| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * ARM64 Specific Low-Level ACPI Boot Support |
| * |
| * Copyright (C) 2013-2014, Linaro Ltd. |
| * Author: Al Stone <al.stone@linaro.org> |
| * Author: Graeme Gregory <graeme.gregory@linaro.org> |
| * Author: Hanjun Guo <hanjun.guo@linaro.org> |
| * Author: Tomasz Nowicki <tomasz.nowicki@linaro.org> |
| * Author: Naresh Bhat <naresh.bhat@linaro.org> |
| */ |
| |
| #define pr_fmt(fmt) "ACPI: " fmt |
| |
| #include <linux/acpi.h> |
| #include <linux/arm-smccc.h> |
| #include <linux/cpumask.h> |
| #include <linux/efi.h> |
| #include <linux/efi-bgrt.h> |
| #include <linux/init.h> |
| #include <linux/irq.h> |
| #include <linux/irqdomain.h> |
| #include <linux/irq_work.h> |
| #include <linux/memblock.h> |
| #include <linux/of_fdt.h> |
| #include <linux/libfdt.h> |
| #include <linux/smp.h> |
| #include <linux/serial_core.h> |
| #include <linux/pgtable.h> |
| |
| #include <acpi/ghes.h> |
| #include <asm/cputype.h> |
| #include <asm/cpu_ops.h> |
| #include <asm/daifflags.h> |
| #include <asm/smp_plat.h> |
| |
| int acpi_noirq = 1; /* skip ACPI IRQ initialization */ |
| int acpi_disabled = 1; |
| EXPORT_SYMBOL(acpi_disabled); |
| |
| int acpi_pci_disabled = 1; /* skip ACPI PCI scan and IRQ initialization */ |
| EXPORT_SYMBOL(acpi_pci_disabled); |
| |
| static bool param_acpi_off __initdata; |
| static bool param_acpi_on __initdata; |
| static bool param_acpi_force __initdata; |
| |
| static int __init parse_acpi(char *arg) |
| { |
| if (!arg) |
| return -EINVAL; |
| |
| /* "acpi=off" disables both ACPI table parsing and interpreter */ |
| if (strcmp(arg, "off") == 0) |
| param_acpi_off = true; |
| else if (strcmp(arg, "on") == 0) /* prefer ACPI over DT */ |
| param_acpi_on = true; |
| else if (strcmp(arg, "force") == 0) /* force ACPI to be enabled */ |
| param_acpi_force = true; |
| else |
| return -EINVAL; /* Core will print when we return error */ |
| |
| return 0; |
| } |
| early_param("acpi", parse_acpi); |
| |
| static bool __init dt_is_stub(void) |
| { |
| int node; |
| |
| fdt_for_each_subnode(node, initial_boot_params, 0) { |
| const char *name = fdt_get_name(initial_boot_params, node, NULL); |
| if (strcmp(name, "chosen") == 0) |
| continue; |
| if (strcmp(name, "hypervisor") == 0 && |
| of_flat_dt_is_compatible(node, "xen,xen")) |
| continue; |
| |
| return false; |
| } |
| |
| return true; |
| } |
| |
| /* |
| * __acpi_map_table() will be called before page_init(), so early_ioremap() |
| * or early_memremap() should be called here to for ACPI table mapping. |
| */ |
| void __init __iomem *__acpi_map_table(unsigned long phys, unsigned long size) |
| { |
| if (!size) |
| return NULL; |
| |
| return early_memremap(phys, size); |
| } |
| |
| void __init __acpi_unmap_table(void __iomem *map, unsigned long size) |
| { |
| if (!map || !size) |
| return; |
| |
| early_memunmap(map, size); |
| } |
| |
| bool __init acpi_psci_present(void) |
| { |
| return acpi_gbl_FADT.arm_boot_flags & ACPI_FADT_PSCI_COMPLIANT; |
| } |
| |
| /* Whether HVC must be used instead of SMC as the PSCI conduit */ |
| bool acpi_psci_use_hvc(void) |
| { |
| return acpi_gbl_FADT.arm_boot_flags & ACPI_FADT_PSCI_USE_HVC; |
| } |
| |
| /* |
| * acpi_fadt_sanity_check() - Check FADT presence and carry out sanity |
| * checks on it |
| * |
| * Return 0 on success, <0 on failure |
| */ |
| static int __init acpi_fadt_sanity_check(void) |
| { |
| struct acpi_table_header *table; |
| struct acpi_table_fadt *fadt; |
| acpi_status status; |
| int ret = 0; |
| |
| /* |
| * FADT is required on arm64; retrieve it to check its presence |
| * and carry out revision and ACPI HW reduced compliancy tests |
| */ |
| status = acpi_get_table(ACPI_SIG_FADT, 0, &table); |
| if (ACPI_FAILURE(status)) { |
| const char *msg = acpi_format_exception(status); |
| |
| pr_err("Failed to get FADT table, %s\n", msg); |
| return -ENODEV; |
| } |
| |
| fadt = (struct acpi_table_fadt *)table; |
| |
| /* |
| * Revision in table header is the FADT Major revision, and there |
| * is a minor revision of FADT which was introduced by ACPI 5.1, |
| * we only deal with ACPI 5.1 or newer revision to get GIC and SMP |
| * boot protocol configuration data. |
| */ |
| if (table->revision < 5 || |
| (table->revision == 5 && fadt->minor_revision < 1)) { |
| pr_err(FW_BUG "Unsupported FADT revision %d.%d, should be 5.1+\n", |
| table->revision, fadt->minor_revision); |
| |
| if (!fadt->arm_boot_flags) { |
| ret = -EINVAL; |
| goto out; |
| } |
| pr_err("FADT has ARM boot flags set, assuming 5.1\n"); |
| } |
| |
| if (!(fadt->flags & ACPI_FADT_HW_REDUCED)) { |
| pr_err("FADT not ACPI hardware reduced compliant\n"); |
| ret = -EINVAL; |
| } |
| |
| out: |
| /* |
| * acpi_get_table() creates FADT table mapping that |
| * should be released after parsing and before resuming boot |
| */ |
| acpi_put_table(table); |
| return ret; |
| } |
| |
| /* |
| * acpi_boot_table_init() called from setup_arch(), always. |
| * 1. find RSDP and get its address, and then find XSDT |
| * 2. extract all tables and checksums them all |
| * 3. check ACPI FADT revision |
| * 4. check ACPI FADT HW reduced flag |
| * |
| * We can parse ACPI boot-time tables such as MADT after |
| * this function is called. |
| * |
| * On return ACPI is enabled if either: |
| * |
| * - ACPI tables are initialized and sanity checks passed |
| * - acpi=force was passed in the command line and ACPI was not disabled |
| * explicitly through acpi=off command line parameter |
| * |
| * ACPI is disabled on function return otherwise |
| */ |
| void __init acpi_boot_table_init(void) |
| { |
| /* |
| * Enable ACPI instead of device tree unless |
| * - ACPI has been disabled explicitly (acpi=off), or |
| * - the device tree is not empty (it has more than just a /chosen node, |
| * and a /hypervisor node when running on Xen) |
| * and ACPI has not been [force] enabled (acpi=on|force) |
| */ |
| if (param_acpi_off || |
| (!param_acpi_on && !param_acpi_force && !dt_is_stub())) |
| goto done; |
| |
| /* |
| * ACPI is disabled at this point. Enable it in order to parse |
| * the ACPI tables and carry out sanity checks |
| */ |
| enable_acpi(); |
| |
| /* |
| * If ACPI tables are initialized and FADT sanity checks passed, |
| * leave ACPI enabled and carry on booting; otherwise disable ACPI |
| * on initialization error. |
| * If acpi=force was passed on the command line it forces ACPI |
| * to be enabled even if its initialization failed. |
| */ |
| if (acpi_table_init() || acpi_fadt_sanity_check()) { |
| pr_err("Failed to init ACPI tables\n"); |
| if (!param_acpi_force) |
| disable_acpi(); |
| } |
| |
| done: |
| if (acpi_disabled) { |
| if (earlycon_acpi_spcr_enable) |
| early_init_dt_scan_chosen_stdout(); |
| } else { |
| acpi_parse_spcr(earlycon_acpi_spcr_enable, true); |
| if (IS_ENABLED(CONFIG_ACPI_BGRT)) |
| acpi_table_parse(ACPI_SIG_BGRT, acpi_parse_bgrt); |
| } |
| } |
| |
| static pgprot_t __acpi_get_writethrough_mem_attribute(void) |
| { |
| /* |
| * Although UEFI specifies the use of Normal Write-through for |
| * EFI_MEMORY_WT, it is seldom used in practice and not implemented |
| * by most (all?) CPUs. Rather than allocate a MAIR just for this |
| * purpose, emit a warning and use Normal Non-cacheable instead. |
| */ |
| pr_warn_once("No MAIR allocation for EFI_MEMORY_WT; treating as Normal Non-cacheable\n"); |
| return __pgprot(PROT_NORMAL_NC); |
| } |
| |
| pgprot_t __acpi_get_mem_attribute(phys_addr_t addr) |
| { |
| /* |
| * According to "Table 8 Map: EFI memory types to AArch64 memory |
| * types" of UEFI 2.5 section 2.3.6.1, each EFI memory type is |
| * mapped to a corresponding MAIR attribute encoding. |
| * The EFI memory attribute advises all possible capabilities |
| * of a memory region. |
| */ |
| |
| u64 attr; |
| |
| attr = efi_mem_attributes(addr); |
| if (attr & EFI_MEMORY_WB) |
| return PAGE_KERNEL; |
| if (attr & EFI_MEMORY_WC) |
| return __pgprot(PROT_NORMAL_NC); |
| if (attr & EFI_MEMORY_WT) |
| return __acpi_get_writethrough_mem_attribute(); |
| return __pgprot(PROT_DEVICE_nGnRnE); |
| } |
| |
| void __iomem *acpi_os_ioremap(acpi_physical_address phys, acpi_size size) |
| { |
| efi_memory_desc_t *md, *region = NULL; |
| pgprot_t prot; |
| |
| if (WARN_ON_ONCE(!efi_enabled(EFI_MEMMAP))) |
| return NULL; |
| |
| for_each_efi_memory_desc(md) { |
| u64 end = md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT); |
| |
| if (phys < md->phys_addr || phys >= end) |
| continue; |
| |
| if (phys + size > end) { |
| pr_warn(FW_BUG "requested region covers multiple EFI memory regions\n"); |
| return NULL; |
| } |
| region = md; |
| break; |
| } |
| |
| /* |
| * It is fine for AML to remap regions that are not represented in the |
| * EFI memory map at all, as it only describes normal memory, and MMIO |
| * regions that require a virtual mapping to make them accessible to |
| * the EFI runtime services. |
| */ |
| prot = __pgprot(PROT_DEVICE_nGnRnE); |
| if (region) { |
| switch (region->type) { |
| case EFI_LOADER_CODE: |
| case EFI_LOADER_DATA: |
| case EFI_BOOT_SERVICES_CODE: |
| case EFI_BOOT_SERVICES_DATA: |
| case EFI_CONVENTIONAL_MEMORY: |
| case EFI_PERSISTENT_MEMORY: |
| if (memblock_is_map_memory(phys) || |
| !memblock_is_region_memory(phys, size)) { |
| pr_warn(FW_BUG "requested region covers kernel memory @ %pa\n", &phys); |
| return NULL; |
| } |
| /* |
| * Mapping kernel memory is permitted if the region in |
| * question is covered by a single memblock with the |
| * NOMAP attribute set: this enables the use of ACPI |
| * table overrides passed via initramfs, which are |
| * reserved in memory using arch_reserve_mem_area() |
| * below. As this particular use case only requires |
| * read access, fall through to the R/O mapping case. |
| */ |
| fallthrough; |
| |
| case EFI_RUNTIME_SERVICES_CODE: |
| /* |
| * This would be unusual, but not problematic per se, |
| * as long as we take care not to create a writable |
| * mapping for executable code. |
| */ |
| prot = PAGE_KERNEL_RO; |
| break; |
| |
| case EFI_ACPI_RECLAIM_MEMORY: |
| /* |
| * ACPI reclaim memory is used to pass firmware tables |
| * and other data that is intended for consumption by |
| * the OS only, which may decide it wants to reclaim |
| * that memory and use it for something else. We never |
| * do that, but we usually add it to the linear map |
| * anyway, in which case we should use the existing |
| * mapping. |
| */ |
| if (memblock_is_map_memory(phys)) |
| return (void __iomem *)__phys_to_virt(phys); |
| fallthrough; |
| |
| default: |
| if (region->attribute & EFI_MEMORY_WB) |
| prot = PAGE_KERNEL; |
| else if (region->attribute & EFI_MEMORY_WC) |
| prot = __pgprot(PROT_NORMAL_NC); |
| else if (region->attribute & EFI_MEMORY_WT) |
| prot = __acpi_get_writethrough_mem_attribute(); |
| } |
| } |
| return ioremap_prot(phys, size, pgprot_val(prot)); |
| } |
| |
| /* |
| * Claim Synchronous External Aborts as a firmware first notification. |
| * |
| * Used by KVM and the arch do_sea handler. |
| * @regs may be NULL when called from process context. |
| */ |
| int apei_claim_sea(struct pt_regs *regs) |
| { |
| int err = -ENOENT; |
| bool return_to_irqs_enabled; |
| unsigned long current_flags; |
| |
| if (!IS_ENABLED(CONFIG_ACPI_APEI_GHES)) |
| return err; |
| |
| current_flags = local_daif_save_flags(); |
| |
| /* current_flags isn't useful here as daif doesn't tell us about pNMI */ |
| return_to_irqs_enabled = !irqs_disabled_flags(arch_local_save_flags()); |
| |
| if (regs) |
| return_to_irqs_enabled = interrupts_enabled(regs); |
| |
| /* |
| * SEA can interrupt SError, mask it and describe this as an NMI so |
| * that APEI defers the handling. |
| */ |
| local_daif_restore(DAIF_ERRCTX); |
| nmi_enter(); |
| err = ghes_notify_sea(); |
| nmi_exit(); |
| |
| /* |
| * APEI NMI-like notifications are deferred to irq_work. Unless |
| * we interrupted irqs-masked code, we can do that now. |
| */ |
| if (!err) { |
| if (return_to_irqs_enabled) { |
| local_daif_restore(DAIF_PROCCTX_NOIRQ); |
| __irq_enter(); |
| irq_work_run(); |
| __irq_exit(); |
| } else { |
| pr_warn_ratelimited("APEI work queued but not completed"); |
| err = -EINPROGRESS; |
| } |
| } |
| |
| local_daif_restore(current_flags); |
| |
| return err; |
| } |
| |
| void arch_reserve_mem_area(acpi_physical_address addr, size_t size) |
| { |
| memblock_mark_nomap(addr, size); |
| } |
| |
| #ifdef CONFIG_ACPI_FFH |
| /* |
| * Implements ARM64 specific callbacks to support ACPI FFH Operation Region as |
| * specified in https://developer.arm.com/docs/den0048/latest |
| */ |
| struct acpi_ffh_data { |
| struct acpi_ffh_info info; |
| void (*invoke_ffh_fn)(unsigned long a0, unsigned long a1, |
| unsigned long a2, unsigned long a3, |
| unsigned long a4, unsigned long a5, |
| unsigned long a6, unsigned long a7, |
| struct arm_smccc_res *args, |
| struct arm_smccc_quirk *res); |
| void (*invoke_ffh64_fn)(const struct arm_smccc_1_2_regs *args, |
| struct arm_smccc_1_2_regs *res); |
| }; |
| |
| int acpi_ffh_address_space_arch_setup(void *handler_ctxt, void **region_ctxt) |
| { |
| enum arm_smccc_conduit conduit; |
| struct acpi_ffh_data *ffh_ctxt; |
| |
| if (arm_smccc_get_version() < ARM_SMCCC_VERSION_1_2) |
| return -EOPNOTSUPP; |
| |
| conduit = arm_smccc_1_1_get_conduit(); |
| if (conduit == SMCCC_CONDUIT_NONE) { |
| pr_err("%s: invalid SMCCC conduit\n", __func__); |
| return -EOPNOTSUPP; |
| } |
| |
| ffh_ctxt = kzalloc(sizeof(*ffh_ctxt), GFP_KERNEL); |
| if (!ffh_ctxt) |
| return -ENOMEM; |
| |
| if (conduit == SMCCC_CONDUIT_SMC) { |
| ffh_ctxt->invoke_ffh_fn = __arm_smccc_smc; |
| ffh_ctxt->invoke_ffh64_fn = arm_smccc_1_2_smc; |
| } else { |
| ffh_ctxt->invoke_ffh_fn = __arm_smccc_hvc; |
| ffh_ctxt->invoke_ffh64_fn = arm_smccc_1_2_hvc; |
| } |
| |
| memcpy(ffh_ctxt, handler_ctxt, sizeof(ffh_ctxt->info)); |
| |
| *region_ctxt = ffh_ctxt; |
| return AE_OK; |
| } |
| |
| static bool acpi_ffh_smccc_owner_allowed(u32 fid) |
| { |
| int owner = ARM_SMCCC_OWNER_NUM(fid); |
| |
| if (owner == ARM_SMCCC_OWNER_STANDARD || |
| owner == ARM_SMCCC_OWNER_SIP || owner == ARM_SMCCC_OWNER_OEM) |
| return true; |
| |
| return false; |
| } |
| |
| int acpi_ffh_address_space_arch_handler(acpi_integer *value, void *region_context) |
| { |
| int ret = 0; |
| struct acpi_ffh_data *ffh_ctxt = region_context; |
| |
| if (ffh_ctxt->info.offset == 0) { |
| /* SMC/HVC 32bit call */ |
| struct arm_smccc_res res; |
| u32 a[8] = { 0 }, *ptr = (u32 *)value; |
| |
| if (!ARM_SMCCC_IS_FAST_CALL(*ptr) || ARM_SMCCC_IS_64(*ptr) || |
| !acpi_ffh_smccc_owner_allowed(*ptr) || |
| ffh_ctxt->info.length > 32) { |
| ret = AE_ERROR; |
| } else { |
| int idx, len = ffh_ctxt->info.length >> 2; |
| |
| for (idx = 0; idx < len; idx++) |
| a[idx] = *(ptr + idx); |
| |
| ffh_ctxt->invoke_ffh_fn(a[0], a[1], a[2], a[3], a[4], |
| a[5], a[6], a[7], &res, NULL); |
| memcpy(value, &res, sizeof(res)); |
| } |
| |
| } else if (ffh_ctxt->info.offset == 1) { |
| /* SMC/HVC 64bit call */ |
| struct arm_smccc_1_2_regs *r = (struct arm_smccc_1_2_regs *)value; |
| |
| if (!ARM_SMCCC_IS_FAST_CALL(r->a0) || !ARM_SMCCC_IS_64(r->a0) || |
| !acpi_ffh_smccc_owner_allowed(r->a0) || |
| ffh_ctxt->info.length > sizeof(*r)) { |
| ret = AE_ERROR; |
| } else { |
| ffh_ctxt->invoke_ffh64_fn(r, r); |
| memcpy(value, r, ffh_ctxt->info.length); |
| } |
| } else { |
| ret = AE_ERROR; |
| } |
| |
| return ret; |
| } |
| #endif /* CONFIG_ACPI_FFH */ |