| /* |
| * linux/arch/x86_64/mm/init.c |
| * |
| * Copyright (C) 1995 Linus Torvalds |
| * Copyright (C) 2000 Pavel Machek <pavel@suse.cz> |
| * Copyright (C) 2002,2003 Andi Kleen <ak@suse.de> |
| */ |
| |
| #include <linux/config.h> |
| #include <linux/signal.h> |
| #include <linux/sched.h> |
| #include <linux/kernel.h> |
| #include <linux/errno.h> |
| #include <linux/string.h> |
| #include <linux/types.h> |
| #include <linux/ptrace.h> |
| #include <linux/mman.h> |
| #include <linux/mm.h> |
| #include <linux/swap.h> |
| #include <linux/smp.h> |
| #include <linux/init.h> |
| #include <linux/pagemap.h> |
| #include <linux/bootmem.h> |
| #include <linux/proc_fs.h> |
| #include <linux/pci.h> |
| #include <linux/dma-mapping.h> |
| |
| #include <asm/processor.h> |
| #include <asm/system.h> |
| #include <asm/uaccess.h> |
| #include <asm/pgtable.h> |
| #include <asm/pgalloc.h> |
| #include <asm/dma.h> |
| #include <asm/fixmap.h> |
| #include <asm/e820.h> |
| #include <asm/apic.h> |
| #include <asm/tlb.h> |
| #include <asm/mmu_context.h> |
| #include <asm/proto.h> |
| #include <asm/smp.h> |
| #include <asm/sections.h> |
| #include <asm/dma-mapping.h> |
| #include <asm/swiotlb.h> |
| |
| #ifndef Dprintk |
| #define Dprintk(x...) |
| #endif |
| |
| struct dma_mapping_ops* dma_ops; |
| EXPORT_SYMBOL(dma_ops); |
| |
| static unsigned long dma_reserve __initdata; |
| |
| DEFINE_PER_CPU(struct mmu_gather, mmu_gathers); |
| |
| /* |
| * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the |
| * physical space so we can cache the place of the first one and move |
| * around without checking the pgd every time. |
| */ |
| |
| void show_mem(void) |
| { |
| long i, total = 0, reserved = 0; |
| long shared = 0, cached = 0; |
| pg_data_t *pgdat; |
| struct page *page; |
| |
| printk(KERN_INFO "Mem-info:\n"); |
| show_free_areas(); |
| printk(KERN_INFO "Free swap: %6ldkB\n", nr_swap_pages<<(PAGE_SHIFT-10)); |
| |
| for_each_pgdat(pgdat) { |
| for (i = 0; i < pgdat->node_spanned_pages; ++i) { |
| page = pfn_to_page(pgdat->node_start_pfn + i); |
| total++; |
| if (PageReserved(page)) |
| reserved++; |
| else if (PageSwapCache(page)) |
| cached++; |
| else if (page_count(page)) |
| shared += page_count(page) - 1; |
| } |
| } |
| printk(KERN_INFO "%lu pages of RAM\n", total); |
| printk(KERN_INFO "%lu reserved pages\n",reserved); |
| printk(KERN_INFO "%lu pages shared\n",shared); |
| printk(KERN_INFO "%lu pages swap cached\n",cached); |
| } |
| |
| /* References to section boundaries */ |
| |
| int after_bootmem; |
| |
| static void *spp_getpage(void) |
| { |
| void *ptr; |
| if (after_bootmem) |
| ptr = (void *) get_zeroed_page(GFP_ATOMIC); |
| else |
| ptr = alloc_bootmem_pages(PAGE_SIZE); |
| if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) |
| panic("set_pte_phys: cannot allocate page data %s\n", after_bootmem?"after bootmem":""); |
| |
| Dprintk("spp_getpage %p\n", ptr); |
| return ptr; |
| } |
| |
| static void set_pte_phys(unsigned long vaddr, |
| unsigned long phys, pgprot_t prot) |
| { |
| pgd_t *pgd; |
| pud_t *pud; |
| pmd_t *pmd; |
| pte_t *pte, new_pte; |
| |
| Dprintk("set_pte_phys %lx to %lx\n", vaddr, phys); |
| |
| pgd = pgd_offset_k(vaddr); |
| if (pgd_none(*pgd)) { |
| printk("PGD FIXMAP MISSING, it should be setup in head.S!\n"); |
| return; |
| } |
| pud = pud_offset(pgd, vaddr); |
| if (pud_none(*pud)) { |
| pmd = (pmd_t *) spp_getpage(); |
| set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE | _PAGE_USER)); |
| if (pmd != pmd_offset(pud, 0)) { |
| printk("PAGETABLE BUG #01! %p <-> %p\n", pmd, pmd_offset(pud,0)); |
| return; |
| } |
| } |
| pmd = pmd_offset(pud, vaddr); |
| if (pmd_none(*pmd)) { |
| pte = (pte_t *) spp_getpage(); |
| set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE | _PAGE_USER)); |
| if (pte != pte_offset_kernel(pmd, 0)) { |
| printk("PAGETABLE BUG #02!\n"); |
| return; |
| } |
| } |
| new_pte = pfn_pte(phys >> PAGE_SHIFT, prot); |
| |
| pte = pte_offset_kernel(pmd, vaddr); |
| if (!pte_none(*pte) && |
| pte_val(*pte) != (pte_val(new_pte) & __supported_pte_mask)) |
| pte_ERROR(*pte); |
| set_pte(pte, new_pte); |
| |
| /* |
| * It's enough to flush this one mapping. |
| * (PGE mappings get flushed as well) |
| */ |
| __flush_tlb_one(vaddr); |
| } |
| |
| /* NOTE: this is meant to be run only at boot */ |
| void __set_fixmap (enum fixed_addresses idx, unsigned long phys, pgprot_t prot) |
| { |
| unsigned long address = __fix_to_virt(idx); |
| |
| if (idx >= __end_of_fixed_addresses) { |
| printk("Invalid __set_fixmap\n"); |
| return; |
| } |
| set_pte_phys(address, phys, prot); |
| } |
| |
| unsigned long __initdata table_start, table_end; |
| |
| extern pmd_t temp_boot_pmds[]; |
| |
| static struct temp_map { |
| pmd_t *pmd; |
| void *address; |
| int allocated; |
| } temp_mappings[] __initdata = { |
| { &temp_boot_pmds[0], (void *)(40UL * 1024 * 1024) }, |
| { &temp_boot_pmds[1], (void *)(42UL * 1024 * 1024) }, |
| {} |
| }; |
| |
| static __init void *alloc_low_page(int *index, unsigned long *phys) |
| { |
| struct temp_map *ti; |
| int i; |
| unsigned long pfn = table_end++, paddr; |
| void *adr; |
| |
| if (pfn >= end_pfn) |
| panic("alloc_low_page: ran out of memory"); |
| for (i = 0; temp_mappings[i].allocated; i++) { |
| if (!temp_mappings[i].pmd) |
| panic("alloc_low_page: ran out of temp mappings"); |
| } |
| ti = &temp_mappings[i]; |
| paddr = (pfn << PAGE_SHIFT) & PMD_MASK; |
| set_pmd(ti->pmd, __pmd(paddr | _KERNPG_TABLE | _PAGE_PSE)); |
| ti->allocated = 1; |
| __flush_tlb(); |
| adr = ti->address + ((pfn << PAGE_SHIFT) & ~PMD_MASK); |
| *index = i; |
| *phys = pfn * PAGE_SIZE; |
| return adr; |
| } |
| |
| static __init void unmap_low_page(int i) |
| { |
| struct temp_map *ti = &temp_mappings[i]; |
| set_pmd(ti->pmd, __pmd(0)); |
| ti->allocated = 0; |
| } |
| |
| static void __init phys_pud_init(pud_t *pud, unsigned long address, unsigned long end) |
| { |
| long i, j; |
| |
| i = pud_index(address); |
| pud = pud + i; |
| for (; i < PTRS_PER_PUD; pud++, i++) { |
| int map; |
| unsigned long paddr, pmd_phys; |
| pmd_t *pmd; |
| |
| paddr = address + i*PUD_SIZE; |
| if (paddr >= end) { |
| for (; i < PTRS_PER_PUD; i++, pud++) |
| set_pud(pud, __pud(0)); |
| break; |
| } |
| |
| if (!e820_mapped(paddr, paddr+PUD_SIZE, 0)) { |
| set_pud(pud, __pud(0)); |
| continue; |
| } |
| |
| pmd = alloc_low_page(&map, &pmd_phys); |
| set_pud(pud, __pud(pmd_phys | _KERNPG_TABLE)); |
| for (j = 0; j < PTRS_PER_PMD; pmd++, j++, paddr += PMD_SIZE) { |
| unsigned long pe; |
| |
| if (paddr >= end) { |
| for (; j < PTRS_PER_PMD; j++, pmd++) |
| set_pmd(pmd, __pmd(0)); |
| break; |
| } |
| pe = _PAGE_NX|_PAGE_PSE | _KERNPG_TABLE | _PAGE_GLOBAL | paddr; |
| pe &= __supported_pte_mask; |
| set_pmd(pmd, __pmd(pe)); |
| } |
| unmap_low_page(map); |
| } |
| __flush_tlb(); |
| } |
| |
| static void __init find_early_table_space(unsigned long end) |
| { |
| unsigned long puds, pmds, tables; |
| |
| puds = (end + PUD_SIZE - 1) >> PUD_SHIFT; |
| pmds = (end + PMD_SIZE - 1) >> PMD_SHIFT; |
| tables = round_up(puds * sizeof(pud_t), PAGE_SIZE) + |
| round_up(pmds * sizeof(pmd_t), PAGE_SIZE); |
| |
| table_start = find_e820_area(0x8000, __pa_symbol(&_text), tables); |
| if (table_start == -1UL) |
| panic("Cannot find space for the kernel page tables"); |
| |
| table_start >>= PAGE_SHIFT; |
| table_end = table_start; |
| } |
| |
| /* Setup the direct mapping of the physical memory at PAGE_OFFSET. |
| This runs before bootmem is initialized and gets pages directly from the |
| physical memory. To access them they are temporarily mapped. */ |
| void __init init_memory_mapping(unsigned long start, unsigned long end) |
| { |
| unsigned long next; |
| |
| Dprintk("init_memory_mapping\n"); |
| |
| /* |
| * Find space for the kernel direct mapping tables. |
| * Later we should allocate these tables in the local node of the memory |
| * mapped. Unfortunately this is done currently before the nodes are |
| * discovered. |
| */ |
| find_early_table_space(end); |
| |
| start = (unsigned long)__va(start); |
| end = (unsigned long)__va(end); |
| |
| for (; start < end; start = next) { |
| int map; |
| unsigned long pud_phys; |
| pud_t *pud = alloc_low_page(&map, &pud_phys); |
| next = start + PGDIR_SIZE; |
| if (next > end) |
| next = end; |
| phys_pud_init(pud, __pa(start), __pa(next)); |
| set_pgd(pgd_offset_k(start), mk_kernel_pgd(pud_phys)); |
| unmap_low_page(map); |
| } |
| |
| asm volatile("movq %%cr4,%0" : "=r" (mmu_cr4_features)); |
| __flush_tlb_all(); |
| early_printk("kernel direct mapping tables upto %lx @ %lx-%lx\n", end, |
| table_start<<PAGE_SHIFT, |
| table_end<<PAGE_SHIFT); |
| } |
| |
| void __cpuinit zap_low_mappings(int cpu) |
| { |
| if (cpu == 0) { |
| pgd_t *pgd = pgd_offset_k(0UL); |
| pgd_clear(pgd); |
| } else { |
| /* |
| * For AP's, zap the low identity mappings by changing the cr3 |
| * to init_level4_pgt and doing local flush tlb all |
| */ |
| asm volatile("movq %0,%%cr3" :: "r" (__pa_symbol(&init_level4_pgt))); |
| } |
| __flush_tlb_all(); |
| } |
| |
| /* Compute zone sizes for the DMA and DMA32 zones in a node. */ |
| __init void |
| size_zones(unsigned long *z, unsigned long *h, |
| unsigned long start_pfn, unsigned long end_pfn) |
| { |
| int i; |
| unsigned long w; |
| |
| for (i = 0; i < MAX_NR_ZONES; i++) |
| z[i] = 0; |
| |
| if (start_pfn < MAX_DMA_PFN) |
| z[ZONE_DMA] = MAX_DMA_PFN - start_pfn; |
| if (start_pfn < MAX_DMA32_PFN) { |
| unsigned long dma32_pfn = MAX_DMA32_PFN; |
| if (dma32_pfn > end_pfn) |
| dma32_pfn = end_pfn; |
| z[ZONE_DMA32] = dma32_pfn - start_pfn; |
| } |
| z[ZONE_NORMAL] = end_pfn - start_pfn; |
| |
| /* Remove lower zones from higher ones. */ |
| w = 0; |
| for (i = 0; i < MAX_NR_ZONES; i++) { |
| if (z[i]) |
| z[i] -= w; |
| w += z[i]; |
| } |
| |
| /* Compute holes */ |
| w = start_pfn; |
| for (i = 0; i < MAX_NR_ZONES; i++) { |
| unsigned long s = w; |
| w += z[i]; |
| h[i] = e820_hole_size(s, w); |
| } |
| |
| /* Add the space pace needed for mem_map to the holes too. */ |
| for (i = 0; i < MAX_NR_ZONES; i++) |
| h[i] += (z[i] * sizeof(struct page)) / PAGE_SIZE; |
| |
| /* The 16MB DMA zone has the kernel and other misc mappings. |
| Account them too */ |
| if (h[ZONE_DMA]) { |
| h[ZONE_DMA] += dma_reserve; |
| if (h[ZONE_DMA] >= z[ZONE_DMA]) { |
| printk(KERN_WARNING |
| "Kernel too large and filling up ZONE_DMA?\n"); |
| h[ZONE_DMA] = z[ZONE_DMA]; |
| } |
| } |
| } |
| |
| #ifndef CONFIG_NUMA |
| void __init paging_init(void) |
| { |
| unsigned long zones[MAX_NR_ZONES], holes[MAX_NR_ZONES]; |
| size_zones(zones, holes, 0, end_pfn); |
| free_area_init_node(0, NODE_DATA(0), zones, |
| __pa(PAGE_OFFSET) >> PAGE_SHIFT, holes); |
| } |
| #endif |
| |
| /* Unmap a kernel mapping if it exists. This is useful to avoid prefetches |
| from the CPU leading to inconsistent cache lines. address and size |
| must be aligned to 2MB boundaries. |
| Does nothing when the mapping doesn't exist. */ |
| void __init clear_kernel_mapping(unsigned long address, unsigned long size) |
| { |
| unsigned long end = address + size; |
| |
| BUG_ON(address & ~LARGE_PAGE_MASK); |
| BUG_ON(size & ~LARGE_PAGE_MASK); |
| |
| for (; address < end; address += LARGE_PAGE_SIZE) { |
| pgd_t *pgd = pgd_offset_k(address); |
| pud_t *pud; |
| pmd_t *pmd; |
| if (pgd_none(*pgd)) |
| continue; |
| pud = pud_offset(pgd, address); |
| if (pud_none(*pud)) |
| continue; |
| pmd = pmd_offset(pud, address); |
| if (!pmd || pmd_none(*pmd)) |
| continue; |
| if (0 == (pmd_val(*pmd) & _PAGE_PSE)) { |
| /* Could handle this, but it should not happen currently. */ |
| printk(KERN_ERR |
| "clear_kernel_mapping: mapping has been split. will leak memory\n"); |
| pmd_ERROR(*pmd); |
| } |
| set_pmd(pmd, __pmd(0)); |
| } |
| __flush_tlb_all(); |
| } |
| |
| static struct kcore_list kcore_mem, kcore_vmalloc, kcore_kernel, kcore_modules, |
| kcore_vsyscall; |
| |
| void __init mem_init(void) |
| { |
| long codesize, reservedpages, datasize, initsize; |
| |
| #ifdef CONFIG_SWIOTLB |
| pci_swiotlb_init(); |
| #endif |
| no_iommu_init(); |
| |
| /* How many end-of-memory variables you have, grandma! */ |
| max_low_pfn = end_pfn; |
| max_pfn = end_pfn; |
| num_physpages = end_pfn; |
| high_memory = (void *) __va(end_pfn * PAGE_SIZE); |
| |
| /* clear the zero-page */ |
| memset(empty_zero_page, 0, PAGE_SIZE); |
| |
| reservedpages = 0; |
| |
| /* this will put all low memory onto the freelists */ |
| #ifdef CONFIG_NUMA |
| totalram_pages = numa_free_all_bootmem(); |
| #else |
| totalram_pages = free_all_bootmem(); |
| #endif |
| reservedpages = end_pfn - totalram_pages - e820_hole_size(0, end_pfn); |
| |
| after_bootmem = 1; |
| |
| codesize = (unsigned long) &_etext - (unsigned long) &_text; |
| datasize = (unsigned long) &_edata - (unsigned long) &_etext; |
| initsize = (unsigned long) &__init_end - (unsigned long) &__init_begin; |
| |
| /* Register memory areas for /proc/kcore */ |
| kclist_add(&kcore_mem, __va(0), max_low_pfn << PAGE_SHIFT); |
| kclist_add(&kcore_vmalloc, (void *)VMALLOC_START, |
| VMALLOC_END-VMALLOC_START); |
| kclist_add(&kcore_kernel, &_stext, _end - _stext); |
| kclist_add(&kcore_modules, (void *)MODULES_VADDR, MODULES_LEN); |
| kclist_add(&kcore_vsyscall, (void *)VSYSCALL_START, |
| VSYSCALL_END - VSYSCALL_START); |
| |
| printk("Memory: %luk/%luk available (%ldk kernel code, %ldk reserved, %ldk data, %ldk init)\n", |
| (unsigned long) nr_free_pages() << (PAGE_SHIFT-10), |
| end_pfn << (PAGE_SHIFT-10), |
| codesize >> 10, |
| reservedpages << (PAGE_SHIFT-10), |
| datasize >> 10, |
| initsize >> 10); |
| |
| #ifdef CONFIG_SMP |
| /* |
| * Sync boot_level4_pgt mappings with the init_level4_pgt |
| * except for the low identity mappings which are already zapped |
| * in init_level4_pgt. This sync-up is essential for AP's bringup |
| */ |
| memcpy(boot_level4_pgt+1, init_level4_pgt+1, (PTRS_PER_PGD-1)*sizeof(pgd_t)); |
| #endif |
| } |
| |
| void free_initmem(void) |
| { |
| unsigned long addr; |
| |
| addr = (unsigned long)(&__init_begin); |
| for (; addr < (unsigned long)(&__init_end); addr += PAGE_SIZE) { |
| ClearPageReserved(virt_to_page(addr)); |
| set_page_count(virt_to_page(addr), 1); |
| memset((void *)(addr & ~(PAGE_SIZE-1)), 0xcc, PAGE_SIZE); |
| free_page(addr); |
| totalram_pages++; |
| } |
| memset(__initdata_begin, 0xba, __initdata_end - __initdata_begin); |
| printk ("Freeing unused kernel memory: %luk freed\n", (__init_end - __init_begin) >> 10); |
| } |
| |
| #ifdef CONFIG_DEBUG_RODATA |
| |
| extern char __start_rodata, __end_rodata; |
| void mark_rodata_ro(void) |
| { |
| unsigned long addr = (unsigned long)&__start_rodata; |
| |
| for (; addr < (unsigned long)&__end_rodata; addr += PAGE_SIZE) |
| change_page_attr_addr(addr, 1, PAGE_KERNEL_RO); |
| |
| printk ("Write protecting the kernel read-only data: %luk\n", |
| (&__end_rodata - &__start_rodata) >> 10); |
| |
| /* |
| * change_page_attr_addr() requires a global_flush_tlb() call after it. |
| * We do this after the printk so that if something went wrong in the |
| * change, the printk gets out at least to give a better debug hint |
| * of who is the culprit. |
| */ |
| global_flush_tlb(); |
| } |
| #endif |
| |
| #ifdef CONFIG_BLK_DEV_INITRD |
| void free_initrd_mem(unsigned long start, unsigned long end) |
| { |
| if (start < (unsigned long)&_end) |
| return; |
| printk ("Freeing initrd memory: %ldk freed\n", (end - start) >> 10); |
| for (; start < end; start += PAGE_SIZE) { |
| ClearPageReserved(virt_to_page(start)); |
| set_page_count(virt_to_page(start), 1); |
| free_page(start); |
| totalram_pages++; |
| } |
| } |
| #endif |
| |
| void __init reserve_bootmem_generic(unsigned long phys, unsigned len) |
| { |
| /* Should check here against the e820 map to avoid double free */ |
| #ifdef CONFIG_NUMA |
| int nid = phys_to_nid(phys); |
| reserve_bootmem_node(NODE_DATA(nid), phys, len); |
| #else |
| reserve_bootmem(phys, len); |
| #endif |
| if (phys+len <= MAX_DMA_PFN*PAGE_SIZE) |
| dma_reserve += len / PAGE_SIZE; |
| } |
| |
| int kern_addr_valid(unsigned long addr) |
| { |
| unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT; |
| pgd_t *pgd; |
| pud_t *pud; |
| pmd_t *pmd; |
| pte_t *pte; |
| |
| if (above != 0 && above != -1UL) |
| return 0; |
| |
| pgd = pgd_offset_k(addr); |
| if (pgd_none(*pgd)) |
| return 0; |
| |
| pud = pud_offset(pgd, addr); |
| if (pud_none(*pud)) |
| return 0; |
| |
| pmd = pmd_offset(pud, addr); |
| if (pmd_none(*pmd)) |
| return 0; |
| if (pmd_large(*pmd)) |
| return pfn_valid(pmd_pfn(*pmd)); |
| |
| pte = pte_offset_kernel(pmd, addr); |
| if (pte_none(*pte)) |
| return 0; |
| return pfn_valid(pte_pfn(*pte)); |
| } |
| |
| #ifdef CONFIG_SYSCTL |
| #include <linux/sysctl.h> |
| |
| extern int exception_trace, page_fault_trace; |
| |
| static ctl_table debug_table2[] = { |
| { 99, "exception-trace", &exception_trace, sizeof(int), 0644, NULL, |
| proc_dointvec }, |
| { 0, } |
| }; |
| |
| static ctl_table debug_root_table2[] = { |
| { .ctl_name = CTL_DEBUG, .procname = "debug", .mode = 0555, |
| .child = debug_table2 }, |
| { 0 }, |
| }; |
| |
| static __init int x8664_sysctl_init(void) |
| { |
| register_sysctl_table(debug_root_table2, 1); |
| return 0; |
| } |
| __initcall(x8664_sysctl_init); |
| #endif |
| |
| /* A pseudo VMAs to allow ptrace access for the vsyscall page. This only |
| covers the 64bit vsyscall page now. 32bit has a real VMA now and does |
| not need special handling anymore. */ |
| |
| static struct vm_area_struct gate_vma = { |
| .vm_start = VSYSCALL_START, |
| .vm_end = VSYSCALL_END, |
| .vm_page_prot = PAGE_READONLY |
| }; |
| |
| struct vm_area_struct *get_gate_vma(struct task_struct *tsk) |
| { |
| #ifdef CONFIG_IA32_EMULATION |
| if (test_tsk_thread_flag(tsk, TIF_IA32)) |
| return NULL; |
| #endif |
| return &gate_vma; |
| } |
| |
| int in_gate_area(struct task_struct *task, unsigned long addr) |
| { |
| struct vm_area_struct *vma = get_gate_vma(task); |
| if (!vma) |
| return 0; |
| return (addr >= vma->vm_start) && (addr < vma->vm_end); |
| } |
| |
| /* Use this when you have no reliable task/vma, typically from interrupt |
| * context. It is less reliable than using the task's vma and may give |
| * false positives. |
| */ |
| int in_gate_area_no_task(unsigned long addr) |
| { |
| return (addr >= VSYSCALL_START) && (addr < VSYSCALL_END); |
| } |