blob: 5ef136c3ecb1262144f36be9e54336740d9e5528 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* Microchip PCI1XXXX I2C adapter driver for PCIe Switch
* which has I2C controller in one of its downstream functions
*
* Copyright (C) 2021 - 2022 Microchip Technology Inc.
*
* Authors: Tharun Kumar P <tharunkumar.pasumarthi@microchip.com>
* Kumaravel Thiagarajan <kumaravel.thiagarajan@microchip.com>
*/
#include <linux/bits.h>
#include <linux/delay.h>
#include <linux/i2c.h>
#include <linux/i2c-smbus.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/types.h>
#define SMBUS_MAST_CORE_ADDR_BASE 0x00000
#define SMBUS_MAST_SYS_REG_ADDR_BASE 0x01000
/* SMB register space. */
#define SMB_CORE_CTRL_REG_OFF (SMBUS_MAST_CORE_ADDR_BASE + 0x00)
#define SMB_CORE_CTRL_ESO BIT(6)
#define SMB_CORE_CTRL_FW_ACK BIT(4)
#define SMB_CORE_CTRL_ACK BIT(0)
#define SMB_CORE_CMD_REG_OFF3 (SMBUS_MAST_CORE_ADDR_BASE + 0x0F)
#define SMB_CORE_CMD_REG_OFF2 (SMBUS_MAST_CORE_ADDR_BASE + 0x0E)
#define SMB_CORE_CMD_REG_OFF1 (SMBUS_MAST_CORE_ADDR_BASE + 0x0D)
#define SMB_CORE_CMD_READM BIT(4)
#define SMB_CORE_CMD_STOP BIT(2)
#define SMB_CORE_CMD_START BIT(0)
#define SMB_CORE_CMD_REG_OFF0 (SMBUS_MAST_CORE_ADDR_BASE + 0x0C)
#define SMB_CORE_CMD_M_PROCEED BIT(1)
#define SMB_CORE_CMD_M_RUN BIT(0)
#define SMB_CORE_SR_HOLD_TIME_REG_OFF (SMBUS_MAST_CORE_ADDR_BASE + 0x18)
/*
* SR_HOLD_TIME_XK_TICKS field will indicate the number of ticks of the
* baud clock required to program 'Hold Time' at X KHz.
*/
#define SR_HOLD_TIME_100K_TICKS 150
#define SR_HOLD_TIME_400K_TICKS 20
#define SR_HOLD_TIME_1000K_TICKS 12
#define SMB_CORE_COMPLETION_REG_OFF3 (SMBUS_MAST_CORE_ADDR_BASE + 0x23)
#define COMPLETION_MDONE BIT(6)
#define COMPLETION_IDLE BIT(5)
#define COMPLETION_MNAKX BIT(0)
#define SMB_CORE_IDLE_SCALING_REG_OFF (SMBUS_MAST_CORE_ADDR_BASE + 0x24)
/*
* FAIR_BUS_IDLE_MIN_XK_TICKS field will indicate the number of ticks of
* the baud clock required to program 'fair idle delay' at X KHz. Fair idle
* delay establishes the MCTP T(IDLE_DELAY) period.
*/
#define FAIR_BUS_IDLE_MIN_100K_TICKS 992
#define FAIR_BUS_IDLE_MIN_400K_TICKS 500
#define FAIR_BUS_IDLE_MIN_1000K_TICKS 500
/*
* FAIR_IDLE_DELAY_XK_TICKS field will indicate the number of ticks of the
* baud clock required to satisfy the fairness protocol at X KHz.
*/
#define FAIR_IDLE_DELAY_100K_TICKS 963
#define FAIR_IDLE_DELAY_400K_TICKS 156
#define FAIR_IDLE_DELAY_1000K_TICKS 156
#define SMB_IDLE_SCALING_100K \
((FAIR_IDLE_DELAY_100K_TICKS << 16) | FAIR_BUS_IDLE_MIN_100K_TICKS)
#define SMB_IDLE_SCALING_400K \
((FAIR_IDLE_DELAY_400K_TICKS << 16) | FAIR_BUS_IDLE_MIN_400K_TICKS)
#define SMB_IDLE_SCALING_1000K \
((FAIR_IDLE_DELAY_1000K_TICKS << 16) | FAIR_BUS_IDLE_MIN_1000K_TICKS)
#define SMB_CORE_CONFIG_REG3 (SMBUS_MAST_CORE_ADDR_BASE + 0x2B)
#define SMB_CONFIG3_ENMI BIT(6)
#define SMB_CONFIG3_ENIDI BIT(5)
#define SMB_CORE_CONFIG_REG2 (SMBUS_MAST_CORE_ADDR_BASE + 0x2A)
#define SMB_CORE_CONFIG_REG1 (SMBUS_MAST_CORE_ADDR_BASE + 0x29)
#define SMB_CONFIG1_ASR BIT(7)
#define SMB_CONFIG1_ENAB BIT(2)
#define SMB_CONFIG1_RESET BIT(1)
#define SMB_CONFIG1_FEN BIT(0)
#define SMB_CORE_BUS_CLK_REG_OFF (SMBUS_MAST_CORE_ADDR_BASE + 0x2C)
/*
* BUS_CLK_XK_LOW_PERIOD_TICKS field defines the number of I2C Baud Clock
* periods that make up the low phase of the I2C/SMBus bus clock at X KHz.
*/
#define BUS_CLK_100K_LOW_PERIOD_TICKS 156
#define BUS_CLK_400K_LOW_PERIOD_TICKS 41
#define BUS_CLK_1000K_LOW_PERIOD_TICKS 15
/*
* BUS_CLK_XK_HIGH_PERIOD_TICKS field defines the number of I2C Baud Clock
* periods that make up the high phase of the I2C/SMBus bus clock at X KHz.
*/
#define BUS_CLK_100K_HIGH_PERIOD_TICKS 154
#define BUS_CLK_400K_HIGH_PERIOD_TICKS 35
#define BUS_CLK_1000K_HIGH_PERIOD_TICKS 14
#define BUS_CLK_100K \
((BUS_CLK_100K_HIGH_PERIOD_TICKS << 8) | BUS_CLK_100K_LOW_PERIOD_TICKS)
#define BUS_CLK_400K \
((BUS_CLK_400K_HIGH_PERIOD_TICKS << 8) | BUS_CLK_400K_LOW_PERIOD_TICKS)
#define BUS_CLK_1000K \
((BUS_CLK_1000K_HIGH_PERIOD_TICKS << 8) | BUS_CLK_1000K_LOW_PERIOD_TICKS)
#define SMB_CORE_CLK_SYNC_REG_OFF (SMBUS_MAST_CORE_ADDR_BASE + 0x3C)
/*
* CLK_SYNC_XK defines the number of clock cycles to sync up to the external
* clock before comparing the internal and external clocks for clock stretching
* at X KHz.
*/
#define CLK_SYNC_100K 4
#define CLK_SYNC_400K 4
#define CLK_SYNC_1000K 4
#define SMB_CORE_DATA_TIMING_REG_OFF (SMBUS_MAST_CORE_ADDR_BASE + 0x40)
/*
*
* FIRST_START_HOLD_XK_TICKS will indicate the number of ticks of the baud
* clock required to program 'FIRST_START_HOLD' timer at X KHz. This timer
* determines the SCLK hold time following SDAT driven low during the first
* START bit in a transfer.
*/
#define FIRST_START_HOLD_100K_TICKS 23
#define FIRST_START_HOLD_400K_TICKS 8
#define FIRST_START_HOLD_1000K_TICKS 12
/*
* STOP_SETUP_XK_TICKS will indicate the number of ticks of the baud clock
* required to program 'STOP_SETUP' timer at X KHz. This timer determines the
* SDAT setup time from the rising edge of SCLK for a STOP condition.
*/
#define STOP_SETUP_100K_TICKS 150
#define STOP_SETUP_400K_TICKS 20
#define STOP_SETUP_1000K_TICKS 12
/*
* RESTART_SETUP_XK_TICKS will indicate the number of ticks of the baud clock
* required to program 'RESTART_SETUP' timer at X KHz. This timer determines the
* SDAT setup time from the rising edge of SCLK for a repeated START condition.
*/
#define RESTART_SETUP_100K_TICKS 156
#define RESTART_SETUP_400K_TICKS 20
#define RESTART_SETUP_1000K_TICKS 12
/*
* DATA_HOLD_XK_TICKS will indicate the number of ticks of the baud clock
* required to program 'DATA_HOLD' timer at X KHz. This timer determines the
* SDAT hold time following SCLK driven low.
*/
#define DATA_HOLD_100K_TICKS 12
#define DATA_HOLD_400K_TICKS 2
#define DATA_HOLD_1000K_TICKS 2
#define DATA_TIMING_100K \
((FIRST_START_HOLD_100K_TICKS << 24) | (STOP_SETUP_100K_TICKS << 16) | \
(RESTART_SETUP_100K_TICKS << 8) | DATA_HOLD_100K_TICKS)
#define DATA_TIMING_400K \
((FIRST_START_HOLD_400K_TICKS << 24) | (STOP_SETUP_400K_TICKS << 16) | \
(RESTART_SETUP_400K_TICKS << 8) | DATA_HOLD_400K_TICKS)
#define DATA_TIMING_1000K \
((FIRST_START_HOLD_1000K_TICKS << 24) | (STOP_SETUP_1000K_TICKS << 16) | \
(RESTART_SETUP_1000K_TICKS << 8) | DATA_HOLD_1000K_TICKS)
#define SMB_CORE_TO_SCALING_REG_OFF (SMBUS_MAST_CORE_ADDR_BASE + 0x44)
/*
* BUS_IDLE_MIN_XK_TICKS defines Bus Idle Minimum Time.
* Bus Idle Minimum time = BUS_IDLE_MIN[7:0] x Baud_Clock_Period x
* (BUS_IDLE_MIN_XK_TICKS[7] ? 4,1)
*/
#define BUS_IDLE_MIN_100K_TICKS 36UL
#define BUS_IDLE_MIN_400K_TICKS 10UL
#define BUS_IDLE_MIN_1000K_TICKS 4UL
/*
* CTRL_CUM_TIME_OUT_XK_TICKS defines SMBus Controller Cumulative Time-Out.
* SMBus Controller Cumulative Time-Out duration =
* CTRL_CUM_TIME_OUT_XK_TICKS[7:0] x Baud_Clock_Period x 2048
*/
#define CTRL_CUM_TIME_OUT_100K_TICKS 76
#define CTRL_CUM_TIME_OUT_400K_TICKS 76
#define CTRL_CUM_TIME_OUT_1000K_TICKS 76
/*
* TARGET_CUM_TIME_OUT_XK_TICKS defines SMBus Target Cumulative Time-Out duration.
* SMBus Target Cumulative Time-Out duration = TARGET_CUM_TIME_OUT_XK_TICKS[7:0] x
* Baud_Clock_Period x 4096
*/
#define TARGET_CUM_TIME_OUT_100K_TICKS 95
#define TARGET_CUM_TIME_OUT_400K_TICKS 95
#define TARGET_CUM_TIME_OUT_1000K_TICKS 95
/*
* CLOCK_HIGH_TIME_OUT_XK defines Clock High time out period.
* Clock High time out period = CLOCK_HIGH_TIME_OUT_XK[7:0] x Baud_Clock_Period x 8
*/
#define CLOCK_HIGH_TIME_OUT_100K_TICKS 97
#define CLOCK_HIGH_TIME_OUT_400K_TICKS 97
#define CLOCK_HIGH_TIME_OUT_1000K_TICKS 97
#define TO_SCALING_100K \
((BUS_IDLE_MIN_100K_TICKS << 24) | (CTRL_CUM_TIME_OUT_100K_TICKS << 16) | \
(TARGET_CUM_TIME_OUT_100K_TICKS << 8) | CLOCK_HIGH_TIME_OUT_100K_TICKS)
#define TO_SCALING_400K \
((BUS_IDLE_MIN_400K_TICKS << 24) | (CTRL_CUM_TIME_OUT_400K_TICKS << 16) | \
(TARGET_CUM_TIME_OUT_400K_TICKS << 8) | CLOCK_HIGH_TIME_OUT_400K_TICKS)
#define TO_SCALING_1000K \
((BUS_IDLE_MIN_1000K_TICKS << 24) | (CTRL_CUM_TIME_OUT_1000K_TICKS << 16) | \
(TARGET_CUM_TIME_OUT_1000K_TICKS << 8) | CLOCK_HIGH_TIME_OUT_1000K_TICKS)
#define I2C_SCL_PAD_CTRL_REG_OFF (SMBUS_MAST_CORE_ADDR_BASE + 0x100)
#define I2C_SDA_PAD_CTRL_REG_OFF (SMBUS_MAST_CORE_ADDR_BASE + 0x101)
#define I2C_FOD_EN BIT(4)
#define I2C_PULL_UP_EN BIT(3)
#define I2C_PULL_DOWN_EN BIT(2)
#define I2C_INPUT_EN BIT(1)
#define I2C_OUTPUT_EN BIT(0)
#define SMBUS_CONTROL_REG_OFF (SMBUS_MAST_CORE_ADDR_BASE + 0x200)
#define CTL_RESET_COUNTERS BIT(3)
#define CTL_TRANSFER_DIR BIT(2)
#define CTL_HOST_FIFO_ENTRY BIT(1)
#define CTL_RUN BIT(0)
#define I2C_DIRN_WRITE 0
#define I2C_DIRN_READ 1
#define SMBUS_STATUS_REG_OFF (SMBUS_MAST_CORE_ADDR_BASE + 0x204)
#define STA_DMA_TERM BIT(7)
#define STA_DMA_REQ BIT(6)
#define STA_THRESHOLD BIT(2)
#define STA_BUF_FULL BIT(1)
#define STA_BUF_EMPTY BIT(0)
#define SMBUS_INTR_STAT_REG_OFF (SMBUS_MAST_CORE_ADDR_BASE + 0x208)
#define INTR_STAT_DMA_TERM BIT(7)
#define INTR_STAT_THRESHOLD BIT(2)
#define INTR_STAT_BUF_FULL BIT(1)
#define INTR_STAT_BUF_EMPTY BIT(0)
#define SMBUS_INTR_MSK_REG_OFF (SMBUS_MAST_CORE_ADDR_BASE + 0x20C)
#define INTR_MSK_DMA_TERM BIT(7)
#define INTR_MSK_THRESHOLD BIT(2)
#define INTR_MSK_BUF_FULL BIT(1)
#define INTR_MSK_BUF_EMPTY BIT(0)
#define ALL_NW_LAYER_INTERRUPTS \
(INTR_MSK_DMA_TERM | INTR_MSK_THRESHOLD | INTR_MSK_BUF_FULL | \
INTR_MSK_BUF_EMPTY)
#define SMBUS_MCU_COUNTER_REG_OFF (SMBUS_MAST_CORE_ADDR_BASE + 0x214)
#define SMBALERT_MST_PAD_CTRL_REG_OFF (SMBUS_MAST_CORE_ADDR_BASE + 0x230)
#define SMBALERT_MST_PU BIT(0)
#define SMBUS_GEN_INT_STAT_REG_OFF (SMBUS_MAST_CORE_ADDR_BASE + 0x23C)
#define SMBUS_GEN_INT_MASK_REG_OFF (SMBUS_MAST_CORE_ADDR_BASE + 0x240)
#define SMBALERT_INTR_MASK BIT(10)
#define I2C_BUF_MSTR_INTR_MASK BIT(9)
#define I2C_INTR_MASK BIT(8)
#define SMBALERT_WAKE_INTR_MASK BIT(2)
#define I2C_BUF_MSTR_WAKE_INTR_MASK BIT(1)
#define I2C_WAKE_INTR_MASK BIT(0)
#define ALL_HIGH_LAYER_INTR \
(SMBALERT_INTR_MASK | I2C_BUF_MSTR_INTR_MASK | I2C_INTR_MASK | \
SMBALERT_WAKE_INTR_MASK | I2C_BUF_MSTR_WAKE_INTR_MASK | \
I2C_WAKE_INTR_MASK)
#define SMBUS_RESET_REG (SMBUS_MAST_CORE_ADDR_BASE + 0x248)
#define PERI_SMBUS_D3_RESET_DIS BIT(16)
#define SMBUS_MST_BUF (SMBUS_MAST_CORE_ADDR_BASE + 0x280)
#define SMBUS_BUF_MAX_SIZE 0x80
#define I2C_FLAGS_DIRECT_MODE BIT(7)
#define I2C_FLAGS_POLLING_MODE BIT(6)
#define I2C_FLAGS_STOP BIT(5)
#define I2C_FLAGS_SMB_BLK_READ BIT(4)
#define PCI1XXXX_I2C_TIMEOUT_MS 1000
/* General Purpose Register. */
#define SMB_GPR_REG (SMBUS_MAST_CORE_ADDR_BASE + 0x1000 + 0x0c00 + \
0x00)
/* Lock Register. */
#define SMB_GPR_LOCK_REG (SMBUS_MAST_CORE_ADDR_BASE + 0x1000 + 0x0000 + \
0x00A0)
#define SMBUS_PERI_LOCK BIT(3)
struct pci1xxxx_i2c {
struct completion i2c_xfer_done;
bool i2c_xfer_in_progress;
struct i2c_adapter adap;
void __iomem *i2c_base;
u32 freq;
u32 flags;
};
static int set_sys_lock(struct pci1xxxx_i2c *i2c)
{
void __iomem *p = i2c->i2c_base + SMB_GPR_LOCK_REG;
u8 data;
writel(SMBUS_PERI_LOCK, p);
data = readl(p);
if (data != SMBUS_PERI_LOCK)
return -EPERM;
return 0;
}
static int release_sys_lock(struct pci1xxxx_i2c *i2c)
{
void __iomem *p = i2c->i2c_base + SMB_GPR_LOCK_REG;
u8 data;
data = readl(p);
if (data != SMBUS_PERI_LOCK)
return 0;
writel(0, p);
data = readl(p);
if (data & SMBUS_PERI_LOCK)
return -EPERM;
return 0;
}
static void pci1xxxx_ack_high_level_intr(struct pci1xxxx_i2c *i2c, u16 intr_msk)
{
writew(intr_msk, i2c->i2c_base + SMBUS_GEN_INT_STAT_REG_OFF);
}
static void pci1xxxx_i2c_configure_smbalert_pin(struct pci1xxxx_i2c *i2c,
bool enable)
{
void __iomem *p = i2c->i2c_base + SMBALERT_MST_PAD_CTRL_REG_OFF;
u8 regval;
regval = readb(p);
if (enable)
regval |= SMBALERT_MST_PU;
else
regval &= ~SMBALERT_MST_PU;
writeb(regval, p);
}
static void pci1xxxx_i2c_send_start_stop(struct pci1xxxx_i2c *i2c, bool start)
{
void __iomem *p = i2c->i2c_base + SMB_CORE_CMD_REG_OFF1;
u8 regval;
regval = readb(p);
if (start)
regval |= SMB_CORE_CMD_START;
else
regval |= SMB_CORE_CMD_STOP;
writeb(regval, p);
}
/*
* When accessing the core control reg, we should not do a read modified write
* as they are write '1' to clear bits. Instead we need to write with the
* specific bits that needs to be set.
*/
static void pci1xxxx_i2c_set_clear_FW_ACK(struct pci1xxxx_i2c *i2c, bool set)
{
u8 regval;
if (set)
regval = SMB_CORE_CTRL_FW_ACK | SMB_CORE_CTRL_ESO | SMB_CORE_CTRL_ACK;
else
regval = SMB_CORE_CTRL_ESO | SMB_CORE_CTRL_ACK;
writeb(regval, i2c->i2c_base + SMB_CORE_CTRL_REG_OFF);
}
static void pci1xxxx_i2c_buffer_write(struct pci1xxxx_i2c *i2c, u8 slaveaddr,
u8 transferlen, unsigned char *buf)
{
void __iomem *p = i2c->i2c_base + SMBUS_MST_BUF;
if (slaveaddr)
writeb(slaveaddr, p++);
if (buf)
memcpy_toio(p, buf, transferlen);
}
/*
* When accessing the core control reg, we should not do a read modified write
* as there are write '1' to clear bits. Instead we need to write with the
* specific bits that needs to be set.
*/
static void pci1xxxx_i2c_enable_ESO(struct pci1xxxx_i2c *i2c)
{
writeb(SMB_CORE_CTRL_ESO, i2c->i2c_base + SMB_CORE_CTRL_REG_OFF);
}
static void pci1xxxx_i2c_reset_counters(struct pci1xxxx_i2c *i2c)
{
void __iomem *p = i2c->i2c_base + SMBUS_CONTROL_REG_OFF;
u8 regval;
regval = readb(p);
regval |= CTL_RESET_COUNTERS;
writeb(regval, p);
}
static void pci1xxxx_i2c_set_transfer_dir(struct pci1xxxx_i2c *i2c, u8 direction)
{
void __iomem *p = i2c->i2c_base + SMBUS_CONTROL_REG_OFF;
u8 regval;
regval = readb(p);
if (direction == I2C_DIRN_WRITE)
regval &= ~CTL_TRANSFER_DIR;
else
regval |= CTL_TRANSFER_DIR;
writeb(regval, p);
}
static void pci1xxxx_i2c_set_mcu_count(struct pci1xxxx_i2c *i2c, u8 count)
{
writeb(count, i2c->i2c_base + SMBUS_MCU_COUNTER_REG_OFF);
}
static void pci1xxxx_i2c_set_read_count(struct pci1xxxx_i2c *i2c, u8 readcount)
{
writeb(readcount, i2c->i2c_base + SMB_CORE_CMD_REG_OFF3);
}
static void pci1xxxx_i2c_set_write_count(struct pci1xxxx_i2c *i2c, u8 writecount)
{
writeb(writecount, i2c->i2c_base + SMB_CORE_CMD_REG_OFF2);
}
static void pci1xxxx_i2c_set_DMA_run(struct pci1xxxx_i2c *i2c)
{
void __iomem *p = i2c->i2c_base + SMBUS_CONTROL_REG_OFF;
u8 regval;
regval = readb(p);
regval |= CTL_RUN;
writeb(regval, p);
}
static void pci1xxxx_i2c_set_mrun_proceed(struct pci1xxxx_i2c *i2c)
{
void __iomem *p = i2c->i2c_base + SMB_CORE_CMD_REG_OFF0;
u8 regval;
regval = readb(p);
regval |= SMB_CORE_CMD_M_RUN;
regval |= SMB_CORE_CMD_M_PROCEED;
writeb(regval, p);
}
static void pci1xxxx_i2c_start_DMA(struct pci1xxxx_i2c *i2c)
{
pci1xxxx_i2c_set_DMA_run(i2c);
pci1xxxx_i2c_set_mrun_proceed(i2c);
}
static void pci1xxxx_i2c_config_asr(struct pci1xxxx_i2c *i2c, bool enable)
{
void __iomem *p = i2c->i2c_base + SMB_CORE_CONFIG_REG1;
u8 regval;
regval = readb(p);
if (enable)
regval |= SMB_CONFIG1_ASR;
else
regval &= ~SMB_CONFIG1_ASR;
writeb(regval, p);
}
static irqreturn_t pci1xxxx_i2c_isr(int irq, void *dev)
{
struct pci1xxxx_i2c *i2c = dev;
void __iomem *p1 = i2c->i2c_base + SMBUS_GEN_INT_STAT_REG_OFF;
void __iomem *p2 = i2c->i2c_base + SMBUS_INTR_STAT_REG_OFF;
irqreturn_t intr_handled = IRQ_NONE;
u16 reg1;
u8 reg3;
/*
* Read the SMBus interrupt status register to see if the
* DMA_TERM interrupt has caused this callback.
*/
reg1 = readw(p1);
if (reg1 & I2C_BUF_MSTR_INTR_MASK) {
reg3 = readb(p2);
if (reg3 & INTR_STAT_DMA_TERM) {
complete(&i2c->i2c_xfer_done);
intr_handled = IRQ_HANDLED;
writeb(INTR_STAT_DMA_TERM, p2);
}
pci1xxxx_ack_high_level_intr(i2c, I2C_BUF_MSTR_INTR_MASK);
}
if (reg1 & SMBALERT_INTR_MASK) {
intr_handled = IRQ_HANDLED;
pci1xxxx_ack_high_level_intr(i2c, SMBALERT_INTR_MASK);
}
return intr_handled;
}
static void pci1xxxx_i2c_set_count(struct pci1xxxx_i2c *i2c, u8 mcucount,
u8 writecount, u8 readcount)
{
pci1xxxx_i2c_set_mcu_count(i2c, mcucount);
pci1xxxx_i2c_set_write_count(i2c, writecount);
pci1xxxx_i2c_set_read_count(i2c, readcount);
}
static void pci1xxxx_i2c_set_readm(struct pci1xxxx_i2c *i2c, bool enable)
{
void __iomem *p = i2c->i2c_base + SMB_CORE_CMD_REG_OFF1;
u8 regval;
regval = readb(p);
if (enable)
regval |= SMB_CORE_CMD_READM;
else
regval &= ~SMB_CORE_CMD_READM;
writeb(regval, p);
}
static void pci1xxxx_ack_nw_layer_intr(struct pci1xxxx_i2c *i2c, u8 ack_intr_msk)
{
writeb(ack_intr_msk, i2c->i2c_base + SMBUS_INTR_STAT_REG_OFF);
}
static void pci1xxxx_config_nw_layer_intr(struct pci1xxxx_i2c *i2c,
u8 intr_msk, bool enable)
{
void __iomem *p = i2c->i2c_base + SMBUS_INTR_MSK_REG_OFF;
u8 regval;
regval = readb(p);
if (enable)
regval &= ~intr_msk;
else
regval |= intr_msk;
writeb(regval, p);
}
static void pci1xxxx_i2c_config_padctrl(struct pci1xxxx_i2c *i2c, bool enable)
{
void __iomem *p1 = i2c->i2c_base + I2C_SCL_PAD_CTRL_REG_OFF;
void __iomem *p2 = i2c->i2c_base + I2C_SDA_PAD_CTRL_REG_OFF;
u8 regval;
regval = readb(p1);
if (enable)
regval |= I2C_INPUT_EN | I2C_OUTPUT_EN;
else
regval &= ~(I2C_INPUT_EN | I2C_OUTPUT_EN);
writeb(regval, p1);
regval = readb(p2);
if (enable)
regval |= I2C_INPUT_EN | I2C_OUTPUT_EN;
else
regval &= ~(I2C_INPUT_EN | I2C_OUTPUT_EN);
writeb(regval, p2);
}
static void pci1xxxx_i2c_set_mode(struct pci1xxxx_i2c *i2c)
{
void __iomem *p = i2c->i2c_base + SMBUS_CONTROL_REG_OFF;
u8 regval;
regval = readb(p);
if (i2c->flags & I2C_FLAGS_DIRECT_MODE)
regval &= ~CTL_HOST_FIFO_ENTRY;
else
regval |= CTL_HOST_FIFO_ENTRY;
writeb(regval, p);
}
static void pci1xxxx_i2c_config_high_level_intr(struct pci1xxxx_i2c *i2c,
u16 intr_msk, bool enable)
{
void __iomem *p = i2c->i2c_base + SMBUS_GEN_INT_MASK_REG_OFF;
u16 regval;
regval = readw(p);
if (enable)
regval &= ~intr_msk;
else
regval |= intr_msk;
writew(regval, p);
}
static void pci1xxxx_i2c_configure_core_reg(struct pci1xxxx_i2c *i2c, bool enable)
{
void __iomem *p1 = i2c->i2c_base + SMB_CORE_CONFIG_REG1;
void __iomem *p3 = i2c->i2c_base + SMB_CORE_CONFIG_REG3;
u8 reg1;
u8 reg3;
reg1 = readb(p1);
reg3 = readb(p3);
if (enable) {
reg1 |= SMB_CONFIG1_ENAB | SMB_CONFIG1_FEN;
reg3 |= SMB_CONFIG3_ENMI | SMB_CONFIG3_ENIDI;
} else {
reg1 &= ~(SMB_CONFIG1_ENAB | SMB_CONFIG1_FEN);
reg3 &= ~(SMB_CONFIG3_ENMI | SMB_CONFIG3_ENIDI);
}
writeb(reg1, p1);
writeb(reg3, p3);
}
static void pci1xxxx_i2c_set_freq(struct pci1xxxx_i2c *i2c)
{
void __iomem *bp = i2c->i2c_base;
void __iomem *p_idle_scaling = bp + SMB_CORE_IDLE_SCALING_REG_OFF;
void __iomem *p_data_timing = bp + SMB_CORE_DATA_TIMING_REG_OFF;
void __iomem *p_hold_time = bp + SMB_CORE_SR_HOLD_TIME_REG_OFF;
void __iomem *p_to_scaling = bp + SMB_CORE_TO_SCALING_REG_OFF;
void __iomem *p_clk_sync = bp + SMB_CORE_CLK_SYNC_REG_OFF;
void __iomem *p_clk_reg = bp + SMB_CORE_BUS_CLK_REG_OFF;
switch (i2c->freq) {
case I2C_MAX_STANDARD_MODE_FREQ:
writeb(SR_HOLD_TIME_100K_TICKS, p_hold_time);
writel(SMB_IDLE_SCALING_100K, p_idle_scaling);
writew(BUS_CLK_100K, p_clk_reg);
writel(CLK_SYNC_100K, p_clk_sync);
writel(DATA_TIMING_100K, p_data_timing);
writel(TO_SCALING_100K, p_to_scaling);
break;
case I2C_MAX_FAST_MODE_PLUS_FREQ:
writeb(SR_HOLD_TIME_1000K_TICKS, p_hold_time);
writel(SMB_IDLE_SCALING_1000K, p_idle_scaling);
writew(BUS_CLK_1000K, p_clk_reg);
writel(CLK_SYNC_1000K, p_clk_sync);
writel(DATA_TIMING_1000K, p_data_timing);
writel(TO_SCALING_1000K, p_to_scaling);
break;
case I2C_MAX_FAST_MODE_FREQ:
default:
writeb(SR_HOLD_TIME_400K_TICKS, p_hold_time);
writel(SMB_IDLE_SCALING_400K, p_idle_scaling);
writew(BUS_CLK_400K, p_clk_reg);
writel(CLK_SYNC_400K, p_clk_sync);
writel(DATA_TIMING_400K, p_data_timing);
writel(TO_SCALING_400K, p_to_scaling);
break;
}
}
static void pci1xxxx_i2c_init(struct pci1xxxx_i2c *i2c)
{
void __iomem *p2 = i2c->i2c_base + SMBUS_STATUS_REG_OFF;
void __iomem *p1 = i2c->i2c_base + SMB_GPR_REG;
u8 regval;
int ret;
ret = set_sys_lock(i2c);
if (ret == -EPERM) {
/*
* Configure I2C Fast Mode as default frequency if unable
* to acquire sys lock.
*/
regval = 0;
} else {
regval = readl(p1);
release_sys_lock(i2c);
}
switch (regval) {
case 0:
i2c->freq = I2C_MAX_FAST_MODE_FREQ;
pci1xxxx_i2c_set_freq(i2c);
break;
case 1:
i2c->freq = I2C_MAX_STANDARD_MODE_FREQ;
pci1xxxx_i2c_set_freq(i2c);
break;
case 2:
i2c->freq = I2C_MAX_FAST_MODE_PLUS_FREQ;
pci1xxxx_i2c_set_freq(i2c);
break;
case 3:
default:
break;
}
pci1xxxx_i2c_config_padctrl(i2c, true);
i2c->flags |= I2C_FLAGS_DIRECT_MODE;
pci1xxxx_i2c_set_mode(i2c);
/*
* Added as a precaution since BUF_EMPTY in status register
* also trigered an Interrupt.
*/
writeb(STA_BUF_EMPTY, p2);
/* Configure core I2c control registers. */
pci1xxxx_i2c_configure_core_reg(i2c, true);
/*
* Enable pull-up for the SMB alert pin which is just used for
* wakeup right now.
*/
pci1xxxx_i2c_configure_smbalert_pin(i2c, true);
}
static void pci1xxxx_i2c_clear_flags(struct pci1xxxx_i2c *i2c)
{
u8 regval;
/* Reset the internal buffer counters. */
pci1xxxx_i2c_reset_counters(i2c);
/* Clear low level interrupts. */
regval = COMPLETION_MNAKX | COMPLETION_IDLE | COMPLETION_MDONE;
writeb(regval, i2c->i2c_base + SMB_CORE_COMPLETION_REG_OFF3);
reinit_completion(&i2c->i2c_xfer_done);
pci1xxxx_ack_nw_layer_intr(i2c, ALL_NW_LAYER_INTERRUPTS);
pci1xxxx_ack_high_level_intr(i2c, ALL_HIGH_LAYER_INTR);
}
static int pci1xxxx_i2c_read(struct pci1xxxx_i2c *i2c, u8 slaveaddr,
unsigned char *buf, u16 total_len)
{
void __iomem *p2 = i2c->i2c_base + SMB_CORE_COMPLETION_REG_OFF3;
void __iomem *p1 = i2c->i2c_base + SMB_CORE_CMD_REG_OFF1;
void __iomem *p3 = i2c->i2c_base + SMBUS_MST_BUF;
unsigned long time_left;
u16 remainingbytes;
u8 transferlen;
int retval = 0;
u8 read_count;
u32 regval;
u16 count;
/* Enable I2C host controller by setting the ESO bit in the CONTROL REG. */
pci1xxxx_i2c_enable_ESO(i2c);
pci1xxxx_i2c_clear_flags(i2c);
pci1xxxx_config_nw_layer_intr(i2c, INTR_MSK_DMA_TERM, true);
pci1xxxx_i2c_config_high_level_intr(i2c, I2C_BUF_MSTR_INTR_MASK, true);
/*
* The I2C transfer could be more than 128 bytes. Our Core is
* capable of only sending 128 at a time.
* As far as the I2C read is concerned, initailly send the
* read slave address along with the number of bytes to read in
* ReadCount. After sending the slave address the interrupt
* is generated. On seeing the ACK for the slave address, reverse the
* buffer direction and run the DMA to initiate Read from slave.
*/
for (count = 0; count < total_len; count += transferlen) {
/*
* Before start of any transaction clear the existing
* START/STOP conditions.
*/
writeb(0, p1);
remainingbytes = total_len - count;
transferlen = min_t(u16, remainingbytes, SMBUS_BUF_MAX_SIZE);
/*
* Send STOP bit for the last chunk in the transaction.
* For I2C read transaction of more than BUF_SIZE, NACK should
* only be sent for the last read.
* Hence a bit FW_ACK is set for all the read chunks except for
* the last chunk. For the last chunk NACK should be sent and
* FW_ACK is cleared Send STOP only when I2C_FLAGS_STOP bit is
* set in the flags and only for the last transaction.
*/
if ((count + transferlen >= total_len) &&
(i2c->flags & I2C_FLAGS_STOP)) {
pci1xxxx_i2c_set_clear_FW_ACK(i2c, false);
pci1xxxx_i2c_send_start_stop(i2c, 0);
} else {
pci1xxxx_i2c_set_clear_FW_ACK(i2c, true);
}
/* Send START bit for the first transaction. */
if (count == 0) {
pci1xxxx_i2c_set_transfer_dir(i2c, I2C_DIRN_WRITE);
pci1xxxx_i2c_send_start_stop(i2c, 1);
/* Write I2c buffer with just the slave addr. */
pci1xxxx_i2c_buffer_write(i2c, slaveaddr, 0, NULL);
/* Set the count. Readcount is the transfer bytes. */
pci1xxxx_i2c_set_count(i2c, 1, 1, transferlen);
/*
* Set the Auto_start_read bit so that the HW itself
* will take care of the read phase.
*/
pci1xxxx_i2c_config_asr(i2c, true);
if (i2c->flags & I2C_FLAGS_SMB_BLK_READ)
pci1xxxx_i2c_set_readm(i2c, true);
} else {
pci1xxxx_i2c_set_count(i2c, 0, 0, transferlen);
pci1xxxx_i2c_config_asr(i2c, false);
pci1xxxx_i2c_clear_flags(i2c);
pci1xxxx_i2c_set_transfer_dir(i2c, I2C_DIRN_READ);
}
/* Start the DMA. */
pci1xxxx_i2c_start_DMA(i2c);
/* Wait for the DMA_TERM interrupt. */
time_left = wait_for_completion_timeout(&i2c->i2c_xfer_done,
msecs_to_jiffies(PCI1XXXX_I2C_TIMEOUT_MS));
if (time_left == 0) {
/* Reset the I2C core to release the bus lock. */
pci1xxxx_i2c_init(i2c);
retval = -ETIMEDOUT;
goto cleanup;
}
/* Read the completion reg to know the reason for DMA_TERM. */
regval = readb(p2);
/* Slave did not respond. */
if (regval & COMPLETION_MNAKX) {
writeb(COMPLETION_MNAKX, p2);
retval = -ETIMEDOUT;
goto cleanup;
}
if (i2c->flags & I2C_FLAGS_SMB_BLK_READ) {
buf[0] = readb(p3);
read_count = buf[0];
memcpy_fromio(&buf[1], p3 + 1, read_count);
} else {
memcpy_fromio(&buf[count], p3, transferlen);
}
}
cleanup:
/* Disable all the interrupts. */
pci1xxxx_config_nw_layer_intr(i2c, INTR_MSK_DMA_TERM, false);
pci1xxxx_i2c_config_high_level_intr(i2c, I2C_BUF_MSTR_INTR_MASK, false);
pci1xxxx_i2c_config_asr(i2c, false);
return retval;
}
static int pci1xxxx_i2c_write(struct pci1xxxx_i2c *i2c, u8 slaveaddr,
unsigned char *buf, u16 total_len)
{
void __iomem *p2 = i2c->i2c_base + SMB_CORE_COMPLETION_REG_OFF3;
void __iomem *p1 = i2c->i2c_base + SMB_CORE_CMD_REG_OFF1;
unsigned long time_left;
u16 remainingbytes;
u8 actualwritelen;
u8 transferlen;
int retval = 0;
u32 regval;
u16 count;
/* Enable I2C host controller by setting the ESO bit in the CONTROL REG. */
pci1xxxx_i2c_enable_ESO(i2c);
/* Set the Buffer direction. */
pci1xxxx_i2c_set_transfer_dir(i2c, I2C_DIRN_WRITE);
pci1xxxx_config_nw_layer_intr(i2c, INTR_MSK_DMA_TERM, true);
pci1xxxx_i2c_config_high_level_intr(i2c, I2C_BUF_MSTR_INTR_MASK, true);
/*
* The i2c transfer could be more than 128 bytes. Our Core is
* capable of only sending 128 at a time.
*/
for (count = 0; count < total_len; count += transferlen) {
/*
* Before start of any transaction clear the existing
* START/STOP conditions.
*/
writeb(0, p1);
pci1xxxx_i2c_clear_flags(i2c);
remainingbytes = total_len - count;
/* If it is the starting of the transaction send START. */
if (count == 0) {
pci1xxxx_i2c_send_start_stop(i2c, 1);
/* -1 for the slave address. */
transferlen = min_t(u16, SMBUS_BUF_MAX_SIZE - 1,
remainingbytes);
pci1xxxx_i2c_buffer_write(i2c, slaveaddr,
transferlen, &buf[count]);
/*
* The actual number of bytes written on the I2C bus
* is including the slave address.
*/
actualwritelen = transferlen + 1;
} else {
transferlen = min_t(u16, SMBUS_BUF_MAX_SIZE, remainingbytes);
pci1xxxx_i2c_buffer_write(i2c, 0, transferlen, &buf[count]);
actualwritelen = transferlen;
}
pci1xxxx_i2c_set_count(i2c, actualwritelen, actualwritelen, 0);
/*
* Send STOP only when I2C_FLAGS_STOP bit is set in the flags and
* only for the last transaction.
*/
if (remainingbytes <= transferlen &&
(i2c->flags & I2C_FLAGS_STOP))
pci1xxxx_i2c_send_start_stop(i2c, 0);
pci1xxxx_i2c_start_DMA(i2c);
/*
* Wait for the DMA_TERM interrupt.
*/
time_left = wait_for_completion_timeout(&i2c->i2c_xfer_done,
msecs_to_jiffies(PCI1XXXX_I2C_TIMEOUT_MS));
if (time_left == 0) {
/* Reset the I2C core to release the bus lock. */
pci1xxxx_i2c_init(i2c);
retval = -ETIMEDOUT;
goto cleanup;
}
regval = readb(p2);
if (regval & COMPLETION_MNAKX) {
writeb(COMPLETION_MNAKX, p2);
retval = -ETIMEDOUT;
goto cleanup;
}
}
cleanup:
/* Disable all the interrupts. */
pci1xxxx_config_nw_layer_intr(i2c, INTR_MSK_DMA_TERM, false);
pci1xxxx_i2c_config_high_level_intr(i2c, I2C_BUF_MSTR_INTR_MASK, false);
return retval;
}
static int pci1xxxx_i2c_xfer(struct i2c_adapter *adap,
struct i2c_msg *msgs, int num)
{
struct pci1xxxx_i2c *i2c = i2c_get_adapdata(adap);
u8 slaveaddr;
int retval;
u32 i;
i2c->i2c_xfer_in_progress = true;
for (i = 0; i < num; i++) {
slaveaddr = i2c_8bit_addr_from_msg(&msgs[i]);
/*
* Send the STOP bit if the transfer is the final one or
* if the I2C_M_STOP flag is set.
*/
if ((i == num - 1) || (msgs[i].flags & I2C_M_STOP))
i2c->flags |= I2C_FLAGS_STOP;
else
i2c->flags &= ~I2C_FLAGS_STOP;
if (msgs[i].flags & I2C_M_RECV_LEN)
i2c->flags |= I2C_FLAGS_SMB_BLK_READ;
else
i2c->flags &= ~I2C_FLAGS_SMB_BLK_READ;
if (msgs[i].flags & I2C_M_RD)
retval = pci1xxxx_i2c_read(i2c, slaveaddr,
msgs[i].buf, msgs[i].len);
else
retval = pci1xxxx_i2c_write(i2c, slaveaddr,
msgs[i].buf, msgs[i].len);
if (retval < 0)
break;
}
i2c->i2c_xfer_in_progress = false;
if (retval < 0)
return retval;
return num;
}
/*
* List of supported functions by the driver.
*/
static u32 pci1xxxx_i2c_get_funcs(struct i2c_adapter *adap)
{
return I2C_FUNC_I2C | I2C_FUNC_PROTOCOL_MANGLING |
I2C_FUNC_SMBUS_BLOCK_PROC_CALL |
I2C_FUNC_SMBUS_BYTE |
I2C_FUNC_SMBUS_BYTE_DATA |
I2C_FUNC_SMBUS_WORD_DATA |
I2C_FUNC_SMBUS_PROC_CALL |
I2C_FUNC_SMBUS_BLOCK_DATA;
}
static const struct i2c_algorithm pci1xxxx_i2c_algo = {
.master_xfer = pci1xxxx_i2c_xfer,
.functionality = pci1xxxx_i2c_get_funcs,
};
static const struct i2c_adapter_quirks pci1xxxx_i2c_quirks = {
.flags = I2C_AQ_NO_ZERO_LEN,
};
static const struct i2c_adapter pci1xxxx_i2c_ops = {
.owner = THIS_MODULE,
.name = "PCI1xxxx I2C Adapter",
.algo = &pci1xxxx_i2c_algo,
.quirks = &pci1xxxx_i2c_quirks,
};
static int pci1xxxx_i2c_suspend(struct device *dev)
{
struct pci1xxxx_i2c *i2c = dev_get_drvdata(dev);
void __iomem *p = i2c->i2c_base + SMBUS_RESET_REG;
struct pci_dev *pdev = to_pci_dev(dev);
u32 regval;
i2c_mark_adapter_suspended(&i2c->adap);
/*
* If the system is put into 'suspend' state when the I2C transfer is in
* progress, wait until the transfer completes.
*/
while (i2c->i2c_xfer_in_progress)
msleep(20);
pci1xxxx_i2c_config_high_level_intr(i2c, SMBALERT_WAKE_INTR_MASK, true);
/*
* Enable the PERST_DIS bit to mask the PERST from resetting the core
* registers.
*/
regval = readl(p);
regval |= PERI_SMBUS_D3_RESET_DIS;
writel(regval, p);
/* Enable PCI wake in the PMCSR register. */
device_set_wakeup_enable(dev, true);
pci_wake_from_d3(pdev, true);
return 0;
}
static int pci1xxxx_i2c_resume(struct device *dev)
{
struct pci1xxxx_i2c *i2c = dev_get_drvdata(dev);
void __iomem *p1 = i2c->i2c_base + SMBUS_GEN_INT_STAT_REG_OFF;
void __iomem *p2 = i2c->i2c_base + SMBUS_RESET_REG;
struct pci_dev *pdev = to_pci_dev(dev);
u32 regval;
regval = readw(p1);
writew(regval, p1);
pci1xxxx_i2c_config_high_level_intr(i2c, SMBALERT_WAKE_INTR_MASK, false);
regval = readl(p2);
regval &= ~PERI_SMBUS_D3_RESET_DIS;
writel(regval, p2);
i2c_mark_adapter_resumed(&i2c->adap);
pci_wake_from_d3(pdev, false);
return 0;
}
static DEFINE_SIMPLE_DEV_PM_OPS(pci1xxxx_i2c_pm_ops, pci1xxxx_i2c_suspend,
pci1xxxx_i2c_resume);
static void pci1xxxx_i2c_shutdown(void *data)
{
struct pci1xxxx_i2c *i2c = data;
pci1xxxx_i2c_config_padctrl(i2c, false);
pci1xxxx_i2c_configure_core_reg(i2c, false);
}
static int pci1xxxx_i2c_probe_pci(struct pci_dev *pdev,
const struct pci_device_id *ent)
{
struct device *dev = &pdev->dev;
struct pci1xxxx_i2c *i2c;
int ret;
i2c = devm_kzalloc(dev, sizeof(*i2c), GFP_KERNEL);
if (!i2c)
return -ENOMEM;
pci_set_drvdata(pdev, i2c);
i2c->i2c_xfer_in_progress = false;
ret = pcim_enable_device(pdev);
if (ret)
return ret;
pci_set_master(pdev);
/*
* We are getting the base address of the SMB core. SMB core uses
* BAR0 and size is 32K.
*/
ret = pcim_iomap_regions(pdev, BIT(0), pci_name(pdev));
if (ret < 0)
return ret;
i2c->i2c_base = pcim_iomap_table(pdev)[0];
init_completion(&i2c->i2c_xfer_done);
pci1xxxx_i2c_init(i2c);
ret = devm_add_action(dev, pci1xxxx_i2c_shutdown, i2c);
if (ret)
return ret;
ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
if (ret < 0)
return ret;
ret = devm_request_irq(dev, pci_irq_vector(pdev, 0), pci1xxxx_i2c_isr,
0, pci_name(pdev), i2c);
if (ret)
return ret;
i2c->adap = pci1xxxx_i2c_ops;
i2c->adap.dev.parent = dev;
snprintf(i2c->adap.name, sizeof(i2c->adap.name),
"MCHP PCI1xxxx i2c adapter at %s", pci_name(pdev));
i2c_set_adapdata(&i2c->adap, i2c);
ret = devm_i2c_add_adapter(dev, &i2c->adap);
if (ret)
return dev_err_probe(dev, ret, "i2c add adapter failed\n");
return 0;
}
static const struct pci_device_id pci1xxxx_i2c_pci_id_table[] = {
{ PCI_VDEVICE(EFAR, 0xA003) },
{ PCI_VDEVICE(EFAR, 0xA013) },
{ PCI_VDEVICE(EFAR, 0xA023) },
{ PCI_VDEVICE(EFAR, 0xA033) },
{ PCI_VDEVICE(EFAR, 0xA043) },
{ }
};
MODULE_DEVICE_TABLE(pci, pci1xxxx_i2c_pci_id_table);
static struct pci_driver pci1xxxx_i2c_pci_driver = {
.name = "i2c-mchp-pci1xxxx",
.id_table = pci1xxxx_i2c_pci_id_table,
.probe = pci1xxxx_i2c_probe_pci,
.driver = {
.pm = pm_sleep_ptr(&pci1xxxx_i2c_pm_ops),
},
};
module_pci_driver(pci1xxxx_i2c_pci_driver);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Tharun Kumar P<tharunkumar.pasumarthi@microchip.com>");
MODULE_AUTHOR("Kumaravel Thiagarajan <kumaravel.thiagarajan@microchip.com>");
MODULE_DESCRIPTION("Microchip Technology Inc. pci1xxxx I2C bus driver");