revoke(struct file *file, struct pmem_data *data) |
| { |
| struct pmem_region_node *region_node; |
| struct list_head *elt, *elt2; |
| struct mm_struct *mm = NULL; |
| int id = get_id(file); |
| int ret = 0; |
| |
| data->master_file = NULL; |
| ret = pmem_lock_data_and_mm(file, data, &mm); |
| /* if lock_data_and_mm fails either the task that mapped the fd, or |
| * the vma that mapped it have already gone away, nothing more |
| * needs to be done */ |
| if (ret) |
| return; |
| /* unmap everything */ |
| /* delete the regions and region list nothing is mapped any more */ |
| if (data->vma) |
| list_for_each_safe(elt, elt2, &data->region_list) { |
| region_node = list_entry(elt, struct pmem_region_node, |
| list); |
| pmem_unmap_pfn_range(id, data->vma, data, |
| region_node->region.offset, |
| region_node->region.len); |
| list_del(elt); |
| kfree(region_node); |
| } |
| /* delete the master file */ |
| pmem_unlock_data_and_mm(data, mm); |
| } |
| |
| static void pmem_get_size(struct pmem_region *region, struct file *file) |
| { |
| struct pmem_data *data = file->private_data; |
| int id = get_id(file); |
| |
| if (!has_allocation(file)) { |
| region->offset = 0; |
| region->len = 0; |
| return; |
| } else { |
| region->offset = pmem_start_addr(id, data); |
| region->len = pmem_len(id, data); |
| } |
| DLOG("offset %lx len %lx\n", region->offset, region->len); |
| } |
| |
| |
| static long pmem_ioctl(struct file *file, unsigned int cmd, unsigned long arg) |
| { |
| struct pmem_data *data; |
| int id = get_id(file); |
| |
| switch (cmd) { |
| case PMEM_GET_PHYS: |
| { |
| struct pmem_region region; |
| DLOG("get_phys\n"); |
| if (!has_allocation(file)) { |
| region.offset = 0; |
| region.len = 0; |
| } else { |
| data = file->private_data; |
| region.offset = pmem_start_addr(id, data); |
| region.len = pmem_len(id, data); |
| } |
| printk(KERN_INFO "pmem: request for physical address " |
| "of pmem region from process %d.\n", current->pid); |
| if (copy_to_user((void __user *)arg, ®ion, |
| sizeof(struct pmem_region))) |
| return -EFAULT; |
| break; |
| } |
| case PMEM_MAP: |
| { |
| struct pmem_region region; |
| if (copy_from_user(®ion, (void __user *)arg, |
| sizeof(struct pmem_region))) |
| return -EFAULT; |
| data = file->private_data; |
| return pmem_remap(®ion, file, PMEM_MAP); |
| } |
| break; |
| case PMEM_UNMAP: |
| { |
| struct pmem_region region; |
| if (copy_from_user(®ion, (void __user *)arg, |
| sizeof(struct pmem_region))) |
| return -EFAULT; |
| data = file->private_data; |
| return pmem_remap(®ion, file, PMEM_UNMAP); |
| break; |
| } |
| case PMEM_GET_SIZE: |
| { |
| struct pmem_region region; |
| DLOG("get_size\n"); |
| pmem_get_size(®ion, file); |
| if (copy_to_user((void __user *)arg, ®ion, |
| sizeof(struct pmem_region))) |
| return -EFAULT; |
| break; |
| } |
| case PMEM_GET_TOTAL_SIZE: |
| { |
| struct pmem_region region; |
| DLOG("get total size\n"); |
| region.offset = 0; |
| get_id(file); |
| region.len = pmem[id].size; |
| if (copy_to_user((void __user *)arg, ®ion, |
| sizeof(struct pmem_region))) |
| return -EFAULT; |
| break; |
| } |
| case PMEM_ALLOCATE: |
| { |
| if (has_allocation(file)) |
| return -EINVAL; |
| data = file->private_data; |
| data->index = pmem_allocate(id, arg); |
| break; |
| } |
| case PMEM_CONNECT: |
| DLOG("connect\n"); |
| return pmem_connect(arg, file); |
| break; |
| default: |
| if (pmem[id].ioctl) |
| return pmem[id].ioctl(file, cmd, arg); |
| return -EINVAL; |
| } |
| return 0; |
| } |
| |
| #if PMEM_DEBUG |
| static ssize_t debug_open(struct inode *inode, struct file *file) |
| { |
| file->private_data = inode->i_private; |
| return 0; |
| } |
| |
| static ssize_t debug_read(struct file *file, char __user *buf, size_t count, |
| loff_t *ppos) |
| { |
| struct list_head *elt, *elt2; |
| struct pmem_data *data; |
| struct pmem_region_node *region_node; |
| int id = (int)file->private_data; |
| const int debug_bufmax = 4096; |
| static char buffer[4096]; |
| int n = 0; |
| |
| DLOG("debug open\n"); |
| n = scnprintf(buffer, debug_bufmax, |
| "pid #: mapped regions (offset, len) (offset,len)...\n"); |
| |
| down(&pmem[id].data_list_sem); |
| list_for_each(elt, &pmem[id].data_list) { |
| data = list_entry(elt, struct pmem_data, list); |
| down_read(&data->sem); |
| n += scnprintf(buffer + n, debug_bufmax - n, "pid %u:", |
| data->pid); |
| list_for_each(elt2, &data->region_list) { |
| region_node = list_entry(elt2, struct pmem_region_node, |
| list); |
| n += scnprintf(buffer + n, debug_bufmax - n, |
| "(%lx,%lx) ", |
| region_node->region.offset, |
| region_node->region.len); |
| } |
| n += scnprintf(buffer + n, debug_bufmax - n, "\n"); |
| up_read(&data->sem); |
| } |
| up(&pmem[id].data_list_sem); |
| |
| n++; |
| buffer[n] = 0; |
| return simple_read_from_buffer(buf, count, ppos, buffer, n); |
| } |
| |
| static struct file_operations debug_fops = { |
| .read = debug_read, |
| .open = debug_open, |
| }; |
| #endif |
| |
| #if 0 |
| static struct miscdevice pmem_dev = { |
| .name = "pmem", |
| .fops = &pmem_fops, |
| }; |
| #endif |
| |
| int pmem_setup(struct android_pmem_platform_data *pdata, |
| long (*ioctl)(struct file *, unsigned int, unsigned long), |
| int (*release)(struct inode *, struct file *)) |
| { |
| int err = 0; |
| int i, index = 0; |
| int id = id_count; |
| id_count++; |
| |
| pmem[id].no_allocator = pdata->no_allocator; |
| pmem[id].cached = pdata->cached; |
| pmem[id].buffered = pdata->buffered; |
| pmem[id].base = pdata->start; |
| pmem[id].size = pdata->size; |
| pmem[id].ioctl = ioctl; |
| pmem[id].release = release; |
| init_rwsem(&pmem[id].bitmap_sem); |
| init_MUTEX(&pmem[id].data_list_sem); |
| INIT_LIST_HEAD(&pmem[id].data_list); |
| pmem[id].dev.name = pdata->name; |
| pmem[id].dev.minor = id; |
| pmem[id].dev.fops = &pmem_fops; |
| printk(KERN_INFO "%s: %d init\n", pdata->name, pdata->cached); |
| |
| err = misc_register(&pmem[id].dev); |
| if (err) { |
| printk(KERN_ALERT "Unable to register pmem driver!\n"); |
| goto err_cant_register_device; |
| } |
| pmem[id].num_entries = pmem[id].size / PMEM_MIN_ALLOC; |
| |
| pmem[id].bitmap = kcalloc(pmem[id].num_entries, |
| sizeof(struct pmem_bits), GFP_KERNEL); |
| if (!pmem[id].bitmap) |
| goto err_no_mem_for_metadata; |
| |
| for (i = sizeof(pmem[id].num_entries) * 8 - 1; i >= 0; i--) { |
| if ((pmem[id].num_entries) & 1<<i) { |
| PMEM_ORDER(id, index) = i; |
| index = PMEM_NEXT_INDEX(id, index); |
| } |
| } |
| |
| if (pmem[id].cached) |
| pmem[id].vbase = ioremap_cached(pmem[id].base, |
| pmem[id].size); |
| #ifdef ioremap_ext_buffered |
| else if (pmem[id].buffered) |
| pmem[id].vbase = ioremap_ext_buffered(pmem[id].base, |
| pmem[id].size); |
| #endif |
| else |
| pmem[id].vbase = ioremap(pmem[id].base, pmem[id].size); |
| |
| if (pmem[id].vbase == 0) |
| goto error_cant_remap; |
| |
| pmem[id].garbage_pfn = page_to_pfn(alloc_page(GFP_KERNEL)); |
| if (pmem[id].no_allocator) |
| pmem[id].allocated = 0; |
| |
| #if PMEM_DEBUG |
| debugfs_create_file(pdata->name, S_IFREG | S_IRUGO, NULL, (void *)id, |
| &debug_fops); |
| #endif |
| return 0; |
| error_cant_remap: |
| kfree(pmem[id].bitmap); |
| err_no_mem_for_metadata: |
| misc_deregister(&pmem[id].dev); |
| err_cant_register_device: |
| return -1; |
| } |
| |
| static int pmem_probe(struct platform_device *pdev) |
| { |
| struct android_pmem_platform_data *pdata; |
| |
| if (!pdev || !pdev->dev.platform_data) { |
| printk(KERN_ALERT "Unable to probe pmem!\n"); |
| return -1; |
| } |
| pdata = pdev->dev.platform_data; |
| return pmem_setup(pdata, NULL, NULL); |
| } |
| |
| |
| static int pmem_remove(struct platform_device *pdev) |
| { |
| int id = pdev->id; |
| __free_page(pfn_to_page(pmem[id].garbage_pfn)); |
| misc_deregister(&pmem[id].dev); |
| return 0; |
| } |
| |
| static struct platform_driver pmem_driver = { |
| .probe = pmem_probe, |
| .remove = pmem_remove, |
| .driver = { .name = "android_pmem" } |
| }; |
| |
| |
| static int __init pmem_init(void) |
| { |
| return platform_driver_register(&pmem_driver); |
| } |
| |
| static void __exit pmem_exit(void) |
| { |
| platform_driver_unregister(&pmem_driver); |
| } |
| |
| module_init(pmem_init); |
| module_exit(pmem_exit); |
| |