| /* |
| * arch/arm64/kernel/topology.c |
| * |
| * Copyright (C) 2011,2013,2014 Linaro Limited. |
| * |
| * Based on the arm32 version written by Vincent Guittot in turn based on |
| * arch/sh/kernel/topology.c |
| * |
| * This file is subject to the terms and conditions of the GNU General Public |
| * License. See the file "COPYING" in the main directory of this archive |
| * for more details. |
| */ |
| |
| #include <linux/acpi.h> |
| #include <linux/arch_topology.h> |
| #include <linux/cacheinfo.h> |
| #include <linux/cpufreq.h> |
| #include <linux/init.h> |
| #include <linux/percpu.h> |
| |
| #include <asm/cpu.h> |
| #include <asm/cputype.h> |
| #include <asm/topology.h> |
| |
| void store_cpu_topology(unsigned int cpuid) |
| { |
| struct cpu_topology *cpuid_topo = &cpu_topology[cpuid]; |
| u64 mpidr; |
| |
| if (cpuid_topo->package_id != -1) |
| goto topology_populated; |
| |
| mpidr = read_cpuid_mpidr(); |
| |
| /* Uniprocessor systems can rely on default topology values */ |
| if (mpidr & MPIDR_UP_BITMASK) |
| return; |
| |
| /* |
| * This would be the place to create cpu topology based on MPIDR. |
| * |
| * However, it cannot be trusted to depict the actual topology; some |
| * pieces of the architecture enforce an artificial cap on Aff0 values |
| * (e.g. GICv3's ICC_SGI1R_EL1 limits it to 15), leading to an |
| * artificial cycling of Aff1, Aff2 and Aff3 values. IOW, these end up |
| * having absolutely no relationship to the actual underlying system |
| * topology, and cannot be reasonably used as core / package ID. |
| * |
| * If the MT bit is set, Aff0 *could* be used to define a thread ID, but |
| * we still wouldn't be able to obtain a sane core ID. This means we |
| * need to entirely ignore MPIDR for any topology deduction. |
| */ |
| cpuid_topo->thread_id = -1; |
| cpuid_topo->core_id = cpuid; |
| cpuid_topo->package_id = cpu_to_node(cpuid); |
| |
| pr_debug("CPU%u: cluster %d core %d thread %d mpidr %#016llx\n", |
| cpuid, cpuid_topo->package_id, cpuid_topo->core_id, |
| cpuid_topo->thread_id, mpidr); |
| |
| topology_populated: |
| update_siblings_masks(cpuid); |
| } |
| |
| #ifdef CONFIG_ACPI |
| static bool __init acpi_cpu_is_threaded(int cpu) |
| { |
| int is_threaded = acpi_pptt_cpu_is_thread(cpu); |
| |
| /* |
| * if the PPTT doesn't have thread information, assume a homogeneous |
| * machine and return the current CPU's thread state. |
| */ |
| if (is_threaded < 0) |
| is_threaded = read_cpuid_mpidr() & MPIDR_MT_BITMASK; |
| |
| return !!is_threaded; |
| } |
| |
| /* |
| * Propagate the topology information of the processor_topology_node tree to the |
| * cpu_topology array. |
| */ |
| int __init parse_acpi_topology(void) |
| { |
| int cpu, topology_id; |
| |
| if (acpi_disabled) |
| return 0; |
| |
| for_each_possible_cpu(cpu) { |
| int i, cache_id; |
| |
| topology_id = find_acpi_cpu_topology(cpu, 0); |
| if (topology_id < 0) |
| return topology_id; |
| |
| if (acpi_cpu_is_threaded(cpu)) { |
| cpu_topology[cpu].thread_id = topology_id; |
| topology_id = find_acpi_cpu_topology(cpu, 1); |
| cpu_topology[cpu].core_id = topology_id; |
| } else { |
| cpu_topology[cpu].thread_id = -1; |
| cpu_topology[cpu].core_id = topology_id; |
| } |
| topology_id = find_acpi_cpu_topology_package(cpu); |
| cpu_topology[cpu].package_id = topology_id; |
| |
| i = acpi_find_last_cache_level(cpu); |
| |
| if (i > 0) { |
| /* |
| * this is the only part of cpu_topology that has |
| * a direct relationship with the cache topology |
| */ |
| cache_id = find_acpi_cpu_cache_topology(cpu, i); |
| if (cache_id > 0) |
| cpu_topology[cpu].llc_id = cache_id; |
| } |
| } |
| |
| return 0; |
| } |
| #endif |
| |
| #ifdef CONFIG_ARM64_AMU_EXTN |
| |
| #undef pr_fmt |
| #define pr_fmt(fmt) "AMU: " fmt |
| |
| static DEFINE_PER_CPU_READ_MOSTLY(unsigned long, arch_max_freq_scale); |
| static DEFINE_PER_CPU(u64, arch_const_cycles_prev); |
| static DEFINE_PER_CPU(u64, arch_core_cycles_prev); |
| static cpumask_var_t amu_fie_cpus; |
| |
| /* Initialize counter reference per-cpu variables for the current CPU */ |
| void init_cpu_freq_invariance_counters(void) |
| { |
| this_cpu_write(arch_core_cycles_prev, |
| read_sysreg_s(SYS_AMEVCNTR0_CORE_EL0)); |
| this_cpu_write(arch_const_cycles_prev, |
| read_sysreg_s(SYS_AMEVCNTR0_CONST_EL0)); |
| } |
| |
| static int validate_cpu_freq_invariance_counters(int cpu) |
| { |
| u64 max_freq_hz, ratio; |
| |
| if (!cpu_has_amu_feat(cpu)) { |
| pr_debug("CPU%d: counters are not supported.\n", cpu); |
| return -EINVAL; |
| } |
| |
| if (unlikely(!per_cpu(arch_const_cycles_prev, cpu) || |
| !per_cpu(arch_core_cycles_prev, cpu))) { |
| pr_debug("CPU%d: cycle counters are not enabled.\n", cpu); |
| return -EINVAL; |
| } |
| |
| /* Convert maximum frequency from KHz to Hz and validate */ |
| max_freq_hz = cpufreq_get_hw_max_freq(cpu) * 1000; |
| if (unlikely(!max_freq_hz)) { |
| pr_debug("CPU%d: invalid maximum frequency.\n", cpu); |
| return -EINVAL; |
| } |
| |
| /* |
| * Pre-compute the fixed ratio between the frequency of the constant |
| * counter and the maximum frequency of the CPU. |
| * |
| * const_freq |
| * arch_max_freq_scale = ---------------- * SCHED_CAPACITY_SCALEĀ² |
| * cpuinfo_max_freq |
| * |
| * We use a factor of 2 * SCHED_CAPACITY_SHIFT -> SCHED_CAPACITY_SCALEĀ² |
| * in order to ensure a good resolution for arch_max_freq_scale for |
| * very low arch timer frequencies (down to the KHz range which should |
| * be unlikely). |
| */ |
| ratio = (u64)arch_timer_get_rate() << (2 * SCHED_CAPACITY_SHIFT); |
| ratio = div64_u64(ratio, max_freq_hz); |
| if (!ratio) { |
| WARN_ONCE(1, "System timer frequency too low.\n"); |
| return -EINVAL; |
| } |
| |
| per_cpu(arch_max_freq_scale, cpu) = (unsigned long)ratio; |
| |
| return 0; |
| } |
| |
| static inline bool |
| enable_policy_freq_counters(int cpu, cpumask_var_t valid_cpus) |
| { |
| struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); |
| |
| if (!policy) { |
| pr_debug("CPU%d: No cpufreq policy found.\n", cpu); |
| return false; |
| } |
| |
| if (cpumask_subset(policy->related_cpus, valid_cpus)) |
| cpumask_or(amu_fie_cpus, policy->related_cpus, |
| amu_fie_cpus); |
| |
| cpufreq_cpu_put(policy); |
| |
| return true; |
| } |
| |
| static DEFINE_STATIC_KEY_FALSE(amu_fie_key); |
| #define amu_freq_invariant() static_branch_unlikely(&amu_fie_key) |
| |
| static int __init init_amu_fie(void) |
| { |
| cpumask_var_t valid_cpus; |
| bool have_policy = false; |
| int ret = 0; |
| int cpu; |
| |
| if (!zalloc_cpumask_var(&valid_cpus, GFP_KERNEL)) |
| return -ENOMEM; |
| |
| if (!zalloc_cpumask_var(&amu_fie_cpus, GFP_KERNEL)) { |
| ret = -ENOMEM; |
| goto free_valid_mask; |
| } |
| |
| for_each_present_cpu(cpu) { |
| if (validate_cpu_freq_invariance_counters(cpu)) |
| continue; |
| cpumask_set_cpu(cpu, valid_cpus); |
| have_policy |= enable_policy_freq_counters(cpu, valid_cpus); |
| } |
| |
| /* |
| * If we are not restricted by cpufreq policies, we only enable |
| * the use of the AMU feature for FIE if all CPUs support AMU. |
| * Otherwise, enable_policy_freq_counters has already enabled |
| * policy cpus. |
| */ |
| if (!have_policy && cpumask_equal(valid_cpus, cpu_present_mask)) |
| cpumask_or(amu_fie_cpus, amu_fie_cpus, valid_cpus); |
| |
| if (!cpumask_empty(amu_fie_cpus)) { |
| pr_info("CPUs[%*pbl]: counters will be used for FIE.", |
| cpumask_pr_args(amu_fie_cpus)); |
| static_branch_enable(&amu_fie_key); |
| } |
| |
| /* |
| * If the system is not fully invariant after AMU init, disable |
| * partial use of counters for frequency invariance. |
| */ |
| if (!topology_scale_freq_invariant()) |
| static_branch_disable(&amu_fie_key); |
| |
| free_valid_mask: |
| free_cpumask_var(valid_cpus); |
| |
| return ret; |
| } |
| late_initcall_sync(init_amu_fie); |
| |
| bool arch_freq_counters_available(const struct cpumask *cpus) |
| { |
| return amu_freq_invariant() && |
| cpumask_subset(cpus, amu_fie_cpus); |
| } |
| |
| void topology_scale_freq_tick(void) |
| { |
| u64 prev_core_cnt, prev_const_cnt; |
| u64 core_cnt, const_cnt, scale; |
| int cpu = smp_processor_id(); |
| |
| if (!amu_freq_invariant()) |
| return; |
| |
| if (!cpumask_test_cpu(cpu, amu_fie_cpus)) |
| return; |
| |
| const_cnt = read_sysreg_s(SYS_AMEVCNTR0_CONST_EL0); |
| core_cnt = read_sysreg_s(SYS_AMEVCNTR0_CORE_EL0); |
| prev_const_cnt = this_cpu_read(arch_const_cycles_prev); |
| prev_core_cnt = this_cpu_read(arch_core_cycles_prev); |
| |
| if (unlikely(core_cnt <= prev_core_cnt || |
| const_cnt <= prev_const_cnt)) |
| goto store_and_exit; |
| |
| /* |
| * /\core arch_max_freq_scale |
| * scale = ------- * -------------------- |
| * /\const SCHED_CAPACITY_SCALE |
| * |
| * See validate_cpu_freq_invariance_counters() for details on |
| * arch_max_freq_scale and the use of SCHED_CAPACITY_SHIFT. |
| */ |
| scale = core_cnt - prev_core_cnt; |
| scale *= this_cpu_read(arch_max_freq_scale); |
| scale = div64_u64(scale >> SCHED_CAPACITY_SHIFT, |
| const_cnt - prev_const_cnt); |
| |
| scale = min_t(unsigned long, scale, SCHED_CAPACITY_SCALE); |
| this_cpu_write(freq_scale, (unsigned long)scale); |
| |
| store_and_exit: |
| this_cpu_write(arch_core_cycles_prev, core_cnt); |
| this_cpu_write(arch_const_cycles_prev, const_cnt); |
| } |
| #endif /* CONFIG_ARM64_AMU_EXTN */ |