| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Copyright(C) 2015 Linaro Limited. All rights reserved. |
| * Author: Mathieu Poirier <mathieu.poirier@linaro.org> |
| */ |
| |
| #include <linux/coresight.h> |
| #include <linux/coresight-pmu.h> |
| #include <linux/cpumask.h> |
| #include <linux/device.h> |
| #include <linux/list.h> |
| #include <linux/mm.h> |
| #include <linux/init.h> |
| #include <linux/perf_event.h> |
| #include <linux/percpu-defs.h> |
| #include <linux/slab.h> |
| #include <linux/stringhash.h> |
| #include <linux/types.h> |
| #include <linux/workqueue.h> |
| |
| #include "coresight-etm-perf.h" |
| #include "coresight-priv.h" |
| |
| static struct pmu etm_pmu; |
| static bool etm_perf_up; |
| |
| /* |
| * An ETM context for a running event includes the perf aux handle |
| * and aux_data. For ETM, the aux_data (etm_event_data), consists of |
| * the trace path and the sink configuration. The event data is accessible |
| * via perf_get_aux(handle). However, a sink could "end" a perf output |
| * handle via the IRQ handler. And if the "sink" encounters a failure |
| * to "begin" another session (e.g due to lack of space in the buffer), |
| * the handle will be cleared. Thus, the event_data may not be accessible |
| * from the handle when we get to the etm_event_stop(), which is required |
| * for stopping the trace path. The event_data is guaranteed to stay alive |
| * until "free_aux()", which cannot happen as long as the event is active on |
| * the ETM. Thus the event_data for the session must be part of the ETM context |
| * to make sure we can disable the trace path. |
| */ |
| struct etm_ctxt { |
| struct perf_output_handle handle; |
| struct etm_event_data *event_data; |
| }; |
| |
| static DEFINE_PER_CPU(struct etm_ctxt, etm_ctxt); |
| static DEFINE_PER_CPU(struct coresight_device *, csdev_src); |
| |
| /* |
| * The PMU formats were orignally for ETMv3.5/PTM's ETMCR 'config'; |
| * now take them as general formats and apply on all ETMs. |
| */ |
| PMU_FORMAT_ATTR(cycacc, "config:" __stringify(ETM_OPT_CYCACC)); |
| /* contextid1 enables tracing CONTEXTIDR_EL1 for ETMv4 */ |
| PMU_FORMAT_ATTR(contextid1, "config:" __stringify(ETM_OPT_CTXTID)); |
| /* contextid2 enables tracing CONTEXTIDR_EL2 for ETMv4 */ |
| PMU_FORMAT_ATTR(contextid2, "config:" __stringify(ETM_OPT_CTXTID2)); |
| PMU_FORMAT_ATTR(timestamp, "config:" __stringify(ETM_OPT_TS)); |
| PMU_FORMAT_ATTR(retstack, "config:" __stringify(ETM_OPT_RETSTK)); |
| /* Sink ID - same for all ETMs */ |
| PMU_FORMAT_ATTR(sinkid, "config2:0-31"); |
| |
| /* |
| * contextid always traces the "PID". The PID is in CONTEXTIDR_EL1 |
| * when the kernel is running at EL1; when the kernel is at EL2, |
| * the PID is in CONTEXTIDR_EL2. |
| */ |
| static ssize_t format_attr_contextid_show(struct device *dev, |
| struct device_attribute *attr, |
| char *page) |
| { |
| int pid_fmt = ETM_OPT_CTXTID; |
| |
| #if IS_ENABLED(CONFIG_CORESIGHT_SOURCE_ETM4X) |
| pid_fmt = is_kernel_in_hyp_mode() ? ETM_OPT_CTXTID2 : ETM_OPT_CTXTID; |
| #endif |
| return sprintf(page, "config:%d\n", pid_fmt); |
| } |
| |
| struct device_attribute format_attr_contextid = |
| __ATTR(contextid, 0444, format_attr_contextid_show, NULL); |
| |
| static struct attribute *etm_config_formats_attr[] = { |
| &format_attr_cycacc.attr, |
| &format_attr_contextid.attr, |
| &format_attr_contextid1.attr, |
| &format_attr_contextid2.attr, |
| &format_attr_timestamp.attr, |
| &format_attr_retstack.attr, |
| &format_attr_sinkid.attr, |
| NULL, |
| }; |
| |
| static const struct attribute_group etm_pmu_format_group = { |
| .name = "format", |
| .attrs = etm_config_formats_attr, |
| }; |
| |
| static struct attribute *etm_config_sinks_attr[] = { |
| NULL, |
| }; |
| |
| static const struct attribute_group etm_pmu_sinks_group = { |
| .name = "sinks", |
| .attrs = etm_config_sinks_attr, |
| }; |
| |
| static const struct attribute_group *etm_pmu_attr_groups[] = { |
| &etm_pmu_format_group, |
| &etm_pmu_sinks_group, |
| NULL, |
| }; |
| |
| static inline struct list_head ** |
| etm_event_cpu_path_ptr(struct etm_event_data *data, int cpu) |
| { |
| return per_cpu_ptr(data->path, cpu); |
| } |
| |
| static inline struct list_head * |
| etm_event_cpu_path(struct etm_event_data *data, int cpu) |
| { |
| return *etm_event_cpu_path_ptr(data, cpu); |
| } |
| |
| static void etm_event_read(struct perf_event *event) {} |
| |
| static int etm_addr_filters_alloc(struct perf_event *event) |
| { |
| struct etm_filters *filters; |
| int node = event->cpu == -1 ? -1 : cpu_to_node(event->cpu); |
| |
| filters = kzalloc_node(sizeof(struct etm_filters), GFP_KERNEL, node); |
| if (!filters) |
| return -ENOMEM; |
| |
| if (event->parent) |
| memcpy(filters, event->parent->hw.addr_filters, |
| sizeof(*filters)); |
| |
| event->hw.addr_filters = filters; |
| |
| return 0; |
| } |
| |
| static void etm_event_destroy(struct perf_event *event) |
| { |
| kfree(event->hw.addr_filters); |
| event->hw.addr_filters = NULL; |
| } |
| |
| static int etm_event_init(struct perf_event *event) |
| { |
| int ret = 0; |
| |
| if (event->attr.type != etm_pmu.type) { |
| ret = -ENOENT; |
| goto out; |
| } |
| |
| ret = etm_addr_filters_alloc(event); |
| if (ret) |
| goto out; |
| |
| event->destroy = etm_event_destroy; |
| out: |
| return ret; |
| } |
| |
| static void free_sink_buffer(struct etm_event_data *event_data) |
| { |
| int cpu; |
| cpumask_t *mask = &event_data->mask; |
| struct coresight_device *sink; |
| |
| if (!event_data->snk_config) |
| return; |
| |
| if (WARN_ON(cpumask_empty(mask))) |
| return; |
| |
| cpu = cpumask_first(mask); |
| sink = coresight_get_sink(etm_event_cpu_path(event_data, cpu)); |
| sink_ops(sink)->free_buffer(event_data->snk_config); |
| } |
| |
| static void free_event_data(struct work_struct *work) |
| { |
| int cpu; |
| cpumask_t *mask; |
| struct etm_event_data *event_data; |
| |
| event_data = container_of(work, struct etm_event_data, work); |
| mask = &event_data->mask; |
| |
| /* Free the sink buffers, if there are any */ |
| free_sink_buffer(event_data); |
| |
| for_each_cpu(cpu, mask) { |
| struct list_head **ppath; |
| |
| ppath = etm_event_cpu_path_ptr(event_data, cpu); |
| if (!(IS_ERR_OR_NULL(*ppath))) |
| coresight_release_path(*ppath); |
| *ppath = NULL; |
| } |
| |
| free_percpu(event_data->path); |
| kfree(event_data); |
| } |
| |
| static void *alloc_event_data(int cpu) |
| { |
| cpumask_t *mask; |
| struct etm_event_data *event_data; |
| |
| /* First get memory for the session's data */ |
| event_data = kzalloc(sizeof(struct etm_event_data), GFP_KERNEL); |
| if (!event_data) |
| return NULL; |
| |
| |
| mask = &event_data->mask; |
| if (cpu != -1) |
| cpumask_set_cpu(cpu, mask); |
| else |
| cpumask_copy(mask, cpu_present_mask); |
| |
| /* |
| * Each CPU has a single path between source and destination. As such |
| * allocate an array using CPU numbers as indexes. That way a path |
| * for any CPU can easily be accessed at any given time. We proceed |
| * the same way for sessions involving a single CPU. The cost of |
| * unused memory when dealing with single CPU trace scenarios is small |
| * compared to the cost of searching through an optimized array. |
| */ |
| event_data->path = alloc_percpu(struct list_head *); |
| |
| if (!event_data->path) { |
| kfree(event_data); |
| return NULL; |
| } |
| |
| return event_data; |
| } |
| |
| static void etm_free_aux(void *data) |
| { |
| struct etm_event_data *event_data = data; |
| |
| schedule_work(&event_data->work); |
| } |
| |
| /* |
| * Check if two given sinks are compatible with each other, |
| * so that they can use the same sink buffers, when an event |
| * moves around. |
| */ |
| static bool sinks_compatible(struct coresight_device *a, |
| struct coresight_device *b) |
| { |
| if (!a || !b) |
| return false; |
| /* |
| * If the sinks are of the same subtype and driven |
| * by the same driver, we can use the same buffer |
| * on these sinks. |
| */ |
| return (a->subtype.sink_subtype == b->subtype.sink_subtype) && |
| (sink_ops(a) == sink_ops(b)); |
| } |
| |
| static void *etm_setup_aux(struct perf_event *event, void **pages, |
| int nr_pages, bool overwrite) |
| { |
| u32 id; |
| int cpu = event->cpu; |
| cpumask_t *mask; |
| struct coresight_device *sink = NULL; |
| struct coresight_device *user_sink = NULL, *last_sink = NULL; |
| struct etm_event_data *event_data = NULL; |
| |
| event_data = alloc_event_data(cpu); |
| if (!event_data) |
| return NULL; |
| INIT_WORK(&event_data->work, free_event_data); |
| |
| /* First get the selected sink from user space. */ |
| if (event->attr.config2) { |
| id = (u32)event->attr.config2; |
| sink = user_sink = coresight_get_sink_by_id(id); |
| } |
| |
| mask = &event_data->mask; |
| |
| /* |
| * Setup the path for each CPU in a trace session. We try to build |
| * trace path for each CPU in the mask. If we don't find an ETM |
| * for the CPU or fail to build a path, we clear the CPU from the |
| * mask and continue with the rest. If ever we try to trace on those |
| * CPUs, we can handle it and fail the session. |
| */ |
| for_each_cpu(cpu, mask) { |
| struct list_head *path; |
| struct coresight_device *csdev; |
| |
| csdev = per_cpu(csdev_src, cpu); |
| /* |
| * If there is no ETM associated with this CPU clear it from |
| * the mask and continue with the rest. If ever we try to trace |
| * on this CPU, we handle it accordingly. |
| */ |
| if (!csdev) { |
| cpumask_clear_cpu(cpu, mask); |
| continue; |
| } |
| |
| /* |
| * No sink provided - look for a default sink for all the ETMs, |
| * where this event can be scheduled. |
| * We allocate the sink specific buffers only once for this |
| * event. If the ETMs have different default sink devices, we |
| * can only use a single "type" of sink as the event can carry |
| * only one sink specific buffer. Thus we have to make sure |
| * that the sinks are of the same type and driven by the same |
| * driver, as the one we allocate the buffer for. As such |
| * we choose the first sink and check if the remaining ETMs |
| * have a compatible default sink. We don't trace on a CPU |
| * if the sink is not compatible. |
| */ |
| if (!user_sink) { |
| /* Find the default sink for this ETM */ |
| sink = coresight_find_default_sink(csdev); |
| if (!sink) { |
| cpumask_clear_cpu(cpu, mask); |
| continue; |
| } |
| |
| /* Check if this sink compatible with the last sink */ |
| if (last_sink && !sinks_compatible(last_sink, sink)) { |
| cpumask_clear_cpu(cpu, mask); |
| continue; |
| } |
| last_sink = sink; |
| } |
| |
| /* |
| * Building a path doesn't enable it, it simply builds a |
| * list of devices from source to sink that can be |
| * referenced later when the path is actually needed. |
| */ |
| path = coresight_build_path(csdev, sink); |
| if (IS_ERR(path)) { |
| cpumask_clear_cpu(cpu, mask); |
| continue; |
| } |
| |
| *etm_event_cpu_path_ptr(event_data, cpu) = path; |
| } |
| |
| /* no sink found for any CPU - cannot trace */ |
| if (!sink) |
| goto err; |
| |
| /* If we don't have any CPUs ready for tracing, abort */ |
| cpu = cpumask_first(mask); |
| if (cpu >= nr_cpu_ids) |
| goto err; |
| |
| if (!sink_ops(sink)->alloc_buffer || !sink_ops(sink)->free_buffer) |
| goto err; |
| |
| /* |
| * Allocate the sink buffer for this session. All the sinks |
| * where this event can be scheduled are ensured to be of the |
| * same type. Thus the same sink configuration is used by the |
| * sinks. |
| */ |
| event_data->snk_config = |
| sink_ops(sink)->alloc_buffer(sink, event, pages, |
| nr_pages, overwrite); |
| if (!event_data->snk_config) |
| goto err; |
| |
| out: |
| return event_data; |
| |
| err: |
| etm_free_aux(event_data); |
| event_data = NULL; |
| goto out; |
| } |
| |
| static void etm_event_start(struct perf_event *event, int flags) |
| { |
| int cpu = smp_processor_id(); |
| struct etm_event_data *event_data; |
| struct etm_ctxt *ctxt = this_cpu_ptr(&etm_ctxt); |
| struct perf_output_handle *handle = &ctxt->handle; |
| struct coresight_device *sink, *csdev = per_cpu(csdev_src, cpu); |
| struct list_head *path; |
| |
| if (!csdev) |
| goto fail; |
| |
| /* Have we messed up our tracking ? */ |
| if (WARN_ON(ctxt->event_data)) |
| goto fail; |
| |
| /* |
| * Deal with the ring buffer API and get a handle on the |
| * session's information. |
| */ |
| event_data = perf_aux_output_begin(handle, event); |
| if (!event_data) |
| goto fail; |
| |
| /* |
| * Check if this ETM is allowed to trace, as decided |
| * at etm_setup_aux(). This could be due to an unreachable |
| * sink from this ETM. We can't do much in this case if |
| * the sink was specified or hinted to the driver. For |
| * now, simply don't record anything on this ETM. |
| */ |
| if (!cpumask_test_cpu(cpu, &event_data->mask)) |
| goto fail_end_stop; |
| |
| path = etm_event_cpu_path(event_data, cpu); |
| /* We need a sink, no need to continue without one */ |
| sink = coresight_get_sink(path); |
| if (WARN_ON_ONCE(!sink)) |
| goto fail_end_stop; |
| |
| /* Nothing will happen without a path */ |
| if (coresight_enable_path(path, CS_MODE_PERF, handle)) |
| goto fail_end_stop; |
| |
| /* Tell the perf core the event is alive */ |
| event->hw.state = 0; |
| |
| /* Finally enable the tracer */ |
| if (source_ops(csdev)->enable(csdev, event, CS_MODE_PERF)) |
| goto fail_disable_path; |
| |
| /* Save the event_data for this ETM */ |
| ctxt->event_data = event_data; |
| out: |
| return; |
| |
| fail_disable_path: |
| coresight_disable_path(path); |
| fail_end_stop: |
| perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED); |
| perf_aux_output_end(handle, 0); |
| fail: |
| event->hw.state = PERF_HES_STOPPED; |
| goto out; |
| } |
| |
| static void etm_event_stop(struct perf_event *event, int mode) |
| { |
| int cpu = smp_processor_id(); |
| unsigned long size; |
| struct coresight_device *sink, *csdev = per_cpu(csdev_src, cpu); |
| struct etm_ctxt *ctxt = this_cpu_ptr(&etm_ctxt); |
| struct perf_output_handle *handle = &ctxt->handle; |
| struct etm_event_data *event_data; |
| struct list_head *path; |
| |
| /* |
| * If we still have access to the event_data via handle, |
| * confirm that we haven't messed up the tracking. |
| */ |
| if (handle->event && |
| WARN_ON(perf_get_aux(handle) != ctxt->event_data)) |
| return; |
| |
| event_data = ctxt->event_data; |
| /* Clear the event_data as this ETM is stopping the trace. */ |
| ctxt->event_data = NULL; |
| |
| if (event->hw.state == PERF_HES_STOPPED) |
| return; |
| |
| /* We must have a valid event_data for a running event */ |
| if (WARN_ON(!event_data)) |
| return; |
| |
| if (!csdev) |
| return; |
| |
| path = etm_event_cpu_path(event_data, cpu); |
| if (!path) |
| return; |
| |
| sink = coresight_get_sink(path); |
| if (!sink) |
| return; |
| |
| /* stop tracer */ |
| source_ops(csdev)->disable(csdev, event); |
| |
| /* tell the core */ |
| event->hw.state = PERF_HES_STOPPED; |
| |
| /* |
| * If the handle is not bound to an event anymore |
| * (e.g, the sink driver was unable to restart the |
| * handle due to lack of buffer space), we don't |
| * have to do anything here. |
| */ |
| if (handle->event && (mode & PERF_EF_UPDATE)) { |
| if (WARN_ON_ONCE(handle->event != event)) |
| return; |
| |
| /* update trace information */ |
| if (!sink_ops(sink)->update_buffer) |
| return; |
| |
| size = sink_ops(sink)->update_buffer(sink, handle, |
| event_data->snk_config); |
| perf_aux_output_end(handle, size); |
| } |
| |
| /* Disabling the path make its elements available to other sessions */ |
| coresight_disable_path(path); |
| } |
| |
| static int etm_event_add(struct perf_event *event, int mode) |
| { |
| int ret = 0; |
| struct hw_perf_event *hwc = &event->hw; |
| |
| if (mode & PERF_EF_START) { |
| etm_event_start(event, 0); |
| if (hwc->state & PERF_HES_STOPPED) |
| ret = -EINVAL; |
| } else { |
| hwc->state = PERF_HES_STOPPED; |
| } |
| |
| return ret; |
| } |
| |
| static void etm_event_del(struct perf_event *event, int mode) |
| { |
| etm_event_stop(event, PERF_EF_UPDATE); |
| } |
| |
| static int etm_addr_filters_validate(struct list_head *filters) |
| { |
| bool range = false, address = false; |
| int index = 0; |
| struct perf_addr_filter *filter; |
| |
| list_for_each_entry(filter, filters, entry) { |
| /* |
| * No need to go further if there's no more |
| * room for filters. |
| */ |
| if (++index > ETM_ADDR_CMP_MAX) |
| return -EOPNOTSUPP; |
| |
| /* filter::size==0 means single address trigger */ |
| if (filter->size) { |
| /* |
| * The existing code relies on START/STOP filters |
| * being address filters. |
| */ |
| if (filter->action == PERF_ADDR_FILTER_ACTION_START || |
| filter->action == PERF_ADDR_FILTER_ACTION_STOP) |
| return -EOPNOTSUPP; |
| |
| range = true; |
| } else |
| address = true; |
| |
| /* |
| * At this time we don't allow range and start/stop filtering |
| * to cohabitate, they have to be mutually exclusive. |
| */ |
| if (range && address) |
| return -EOPNOTSUPP; |
| } |
| |
| return 0; |
| } |
| |
| static void etm_addr_filters_sync(struct perf_event *event) |
| { |
| struct perf_addr_filters_head *head = perf_event_addr_filters(event); |
| unsigned long start, stop; |
| struct perf_addr_filter_range *fr = event->addr_filter_ranges; |
| struct etm_filters *filters = event->hw.addr_filters; |
| struct etm_filter *etm_filter; |
| struct perf_addr_filter *filter; |
| int i = 0; |
| |
| list_for_each_entry(filter, &head->list, entry) { |
| start = fr[i].start; |
| stop = start + fr[i].size; |
| etm_filter = &filters->etm_filter[i]; |
| |
| switch (filter->action) { |
| case PERF_ADDR_FILTER_ACTION_FILTER: |
| etm_filter->start_addr = start; |
| etm_filter->stop_addr = stop; |
| etm_filter->type = ETM_ADDR_TYPE_RANGE; |
| break; |
| case PERF_ADDR_FILTER_ACTION_START: |
| etm_filter->start_addr = start; |
| etm_filter->type = ETM_ADDR_TYPE_START; |
| break; |
| case PERF_ADDR_FILTER_ACTION_STOP: |
| etm_filter->stop_addr = stop; |
| etm_filter->type = ETM_ADDR_TYPE_STOP; |
| break; |
| } |
| i++; |
| } |
| |
| filters->nr_filters = i; |
| } |
| |
| int etm_perf_symlink(struct coresight_device *csdev, bool link) |
| { |
| char entry[sizeof("cpu9999999")]; |
| int ret = 0, cpu = source_ops(csdev)->cpu_id(csdev); |
| struct device *pmu_dev = etm_pmu.dev; |
| struct device *cs_dev = &csdev->dev; |
| |
| sprintf(entry, "cpu%d", cpu); |
| |
| if (!etm_perf_up) |
| return -EPROBE_DEFER; |
| |
| if (link) { |
| ret = sysfs_create_link(&pmu_dev->kobj, &cs_dev->kobj, entry); |
| if (ret) |
| return ret; |
| per_cpu(csdev_src, cpu) = csdev; |
| } else { |
| sysfs_remove_link(&pmu_dev->kobj, entry); |
| per_cpu(csdev_src, cpu) = NULL; |
| } |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(etm_perf_symlink); |
| |
| static ssize_t etm_perf_sink_name_show(struct device *dev, |
| struct device_attribute *dattr, |
| char *buf) |
| { |
| struct dev_ext_attribute *ea; |
| |
| ea = container_of(dattr, struct dev_ext_attribute, attr); |
| return scnprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)(ea->var)); |
| } |
| |
| int etm_perf_add_symlink_sink(struct coresight_device *csdev) |
| { |
| int ret; |
| unsigned long hash; |
| const char *name; |
| struct device *pmu_dev = etm_pmu.dev; |
| struct device *dev = &csdev->dev; |
| struct dev_ext_attribute *ea; |
| |
| if (csdev->type != CORESIGHT_DEV_TYPE_SINK && |
| csdev->type != CORESIGHT_DEV_TYPE_LINKSINK) |
| return -EINVAL; |
| |
| if (csdev->ea != NULL) |
| return -EINVAL; |
| |
| if (!etm_perf_up) |
| return -EPROBE_DEFER; |
| |
| ea = devm_kzalloc(dev, sizeof(*ea), GFP_KERNEL); |
| if (!ea) |
| return -ENOMEM; |
| |
| name = dev_name(dev); |
| /* See function coresight_get_sink_by_id() to know where this is used */ |
| hash = hashlen_hash(hashlen_string(NULL, name)); |
| |
| sysfs_attr_init(&ea->attr.attr); |
| ea->attr.attr.name = devm_kstrdup(dev, name, GFP_KERNEL); |
| if (!ea->attr.attr.name) |
| return -ENOMEM; |
| |
| ea->attr.attr.mode = 0444; |
| ea->attr.show = etm_perf_sink_name_show; |
| ea->var = (unsigned long *)hash; |
| |
| ret = sysfs_add_file_to_group(&pmu_dev->kobj, |
| &ea->attr.attr, "sinks"); |
| |
| if (!ret) |
| csdev->ea = ea; |
| |
| return ret; |
| } |
| |
| void etm_perf_del_symlink_sink(struct coresight_device *csdev) |
| { |
| struct device *pmu_dev = etm_pmu.dev; |
| struct dev_ext_attribute *ea = csdev->ea; |
| |
| if (csdev->type != CORESIGHT_DEV_TYPE_SINK && |
| csdev->type != CORESIGHT_DEV_TYPE_LINKSINK) |
| return; |
| |
| if (!ea) |
| return; |
| |
| sysfs_remove_file_from_group(&pmu_dev->kobj, |
| &ea->attr.attr, "sinks"); |
| csdev->ea = NULL; |
| } |
| |
| int __init etm_perf_init(void) |
| { |
| int ret; |
| |
| etm_pmu.capabilities = (PERF_PMU_CAP_EXCLUSIVE | |
| PERF_PMU_CAP_ITRACE); |
| |
| etm_pmu.attr_groups = etm_pmu_attr_groups; |
| etm_pmu.task_ctx_nr = perf_sw_context; |
| etm_pmu.read = etm_event_read; |
| etm_pmu.event_init = etm_event_init; |
| etm_pmu.setup_aux = etm_setup_aux; |
| etm_pmu.free_aux = etm_free_aux; |
| etm_pmu.start = etm_event_start; |
| etm_pmu.stop = etm_event_stop; |
| etm_pmu.add = etm_event_add; |
| etm_pmu.del = etm_event_del; |
| etm_pmu.addr_filters_sync = etm_addr_filters_sync; |
| etm_pmu.addr_filters_validate = etm_addr_filters_validate; |
| etm_pmu.nr_addr_filters = ETM_ADDR_CMP_MAX; |
| |
| ret = perf_pmu_register(&etm_pmu, CORESIGHT_ETM_PMU_NAME, -1); |
| if (ret == 0) |
| etm_perf_up = true; |
| |
| return ret; |
| } |
| |
| void __exit etm_perf_exit(void) |
| { |
| perf_pmu_unregister(&etm_pmu); |
| } |