| // SPDX-License-Identifier: GPL-2.0-or-later |
| /* |
| * Copyright (c) 2016 Linaro Ltd. |
| * Copyright (c) 2016 Hisilicon Limited. |
| */ |
| |
| #include "hisi_sas.h" |
| #define DRV_NAME "hisi_sas_v2_hw" |
| |
| /* global registers need init*/ |
| #define DLVRY_QUEUE_ENABLE 0x0 |
| #define IOST_BASE_ADDR_LO 0x8 |
| #define IOST_BASE_ADDR_HI 0xc |
| #define ITCT_BASE_ADDR_LO 0x10 |
| #define ITCT_BASE_ADDR_HI 0x14 |
| #define IO_BROKEN_MSG_ADDR_LO 0x18 |
| #define IO_BROKEN_MSG_ADDR_HI 0x1c |
| #define PHY_CONTEXT 0x20 |
| #define PHY_STATE 0x24 |
| #define PHY_PORT_NUM_MA 0x28 |
| #define PORT_STATE 0x2c |
| #define PORT_STATE_PHY8_PORT_NUM_OFF 16 |
| #define PORT_STATE_PHY8_PORT_NUM_MSK (0xf << PORT_STATE_PHY8_PORT_NUM_OFF) |
| #define PORT_STATE_PHY8_CONN_RATE_OFF 20 |
| #define PORT_STATE_PHY8_CONN_RATE_MSK (0xf << PORT_STATE_PHY8_CONN_RATE_OFF) |
| #define PHY_CONN_RATE 0x30 |
| #define HGC_TRANS_TASK_CNT_LIMIT 0x38 |
| #define AXI_AHB_CLK_CFG 0x3c |
| #define ITCT_CLR 0x44 |
| #define ITCT_CLR_EN_OFF 16 |
| #define ITCT_CLR_EN_MSK (0x1 << ITCT_CLR_EN_OFF) |
| #define ITCT_DEV_OFF 0 |
| #define ITCT_DEV_MSK (0x7ff << ITCT_DEV_OFF) |
| #define AXI_USER1 0x48 |
| #define AXI_USER2 0x4c |
| #define IO_SATA_BROKEN_MSG_ADDR_LO 0x58 |
| #define IO_SATA_BROKEN_MSG_ADDR_HI 0x5c |
| #define SATA_INITI_D2H_STORE_ADDR_LO 0x60 |
| #define SATA_INITI_D2H_STORE_ADDR_HI 0x64 |
| #define HGC_SAS_TX_OPEN_FAIL_RETRY_CTRL 0x84 |
| #define HGC_SAS_TXFAIL_RETRY_CTRL 0x88 |
| #define HGC_GET_ITV_TIME 0x90 |
| #define DEVICE_MSG_WORK_MODE 0x94 |
| #define OPENA_WT_CONTI_TIME 0x9c |
| #define I_T_NEXUS_LOSS_TIME 0xa0 |
| #define MAX_CON_TIME_LIMIT_TIME 0xa4 |
| #define BUS_INACTIVE_LIMIT_TIME 0xa8 |
| #define REJECT_TO_OPEN_LIMIT_TIME 0xac |
| #define CFG_AGING_TIME 0xbc |
| #define HGC_DFX_CFG2 0xc0 |
| #define HGC_IOMB_PROC1_STATUS 0x104 |
| #define CFG_1US_TIMER_TRSH 0xcc |
| #define HGC_LM_DFX_STATUS2 0x128 |
| #define HGC_LM_DFX_STATUS2_IOSTLIST_OFF 0 |
| #define HGC_LM_DFX_STATUS2_IOSTLIST_MSK (0xfff << \ |
| HGC_LM_DFX_STATUS2_IOSTLIST_OFF) |
| #define HGC_LM_DFX_STATUS2_ITCTLIST_OFF 12 |
| #define HGC_LM_DFX_STATUS2_ITCTLIST_MSK (0x7ff << \ |
| HGC_LM_DFX_STATUS2_ITCTLIST_OFF) |
| #define HGC_CQE_ECC_ADDR 0x13c |
| #define HGC_CQE_ECC_1B_ADDR_OFF 0 |
| #define HGC_CQE_ECC_1B_ADDR_MSK (0x3f << HGC_CQE_ECC_1B_ADDR_OFF) |
| #define HGC_CQE_ECC_MB_ADDR_OFF 8 |
| #define HGC_CQE_ECC_MB_ADDR_MSK (0x3f << HGC_CQE_ECC_MB_ADDR_OFF) |
| #define HGC_IOST_ECC_ADDR 0x140 |
| #define HGC_IOST_ECC_1B_ADDR_OFF 0 |
| #define HGC_IOST_ECC_1B_ADDR_MSK (0x3ff << HGC_IOST_ECC_1B_ADDR_OFF) |
| #define HGC_IOST_ECC_MB_ADDR_OFF 16 |
| #define HGC_IOST_ECC_MB_ADDR_MSK (0x3ff << HGC_IOST_ECC_MB_ADDR_OFF) |
| #define HGC_DQE_ECC_ADDR 0x144 |
| #define HGC_DQE_ECC_1B_ADDR_OFF 0 |
| #define HGC_DQE_ECC_1B_ADDR_MSK (0xfff << HGC_DQE_ECC_1B_ADDR_OFF) |
| #define HGC_DQE_ECC_MB_ADDR_OFF 16 |
| #define HGC_DQE_ECC_MB_ADDR_MSK (0xfff << HGC_DQE_ECC_MB_ADDR_OFF) |
| #define HGC_INVLD_DQE_INFO 0x148 |
| #define HGC_INVLD_DQE_INFO_FB_CH0_OFF 9 |
| #define HGC_INVLD_DQE_INFO_FB_CH0_MSK (0x1 << HGC_INVLD_DQE_INFO_FB_CH0_OFF) |
| #define HGC_INVLD_DQE_INFO_FB_CH3_OFF 18 |
| #define HGC_ITCT_ECC_ADDR 0x150 |
| #define HGC_ITCT_ECC_1B_ADDR_OFF 0 |
| #define HGC_ITCT_ECC_1B_ADDR_MSK (0x3ff << \ |
| HGC_ITCT_ECC_1B_ADDR_OFF) |
| #define HGC_ITCT_ECC_MB_ADDR_OFF 16 |
| #define HGC_ITCT_ECC_MB_ADDR_MSK (0x3ff << \ |
| HGC_ITCT_ECC_MB_ADDR_OFF) |
| #define HGC_AXI_FIFO_ERR_INFO 0x154 |
| #define AXI_ERR_INFO_OFF 0 |
| #define AXI_ERR_INFO_MSK (0xff << AXI_ERR_INFO_OFF) |
| #define FIFO_ERR_INFO_OFF 8 |
| #define FIFO_ERR_INFO_MSK (0xff << FIFO_ERR_INFO_OFF) |
| #define INT_COAL_EN 0x19c |
| #define OQ_INT_COAL_TIME 0x1a0 |
| #define OQ_INT_COAL_CNT 0x1a4 |
| #define ENT_INT_COAL_TIME 0x1a8 |
| #define ENT_INT_COAL_CNT 0x1ac |
| #define OQ_INT_SRC 0x1b0 |
| #define OQ_INT_SRC_MSK 0x1b4 |
| #define ENT_INT_SRC1 0x1b8 |
| #define ENT_INT_SRC1_D2H_FIS_CH0_OFF 0 |
| #define ENT_INT_SRC1_D2H_FIS_CH0_MSK (0x1 << ENT_INT_SRC1_D2H_FIS_CH0_OFF) |
| #define ENT_INT_SRC1_D2H_FIS_CH1_OFF 8 |
| #define ENT_INT_SRC1_D2H_FIS_CH1_MSK (0x1 << ENT_INT_SRC1_D2H_FIS_CH1_OFF) |
| #define ENT_INT_SRC2 0x1bc |
| #define ENT_INT_SRC3 0x1c0 |
| #define ENT_INT_SRC3_WP_DEPTH_OFF 8 |
| #define ENT_INT_SRC3_IPTT_SLOT_NOMATCH_OFF 9 |
| #define ENT_INT_SRC3_RP_DEPTH_OFF 10 |
| #define ENT_INT_SRC3_AXI_OFF 11 |
| #define ENT_INT_SRC3_FIFO_OFF 12 |
| #define ENT_INT_SRC3_LM_OFF 14 |
| #define ENT_INT_SRC3_ITC_INT_OFF 15 |
| #define ENT_INT_SRC3_ITC_INT_MSK (0x1 << ENT_INT_SRC3_ITC_INT_OFF) |
| #define ENT_INT_SRC3_ABT_OFF 16 |
| #define ENT_INT_SRC_MSK1 0x1c4 |
| #define ENT_INT_SRC_MSK2 0x1c8 |
| #define ENT_INT_SRC_MSK3 0x1cc |
| #define ENT_INT_SRC_MSK3_ENT95_MSK_OFF 31 |
| #define ENT_INT_SRC_MSK3_ENT95_MSK_MSK (0x1 << ENT_INT_SRC_MSK3_ENT95_MSK_OFF) |
| #define SAS_ECC_INTR 0x1e8 |
| #define SAS_ECC_INTR_DQE_ECC_1B_OFF 0 |
| #define SAS_ECC_INTR_DQE_ECC_MB_OFF 1 |
| #define SAS_ECC_INTR_IOST_ECC_1B_OFF 2 |
| #define SAS_ECC_INTR_IOST_ECC_MB_OFF 3 |
| #define SAS_ECC_INTR_ITCT_ECC_MB_OFF 4 |
| #define SAS_ECC_INTR_ITCT_ECC_1B_OFF 5 |
| #define SAS_ECC_INTR_IOSTLIST_ECC_MB_OFF 6 |
| #define SAS_ECC_INTR_IOSTLIST_ECC_1B_OFF 7 |
| #define SAS_ECC_INTR_ITCTLIST_ECC_1B_OFF 8 |
| #define SAS_ECC_INTR_ITCTLIST_ECC_MB_OFF 9 |
| #define SAS_ECC_INTR_CQE_ECC_1B_OFF 10 |
| #define SAS_ECC_INTR_CQE_ECC_MB_OFF 11 |
| #define SAS_ECC_INTR_NCQ_MEM0_ECC_MB_OFF 12 |
| #define SAS_ECC_INTR_NCQ_MEM0_ECC_1B_OFF 13 |
| #define SAS_ECC_INTR_NCQ_MEM1_ECC_MB_OFF 14 |
| #define SAS_ECC_INTR_NCQ_MEM1_ECC_1B_OFF 15 |
| #define SAS_ECC_INTR_NCQ_MEM2_ECC_MB_OFF 16 |
| #define SAS_ECC_INTR_NCQ_MEM2_ECC_1B_OFF 17 |
| #define SAS_ECC_INTR_NCQ_MEM3_ECC_MB_OFF 18 |
| #define SAS_ECC_INTR_NCQ_MEM3_ECC_1B_OFF 19 |
| #define SAS_ECC_INTR_MSK 0x1ec |
| #define HGC_ERR_STAT_EN 0x238 |
| #define CQE_SEND_CNT 0x248 |
| #define DLVRY_Q_0_BASE_ADDR_LO 0x260 |
| #define DLVRY_Q_0_BASE_ADDR_HI 0x264 |
| #define DLVRY_Q_0_DEPTH 0x268 |
| #define DLVRY_Q_0_WR_PTR 0x26c |
| #define DLVRY_Q_0_RD_PTR 0x270 |
| #define HYPER_STREAM_ID_EN_CFG 0xc80 |
| #define OQ0_INT_SRC_MSK 0xc90 |
| #define COMPL_Q_0_BASE_ADDR_LO 0x4e0 |
| #define COMPL_Q_0_BASE_ADDR_HI 0x4e4 |
| #define COMPL_Q_0_DEPTH 0x4e8 |
| #define COMPL_Q_0_WR_PTR 0x4ec |
| #define COMPL_Q_0_RD_PTR 0x4f0 |
| #define HGC_RXM_DFX_STATUS14 0xae8 |
| #define HGC_RXM_DFX_STATUS14_MEM0_OFF 0 |
| #define HGC_RXM_DFX_STATUS14_MEM0_MSK (0x1ff << \ |
| HGC_RXM_DFX_STATUS14_MEM0_OFF) |
| #define HGC_RXM_DFX_STATUS14_MEM1_OFF 9 |
| #define HGC_RXM_DFX_STATUS14_MEM1_MSK (0x1ff << \ |
| HGC_RXM_DFX_STATUS14_MEM1_OFF) |
| #define HGC_RXM_DFX_STATUS14_MEM2_OFF 18 |
| #define HGC_RXM_DFX_STATUS14_MEM2_MSK (0x1ff << \ |
| HGC_RXM_DFX_STATUS14_MEM2_OFF) |
| #define HGC_RXM_DFX_STATUS15 0xaec |
| #define HGC_RXM_DFX_STATUS15_MEM3_OFF 0 |
| #define HGC_RXM_DFX_STATUS15_MEM3_MSK (0x1ff << \ |
| HGC_RXM_DFX_STATUS15_MEM3_OFF) |
| /* phy registers need init */ |
| #define PORT_BASE (0x2000) |
| |
| #define PHY_CFG (PORT_BASE + 0x0) |
| #define HARD_PHY_LINKRATE (PORT_BASE + 0x4) |
| #define PHY_CFG_ENA_OFF 0 |
| #define PHY_CFG_ENA_MSK (0x1 << PHY_CFG_ENA_OFF) |
| #define PHY_CFG_DC_OPT_OFF 2 |
| #define PHY_CFG_DC_OPT_MSK (0x1 << PHY_CFG_DC_OPT_OFF) |
| #define PROG_PHY_LINK_RATE (PORT_BASE + 0x8) |
| #define PROG_PHY_LINK_RATE_MAX_OFF 0 |
| #define PROG_PHY_LINK_RATE_MAX_MSK (0xff << PROG_PHY_LINK_RATE_MAX_OFF) |
| #define PHY_CTRL (PORT_BASE + 0x14) |
| #define PHY_CTRL_RESET_OFF 0 |
| #define PHY_CTRL_RESET_MSK (0x1 << PHY_CTRL_RESET_OFF) |
| #define SAS_PHY_CTRL (PORT_BASE + 0x20) |
| #define SL_CFG (PORT_BASE + 0x84) |
| #define PHY_PCN (PORT_BASE + 0x44) |
| #define SL_TOUT_CFG (PORT_BASE + 0x8c) |
| #define SL_CONTROL (PORT_BASE + 0x94) |
| #define SL_CONTROL_NOTIFY_EN_OFF 0 |
| #define SL_CONTROL_NOTIFY_EN_MSK (0x1 << SL_CONTROL_NOTIFY_EN_OFF) |
| #define SL_CONTROL_CTA_OFF 17 |
| #define SL_CONTROL_CTA_MSK (0x1 << SL_CONTROL_CTA_OFF) |
| #define RX_PRIMS_STATUS (PORT_BASE + 0x98) |
| #define RX_BCAST_CHG_OFF 1 |
| #define RX_BCAST_CHG_MSK (0x1 << RX_BCAST_CHG_OFF) |
| #define TX_ID_DWORD0 (PORT_BASE + 0x9c) |
| #define TX_ID_DWORD1 (PORT_BASE + 0xa0) |
| #define TX_ID_DWORD2 (PORT_BASE + 0xa4) |
| #define TX_ID_DWORD3 (PORT_BASE + 0xa8) |
| #define TX_ID_DWORD4 (PORT_BASE + 0xaC) |
| #define TX_ID_DWORD5 (PORT_BASE + 0xb0) |
| #define TX_ID_DWORD6 (PORT_BASE + 0xb4) |
| #define TXID_AUTO (PORT_BASE + 0xb8) |
| #define TXID_AUTO_CT3_OFF 1 |
| #define TXID_AUTO_CT3_MSK (0x1 << TXID_AUTO_CT3_OFF) |
| #define TXID_AUTO_CTB_OFF 11 |
| #define TXID_AUTO_CTB_MSK (0x1 << TXID_AUTO_CTB_OFF) |
| #define TX_HARDRST_OFF 2 |
| #define TX_HARDRST_MSK (0x1 << TX_HARDRST_OFF) |
| #define RX_IDAF_DWORD0 (PORT_BASE + 0xc4) |
| #define RX_IDAF_DWORD1 (PORT_BASE + 0xc8) |
| #define RX_IDAF_DWORD2 (PORT_BASE + 0xcc) |
| #define RX_IDAF_DWORD3 (PORT_BASE + 0xd0) |
| #define RX_IDAF_DWORD4 (PORT_BASE + 0xd4) |
| #define RX_IDAF_DWORD5 (PORT_BASE + 0xd8) |
| #define RX_IDAF_DWORD6 (PORT_BASE + 0xdc) |
| #define RXOP_CHECK_CFG_H (PORT_BASE + 0xfc) |
| #define CON_CONTROL (PORT_BASE + 0x118) |
| #define CON_CONTROL_CFG_OPEN_ACC_STP_OFF 0 |
| #define CON_CONTROL_CFG_OPEN_ACC_STP_MSK \ |
| (0x01 << CON_CONTROL_CFG_OPEN_ACC_STP_OFF) |
| #define DONE_RECEIVED_TIME (PORT_BASE + 0x11c) |
| #define CHL_INT0 (PORT_BASE + 0x1b4) |
| #define CHL_INT0_HOTPLUG_TOUT_OFF 0 |
| #define CHL_INT0_HOTPLUG_TOUT_MSK (0x1 << CHL_INT0_HOTPLUG_TOUT_OFF) |
| #define CHL_INT0_SL_RX_BCST_ACK_OFF 1 |
| #define CHL_INT0_SL_RX_BCST_ACK_MSK (0x1 << CHL_INT0_SL_RX_BCST_ACK_OFF) |
| #define CHL_INT0_SL_PHY_ENABLE_OFF 2 |
| #define CHL_INT0_SL_PHY_ENABLE_MSK (0x1 << CHL_INT0_SL_PHY_ENABLE_OFF) |
| #define CHL_INT0_NOT_RDY_OFF 4 |
| #define CHL_INT0_NOT_RDY_MSK (0x1 << CHL_INT0_NOT_RDY_OFF) |
| #define CHL_INT0_PHY_RDY_OFF 5 |
| #define CHL_INT0_PHY_RDY_MSK (0x1 << CHL_INT0_PHY_RDY_OFF) |
| #define CHL_INT1 (PORT_BASE + 0x1b8) |
| #define CHL_INT1_DMAC_TX_ECC_ERR_OFF 15 |
| #define CHL_INT1_DMAC_TX_ECC_ERR_MSK (0x1 << CHL_INT1_DMAC_TX_ECC_ERR_OFF) |
| #define CHL_INT1_DMAC_RX_ECC_ERR_OFF 17 |
| #define CHL_INT1_DMAC_RX_ECC_ERR_MSK (0x1 << CHL_INT1_DMAC_RX_ECC_ERR_OFF) |
| #define CHL_INT1_DMAC_TX_AXI_WR_ERR_OFF 19 |
| #define CHL_INT1_DMAC_TX_AXI_RD_ERR_OFF 20 |
| #define CHL_INT1_DMAC_RX_AXI_WR_ERR_OFF 21 |
| #define CHL_INT1_DMAC_RX_AXI_RD_ERR_OFF 22 |
| #define CHL_INT2 (PORT_BASE + 0x1bc) |
| #define CHL_INT2_SL_IDAF_TOUT_CONF_OFF 0 |
| #define CHL_INT0_MSK (PORT_BASE + 0x1c0) |
| #define CHL_INT1_MSK (PORT_BASE + 0x1c4) |
| #define CHL_INT2_MSK (PORT_BASE + 0x1c8) |
| #define CHL_INT_COAL_EN (PORT_BASE + 0x1d0) |
| #define DMA_TX_DFX0 (PORT_BASE + 0x200) |
| #define DMA_TX_DFX1 (PORT_BASE + 0x204) |
| #define DMA_TX_DFX1_IPTT_OFF 0 |
| #define DMA_TX_DFX1_IPTT_MSK (0xffff << DMA_TX_DFX1_IPTT_OFF) |
| #define DMA_TX_FIFO_DFX0 (PORT_BASE + 0x240) |
| #define PORT_DFX0 (PORT_BASE + 0x258) |
| #define LINK_DFX2 (PORT_BASE + 0X264) |
| #define LINK_DFX2_RCVR_HOLD_STS_OFF 9 |
| #define LINK_DFX2_RCVR_HOLD_STS_MSK (0x1 << LINK_DFX2_RCVR_HOLD_STS_OFF) |
| #define LINK_DFX2_SEND_HOLD_STS_OFF 10 |
| #define LINK_DFX2_SEND_HOLD_STS_MSK (0x1 << LINK_DFX2_SEND_HOLD_STS_OFF) |
| #define SAS_ERR_CNT4_REG (PORT_BASE + 0x290) |
| #define SAS_ERR_CNT6_REG (PORT_BASE + 0x298) |
| #define PHY_CTRL_RDY_MSK (PORT_BASE + 0x2b0) |
| #define PHYCTRL_NOT_RDY_MSK (PORT_BASE + 0x2b4) |
| #define PHYCTRL_DWS_RESET_MSK (PORT_BASE + 0x2b8) |
| #define PHYCTRL_PHY_ENA_MSK (PORT_BASE + 0x2bc) |
| #define SL_RX_BCAST_CHK_MSK (PORT_BASE + 0x2c0) |
| #define PHYCTRL_OOB_RESTART_MSK (PORT_BASE + 0x2c4) |
| #define DMA_TX_STATUS (PORT_BASE + 0x2d0) |
| #define DMA_TX_STATUS_BUSY_OFF 0 |
| #define DMA_TX_STATUS_BUSY_MSK (0x1 << DMA_TX_STATUS_BUSY_OFF) |
| #define DMA_RX_STATUS (PORT_BASE + 0x2e8) |
| #define DMA_RX_STATUS_BUSY_OFF 0 |
| #define DMA_RX_STATUS_BUSY_MSK (0x1 << DMA_RX_STATUS_BUSY_OFF) |
| |
| #define AXI_CFG (0x5100) |
| #define AM_CFG_MAX_TRANS (0x5010) |
| #define AM_CFG_SINGLE_PORT_MAX_TRANS (0x5014) |
| |
| #define AXI_MASTER_CFG_BASE (0x5000) |
| #define AM_CTRL_GLOBAL (0x0) |
| #define AM_CURR_TRANS_RETURN (0x150) |
| |
| /* HW dma structures */ |
| /* Delivery queue header */ |
| /* dw0 */ |
| #define CMD_HDR_ABORT_FLAG_OFF 0 |
| #define CMD_HDR_ABORT_FLAG_MSK (0x3 << CMD_HDR_ABORT_FLAG_OFF) |
| #define CMD_HDR_ABORT_DEVICE_TYPE_OFF 2 |
| #define CMD_HDR_ABORT_DEVICE_TYPE_MSK (0x1 << CMD_HDR_ABORT_DEVICE_TYPE_OFF) |
| #define CMD_HDR_RESP_REPORT_OFF 5 |
| #define CMD_HDR_RESP_REPORT_MSK (0x1 << CMD_HDR_RESP_REPORT_OFF) |
| #define CMD_HDR_TLR_CTRL_OFF 6 |
| #define CMD_HDR_TLR_CTRL_MSK (0x3 << CMD_HDR_TLR_CTRL_OFF) |
| #define CMD_HDR_PHY_ID_OFF 8 |
| #define CMD_HDR_PHY_ID_MSK (0x1ff << CMD_HDR_PHY_ID_OFF) |
| #define CMD_HDR_FORCE_PHY_OFF 17 |
| #define CMD_HDR_FORCE_PHY_MSK (0x1 << CMD_HDR_FORCE_PHY_OFF) |
| #define CMD_HDR_PORT_OFF 18 |
| #define CMD_HDR_PORT_MSK (0xf << CMD_HDR_PORT_OFF) |
| #define CMD_HDR_PRIORITY_OFF 27 |
| #define CMD_HDR_PRIORITY_MSK (0x1 << CMD_HDR_PRIORITY_OFF) |
| #define CMD_HDR_CMD_OFF 29 |
| #define CMD_HDR_CMD_MSK (0x7 << CMD_HDR_CMD_OFF) |
| /* dw1 */ |
| #define CMD_HDR_DIR_OFF 5 |
| #define CMD_HDR_DIR_MSK (0x3 << CMD_HDR_DIR_OFF) |
| #define CMD_HDR_RESET_OFF 7 |
| #define CMD_HDR_RESET_MSK (0x1 << CMD_HDR_RESET_OFF) |
| #define CMD_HDR_VDTL_OFF 10 |
| #define CMD_HDR_VDTL_MSK (0x1 << CMD_HDR_VDTL_OFF) |
| #define CMD_HDR_FRAME_TYPE_OFF 11 |
| #define CMD_HDR_FRAME_TYPE_MSK (0x1f << CMD_HDR_FRAME_TYPE_OFF) |
| #define CMD_HDR_DEV_ID_OFF 16 |
| #define CMD_HDR_DEV_ID_MSK (0xffff << CMD_HDR_DEV_ID_OFF) |
| /* dw2 */ |
| #define CMD_HDR_CFL_OFF 0 |
| #define CMD_HDR_CFL_MSK (0x1ff << CMD_HDR_CFL_OFF) |
| #define CMD_HDR_NCQ_TAG_OFF 10 |
| #define CMD_HDR_NCQ_TAG_MSK (0x1f << CMD_HDR_NCQ_TAG_OFF) |
| #define CMD_HDR_MRFL_OFF 15 |
| #define CMD_HDR_MRFL_MSK (0x1ff << CMD_HDR_MRFL_OFF) |
| #define CMD_HDR_SG_MOD_OFF 24 |
| #define CMD_HDR_SG_MOD_MSK (0x3 << CMD_HDR_SG_MOD_OFF) |
| #define CMD_HDR_FIRST_BURST_OFF 26 |
| #define CMD_HDR_FIRST_BURST_MSK (0x1 << CMD_HDR_SG_MOD_OFF) |
| /* dw3 */ |
| #define CMD_HDR_IPTT_OFF 0 |
| #define CMD_HDR_IPTT_MSK (0xffff << CMD_HDR_IPTT_OFF) |
| /* dw6 */ |
| #define CMD_HDR_DIF_SGL_LEN_OFF 0 |
| #define CMD_HDR_DIF_SGL_LEN_MSK (0xffff << CMD_HDR_DIF_SGL_LEN_OFF) |
| #define CMD_HDR_DATA_SGL_LEN_OFF 16 |
| #define CMD_HDR_DATA_SGL_LEN_MSK (0xffff << CMD_HDR_DATA_SGL_LEN_OFF) |
| #define CMD_HDR_ABORT_IPTT_OFF 16 |
| #define CMD_HDR_ABORT_IPTT_MSK (0xffff << CMD_HDR_ABORT_IPTT_OFF) |
| |
| /* Completion header */ |
| /* dw0 */ |
| #define CMPLT_HDR_ERR_PHASE_OFF 2 |
| #define CMPLT_HDR_ERR_PHASE_MSK (0xff << CMPLT_HDR_ERR_PHASE_OFF) |
| #define CMPLT_HDR_RSPNS_XFRD_OFF 10 |
| #define CMPLT_HDR_RSPNS_XFRD_MSK (0x1 << CMPLT_HDR_RSPNS_XFRD_OFF) |
| #define CMPLT_HDR_ERX_OFF 12 |
| #define CMPLT_HDR_ERX_MSK (0x1 << CMPLT_HDR_ERX_OFF) |
| #define CMPLT_HDR_ABORT_STAT_OFF 13 |
| #define CMPLT_HDR_ABORT_STAT_MSK (0x7 << CMPLT_HDR_ABORT_STAT_OFF) |
| /* abort_stat */ |
| #define STAT_IO_NOT_VALID 0x1 |
| #define STAT_IO_NO_DEVICE 0x2 |
| #define STAT_IO_COMPLETE 0x3 |
| #define STAT_IO_ABORTED 0x4 |
| /* dw1 */ |
| #define CMPLT_HDR_IPTT_OFF 0 |
| #define CMPLT_HDR_IPTT_MSK (0xffff << CMPLT_HDR_IPTT_OFF) |
| #define CMPLT_HDR_DEV_ID_OFF 16 |
| #define CMPLT_HDR_DEV_ID_MSK (0xffff << CMPLT_HDR_DEV_ID_OFF) |
| |
| /* ITCT header */ |
| /* qw0 */ |
| #define ITCT_HDR_DEV_TYPE_OFF 0 |
| #define ITCT_HDR_DEV_TYPE_MSK (0x3 << ITCT_HDR_DEV_TYPE_OFF) |
| #define ITCT_HDR_VALID_OFF 2 |
| #define ITCT_HDR_VALID_MSK (0x1 << ITCT_HDR_VALID_OFF) |
| #define ITCT_HDR_MCR_OFF 5 |
| #define ITCT_HDR_MCR_MSK (0xf << ITCT_HDR_MCR_OFF) |
| #define ITCT_HDR_VLN_OFF 9 |
| #define ITCT_HDR_VLN_MSK (0xf << ITCT_HDR_VLN_OFF) |
| #define ITCT_HDR_SMP_TIMEOUT_OFF 16 |
| #define ITCT_HDR_SMP_TIMEOUT_8US 1 |
| #define ITCT_HDR_SMP_TIMEOUT (ITCT_HDR_SMP_TIMEOUT_8US * \ |
| 250) /* 2ms */ |
| #define ITCT_HDR_AWT_CONTINUE_OFF 25 |
| #define ITCT_HDR_PORT_ID_OFF 28 |
| #define ITCT_HDR_PORT_ID_MSK (0xf << ITCT_HDR_PORT_ID_OFF) |
| /* qw2 */ |
| #define ITCT_HDR_INLT_OFF 0 |
| #define ITCT_HDR_INLT_MSK (0xffffULL << ITCT_HDR_INLT_OFF) |
| #define ITCT_HDR_BITLT_OFF 16 |
| #define ITCT_HDR_BITLT_MSK (0xffffULL << ITCT_HDR_BITLT_OFF) |
| #define ITCT_HDR_MCTLT_OFF 32 |
| #define ITCT_HDR_MCTLT_MSK (0xffffULL << ITCT_HDR_MCTLT_OFF) |
| #define ITCT_HDR_RTOLT_OFF 48 |
| #define ITCT_HDR_RTOLT_MSK (0xffffULL << ITCT_HDR_RTOLT_OFF) |
| |
| #define HISI_SAS_FATAL_INT_NR 2 |
| |
| struct hisi_sas_complete_v2_hdr { |
| __le32 dw0; |
| __le32 dw1; |
| __le32 act; |
| __le32 dw3; |
| }; |
| |
| struct hisi_sas_err_record_v2 { |
| /* dw0 */ |
| __le32 trans_tx_fail_type; |
| |
| /* dw1 */ |
| __le32 trans_rx_fail_type; |
| |
| /* dw2 */ |
| __le16 dma_tx_err_type; |
| __le16 sipc_rx_err_type; |
| |
| /* dw3 */ |
| __le32 dma_rx_err_type; |
| }; |
| |
| struct signal_attenuation_s { |
| u32 de_emphasis; |
| u32 preshoot; |
| u32 boost; |
| }; |
| |
| struct sig_atten_lu_s { |
| const struct signal_attenuation_s *att; |
| u32 sas_phy_ctrl; |
| }; |
| |
| static const struct hisi_sas_hw_error one_bit_ecc_errors[] = { |
| { |
| .irq_msk = BIT(SAS_ECC_INTR_DQE_ECC_1B_OFF), |
| .msk = HGC_DQE_ECC_1B_ADDR_MSK, |
| .shift = HGC_DQE_ECC_1B_ADDR_OFF, |
| .msg = "hgc_dqe_ecc1b_intr", |
| .reg = HGC_DQE_ECC_ADDR, |
| }, |
| { |
| .irq_msk = BIT(SAS_ECC_INTR_IOST_ECC_1B_OFF), |
| .msk = HGC_IOST_ECC_1B_ADDR_MSK, |
| .shift = HGC_IOST_ECC_1B_ADDR_OFF, |
| .msg = "hgc_iost_ecc1b_intr", |
| .reg = HGC_IOST_ECC_ADDR, |
| }, |
| { |
| .irq_msk = BIT(SAS_ECC_INTR_ITCT_ECC_1B_OFF), |
| .msk = HGC_ITCT_ECC_1B_ADDR_MSK, |
| .shift = HGC_ITCT_ECC_1B_ADDR_OFF, |
| .msg = "hgc_itct_ecc1b_intr", |
| .reg = HGC_ITCT_ECC_ADDR, |
| }, |
| { |
| .irq_msk = BIT(SAS_ECC_INTR_IOSTLIST_ECC_1B_OFF), |
| .msk = HGC_LM_DFX_STATUS2_IOSTLIST_MSK, |
| .shift = HGC_LM_DFX_STATUS2_IOSTLIST_OFF, |
| .msg = "hgc_iostl_ecc1b_intr", |
| .reg = HGC_LM_DFX_STATUS2, |
| }, |
| { |
| .irq_msk = BIT(SAS_ECC_INTR_ITCTLIST_ECC_1B_OFF), |
| .msk = HGC_LM_DFX_STATUS2_ITCTLIST_MSK, |
| .shift = HGC_LM_DFX_STATUS2_ITCTLIST_OFF, |
| .msg = "hgc_itctl_ecc1b_intr", |
| .reg = HGC_LM_DFX_STATUS2, |
| }, |
| { |
| .irq_msk = BIT(SAS_ECC_INTR_CQE_ECC_1B_OFF), |
| .msk = HGC_CQE_ECC_1B_ADDR_MSK, |
| .shift = HGC_CQE_ECC_1B_ADDR_OFF, |
| .msg = "hgc_cqe_ecc1b_intr", |
| .reg = HGC_CQE_ECC_ADDR, |
| }, |
| { |
| .irq_msk = BIT(SAS_ECC_INTR_NCQ_MEM0_ECC_1B_OFF), |
| .msk = HGC_RXM_DFX_STATUS14_MEM0_MSK, |
| .shift = HGC_RXM_DFX_STATUS14_MEM0_OFF, |
| .msg = "rxm_mem0_ecc1b_intr", |
| .reg = HGC_RXM_DFX_STATUS14, |
| }, |
| { |
| .irq_msk = BIT(SAS_ECC_INTR_NCQ_MEM1_ECC_1B_OFF), |
| .msk = HGC_RXM_DFX_STATUS14_MEM1_MSK, |
| .shift = HGC_RXM_DFX_STATUS14_MEM1_OFF, |
| .msg = "rxm_mem1_ecc1b_intr", |
| .reg = HGC_RXM_DFX_STATUS14, |
| }, |
| { |
| .irq_msk = BIT(SAS_ECC_INTR_NCQ_MEM2_ECC_1B_OFF), |
| .msk = HGC_RXM_DFX_STATUS14_MEM2_MSK, |
| .shift = HGC_RXM_DFX_STATUS14_MEM2_OFF, |
| .msg = "rxm_mem2_ecc1b_intr", |
| .reg = HGC_RXM_DFX_STATUS14, |
| }, |
| { |
| .irq_msk = BIT(SAS_ECC_INTR_NCQ_MEM3_ECC_1B_OFF), |
| .msk = HGC_RXM_DFX_STATUS15_MEM3_MSK, |
| .shift = HGC_RXM_DFX_STATUS15_MEM3_OFF, |
| .msg = "rxm_mem3_ecc1b_intr", |
| .reg = HGC_RXM_DFX_STATUS15, |
| }, |
| }; |
| |
| static const struct hisi_sas_hw_error multi_bit_ecc_errors[] = { |
| { |
| .irq_msk = BIT(SAS_ECC_INTR_DQE_ECC_MB_OFF), |
| .msk = HGC_DQE_ECC_MB_ADDR_MSK, |
| .shift = HGC_DQE_ECC_MB_ADDR_OFF, |
| .msg = "hgc_dqe_eccbad_intr", |
| .reg = HGC_DQE_ECC_ADDR, |
| }, |
| { |
| .irq_msk = BIT(SAS_ECC_INTR_IOST_ECC_MB_OFF), |
| .msk = HGC_IOST_ECC_MB_ADDR_MSK, |
| .shift = HGC_IOST_ECC_MB_ADDR_OFF, |
| .msg = "hgc_iost_eccbad_intr", |
| .reg = HGC_IOST_ECC_ADDR, |
| }, |
| { |
| .irq_msk = BIT(SAS_ECC_INTR_ITCT_ECC_MB_OFF), |
| .msk = HGC_ITCT_ECC_MB_ADDR_MSK, |
| .shift = HGC_ITCT_ECC_MB_ADDR_OFF, |
| .msg = "hgc_itct_eccbad_intr", |
| .reg = HGC_ITCT_ECC_ADDR, |
| }, |
| { |
| .irq_msk = BIT(SAS_ECC_INTR_IOSTLIST_ECC_MB_OFF), |
| .msk = HGC_LM_DFX_STATUS2_IOSTLIST_MSK, |
| .shift = HGC_LM_DFX_STATUS2_IOSTLIST_OFF, |
| .msg = "hgc_iostl_eccbad_intr", |
| .reg = HGC_LM_DFX_STATUS2, |
| }, |
| { |
| .irq_msk = BIT(SAS_ECC_INTR_ITCTLIST_ECC_MB_OFF), |
| .msk = HGC_LM_DFX_STATUS2_ITCTLIST_MSK, |
| .shift = HGC_LM_DFX_STATUS2_ITCTLIST_OFF, |
| .msg = "hgc_itctl_eccbad_intr", |
| .reg = HGC_LM_DFX_STATUS2, |
| }, |
| { |
| .irq_msk = BIT(SAS_ECC_INTR_CQE_ECC_MB_OFF), |
| .msk = HGC_CQE_ECC_MB_ADDR_MSK, |
| .shift = HGC_CQE_ECC_MB_ADDR_OFF, |
| .msg = "hgc_cqe_eccbad_intr", |
| .reg = HGC_CQE_ECC_ADDR, |
| }, |
| { |
| .irq_msk = BIT(SAS_ECC_INTR_NCQ_MEM0_ECC_MB_OFF), |
| .msk = HGC_RXM_DFX_STATUS14_MEM0_MSK, |
| .shift = HGC_RXM_DFX_STATUS14_MEM0_OFF, |
| .msg = "rxm_mem0_eccbad_intr", |
| .reg = HGC_RXM_DFX_STATUS14, |
| }, |
| { |
| .irq_msk = BIT(SAS_ECC_INTR_NCQ_MEM1_ECC_MB_OFF), |
| .msk = HGC_RXM_DFX_STATUS14_MEM1_MSK, |
| .shift = HGC_RXM_DFX_STATUS14_MEM1_OFF, |
| .msg = "rxm_mem1_eccbad_intr", |
| .reg = HGC_RXM_DFX_STATUS14, |
| }, |
| { |
| .irq_msk = BIT(SAS_ECC_INTR_NCQ_MEM2_ECC_MB_OFF), |
| .msk = HGC_RXM_DFX_STATUS14_MEM2_MSK, |
| .shift = HGC_RXM_DFX_STATUS14_MEM2_OFF, |
| .msg = "rxm_mem2_eccbad_intr", |
| .reg = HGC_RXM_DFX_STATUS14, |
| }, |
| { |
| .irq_msk = BIT(SAS_ECC_INTR_NCQ_MEM3_ECC_MB_OFF), |
| .msk = HGC_RXM_DFX_STATUS15_MEM3_MSK, |
| .shift = HGC_RXM_DFX_STATUS15_MEM3_OFF, |
| .msg = "rxm_mem3_eccbad_intr", |
| .reg = HGC_RXM_DFX_STATUS15, |
| }, |
| }; |
| |
| enum { |
| HISI_SAS_PHY_PHY_UPDOWN, |
| HISI_SAS_PHY_CHNL_INT, |
| HISI_SAS_PHY_INT_NR |
| }; |
| |
| enum { |
| TRANS_TX_FAIL_BASE = 0x0, /* dw0 */ |
| TRANS_RX_FAIL_BASE = 0x20, /* dw1 */ |
| DMA_TX_ERR_BASE = 0x40, /* dw2 bit 15-0 */ |
| SIPC_RX_ERR_BASE = 0x50, /* dw2 bit 31-16*/ |
| DMA_RX_ERR_BASE = 0x60, /* dw3 */ |
| |
| /* trans tx*/ |
| TRANS_TX_OPEN_FAIL_WITH_IT_NEXUS_LOSS = TRANS_TX_FAIL_BASE, /* 0x0 */ |
| TRANS_TX_ERR_PHY_NOT_ENABLE, /* 0x1 */ |
| TRANS_TX_OPEN_CNX_ERR_WRONG_DESTINATION, /* 0x2 */ |
| TRANS_TX_OPEN_CNX_ERR_ZONE_VIOLATION, /* 0x3 */ |
| TRANS_TX_OPEN_CNX_ERR_BY_OTHER, /* 0x4 */ |
| RESERVED0, /* 0x5 */ |
| TRANS_TX_OPEN_CNX_ERR_AIP_TIMEOUT, /* 0x6 */ |
| TRANS_TX_OPEN_CNX_ERR_STP_RESOURCES_BUSY, /* 0x7 */ |
| TRANS_TX_OPEN_CNX_ERR_PROTOCOL_NOT_SUPPORTED, /* 0x8 */ |
| TRANS_TX_OPEN_CNX_ERR_CONNECTION_RATE_NOT_SUPPORTED, /* 0x9 */ |
| TRANS_TX_OPEN_CNX_ERR_BAD_DESTINATION, /* 0xa */ |
| TRANS_TX_OPEN_CNX_ERR_BREAK_RCVD, /* 0xb */ |
| TRANS_TX_OPEN_CNX_ERR_LOW_PHY_POWER, /* 0xc */ |
| TRANS_TX_OPEN_CNX_ERR_PATHWAY_BLOCKED, /* 0xd */ |
| TRANS_TX_OPEN_CNX_ERR_OPEN_TIMEOUT, /* 0xe */ |
| TRANS_TX_OPEN_CNX_ERR_NO_DESTINATION, /* 0xf */ |
| TRANS_TX_OPEN_RETRY_ERR_THRESHOLD_REACHED, /* 0x10 */ |
| TRANS_TX_ERR_FRAME_TXED, /* 0x11 */ |
| TRANS_TX_ERR_WITH_BREAK_TIMEOUT, /* 0x12 */ |
| TRANS_TX_ERR_WITH_BREAK_REQUEST, /* 0x13 */ |
| TRANS_TX_ERR_WITH_BREAK_RECEVIED, /* 0x14 */ |
| TRANS_TX_ERR_WITH_CLOSE_TIMEOUT, /* 0x15 */ |
| TRANS_TX_ERR_WITH_CLOSE_NORMAL, /* 0x16 for ssp*/ |
| TRANS_TX_ERR_WITH_CLOSE_PHYDISALE, /* 0x17 */ |
| TRANS_TX_ERR_WITH_CLOSE_DWS_TIMEOUT, /* 0x18 */ |
| TRANS_TX_ERR_WITH_CLOSE_COMINIT, /* 0x19 */ |
| TRANS_TX_ERR_WITH_NAK_RECEVIED, /* 0x1a for ssp*/ |
| TRANS_TX_ERR_WITH_ACK_NAK_TIMEOUT, /* 0x1b for ssp*/ |
| /*IO_TX_ERR_WITH_R_ERR_RECEVIED, [> 0x1b for sata/stp<] */ |
| TRANS_TX_ERR_WITH_CREDIT_TIMEOUT, /* 0x1c for ssp */ |
| /*IO_RX_ERR_WITH_SATA_DEVICE_LOST 0x1c for sata/stp */ |
| TRANS_TX_ERR_WITH_IPTT_CONFLICT, /* 0x1d for ssp/smp */ |
| TRANS_TX_ERR_WITH_OPEN_BY_DES_OR_OTHERS, /* 0x1e */ |
| /*IO_TX_ERR_WITH_SYNC_RXD, [> 0x1e <] for sata/stp */ |
| TRANS_TX_ERR_WITH_WAIT_RECV_TIMEOUT, /* 0x1f for sata/stp */ |
| |
| /* trans rx */ |
| TRANS_RX_ERR_WITH_RXFRAME_CRC_ERR = TRANS_RX_FAIL_BASE, /* 0x20 */ |
| TRANS_RX_ERR_WITH_RXFIS_8B10B_DISP_ERR, /* 0x21 for sata/stp */ |
| TRANS_RX_ERR_WITH_RXFRAME_HAVE_ERRPRM, /* 0x22 for ssp/smp */ |
| /*IO_ERR_WITH_RXFIS_8B10B_CODE_ERR, [> 0x22 <] for sata/stp */ |
| TRANS_RX_ERR_WITH_RXFIS_DECODE_ERROR, /* 0x23 for sata/stp */ |
| TRANS_RX_ERR_WITH_RXFIS_CRC_ERR, /* 0x24 for sata/stp */ |
| TRANS_RX_ERR_WITH_RXFRAME_LENGTH_OVERRUN, /* 0x25 for smp */ |
| /*IO_ERR_WITH_RXFIS_TX SYNCP, [> 0x25 <] for sata/stp */ |
| TRANS_RX_ERR_WITH_RXFIS_RX_SYNCP, /* 0x26 for sata/stp*/ |
| TRANS_RX_ERR_WITH_LINK_BUF_OVERRUN, /* 0x27 */ |
| TRANS_RX_ERR_WITH_BREAK_TIMEOUT, /* 0x28 */ |
| TRANS_RX_ERR_WITH_BREAK_REQUEST, /* 0x29 */ |
| TRANS_RX_ERR_WITH_BREAK_RECEVIED, /* 0x2a */ |
| RESERVED1, /* 0x2b */ |
| TRANS_RX_ERR_WITH_CLOSE_NORMAL, /* 0x2c */ |
| TRANS_RX_ERR_WITH_CLOSE_PHY_DISABLE, /* 0x2d */ |
| TRANS_RX_ERR_WITH_CLOSE_DWS_TIMEOUT, /* 0x2e */ |
| TRANS_RX_ERR_WITH_CLOSE_COMINIT, /* 0x2f */ |
| TRANS_RX_ERR_WITH_DATA_LEN0, /* 0x30 for ssp/smp */ |
| TRANS_RX_ERR_WITH_BAD_HASH, /* 0x31 for ssp */ |
| /*IO_RX_ERR_WITH_FIS_TOO_SHORT, [> 0x31 <] for sata/stp */ |
| TRANS_RX_XRDY_WLEN_ZERO_ERR, /* 0x32 for ssp*/ |
| /*IO_RX_ERR_WITH_FIS_TOO_LONG, [> 0x32 <] for sata/stp */ |
| TRANS_RX_SSP_FRM_LEN_ERR, /* 0x33 for ssp */ |
| /*IO_RX_ERR_WITH_SATA_DEVICE_LOST, [> 0x33 <] for sata */ |
| RESERVED2, /* 0x34 */ |
| RESERVED3, /* 0x35 */ |
| RESERVED4, /* 0x36 */ |
| RESERVED5, /* 0x37 */ |
| TRANS_RX_ERR_WITH_BAD_FRM_TYPE, /* 0x38 */ |
| TRANS_RX_SMP_FRM_LEN_ERR, /* 0x39 */ |
| TRANS_RX_SMP_RESP_TIMEOUT_ERR, /* 0x3a */ |
| RESERVED6, /* 0x3b */ |
| RESERVED7, /* 0x3c */ |
| RESERVED8, /* 0x3d */ |
| RESERVED9, /* 0x3e */ |
| TRANS_RX_R_ERR, /* 0x3f */ |
| |
| /* dma tx */ |
| DMA_TX_DIF_CRC_ERR = DMA_TX_ERR_BASE, /* 0x40 */ |
| DMA_TX_DIF_APP_ERR, /* 0x41 */ |
| DMA_TX_DIF_RPP_ERR, /* 0x42 */ |
| DMA_TX_DATA_SGL_OVERFLOW, /* 0x43 */ |
| DMA_TX_DIF_SGL_OVERFLOW, /* 0x44 */ |
| DMA_TX_UNEXP_XFER_ERR, /* 0x45 */ |
| DMA_TX_UNEXP_RETRANS_ERR, /* 0x46 */ |
| DMA_TX_XFER_LEN_OVERFLOW, /* 0x47 */ |
| DMA_TX_XFER_OFFSET_ERR, /* 0x48 */ |
| DMA_TX_RAM_ECC_ERR, /* 0x49 */ |
| DMA_TX_DIF_LEN_ALIGN_ERR, /* 0x4a */ |
| DMA_TX_MAX_ERR_CODE, |
| |
| /* sipc rx */ |
| SIPC_RX_FIS_STATUS_ERR_BIT_VLD = SIPC_RX_ERR_BASE, /* 0x50 */ |
| SIPC_RX_PIO_WRSETUP_STATUS_DRQ_ERR, /* 0x51 */ |
| SIPC_RX_FIS_STATUS_BSY_BIT_ERR, /* 0x52 */ |
| SIPC_RX_WRSETUP_LEN_ODD_ERR, /* 0x53 */ |
| SIPC_RX_WRSETUP_LEN_ZERO_ERR, /* 0x54 */ |
| SIPC_RX_WRDATA_LEN_NOT_MATCH_ERR, /* 0x55 */ |
| SIPC_RX_NCQ_WRSETUP_OFFSET_ERR, /* 0x56 */ |
| SIPC_RX_NCQ_WRSETUP_AUTO_ACTIVE_ERR, /* 0x57 */ |
| SIPC_RX_SATA_UNEXP_FIS_ERR, /* 0x58 */ |
| SIPC_RX_WRSETUP_ESTATUS_ERR, /* 0x59 */ |
| SIPC_RX_DATA_UNDERFLOW_ERR, /* 0x5a */ |
| SIPC_RX_MAX_ERR_CODE, |
| |
| /* dma rx */ |
| DMA_RX_DIF_CRC_ERR = DMA_RX_ERR_BASE, /* 0x60 */ |
| DMA_RX_DIF_APP_ERR, /* 0x61 */ |
| DMA_RX_DIF_RPP_ERR, /* 0x62 */ |
| DMA_RX_DATA_SGL_OVERFLOW, /* 0x63 */ |
| DMA_RX_DIF_SGL_OVERFLOW, /* 0x64 */ |
| DMA_RX_DATA_LEN_OVERFLOW, /* 0x65 */ |
| DMA_RX_DATA_LEN_UNDERFLOW, /* 0x66 */ |
| DMA_RX_DATA_OFFSET_ERR, /* 0x67 */ |
| RESERVED10, /* 0x68 */ |
| DMA_RX_SATA_FRAME_TYPE_ERR, /* 0x69 */ |
| DMA_RX_RESP_BUF_OVERFLOW, /* 0x6a */ |
| DMA_RX_UNEXP_RETRANS_RESP_ERR, /* 0x6b */ |
| DMA_RX_UNEXP_NORM_RESP_ERR, /* 0x6c */ |
| DMA_RX_UNEXP_RDFRAME_ERR, /* 0x6d */ |
| DMA_RX_PIO_DATA_LEN_ERR, /* 0x6e */ |
| DMA_RX_RDSETUP_STATUS_ERR, /* 0x6f */ |
| DMA_RX_RDSETUP_STATUS_DRQ_ERR, /* 0x70 */ |
| DMA_RX_RDSETUP_STATUS_BSY_ERR, /* 0x71 */ |
| DMA_RX_RDSETUP_LEN_ODD_ERR, /* 0x72 */ |
| DMA_RX_RDSETUP_LEN_ZERO_ERR, /* 0x73 */ |
| DMA_RX_RDSETUP_LEN_OVER_ERR, /* 0x74 */ |
| DMA_RX_RDSETUP_OFFSET_ERR, /* 0x75 */ |
| DMA_RX_RDSETUP_ACTIVE_ERR, /* 0x76 */ |
| DMA_RX_RDSETUP_ESTATUS_ERR, /* 0x77 */ |
| DMA_RX_RAM_ECC_ERR, /* 0x78 */ |
| DMA_RX_UNKNOWN_FRM_ERR, /* 0x79 */ |
| DMA_RX_MAX_ERR_CODE, |
| }; |
| |
| #define HISI_SAS_COMMAND_ENTRIES_V2_HW 4096 |
| #define HISI_MAX_SATA_SUPPORT_V2_HW (HISI_SAS_COMMAND_ENTRIES_V2_HW/64 - 1) |
| |
| #define DIR_NO_DATA 0 |
| #define DIR_TO_INI 1 |
| #define DIR_TO_DEVICE 2 |
| #define DIR_RESERVED 3 |
| |
| #define ERR_ON_TX_PHASE(err_phase) (err_phase == 0x2 || \ |
| err_phase == 0x4 || err_phase == 0x8 ||\ |
| err_phase == 0x6 || err_phase == 0xa) |
| #define ERR_ON_RX_PHASE(err_phase) (err_phase == 0x10 || \ |
| err_phase == 0x20 || err_phase == 0x40) |
| |
| static void link_timeout_disable_link(struct timer_list *t); |
| |
| static u32 hisi_sas_read32(struct hisi_hba *hisi_hba, u32 off) |
| { |
| void __iomem *regs = hisi_hba->regs + off; |
| |
| return readl(regs); |
| } |
| |
| static u32 hisi_sas_read32_relaxed(struct hisi_hba *hisi_hba, u32 off) |
| { |
| void __iomem *regs = hisi_hba->regs + off; |
| |
| return readl_relaxed(regs); |
| } |
| |
| static void hisi_sas_write32(struct hisi_hba *hisi_hba, u32 off, u32 val) |
| { |
| void __iomem *regs = hisi_hba->regs + off; |
| |
| writel(val, regs); |
| } |
| |
| static void hisi_sas_phy_write32(struct hisi_hba *hisi_hba, int phy_no, |
| u32 off, u32 val) |
| { |
| void __iomem *regs = hisi_hba->regs + (0x400 * phy_no) + off; |
| |
| writel(val, regs); |
| } |
| |
| static u32 hisi_sas_phy_read32(struct hisi_hba *hisi_hba, |
| int phy_no, u32 off) |
| { |
| void __iomem *regs = hisi_hba->regs + (0x400 * phy_no) + off; |
| |
| return readl(regs); |
| } |
| |
| /* This function needs to be protected from pre-emption. */ |
| static int |
| slot_index_alloc_quirk_v2_hw(struct hisi_hba *hisi_hba, |
| struct domain_device *device) |
| { |
| int sata_dev = dev_is_sata(device); |
| void *bitmap = hisi_hba->slot_index_tags; |
| struct hisi_sas_device *sas_dev = device->lldd_dev; |
| int sata_idx = sas_dev->sata_idx; |
| int start, end; |
| |
| if (!sata_dev) { |
| /* |
| * STP link SoC bug workaround: index starts from 1. |
| * additionally, we can only allocate odd IPTT(1~4095) |
| * for SAS/SMP device. |
| */ |
| start = 1; |
| end = hisi_hba->slot_index_count; |
| } else { |
| if (sata_idx >= HISI_MAX_SATA_SUPPORT_V2_HW) |
| return -EINVAL; |
| |
| /* |
| * For SATA device: allocate even IPTT in this interval |
| * [64*(sata_idx+1), 64*(sata_idx+2)], then each SATA device |
| * own 32 IPTTs. IPTT 0 shall not be used duing to STP link |
| * SoC bug workaround. So we ignore the first 32 even IPTTs. |
| */ |
| start = 64 * (sata_idx + 1); |
| end = 64 * (sata_idx + 2); |
| } |
| |
| spin_lock(&hisi_hba->lock); |
| while (1) { |
| start = find_next_zero_bit(bitmap, |
| hisi_hba->slot_index_count, start); |
| if (start >= end) { |
| spin_unlock(&hisi_hba->lock); |
| return -SAS_QUEUE_FULL; |
| } |
| /* |
| * SAS IPTT bit0 should be 1, and SATA IPTT bit0 should be 0. |
| */ |
| if (sata_dev ^ (start & 1)) |
| break; |
| start++; |
| } |
| |
| set_bit(start, bitmap); |
| spin_unlock(&hisi_hba->lock); |
| return start; |
| } |
| |
| static bool sata_index_alloc_v2_hw(struct hisi_hba *hisi_hba, int *idx) |
| { |
| unsigned int index; |
| struct device *dev = hisi_hba->dev; |
| void *bitmap = hisi_hba->sata_dev_bitmap; |
| |
| index = find_first_zero_bit(bitmap, HISI_MAX_SATA_SUPPORT_V2_HW); |
| if (index >= HISI_MAX_SATA_SUPPORT_V2_HW) { |
| dev_warn(dev, "alloc sata index failed, index=%d\n", index); |
| return false; |
| } |
| |
| set_bit(index, bitmap); |
| *idx = index; |
| return true; |
| } |
| |
| |
| static struct |
| hisi_sas_device *alloc_dev_quirk_v2_hw(struct domain_device *device) |
| { |
| struct hisi_hba *hisi_hba = device->port->ha->lldd_ha; |
| struct hisi_sas_device *sas_dev = NULL; |
| int i, sata_dev = dev_is_sata(device); |
| int sata_idx = -1; |
| |
| spin_lock(&hisi_hba->lock); |
| |
| if (sata_dev) |
| if (!sata_index_alloc_v2_hw(hisi_hba, &sata_idx)) |
| goto out; |
| |
| for (i = 0; i < HISI_SAS_MAX_DEVICES; i++) { |
| /* |
| * SATA device id bit0 should be 0 |
| */ |
| if (sata_dev && (i & 1)) |
| continue; |
| if (hisi_hba->devices[i].dev_type == SAS_PHY_UNUSED) { |
| int queue = i % hisi_hba->queue_count; |
| struct hisi_sas_dq *dq = &hisi_hba->dq[queue]; |
| |
| hisi_hba->devices[i].device_id = i; |
| sas_dev = &hisi_hba->devices[i]; |
| sas_dev->dev_status = HISI_SAS_DEV_INIT; |
| sas_dev->dev_type = device->dev_type; |
| sas_dev->hisi_hba = hisi_hba; |
| sas_dev->sas_device = device; |
| sas_dev->sata_idx = sata_idx; |
| sas_dev->dq = dq; |
| spin_lock_init(&sas_dev->lock); |
| INIT_LIST_HEAD(&hisi_hba->devices[i].list); |
| break; |
| } |
| } |
| |
| out: |
| spin_unlock(&hisi_hba->lock); |
| |
| return sas_dev; |
| } |
| |
| static void config_phy_opt_mode_v2_hw(struct hisi_hba *hisi_hba, int phy_no) |
| { |
| u32 cfg = hisi_sas_phy_read32(hisi_hba, phy_no, PHY_CFG); |
| |
| cfg &= ~PHY_CFG_DC_OPT_MSK; |
| cfg |= 1 << PHY_CFG_DC_OPT_OFF; |
| hisi_sas_phy_write32(hisi_hba, phy_no, PHY_CFG, cfg); |
| } |
| |
| static void config_id_frame_v2_hw(struct hisi_hba *hisi_hba, int phy_no) |
| { |
| struct sas_identify_frame identify_frame; |
| u32 *identify_buffer; |
| |
| memset(&identify_frame, 0, sizeof(identify_frame)); |
| identify_frame.dev_type = SAS_END_DEVICE; |
| identify_frame.frame_type = 0; |
| identify_frame._un1 = 1; |
| identify_frame.initiator_bits = SAS_PROTOCOL_ALL; |
| identify_frame.target_bits = SAS_PROTOCOL_NONE; |
| memcpy(&identify_frame._un4_11[0], hisi_hba->sas_addr, SAS_ADDR_SIZE); |
| memcpy(&identify_frame.sas_addr[0], hisi_hba->sas_addr, SAS_ADDR_SIZE); |
| identify_frame.phy_id = phy_no; |
| identify_buffer = (u32 *)(&identify_frame); |
| |
| hisi_sas_phy_write32(hisi_hba, phy_no, TX_ID_DWORD0, |
| __swab32(identify_buffer[0])); |
| hisi_sas_phy_write32(hisi_hba, phy_no, TX_ID_DWORD1, |
| __swab32(identify_buffer[1])); |
| hisi_sas_phy_write32(hisi_hba, phy_no, TX_ID_DWORD2, |
| __swab32(identify_buffer[2])); |
| hisi_sas_phy_write32(hisi_hba, phy_no, TX_ID_DWORD3, |
| __swab32(identify_buffer[3])); |
| hisi_sas_phy_write32(hisi_hba, phy_no, TX_ID_DWORD4, |
| __swab32(identify_buffer[4])); |
| hisi_sas_phy_write32(hisi_hba, phy_no, TX_ID_DWORD5, |
| __swab32(identify_buffer[5])); |
| } |
| |
| static void setup_itct_v2_hw(struct hisi_hba *hisi_hba, |
| struct hisi_sas_device *sas_dev) |
| { |
| struct domain_device *device = sas_dev->sas_device; |
| struct device *dev = hisi_hba->dev; |
| u64 qw0, device_id = sas_dev->device_id; |
| struct hisi_sas_itct *itct = &hisi_hba->itct[device_id]; |
| struct domain_device *parent_dev = device->parent; |
| struct asd_sas_port *sas_port = device->port; |
| struct hisi_sas_port *port = to_hisi_sas_port(sas_port); |
| u64 sas_addr; |
| |
| memset(itct, 0, sizeof(*itct)); |
| |
| /* qw0 */ |
| qw0 = 0; |
| switch (sas_dev->dev_type) { |
| case SAS_END_DEVICE: |
| case SAS_EDGE_EXPANDER_DEVICE: |
| case SAS_FANOUT_EXPANDER_DEVICE: |
| qw0 = HISI_SAS_DEV_TYPE_SSP << ITCT_HDR_DEV_TYPE_OFF; |
| break; |
| case SAS_SATA_DEV: |
| case SAS_SATA_PENDING: |
| if (parent_dev && dev_is_expander(parent_dev->dev_type)) |
| qw0 = HISI_SAS_DEV_TYPE_STP << ITCT_HDR_DEV_TYPE_OFF; |
| else |
| qw0 = HISI_SAS_DEV_TYPE_SATA << ITCT_HDR_DEV_TYPE_OFF; |
| break; |
| default: |
| dev_warn(dev, "setup itct: unsupported dev type (%d)\n", |
| sas_dev->dev_type); |
| } |
| |
| qw0 |= ((1 << ITCT_HDR_VALID_OFF) | |
| (device->linkrate << ITCT_HDR_MCR_OFF) | |
| (1 << ITCT_HDR_VLN_OFF) | |
| (ITCT_HDR_SMP_TIMEOUT << ITCT_HDR_SMP_TIMEOUT_OFF) | |
| (1 << ITCT_HDR_AWT_CONTINUE_OFF) | |
| (port->id << ITCT_HDR_PORT_ID_OFF)); |
| itct->qw0 = cpu_to_le64(qw0); |
| |
| /* qw1 */ |
| memcpy(&sas_addr, device->sas_addr, SAS_ADDR_SIZE); |
| itct->sas_addr = cpu_to_le64(__swab64(sas_addr)); |
| |
| /* qw2 */ |
| if (!dev_is_sata(device)) |
| itct->qw2 = cpu_to_le64((5000ULL << ITCT_HDR_INLT_OFF) | |
| (0x1ULL << ITCT_HDR_BITLT_OFF) | |
| (0x32ULL << ITCT_HDR_MCTLT_OFF) | |
| (0x1ULL << ITCT_HDR_RTOLT_OFF)); |
| } |
| |
| static int clear_itct_v2_hw(struct hisi_hba *hisi_hba, |
| struct hisi_sas_device *sas_dev) |
| { |
| DECLARE_COMPLETION_ONSTACK(completion); |
| u64 dev_id = sas_dev->device_id; |
| struct hisi_sas_itct *itct = &hisi_hba->itct[dev_id]; |
| u32 reg_val = hisi_sas_read32(hisi_hba, ENT_INT_SRC3); |
| struct device *dev = hisi_hba->dev; |
| int i; |
| |
| sas_dev->completion = &completion; |
| |
| /* clear the itct interrupt state */ |
| if (ENT_INT_SRC3_ITC_INT_MSK & reg_val) |
| hisi_sas_write32(hisi_hba, ENT_INT_SRC3, |
| ENT_INT_SRC3_ITC_INT_MSK); |
| |
| /* need to set register twice to clear ITCT for v2 hw */ |
| for (i = 0; i < 2; i++) { |
| reg_val = ITCT_CLR_EN_MSK | (dev_id & ITCT_DEV_MSK); |
| hisi_sas_write32(hisi_hba, ITCT_CLR, reg_val); |
| if (!wait_for_completion_timeout(sas_dev->completion, |
| CLEAR_ITCT_TIMEOUT * HZ)) { |
| dev_warn(dev, "failed to clear ITCT\n"); |
| return -ETIMEDOUT; |
| } |
| |
| memset(itct, 0, sizeof(struct hisi_sas_itct)); |
| } |
| return 0; |
| } |
| |
| static void free_device_v2_hw(struct hisi_sas_device *sas_dev) |
| { |
| struct hisi_hba *hisi_hba = sas_dev->hisi_hba; |
| |
| /* SoC bug workaround */ |
| if (dev_is_sata(sas_dev->sas_device)) |
| clear_bit(sas_dev->sata_idx, hisi_hba->sata_dev_bitmap); |
| } |
| |
| static int reset_hw_v2_hw(struct hisi_hba *hisi_hba) |
| { |
| int i, reset_val; |
| u32 val; |
| unsigned long end_time; |
| struct device *dev = hisi_hba->dev; |
| |
| /* The mask needs to be set depending on the number of phys */ |
| if (hisi_hba->n_phy == 9) |
| reset_val = 0x1fffff; |
| else |
| reset_val = 0x7ffff; |
| |
| hisi_sas_write32(hisi_hba, DLVRY_QUEUE_ENABLE, 0); |
| |
| /* Disable all of the PHYs */ |
| for (i = 0; i < hisi_hba->n_phy; i++) { |
| u32 phy_cfg = hisi_sas_phy_read32(hisi_hba, i, PHY_CFG); |
| |
| phy_cfg &= ~PHY_CTRL_RESET_MSK; |
| hisi_sas_phy_write32(hisi_hba, i, PHY_CFG, phy_cfg); |
| } |
| udelay(50); |
| |
| /* Ensure DMA tx & rx idle */ |
| for (i = 0; i < hisi_hba->n_phy; i++) { |
| u32 dma_tx_status, dma_rx_status; |
| |
| end_time = jiffies + msecs_to_jiffies(1000); |
| |
| while (1) { |
| dma_tx_status = hisi_sas_phy_read32(hisi_hba, i, |
| DMA_TX_STATUS); |
| dma_rx_status = hisi_sas_phy_read32(hisi_hba, i, |
| DMA_RX_STATUS); |
| |
| if (!(dma_tx_status & DMA_TX_STATUS_BUSY_MSK) && |
| !(dma_rx_status & DMA_RX_STATUS_BUSY_MSK)) |
| break; |
| |
| msleep(20); |
| if (time_after(jiffies, end_time)) |
| return -EIO; |
| } |
| } |
| |
| /* Ensure axi bus idle */ |
| end_time = jiffies + msecs_to_jiffies(1000); |
| while (1) { |
| u32 axi_status = |
| hisi_sas_read32(hisi_hba, AXI_CFG); |
| |
| if (axi_status == 0) |
| break; |
| |
| msleep(20); |
| if (time_after(jiffies, end_time)) |
| return -EIO; |
| } |
| |
| if (ACPI_HANDLE(dev)) { |
| acpi_status s; |
| |
| s = acpi_evaluate_object(ACPI_HANDLE(dev), "_RST", NULL, NULL); |
| if (ACPI_FAILURE(s)) { |
| dev_err(dev, "Reset failed\n"); |
| return -EIO; |
| } |
| } else if (hisi_hba->ctrl) { |
| /* reset and disable clock*/ |
| regmap_write(hisi_hba->ctrl, hisi_hba->ctrl_reset_reg, |
| reset_val); |
| regmap_write(hisi_hba->ctrl, hisi_hba->ctrl_clock_ena_reg + 4, |
| reset_val); |
| msleep(1); |
| regmap_read(hisi_hba->ctrl, hisi_hba->ctrl_reset_sts_reg, &val); |
| if (reset_val != (val & reset_val)) { |
| dev_err(dev, "SAS reset fail.\n"); |
| return -EIO; |
| } |
| |
| /* De-reset and enable clock*/ |
| regmap_write(hisi_hba->ctrl, hisi_hba->ctrl_reset_reg + 4, |
| reset_val); |
| regmap_write(hisi_hba->ctrl, hisi_hba->ctrl_clock_ena_reg, |
| reset_val); |
| msleep(1); |
| regmap_read(hisi_hba->ctrl, hisi_hba->ctrl_reset_sts_reg, |
| &val); |
| if (val & reset_val) { |
| dev_err(dev, "SAS de-reset fail.\n"); |
| return -EIO; |
| } |
| } else { |
| dev_err(dev, "no reset method\n"); |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| /* This function needs to be called after resetting SAS controller. */ |
| static void phys_reject_stp_links_v2_hw(struct hisi_hba *hisi_hba) |
| { |
| u32 cfg; |
| int phy_no; |
| |
| hisi_hba->reject_stp_links_msk = (1 << hisi_hba->n_phy) - 1; |
| for (phy_no = 0; phy_no < hisi_hba->n_phy; phy_no++) { |
| cfg = hisi_sas_phy_read32(hisi_hba, phy_no, CON_CONTROL); |
| if (!(cfg & CON_CONTROL_CFG_OPEN_ACC_STP_MSK)) |
| continue; |
| |
| cfg &= ~CON_CONTROL_CFG_OPEN_ACC_STP_MSK; |
| hisi_sas_phy_write32(hisi_hba, phy_no, CON_CONTROL, cfg); |
| } |
| } |
| |
| static void phys_try_accept_stp_links_v2_hw(struct hisi_hba *hisi_hba) |
| { |
| int phy_no; |
| u32 dma_tx_dfx1; |
| |
| for (phy_no = 0; phy_no < hisi_hba->n_phy; phy_no++) { |
| if (!(hisi_hba->reject_stp_links_msk & BIT(phy_no))) |
| continue; |
| |
| dma_tx_dfx1 = hisi_sas_phy_read32(hisi_hba, phy_no, |
| DMA_TX_DFX1); |
| if (dma_tx_dfx1 & DMA_TX_DFX1_IPTT_MSK) { |
| u32 cfg = hisi_sas_phy_read32(hisi_hba, |
| phy_no, CON_CONTROL); |
| |
| cfg |= CON_CONTROL_CFG_OPEN_ACC_STP_MSK; |
| hisi_sas_phy_write32(hisi_hba, phy_no, |
| CON_CONTROL, cfg); |
| clear_bit(phy_no, &hisi_hba->reject_stp_links_msk); |
| } |
| } |
| } |
| |
| static const struct signal_attenuation_s x6000 = {9200, 0, 10476}; |
| static const struct sig_atten_lu_s sig_atten_lu[] = { |
| { &x6000, 0x3016a68 }, |
| }; |
| |
| static void init_reg_v2_hw(struct hisi_hba *hisi_hba) |
| { |
| struct device *dev = hisi_hba->dev; |
| u32 sas_phy_ctrl = 0x30b9908; |
| u32 signal[3]; |
| int i; |
| |
| /* Global registers init */ |
| |
| /* Deal with am-max-transmissions quirk */ |
| if (device_property_present(dev, "hip06-sas-v2-quirk-amt")) { |
| hisi_sas_write32(hisi_hba, AM_CFG_MAX_TRANS, 0x2020); |
| hisi_sas_write32(hisi_hba, AM_CFG_SINGLE_PORT_MAX_TRANS, |
| 0x2020); |
| } /* Else, use defaults -> do nothing */ |
| |
| hisi_sas_write32(hisi_hba, DLVRY_QUEUE_ENABLE, |
| (u32)((1ULL << hisi_hba->queue_count) - 1)); |
| hisi_sas_write32(hisi_hba, AXI_USER1, 0xc0000000); |
| hisi_sas_write32(hisi_hba, AXI_USER2, 0x10000); |
| hisi_sas_write32(hisi_hba, HGC_SAS_TXFAIL_RETRY_CTRL, 0x0); |
| hisi_sas_write32(hisi_hba, HGC_SAS_TX_OPEN_FAIL_RETRY_CTRL, 0x7FF); |
| hisi_sas_write32(hisi_hba, OPENA_WT_CONTI_TIME, 0x1); |
| hisi_sas_write32(hisi_hba, I_T_NEXUS_LOSS_TIME, 0x1F4); |
| hisi_sas_write32(hisi_hba, MAX_CON_TIME_LIMIT_TIME, 0x32); |
| hisi_sas_write32(hisi_hba, BUS_INACTIVE_LIMIT_TIME, 0x1); |
| hisi_sas_write32(hisi_hba, CFG_AGING_TIME, 0x1); |
| hisi_sas_write32(hisi_hba, HGC_ERR_STAT_EN, 0x1); |
| hisi_sas_write32(hisi_hba, HGC_GET_ITV_TIME, 0x1); |
| hisi_sas_write32(hisi_hba, INT_COAL_EN, 0xc); |
| hisi_sas_write32(hisi_hba, OQ_INT_COAL_TIME, 0x60); |
| hisi_sas_write32(hisi_hba, OQ_INT_COAL_CNT, 0x3); |
| hisi_sas_write32(hisi_hba, ENT_INT_COAL_TIME, 0x1); |
| hisi_sas_write32(hisi_hba, ENT_INT_COAL_CNT, 0x1); |
| hisi_sas_write32(hisi_hba, OQ_INT_SRC, 0x0); |
| hisi_sas_write32(hisi_hba, ENT_INT_SRC1, 0xffffffff); |
| hisi_sas_write32(hisi_hba, ENT_INT_SRC2, 0xffffffff); |
| hisi_sas_write32(hisi_hba, ENT_INT_SRC3, 0xffffffff); |
| hisi_sas_write32(hisi_hba, ENT_INT_SRC_MSK1, 0x7efefefe); |
| hisi_sas_write32(hisi_hba, ENT_INT_SRC_MSK2, 0x7efefefe); |
| hisi_sas_write32(hisi_hba, ENT_INT_SRC_MSK3, 0x7ffe20fe); |
| hisi_sas_write32(hisi_hba, SAS_ECC_INTR_MSK, 0xfff00c30); |
| for (i = 0; i < hisi_hba->queue_count; i++) |
| hisi_sas_write32(hisi_hba, OQ0_INT_SRC_MSK + 0x4 * i, 0); |
| |
| hisi_sas_write32(hisi_hba, AXI_AHB_CLK_CFG, 1); |
| hisi_sas_write32(hisi_hba, HYPER_STREAM_ID_EN_CFG, 1); |
| |
| /* Get sas_phy_ctrl value to deal with TX FFE issue. */ |
| if (!device_property_read_u32_array(dev, "hisilicon,signal-attenuation", |
| signal, ARRAY_SIZE(signal))) { |
| for (i = 0; i < ARRAY_SIZE(sig_atten_lu); i++) { |
| const struct sig_atten_lu_s *lookup = &sig_atten_lu[i]; |
| const struct signal_attenuation_s *att = lookup->att; |
| |
| if ((signal[0] == att->de_emphasis) && |
| (signal[1] == att->preshoot) && |
| (signal[2] == att->boost)) { |
| sas_phy_ctrl = lookup->sas_phy_ctrl; |
| break; |
| } |
| } |
| |
| if (i == ARRAY_SIZE(sig_atten_lu)) |
| dev_warn(dev, "unknown signal attenuation values, using default PHY ctrl config\n"); |
| } |
| |
| for (i = 0; i < hisi_hba->n_phy; i++) { |
| struct hisi_sas_phy *phy = &hisi_hba->phy[i]; |
| struct asd_sas_phy *sas_phy = &phy->sas_phy; |
| u32 prog_phy_link_rate = 0x800; |
| |
| if (!sas_phy->phy || (sas_phy->phy->maximum_linkrate < |
| SAS_LINK_RATE_1_5_GBPS)) { |
| prog_phy_link_rate = 0x855; |
| } else { |
| enum sas_linkrate max = sas_phy->phy->maximum_linkrate; |
| |
| prog_phy_link_rate = |
| hisi_sas_get_prog_phy_linkrate_mask(max) | |
| 0x800; |
| } |
| hisi_sas_phy_write32(hisi_hba, i, PROG_PHY_LINK_RATE, |
| prog_phy_link_rate); |
| hisi_sas_phy_write32(hisi_hba, i, SAS_PHY_CTRL, sas_phy_ctrl); |
| hisi_sas_phy_write32(hisi_hba, i, SL_TOUT_CFG, 0x7d7d7d7d); |
| hisi_sas_phy_write32(hisi_hba, i, SL_CONTROL, 0x0); |
| hisi_sas_phy_write32(hisi_hba, i, TXID_AUTO, 0x2); |
| hisi_sas_phy_write32(hisi_hba, i, DONE_RECEIVED_TIME, 0x8); |
| hisi_sas_phy_write32(hisi_hba, i, CHL_INT0, 0xffffffff); |
| hisi_sas_phy_write32(hisi_hba, i, CHL_INT1, 0xffffffff); |
| hisi_sas_phy_write32(hisi_hba, i, CHL_INT2, 0xfff87fff); |
| hisi_sas_phy_write32(hisi_hba, i, RXOP_CHECK_CFG_H, 0x1000); |
| hisi_sas_phy_write32(hisi_hba, i, CHL_INT1_MSK, 0xff857fff); |
| hisi_sas_phy_write32(hisi_hba, i, CHL_INT2_MSK, 0x8ffffbfe); |
| hisi_sas_phy_write32(hisi_hba, i, SL_CFG, 0x13f801fc); |
| hisi_sas_phy_write32(hisi_hba, i, PHY_CTRL_RDY_MSK, 0x0); |
| hisi_sas_phy_write32(hisi_hba, i, PHYCTRL_NOT_RDY_MSK, 0x0); |
| hisi_sas_phy_write32(hisi_hba, i, PHYCTRL_DWS_RESET_MSK, 0x0); |
| hisi_sas_phy_write32(hisi_hba, i, PHYCTRL_PHY_ENA_MSK, 0x0); |
| hisi_sas_phy_write32(hisi_hba, i, SL_RX_BCAST_CHK_MSK, 0x0); |
| hisi_sas_phy_write32(hisi_hba, i, CHL_INT_COAL_EN, 0x0); |
| hisi_sas_phy_write32(hisi_hba, i, PHYCTRL_OOB_RESTART_MSK, 0x0); |
| if (hisi_hba->refclk_frequency_mhz == 66) |
| hisi_sas_phy_write32(hisi_hba, i, PHY_CTRL, 0x199B694); |
| /* else, do nothing -> leave it how you found it */ |
| } |
| |
| for (i = 0; i < hisi_hba->queue_count; i++) { |
| /* Delivery queue */ |
| hisi_sas_write32(hisi_hba, |
| DLVRY_Q_0_BASE_ADDR_HI + (i * 0x14), |
| upper_32_bits(hisi_hba->cmd_hdr_dma[i])); |
| |
| hisi_sas_write32(hisi_hba, DLVRY_Q_0_BASE_ADDR_LO + (i * 0x14), |
| lower_32_bits(hisi_hba->cmd_hdr_dma[i])); |
| |
| hisi_sas_write32(hisi_hba, DLVRY_Q_0_DEPTH + (i * 0x14), |
| HISI_SAS_QUEUE_SLOTS); |
| |
| /* Completion queue */ |
| hisi_sas_write32(hisi_hba, COMPL_Q_0_BASE_ADDR_HI + (i * 0x14), |
| upper_32_bits(hisi_hba->complete_hdr_dma[i])); |
| |
| hisi_sas_write32(hisi_hba, COMPL_Q_0_BASE_ADDR_LO + (i * 0x14), |
| lower_32_bits(hisi_hba->complete_hdr_dma[i])); |
| |
| hisi_sas_write32(hisi_hba, COMPL_Q_0_DEPTH + (i * 0x14), |
| HISI_SAS_QUEUE_SLOTS); |
| } |
| |
| /* itct */ |
| hisi_sas_write32(hisi_hba, ITCT_BASE_ADDR_LO, |
| lower_32_bits(hisi_hba->itct_dma)); |
| |
| hisi_sas_write32(hisi_hba, ITCT_BASE_ADDR_HI, |
| upper_32_bits(hisi_hba->itct_dma)); |
| |
| /* iost */ |
| hisi_sas_write32(hisi_hba, IOST_BASE_ADDR_LO, |
| lower_32_bits(hisi_hba->iost_dma)); |
| |
| hisi_sas_write32(hisi_hba, IOST_BASE_ADDR_HI, |
| upper_32_bits(hisi_hba->iost_dma)); |
| |
| /* breakpoint */ |
| hisi_sas_write32(hisi_hba, IO_BROKEN_MSG_ADDR_LO, |
| lower_32_bits(hisi_hba->breakpoint_dma)); |
| |
| hisi_sas_write32(hisi_hba, IO_BROKEN_MSG_ADDR_HI, |
| upper_32_bits(hisi_hba->breakpoint_dma)); |
| |
| /* SATA broken msg */ |
| hisi_sas_write32(hisi_hba, IO_SATA_BROKEN_MSG_ADDR_LO, |
| lower_32_bits(hisi_hba->sata_breakpoint_dma)); |
| |
| hisi_sas_write32(hisi_hba, IO_SATA_BROKEN_MSG_ADDR_HI, |
| upper_32_bits(hisi_hba->sata_breakpoint_dma)); |
| |
| /* SATA initial fis */ |
| hisi_sas_write32(hisi_hba, SATA_INITI_D2H_STORE_ADDR_LO, |
| lower_32_bits(hisi_hba->initial_fis_dma)); |
| |
| hisi_sas_write32(hisi_hba, SATA_INITI_D2H_STORE_ADDR_HI, |
| upper_32_bits(hisi_hba->initial_fis_dma)); |
| } |
| |
| static void link_timeout_enable_link(struct timer_list *t) |
| { |
| struct hisi_hba *hisi_hba = from_timer(hisi_hba, t, timer); |
| int i, reg_val; |
| |
| for (i = 0; i < hisi_hba->n_phy; i++) { |
| if (hisi_hba->reject_stp_links_msk & BIT(i)) |
| continue; |
| |
| reg_val = hisi_sas_phy_read32(hisi_hba, i, CON_CONTROL); |
| if (!(reg_val & BIT(0))) { |
| hisi_sas_phy_write32(hisi_hba, i, |
| CON_CONTROL, 0x7); |
| break; |
| } |
| } |
| |
| hisi_hba->timer.function = link_timeout_disable_link; |
| mod_timer(&hisi_hba->timer, jiffies + msecs_to_jiffies(900)); |
| } |
| |
| static void link_timeout_disable_link(struct timer_list *t) |
| { |
| struct hisi_hba *hisi_hba = from_timer(hisi_hba, t, timer); |
| int i, reg_val; |
| |
| reg_val = hisi_sas_read32(hisi_hba, PHY_STATE); |
| for (i = 0; i < hisi_hba->n_phy && reg_val; i++) { |
| if (hisi_hba->reject_stp_links_msk & BIT(i)) |
| continue; |
| |
| if (reg_val & BIT(i)) { |
| hisi_sas_phy_write32(hisi_hba, i, |
| CON_CONTROL, 0x6); |
| break; |
| } |
| } |
| |
| hisi_hba->timer.function = link_timeout_enable_link; |
| mod_timer(&hisi_hba->timer, jiffies + msecs_to_jiffies(100)); |
| } |
| |
| static void set_link_timer_quirk(struct hisi_hba *hisi_hba) |
| { |
| hisi_hba->timer.function = link_timeout_disable_link; |
| hisi_hba->timer.expires = jiffies + msecs_to_jiffies(1000); |
| add_timer(&hisi_hba->timer); |
| } |
| |
| static int hw_init_v2_hw(struct hisi_hba *hisi_hba) |
| { |
| struct device *dev = hisi_hba->dev; |
| int rc; |
| |
| rc = reset_hw_v2_hw(hisi_hba); |
| if (rc) { |
| dev_err(dev, "hisi_sas_reset_hw failed, rc=%d\n", rc); |
| return rc; |
| } |
| |
| msleep(100); |
| init_reg_v2_hw(hisi_hba); |
| |
| return 0; |
| } |
| |
| static void enable_phy_v2_hw(struct hisi_hba *hisi_hba, int phy_no) |
| { |
| u32 cfg = hisi_sas_phy_read32(hisi_hba, phy_no, PHY_CFG); |
| |
| cfg |= PHY_CFG_ENA_MSK; |
| hisi_sas_phy_write32(hisi_hba, phy_no, PHY_CFG, cfg); |
| } |
| |
| static bool is_sata_phy_v2_hw(struct hisi_hba *hisi_hba, int phy_no) |
| { |
| u32 context; |
| |
| context = hisi_sas_read32(hisi_hba, PHY_CONTEXT); |
| if (context & (1 << phy_no)) |
| return true; |
| |
| return false; |
| } |
| |
| static bool tx_fifo_is_empty_v2_hw(struct hisi_hba *hisi_hba, int phy_no) |
| { |
| u32 dfx_val; |
| |
| dfx_val = hisi_sas_phy_read32(hisi_hba, phy_no, DMA_TX_DFX1); |
| |
| if (dfx_val & BIT(16)) |
| return false; |
| |
| return true; |
| } |
| |
| static bool axi_bus_is_idle_v2_hw(struct hisi_hba *hisi_hba, int phy_no) |
| { |
| int i, max_loop = 1000; |
| struct device *dev = hisi_hba->dev; |
| u32 status, axi_status, dfx_val, dfx_tx_val; |
| |
| for (i = 0; i < max_loop; i++) { |
| status = hisi_sas_read32_relaxed(hisi_hba, |
| AXI_MASTER_CFG_BASE + AM_CURR_TRANS_RETURN); |
| |
| axi_status = hisi_sas_read32(hisi_hba, AXI_CFG); |
| dfx_val = hisi_sas_phy_read32(hisi_hba, phy_no, DMA_TX_DFX1); |
| dfx_tx_val = hisi_sas_phy_read32(hisi_hba, |
| phy_no, DMA_TX_FIFO_DFX0); |
| |
| if ((status == 0x3) && (axi_status == 0x0) && |
| (dfx_val & BIT(20)) && (dfx_tx_val & BIT(10))) |
| return true; |
| udelay(10); |
| } |
| dev_err(dev, "bus is not idle phy%d, axi150:0x%x axi100:0x%x port204:0x%x port240:0x%x\n", |
| phy_no, status, axi_status, |
| dfx_val, dfx_tx_val); |
| return false; |
| } |
| |
| static bool wait_io_done_v2_hw(struct hisi_hba *hisi_hba, int phy_no) |
| { |
| int i, max_loop = 1000; |
| struct device *dev = hisi_hba->dev; |
| u32 status, tx_dfx0; |
| |
| for (i = 0; i < max_loop; i++) { |
| status = hisi_sas_phy_read32(hisi_hba, phy_no, LINK_DFX2); |
| status = (status & 0x3fc0) >> 6; |
| |
| if (status != 0x1) |
| return true; |
| |
| tx_dfx0 = hisi_sas_phy_read32(hisi_hba, phy_no, DMA_TX_DFX0); |
| if ((tx_dfx0 & 0x1ff) == 0x2) |
| return true; |
| udelay(10); |
| } |
| dev_err(dev, "IO not done phy%d, port264:0x%x port200:0x%x\n", |
| phy_no, status, tx_dfx0); |
| return false; |
| } |
| |
| static bool allowed_disable_phy_v2_hw(struct hisi_hba *hisi_hba, int phy_no) |
| { |
| if (tx_fifo_is_empty_v2_hw(hisi_hba, phy_no)) |
| return true; |
| |
| if (!axi_bus_is_idle_v2_hw(hisi_hba, phy_no)) |
| return false; |
| |
| if (!wait_io_done_v2_hw(hisi_hba, phy_no)) |
| return false; |
| |
| return true; |
| } |
| |
| |
| static void disable_phy_v2_hw(struct hisi_hba *hisi_hba, int phy_no) |
| { |
| u32 cfg, axi_val, dfx0_val, txid_auto; |
| struct device *dev = hisi_hba->dev; |
| |
| /* Close axi bus. */ |
| axi_val = hisi_sas_read32(hisi_hba, AXI_MASTER_CFG_BASE + |
| AM_CTRL_GLOBAL); |
| axi_val |= 0x1; |
| hisi_sas_write32(hisi_hba, AXI_MASTER_CFG_BASE + |
| AM_CTRL_GLOBAL, axi_val); |
| |
| if (is_sata_phy_v2_hw(hisi_hba, phy_no)) { |
| if (allowed_disable_phy_v2_hw(hisi_hba, phy_no)) |
| goto do_disable; |
| |
| /* Reset host controller. */ |
| queue_work(hisi_hba->wq, &hisi_hba->rst_work); |
| return; |
| } |
| |
| dfx0_val = hisi_sas_phy_read32(hisi_hba, phy_no, PORT_DFX0); |
| dfx0_val = (dfx0_val & 0x1fc0) >> 6; |
| if (dfx0_val != 0x4) |
| goto do_disable; |
| |
| if (!tx_fifo_is_empty_v2_hw(hisi_hba, phy_no)) { |
| dev_warn(dev, "phy%d, wait tx fifo need send break\n", |
| phy_no); |
| txid_auto = hisi_sas_phy_read32(hisi_hba, phy_no, |
| TXID_AUTO); |
| txid_auto |= TXID_AUTO_CTB_MSK; |
| hisi_sas_phy_write32(hisi_hba, phy_no, TXID_AUTO, |
| txid_auto); |
| } |
| |
| do_disable: |
| cfg = hisi_sas_phy_read32(hisi_hba, phy_no, PHY_CFG); |
| cfg &= ~PHY_CFG_ENA_MSK; |
| hisi_sas_phy_write32(hisi_hba, phy_no, PHY_CFG, cfg); |
| |
| /* Open axi bus. */ |
| axi_val &= ~0x1; |
| hisi_sas_write32(hisi_hba, AXI_MASTER_CFG_BASE + |
| AM_CTRL_GLOBAL, axi_val); |
| } |
| |
| static void start_phy_v2_hw(struct hisi_hba *hisi_hba, int phy_no) |
| { |
| config_id_frame_v2_hw(hisi_hba, phy_no); |
| config_phy_opt_mode_v2_hw(hisi_hba, phy_no); |
| enable_phy_v2_hw(hisi_hba, phy_no); |
| } |
| |
| static void phy_hard_reset_v2_hw(struct hisi_hba *hisi_hba, int phy_no) |
| { |
| struct hisi_sas_phy *phy = &hisi_hba->phy[phy_no]; |
| u32 txid_auto; |
| |
| hisi_sas_phy_enable(hisi_hba, phy_no, 0); |
| if (phy->identify.device_type == SAS_END_DEVICE) { |
| txid_auto = hisi_sas_phy_read32(hisi_hba, phy_no, TXID_AUTO); |
| hisi_sas_phy_write32(hisi_hba, phy_no, TXID_AUTO, |
| txid_auto | TX_HARDRST_MSK); |
| } |
| msleep(100); |
| hisi_sas_phy_enable(hisi_hba, phy_no, 1); |
| } |
| |
| static void phy_get_events_v2_hw(struct hisi_hba *hisi_hba, int phy_no) |
| { |
| struct hisi_sas_phy *phy = &hisi_hba->phy[phy_no]; |
| struct asd_sas_phy *sas_phy = &phy->sas_phy; |
| struct sas_phy *sphy = sas_phy->phy; |
| u32 err4_reg_val, err6_reg_val; |
| |
| /* loss dword syn, phy reset problem */ |
| err4_reg_val = hisi_sas_phy_read32(hisi_hba, phy_no, SAS_ERR_CNT4_REG); |
| |
| /* disparity err, invalid dword */ |
| err6_reg_val = hisi_sas_phy_read32(hisi_hba, phy_no, SAS_ERR_CNT6_REG); |
| |
| sphy->loss_of_dword_sync_count += (err4_reg_val >> 16) & 0xFFFF; |
| sphy->phy_reset_problem_count += err4_reg_val & 0xFFFF; |
| sphy->invalid_dword_count += (err6_reg_val & 0xFF0000) >> 16; |
| sphy->running_disparity_error_count += err6_reg_val & 0xFF; |
| } |
| |
| static void phys_init_v2_hw(struct hisi_hba *hisi_hba) |
| { |
| int i; |
| |
| for (i = 0; i < hisi_hba->n_phy; i++) { |
| struct hisi_sas_phy *phy = &hisi_hba->phy[i]; |
| struct asd_sas_phy *sas_phy = &phy->sas_phy; |
| |
| if (!sas_phy->phy->enabled) |
| continue; |
| |
| hisi_sas_phy_enable(hisi_hba, i, 1); |
| } |
| } |
| |
| static void sl_notify_ssp_v2_hw(struct hisi_hba *hisi_hba, int phy_no) |
| { |
| u32 sl_control; |
| |
| sl_control = hisi_sas_phy_read32(hisi_hba, phy_no, SL_CONTROL); |
| sl_control |= SL_CONTROL_NOTIFY_EN_MSK; |
| hisi_sas_phy_write32(hisi_hba, phy_no, SL_CONTROL, sl_control); |
| msleep(1); |
| sl_control = hisi_sas_phy_read32(hisi_hba, phy_no, SL_CONTROL); |
| sl_control &= ~SL_CONTROL_NOTIFY_EN_MSK; |
| hisi_sas_phy_write32(hisi_hba, phy_no, SL_CONTROL, sl_control); |
| } |
| |
| static enum sas_linkrate phy_get_max_linkrate_v2_hw(void) |
| { |
| return SAS_LINK_RATE_12_0_GBPS; |
| } |
| |
| static void phy_set_linkrate_v2_hw(struct hisi_hba *hisi_hba, int phy_no, |
| struct sas_phy_linkrates *r) |
| { |
| enum sas_linkrate max = r->maximum_linkrate; |
| u32 prog_phy_link_rate = 0x800; |
| |
| prog_phy_link_rate |= hisi_sas_get_prog_phy_linkrate_mask(max); |
| hisi_sas_phy_write32(hisi_hba, phy_no, PROG_PHY_LINK_RATE, |
| prog_phy_link_rate); |
| } |
| |
| static int get_wideport_bitmap_v2_hw(struct hisi_hba *hisi_hba, int port_id) |
| { |
| int i, bitmap = 0; |
| u32 phy_port_num_ma = hisi_sas_read32(hisi_hba, PHY_PORT_NUM_MA); |
| u32 phy_state = hisi_sas_read32(hisi_hba, PHY_STATE); |
| |
| for (i = 0; i < (hisi_hba->n_phy < 9 ? hisi_hba->n_phy : 8); i++) |
| if (phy_state & 1 << i) |
| if (((phy_port_num_ma >> (i * 4)) & 0xf) == port_id) |
| bitmap |= 1 << i; |
| |
| if (hisi_hba->n_phy == 9) { |
| u32 port_state = hisi_sas_read32(hisi_hba, PORT_STATE); |
| |
| if (phy_state & 1 << 8) |
| if (((port_state & PORT_STATE_PHY8_PORT_NUM_MSK) >> |
| PORT_STATE_PHY8_PORT_NUM_OFF) == port_id) |
| bitmap |= 1 << 9; |
| } |
| |
| return bitmap; |
| } |
| |
| /* DQ lock must be taken here */ |
| static void start_delivery_v2_hw(struct hisi_sas_dq *dq) |
| { |
| struct hisi_hba *hisi_hba = dq->hisi_hba; |
| struct hisi_sas_slot *s, *s1, *s2 = NULL; |
| int dlvry_queue = dq->id; |
| int wp; |
| |
| list_for_each_entry_safe(s, s1, &dq->list, delivery) { |
| if (!s->ready) |
| break; |
| s2 = s; |
| list_del(&s->delivery); |
| } |
| |
| if (!s2) |
| return; |
| |
| /* |
| * Ensure that memories for slots built on other CPUs is observed. |
| */ |
| smp_rmb(); |
| wp = (s2->dlvry_queue_slot + 1) % HISI_SAS_QUEUE_SLOTS; |
| |
| hisi_sas_write32(hisi_hba, DLVRY_Q_0_WR_PTR + (dlvry_queue * 0x14), wp); |
| } |
| |
| static void prep_prd_sge_v2_hw(struct hisi_hba *hisi_hba, |
| struct hisi_sas_slot *slot, |
| struct hisi_sas_cmd_hdr *hdr, |
| struct scatterlist *scatter, |
| int n_elem) |
| { |
| struct hisi_sas_sge_page *sge_page = hisi_sas_sge_addr_mem(slot); |
| struct scatterlist *sg; |
| int i; |
| |
| for_each_sg(scatter, sg, n_elem, i) { |
| struct hisi_sas_sge *entry = &sge_page->sge[i]; |
| |
| entry->addr = cpu_to_le64(sg_dma_address(sg)); |
| entry->page_ctrl_0 = entry->page_ctrl_1 = 0; |
| entry->data_len = cpu_to_le32(sg_dma_len(sg)); |
| entry->data_off = 0; |
| } |
| |
| hdr->prd_table_addr = cpu_to_le64(hisi_sas_sge_addr_dma(slot)); |
| |
| hdr->sg_len = cpu_to_le32(n_elem << CMD_HDR_DATA_SGL_LEN_OFF); |
| } |
| |
| static void prep_smp_v2_hw(struct hisi_hba *hisi_hba, |
| struct hisi_sas_slot *slot) |
| { |
| struct sas_task *task = slot->task; |
| struct hisi_sas_cmd_hdr *hdr = slot->cmd_hdr; |
| struct domain_device *device = task->dev; |
| struct hisi_sas_port *port = slot->port; |
| struct scatterlist *sg_req; |
| struct hisi_sas_device *sas_dev = device->lldd_dev; |
| dma_addr_t req_dma_addr; |
| unsigned int req_len; |
| |
| /* req */ |
| sg_req = &task->smp_task.smp_req; |
| req_dma_addr = sg_dma_address(sg_req); |
| req_len = sg_dma_len(&task->smp_task.smp_req); |
| |
| /* create header */ |
| /* dw0 */ |
| hdr->dw0 = cpu_to_le32((port->id << CMD_HDR_PORT_OFF) | |
| (1 << CMD_HDR_PRIORITY_OFF) | /* high pri */ |
| (2 << CMD_HDR_CMD_OFF)); /* smp */ |
| |
| /* map itct entry */ |
| hdr->dw1 = cpu_to_le32((sas_dev->device_id << CMD_HDR_DEV_ID_OFF) | |
| (1 << CMD_HDR_FRAME_TYPE_OFF) | |
| (DIR_NO_DATA << CMD_HDR_DIR_OFF)); |
| |
| /* dw2 */ |
| hdr->dw2 = cpu_to_le32((((req_len - 4) / 4) << CMD_HDR_CFL_OFF) | |
| (HISI_SAS_MAX_SMP_RESP_SZ / 4 << |
| CMD_HDR_MRFL_OFF)); |
| |
| hdr->transfer_tags = cpu_to_le32(slot->idx << CMD_HDR_IPTT_OFF); |
| |
| hdr->cmd_table_addr = cpu_to_le64(req_dma_addr); |
| hdr->sts_buffer_addr = cpu_to_le64(hisi_sas_status_buf_addr_dma(slot)); |
| } |
| |
| static void prep_ssp_v2_hw(struct hisi_hba *hisi_hba, |
| struct hisi_sas_slot *slot) |
| { |
| struct sas_task *task = slot->task; |
| struct hisi_sas_cmd_hdr *hdr = slot->cmd_hdr; |
| struct domain_device *device = task->dev; |
| struct hisi_sas_device *sas_dev = device->lldd_dev; |
| struct hisi_sas_port *port = slot->port; |
| struct sas_ssp_task *ssp_task = &task->ssp_task; |
| struct scsi_cmnd *scsi_cmnd = ssp_task->cmd; |
| struct hisi_sas_tmf_task *tmf = slot->tmf; |
| int has_data = 0, priority = !!tmf; |
| u8 *buf_cmd; |
| u32 dw1 = 0, dw2 = 0; |
| |
| hdr->dw0 = cpu_to_le32((1 << CMD_HDR_RESP_REPORT_OFF) | |
| (2 << CMD_HDR_TLR_CTRL_OFF) | |
| (port->id << CMD_HDR_PORT_OFF) | |
| (priority << CMD_HDR_PRIORITY_OFF) | |
| (1 << CMD_HDR_CMD_OFF)); /* ssp */ |
| |
| dw1 = 1 << CMD_HDR_VDTL_OFF; |
| if (tmf) { |
| dw1 |= 2 << CMD_HDR_FRAME_TYPE_OFF; |
| dw1 |= DIR_NO_DATA << CMD_HDR_DIR_OFF; |
| } else { |
| dw1 |= 1 << CMD_HDR_FRAME_TYPE_OFF; |
| switch (scsi_cmnd->sc_data_direction) { |
| case DMA_TO_DEVICE: |
| has_data = 1; |
| dw1 |= DIR_TO_DEVICE << CMD_HDR_DIR_OFF; |
| break; |
| case DMA_FROM_DEVICE: |
| has_data = 1; |
| dw1 |= DIR_TO_INI << CMD_HDR_DIR_OFF; |
| break; |
| default: |
| dw1 &= ~CMD_HDR_DIR_MSK; |
| } |
| } |
| |
| /* map itct entry */ |
| dw1 |= sas_dev->device_id << CMD_HDR_DEV_ID_OFF; |
| hdr->dw1 = cpu_to_le32(dw1); |
| |
| dw2 = (((sizeof(struct ssp_command_iu) + sizeof(struct ssp_frame_hdr) |
| + 3) / 4) << CMD_HDR_CFL_OFF) | |
| ((HISI_SAS_MAX_SSP_RESP_SZ / 4) << CMD_HDR_MRFL_OFF) | |
| (2 << CMD_HDR_SG_MOD_OFF); |
| hdr->dw2 = cpu_to_le32(dw2); |
| |
| hdr->transfer_tags = cpu_to_le32(slot->idx); |
| |
| if (has_data) |
| prep_prd_sge_v2_hw(hisi_hba, slot, hdr, task->scatter, |
| slot->n_elem); |
| |
| hdr->data_transfer_len = cpu_to_le32(task->total_xfer_len); |
| hdr->cmd_table_addr = cpu_to_le64(hisi_sas_cmd_hdr_addr_dma(slot)); |
| hdr->sts_buffer_addr = cpu_to_le64(hisi_sas_status_buf_addr_dma(slot)); |
| |
| buf_cmd = hisi_sas_cmd_hdr_addr_mem(slot) + |
| sizeof(struct ssp_frame_hdr); |
| |
| memcpy(buf_cmd, &task->ssp_task.LUN, 8); |
| if (!tmf) { |
| buf_cmd[9] = task->ssp_task.task_attr | |
| (task->ssp_task.task_prio << 3); |
| memcpy(buf_cmd + 12, task->ssp_task.cmd->cmnd, |
| task->ssp_task.cmd->cmd_len); |
| } else { |
| buf_cmd[10] = tmf->tmf; |
| switch (tmf->tmf) { |
| case TMF_ABORT_TASK: |
| case TMF_QUERY_TASK: |
| buf_cmd[12] = |
| (tmf->tag_of_task_to_be_managed >> 8) & 0xff; |
| buf_cmd[13] = |
| tmf->tag_of_task_to_be_managed & 0xff; |
| break; |
| default: |
| break; |
| } |
| } |
| } |
| |
| #define TRANS_TX_ERR 0 |
| #define TRANS_RX_ERR 1 |
| #define DMA_TX_ERR 2 |
| #define SIPC_RX_ERR 3 |
| #define DMA_RX_ERR 4 |
| |
| #define DMA_TX_ERR_OFF 0 |
| #define DMA_TX_ERR_MSK (0xffff << DMA_TX_ERR_OFF) |
| #define SIPC_RX_ERR_OFF 16 |
| #define SIPC_RX_ERR_MSK (0xffff << SIPC_RX_ERR_OFF) |
| |
| static int parse_trans_tx_err_code_v2_hw(u32 err_msk) |
| { |
| static const u8 trans_tx_err_code_prio[] = { |
| TRANS_TX_OPEN_FAIL_WITH_IT_NEXUS_LOSS, |
| TRANS_TX_ERR_PHY_NOT_ENABLE, |
| TRANS_TX_OPEN_CNX_ERR_WRONG_DESTINATION, |
| TRANS_TX_OPEN_CNX_ERR_ZONE_VIOLATION, |
| TRANS_TX_OPEN_CNX_ERR_BY_OTHER, |
| RESERVED0, |
| TRANS_TX_OPEN_CNX_ERR_AIP_TIMEOUT, |
| TRANS_TX_OPEN_CNX_ERR_STP_RESOURCES_BUSY, |
| TRANS_TX_OPEN_CNX_ERR_PROTOCOL_NOT_SUPPORTED, |
| TRANS_TX_OPEN_CNX_ERR_CONNECTION_RATE_NOT_SUPPORTED, |
| TRANS_TX_OPEN_CNX_ERR_BAD_DESTINATION, |
| TRANS_TX_OPEN_CNX_ERR_BREAK_RCVD, |
| TRANS_TX_OPEN_CNX_ERR_LOW_PHY_POWER, |
| TRANS_TX_OPEN_CNX_ERR_PATHWAY_BLOCKED, |
| TRANS_TX_OPEN_CNX_ERR_OPEN_TIMEOUT, |
| TRANS_TX_OPEN_CNX_ERR_NO_DESTINATION, |
| TRANS_TX_OPEN_RETRY_ERR_THRESHOLD_REACHED, |
| TRANS_TX_ERR_WITH_CLOSE_PHYDISALE, |
| TRANS_TX_ERR_WITH_CLOSE_DWS_TIMEOUT, |
| TRANS_TX_ERR_WITH_CLOSE_COMINIT, |
| TRANS_TX_ERR_WITH_BREAK_TIMEOUT, |
| TRANS_TX_ERR_WITH_BREAK_REQUEST, |
| TRANS_TX_ERR_WITH_BREAK_RECEVIED, |
| TRANS_TX_ERR_WITH_CLOSE_TIMEOUT, |
| TRANS_TX_ERR_WITH_CLOSE_NORMAL, |
| TRANS_TX_ERR_WITH_NAK_RECEVIED, |
| TRANS_TX_ERR_WITH_ACK_NAK_TIMEOUT, |
| TRANS_TX_ERR_WITH_CREDIT_TIMEOUT, |
| TRANS_TX_ERR_WITH_IPTT_CONFLICT, |
| TRANS_TX_ERR_WITH_OPEN_BY_DES_OR_OTHERS, |
| TRANS_TX_ERR_WITH_WAIT_RECV_TIMEOUT, |
| }; |
| int index, i; |
| |
| for (i = 0; i < ARRAY_SIZE(trans_tx_err_code_prio); i++) { |
| index = trans_tx_err_code_prio[i] - TRANS_TX_FAIL_BASE; |
| if (err_msk & (1 << index)) |
| return trans_tx_err_code_prio[i]; |
| } |
| return -1; |
| } |
| |
| static int parse_trans_rx_err_code_v2_hw(u32 err_msk) |
| { |
| static const u8 trans_rx_err_code_prio[] = { |
| TRANS_RX_ERR_WITH_RXFRAME_CRC_ERR, |
| TRANS_RX_ERR_WITH_RXFIS_8B10B_DISP_ERR, |
| TRANS_RX_ERR_WITH_RXFRAME_HAVE_ERRPRM, |
| TRANS_RX_ERR_WITH_RXFIS_DECODE_ERROR, |
| TRANS_RX_ERR_WITH_RXFIS_CRC_ERR, |
| TRANS_RX_ERR_WITH_RXFRAME_LENGTH_OVERRUN, |
| TRANS_RX_ERR_WITH_RXFIS_RX_SYNCP, |
| TRANS_RX_ERR_WITH_LINK_BUF_OVERRUN, |
| TRANS_RX_ERR_WITH_CLOSE_PHY_DISABLE, |
| TRANS_RX_ERR_WITH_CLOSE_DWS_TIMEOUT, |
| TRANS_RX_ERR_WITH_CLOSE_COMINIT, |
| TRANS_RX_ERR_WITH_BREAK_TIMEOUT, |
| TRANS_RX_ERR_WITH_BREAK_REQUEST, |
| TRANS_RX_ERR_WITH_BREAK_RECEVIED, |
| RESERVED1, |
| TRANS_RX_ERR_WITH_CLOSE_NORMAL, |
| TRANS_RX_ERR_WITH_DATA_LEN0, |
| TRANS_RX_ERR_WITH_BAD_HASH, |
| TRANS_RX_XRDY_WLEN_ZERO_ERR, |
| TRANS_RX_SSP_FRM_LEN_ERR, |
| RESERVED2, |
| RESERVED3, |
| RESERVED4, |
| RESERVED5, |
| TRANS_RX_ERR_WITH_BAD_FRM_TYPE, |
| TRANS_RX_SMP_FRM_LEN_ERR, |
| TRANS_RX_SMP_RESP_TIMEOUT_ERR, |
| RESERVED6, |
| RESERVED7, |
| RESERVED8, |
| RESERVED9, |
| TRANS_RX_R_ERR, |
| }; |
| int index, i; |
| |
| for (i = 0; i < ARRAY_SIZE(trans_rx_err_code_prio); i++) { |
| index = trans_rx_err_code_prio[i] - TRANS_RX_FAIL_BASE; |
| if (err_msk & (1 << index)) |
| return trans_rx_err_code_prio[i]; |
| } |
| return -1; |
| } |
| |
| static int parse_dma_tx_err_code_v2_hw(u32 err_msk) |
| { |
| static const u8 dma_tx_err_code_prio[] = { |
| DMA_TX_UNEXP_XFER_ERR, |
| DMA_TX_UNEXP_RETRANS_ERR, |
| DMA_TX_XFER_LEN_OVERFLOW, |
| DMA_TX_XFER_OFFSET_ERR, |
| DMA_TX_RAM_ECC_ERR, |
| DMA_TX_DIF_LEN_ALIGN_ERR, |
| DMA_TX_DIF_CRC_ERR, |
| DMA_TX_DIF_APP_ERR, |
| DMA_TX_DIF_RPP_ERR, |
| DMA_TX_DATA_SGL_OVERFLOW, |
| DMA_TX_DIF_SGL_OVERFLOW, |
| }; |
| int index, i; |
| |
| for (i = 0; i < ARRAY_SIZE(dma_tx_err_code_prio); i++) { |
| index = dma_tx_err_code_prio[i] - DMA_TX_ERR_BASE; |
| err_msk = err_msk & DMA_TX_ERR_MSK; |
| if (err_msk & (1 << index)) |
| return dma_tx_err_code_prio[i]; |
| } |
| return -1; |
| } |
| |
| static int parse_sipc_rx_err_code_v2_hw(u32 err_msk) |
| { |
| static const u8 sipc_rx_err_code_prio[] = { |
| SIPC_RX_FIS_STATUS_ERR_BIT_VLD, |
| SIPC_RX_PIO_WRSETUP_STATUS_DRQ_ERR, |
| SIPC_RX_FIS_STATUS_BSY_BIT_ERR, |
| SIPC_RX_WRSETUP_LEN_ODD_ERR, |
| SIPC_RX_WRSETUP_LEN_ZERO_ERR, |
| SIPC_RX_WRDATA_LEN_NOT_MATCH_ERR, |
| SIPC_RX_NCQ_WRSETUP_OFFSET_ERR, |
| SIPC_RX_NCQ_WRSETUP_AUTO_ACTIVE_ERR, |
| SIPC_RX_SATA_UNEXP_FIS_ERR, |
| SIPC_RX_WRSETUP_ESTATUS_ERR, |
| SIPC_RX_DATA_UNDERFLOW_ERR, |
| }; |
| int index, i; |
| |
| for (i = 0; i < ARRAY_SIZE(sipc_rx_err_code_prio); i++) { |
| index = sipc_rx_err_code_prio[i] - SIPC_RX_ERR_BASE; |
| err_msk = err_msk & SIPC_RX_ERR_MSK; |
| if (err_msk & (1 << (index + 0x10))) |
| return sipc_rx_err_code_prio[i]; |
| } |
| return -1; |
| } |
| |
| static int parse_dma_rx_err_code_v2_hw(u32 err_msk) |
| { |
| static const u8 dma_rx_err_code_prio[] = { |
| DMA_RX_UNKNOWN_FRM_ERR, |
| DMA_RX_DATA_LEN_OVERFLOW, |
| DMA_RX_DATA_LEN_UNDERFLOW, |
| DMA_RX_DATA_OFFSET_ERR, |
| RESERVED10, |
| DMA_RX_SATA_FRAME_TYPE_ERR, |
| DMA_RX_RESP_BUF_OVERFLOW, |
| DMA_RX_UNEXP_RETRANS_RESP_ERR, |
| DMA_RX_UNEXP_NORM_RESP_ERR, |
| DMA_RX_UNEXP_RDFRAME_ERR, |
| DMA_RX_PIO_DATA_LEN_ERR, |
| DMA_RX_RDSETUP_STATUS_ERR, |
| DMA_RX_RDSETUP_STATUS_DRQ_ERR, |
| DMA_RX_RDSETUP_STATUS_BSY_ERR, |
| DMA_RX_RDSETUP_LEN_ODD_ERR, |
| DMA_RX_RDSETUP_LEN_ZERO_ERR, |
| DMA_RX_RDSETUP_LEN_OVER_ERR, |
| DMA_RX_RDSETUP_OFFSET_ERR, |
| DMA_RX_RDSETUP_ACTIVE_ERR, |
| DMA_RX_RDSETUP_ESTATUS_ERR, |
| DMA_RX_RAM_ECC_ERR, |
| DMA_RX_DIF_CRC_ERR, |
| DMA_RX_DIF_APP_ERR, |
| DMA_RX_DIF_RPP_ERR, |
| DMA_RX_DATA_SGL_OVERFLOW, |
| DMA_RX_DIF_SGL_OVERFLOW, |
| }; |
| int index, i; |
| |
| for (i = 0; i < ARRAY_SIZE(dma_rx_err_code_prio); i++) { |
| index = dma_rx_err_code_prio[i] - DMA_RX_ERR_BASE; |
| if (err_msk & (1 << index)) |
| return dma_rx_err_code_prio[i]; |
| } |
| return -1; |
| } |
| |
| /* by default, task resp is complete */ |
| static void slot_err_v2_hw(struct hisi_hba *hisi_hba, |
| struct sas_task *task, |
| struct hisi_sas_slot *slot, |
| int err_phase) |
| { |
| struct task_status_struct *ts = &task->task_status; |
| struct hisi_sas_err_record_v2 *err_record = |
| hisi_sas_status_buf_addr_mem(slot); |
| u32 trans_tx_fail_type = le32_to_cpu(err_record->trans_tx_fail_type); |
| u32 trans_rx_fail_type = le32_to_cpu(err_record->trans_rx_fail_type); |
| u16 dma_tx_err_type = le16_to_cpu(err_record->dma_tx_err_type); |
| u16 sipc_rx_err_type = le16_to_cpu(err_record->sipc_rx_err_type); |
| u32 dma_rx_err_type = le32_to_cpu(err_record->dma_rx_err_type); |
| int error = -1; |
| |
| if (err_phase == 1) { |
| /* error in TX phase, the priority of error is: DW2 > DW0 */ |
| error = parse_dma_tx_err_code_v2_hw(dma_tx_err_type); |
| if (error == -1) |
| error = parse_trans_tx_err_code_v2_hw( |
| trans_tx_fail_type); |
| } else if (err_phase == 2) { |
| /* error in RX phase, the priority is: DW1 > DW3 > DW2 */ |
| error = parse_trans_rx_err_code_v2_hw(trans_rx_fail_type); |
| if (error == -1) { |
| error = parse_dma_rx_err_code_v2_hw( |
| dma_rx_err_type); |
| if (error == -1) |
| error = parse_sipc_rx_err_code_v2_hw( |
| sipc_rx_err_type); |
| } |
| } |
| |
| switch (task->task_proto) { |
| case SAS_PROTOCOL_SSP: |
| { |
| switch (error) { |
| case TRANS_TX_OPEN_CNX_ERR_NO_DESTINATION: |
| { |
| ts->stat = SAS_OPEN_REJECT; |
| ts->open_rej_reason = SAS_OREJ_NO_DEST; |
| break; |
| } |
| case TRANS_TX_OPEN_CNX_ERR_PROTOCOL_NOT_SUPPORTED: |
| { |
| ts->stat = SAS_OPEN_REJECT; |
| ts->open_rej_reason = SAS_OREJ_EPROTO; |
| break; |
| } |
| case TRANS_TX_OPEN_CNX_ERR_CONNECTION_RATE_NOT_SUPPORTED: |
| { |
| ts->stat = SAS_OPEN_REJECT; |
| ts->open_rej_reason = SAS_OREJ_CONN_RATE; |
| break; |
| } |
| case TRANS_TX_OPEN_CNX_ERR_BAD_DESTINATION: |
| { |
| ts->stat = SAS_OPEN_REJECT; |
| ts->open_rej_reason = SAS_OREJ_BAD_DEST; |
| break; |
| } |
| case TRANS_TX_OPEN_CNX_ERR_WRONG_DESTINATION: |
| { |
| ts->stat = SAS_OPEN_REJECT; |
| ts->open_rej_reason = SAS_OREJ_WRONG_DEST; |
| break; |
| } |
| case DMA_RX_UNEXP_NORM_RESP_ERR: |
| case TRANS_TX_OPEN_CNX_ERR_ZONE_VIOLATION: |
| case DMA_RX_RESP_BUF_OVERFLOW: |
| { |
| ts->stat = SAS_OPEN_REJECT; |
| ts->open_rej_reason = SAS_OREJ_UNKNOWN; |
| break; |
| } |
| case TRANS_TX_OPEN_CNX_ERR_LOW_PHY_POWER: |
| { |
| /* not sure */ |
| ts->stat = SAS_DEV_NO_RESPONSE; |
| break; |
| } |
| case DMA_RX_DATA_LEN_OVERFLOW: |
| { |
| ts->stat = SAS_DATA_OVERRUN; |
| ts->residual = 0; |
| break; |
| } |
| case DMA_RX_DATA_LEN_UNDERFLOW: |
| { |
| ts->residual = trans_tx_fail_type; |
| ts->stat = SAS_DATA_UNDERRUN; |
| break; |
| } |
| case TRANS_TX_OPEN_FAIL_WITH_IT_NEXUS_LOSS: |
| case TRANS_TX_ERR_PHY_NOT_ENABLE: |
| case TRANS_TX_OPEN_CNX_ERR_BY_OTHER: |
| case TRANS_TX_OPEN_CNX_ERR_AIP_TIMEOUT: |
| case TRANS_TX_OPEN_CNX_ERR_BREAK_RCVD: |
| case TRANS_TX_OPEN_CNX_ERR_PATHWAY_BLOCKED: |
| case TRANS_TX_OPEN_CNX_ERR_OPEN_TIMEOUT: |
| case TRANS_TX_OPEN_RETRY_ERR_THRESHOLD_REACHED: |
| case TRANS_TX_ERR_WITH_BREAK_TIMEOUT: |
| case TRANS_TX_ERR_WITH_BREAK_REQUEST: |
| case TRANS_TX_ERR_WITH_BREAK_RECEVIED: |
| case TRANS_TX_ERR_WITH_CLOSE_TIMEOUT: |
| case TRANS_TX_ERR_WITH_CLOSE_NORMAL: |
| case TRANS_TX_ERR_WITH_CLOSE_PHYDISALE: |
| case TRANS_TX_ERR_WITH_CLOSE_DWS_TIMEOUT: |
| case TRANS_TX_ERR_WITH_CLOSE_COMINIT: |
| case TRANS_TX_ERR_WITH_NAK_RECEVIED: |
| case TRANS_TX_ERR_WITH_ACK_NAK_TIMEOUT: |
| case TRANS_TX_ERR_WITH_CREDIT_TIMEOUT: |
| case TRANS_TX_ERR_WITH_IPTT_CONFLICT: |
| case TRANS_RX_ERR_WITH_RXFRAME_CRC_ERR: |
| case TRANS_RX_ERR_WITH_RXFIS_8B10B_DISP_ERR: |
| case TRANS_RX_ERR_WITH_RXFRAME_HAVE_ERRPRM: |
| case TRANS_RX_ERR_WITH_LINK_BUF_OVERRUN: |
| case TRANS_RX_ERR_WITH_BREAK_TIMEOUT: |
| case TRANS_RX_ERR_WITH_BREAK_REQUEST: |
| case TRANS_RX_ERR_WITH_BREAK_RECEVIED: |
| case TRANS_RX_ERR_WITH_CLOSE_NORMAL: |
| case TRANS_RX_ERR_WITH_CLOSE_DWS_TIMEOUT: |
| case TRANS_RX_ERR_WITH_CLOSE_COMINIT: |
| case TRANS_TX_ERR_FRAME_TXED: |
| case TRANS_RX_ERR_WITH_CLOSE_PHY_DISABLE: |
| case TRANS_RX_ERR_WITH_DATA_LEN0: |
| case TRANS_RX_ERR_WITH_BAD_HASH: |
| case TRANS_RX_XRDY_WLEN_ZERO_ERR: |
| case TRANS_RX_SSP_FRM_LEN_ERR: |
| case TRANS_RX_ERR_WITH_BAD_FRM_TYPE: |
| case DMA_TX_DATA_SGL_OVERFLOW: |
| case DMA_TX_UNEXP_XFER_ERR: |
| case DMA_TX_UNEXP_RETRANS_ERR: |
| case DMA_TX_XFER_LEN_OVERFLOW: |
| case DMA_TX_XFER_OFFSET_ERR: |
| case SIPC_RX_DATA_UNDERFLOW_ERR: |
| case DMA_RX_DATA_SGL_OVERFLOW: |
| case DMA_RX_DATA_OFFSET_ERR: |
| case DMA_RX_RDSETUP_LEN_ODD_ERR: |
| case DMA_RX_RDSETUP_LEN_ZERO_ERR: |
| case DMA_RX_RDSETUP_LEN_OVER_ERR: |
| case DMA_RX_SATA_FRAME_TYPE_ERR: |
| case DMA_RX_UNKNOWN_FRM_ERR: |
| { |
| /* This will request a retry */ |
| ts->stat = SAS_QUEUE_FULL; |
| slot->abort = 1; |
| break; |
| } |
| default: |
| break; |
| } |
| } |
| break; |
| case SAS_PROTOCOL_SMP: |
| ts->stat = SAM_STAT_CHECK_CONDITION; |
| break; |
| |
| case SAS_PROTOCOL_SATA: |
| case SAS_PROTOCOL_STP: |
| case SAS_PROTOCOL_SATA | SAS_PROTOCOL_STP: |
| { |
| switch (error) { |
| case TRANS_TX_OPEN_CNX_ERR_NO_DESTINATION: |
| { |
| ts->stat = SAS_OPEN_REJECT; |
| ts->open_rej_reason = SAS_OREJ_NO_DEST; |
| break; |
| } |
| case TRANS_TX_OPEN_CNX_ERR_LOW_PHY_POWER: |
| { |
| ts->resp = SAS_TASK_UNDELIVERED; |
| ts->stat = SAS_DEV_NO_RESPONSE; |
| break; |
| } |
| case TRANS_TX_OPEN_CNX_ERR_PROTOCOL_NOT_SUPPORTED: |
| { |
| ts->stat = SAS_OPEN_REJECT; |
| ts->open_rej_reason = SAS_OREJ_EPROTO; |
| break; |
| } |
| case TRANS_TX_OPEN_CNX_ERR_CONNECTION_RATE_NOT_SUPPORTED: |
| { |
| ts->stat = SAS_OPEN_REJECT; |
| ts->open_rej_reason = SAS_OREJ_CONN_RATE; |
| break; |
| } |
| case TRANS_TX_OPEN_CNX_ERR_BAD_DESTINATION: |
| { |
| ts->stat = SAS_OPEN_REJECT; |
| ts->open_rej_reason = SAS_OREJ_CONN_RATE; |
| break; |
| } |
| case TRANS_TX_OPEN_CNX_ERR_WRONG_DESTINATION: |
| { |
| ts->stat = SAS_OPEN_REJECT; |
| ts->open_rej_reason = SAS_OREJ_WRONG_DEST; |
| break; |
| } |
| case DMA_RX_RESP_BUF_OVERFLOW: |
| case DMA_RX_UNEXP_NORM_RESP_ERR: |
| case TRANS_TX_OPEN_CNX_ERR_ZONE_VIOLATION: |
| { |
| ts->stat = SAS_OPEN_REJECT; |
| ts->open_rej_reason = SAS_OREJ_UNKNOWN; |
| break; |
| } |
| case DMA_RX_DATA_LEN_OVERFLOW: |
| { |
| ts->stat = SAS_DATA_OVERRUN; |
| ts->residual = 0; |
| break; |
| } |
| case DMA_RX_DATA_LEN_UNDERFLOW: |
| { |
| ts->residual = trans_tx_fail_type; |
| ts->stat = SAS_DATA_UNDERRUN; |
| break; |
| } |
| case TRANS_TX_OPEN_FAIL_WITH_IT_NEXUS_LOSS: |
| case TRANS_TX_ERR_PHY_NOT_ENABLE: |
| case TRANS_TX_OPEN_CNX_ERR_BY_OTHER: |
| case TRANS_TX_OPEN_CNX_ERR_AIP_TIMEOUT: |
| case TRANS_TX_OPEN_CNX_ERR_BREAK_RCVD: |
| case TRANS_TX_OPEN_CNX_ERR_PATHWAY_BLOCKED: |
| case TRANS_TX_OPEN_CNX_ERR_OPEN_TIMEOUT: |
| case TRANS_TX_OPEN_RETRY_ERR_THRESHOLD_REACHED: |
| case TRANS_TX_ERR_WITH_BREAK_TIMEOUT: |
| case TRANS_TX_ERR_WITH_BREAK_REQUEST: |
| case TRANS_TX_ERR_WITH_BREAK_RECEVIED: |
| case TRANS_TX_ERR_WITH_CLOSE_TIMEOUT: |
| case TRANS_TX_ERR_WITH_CLOSE_NORMAL: |
| case TRANS_TX_ERR_WITH_CLOSE_PHYDISALE: |
| case TRANS_TX_ERR_WITH_CLOSE_DWS_TIMEOUT: |
| case TRANS_TX_ERR_WITH_CLOSE_COMINIT: |
| case TRANS_TX_ERR_WITH_ACK_NAK_TIMEOUT: |
| case TRANS_TX_ERR_WITH_CREDIT_TIMEOUT: |
| case TRANS_TX_ERR_WITH_OPEN_BY_DES_OR_OTHERS: |
| case TRANS_TX_ERR_WITH_WAIT_RECV_TIMEOUT: |
| case TRANS_RX_ERR_WITH_RXFRAME_HAVE_ERRPRM: |
| case TRANS_RX_ERR_WITH_RXFIS_8B10B_DISP_ERR: |
| case TRANS_RX_ERR_WITH_RXFIS_DECODE_ERROR: |
| case TRANS_RX_ERR_WITH_RXFIS_CRC_ERR: |
| case TRANS_RX_ERR_WITH_RXFRAME_LENGTH_OVERRUN: |
| case TRANS_RX_ERR_WITH_RXFIS_RX_SYNCP: |
| case TRANS_RX_ERR_WITH_LINK_BUF_OVERRUN: |
| case TRANS_RX_ERR_WITH_BREAK_TIMEOUT: |
| case TRANS_RX_ERR_WITH_BREAK_REQUEST: |
| case TRANS_RX_ERR_WITH_BREAK_RECEVIED: |
| case TRANS_RX_ERR_WITH_CLOSE_NORMAL: |
| case TRANS_RX_ERR_WITH_CLOSE_PHY_DISABLE: |
| case TRANS_RX_ERR_WITH_CLOSE_DWS_TIMEOUT: |
| case TRANS_RX_ERR_WITH_CLOSE_COMINIT: |
| case TRANS_RX_ERR_WITH_DATA_LEN0: |
| case TRANS_RX_ERR_WITH_BAD_HASH: |
| case TRANS_RX_XRDY_WLEN_ZERO_ERR: |
| case TRANS_RX_ERR_WITH_BAD_FRM_TYPE: |
| case DMA_TX_DATA_SGL_OVERFLOW: |
| case DMA_TX_UNEXP_XFER_ERR: |
| case DMA_TX_UNEXP_RETRANS_ERR: |
| case DMA_TX_XFER_LEN_OVERFLOW: |
| case DMA_TX_XFER_OFFSET_ERR: |
| case SIPC_RX_FIS_STATUS_ERR_BIT_VLD: |
| case SIPC_RX_PIO_WRSETUP_STATUS_DRQ_ERR: |
| case SIPC_RX_FIS_STATUS_BSY_BIT_ERR: |
| case SIPC_RX_WRSETUP_LEN_ODD_ERR: |
| case SIPC_RX_WRSETUP_LEN_ZERO_ERR: |
| case SIPC_RX_WRDATA_LEN_NOT_MATCH_ERR: |
| case SIPC_RX_SATA_UNEXP_FIS_ERR: |
| case DMA_RX_DATA_SGL_OVERFLOW: |
| case DMA_RX_DATA_OFFSET_ERR: |
| case DMA_RX_SATA_FRAME_TYPE_ERR: |
| case DMA_RX_UNEXP_RDFRAME_ERR: |
| case DMA_RX_PIO_DATA_LEN_ERR: |
| case DMA_RX_RDSETUP_STATUS_ERR: |
| case DMA_RX_RDSETUP_STATUS_DRQ_ERR: |
| case DMA_RX_RDSETUP_STATUS_BSY_ERR: |
| case DMA_RX_RDSETUP_LEN_ODD_ERR: |
| case DMA_RX_RDSETUP_LEN_ZERO_ERR: |
| case DMA_RX_RDSETUP_LEN_OVER_ERR: |
| case DMA_RX_RDSETUP_OFFSET_ERR: |
| case DMA_RX_RDSETUP_ACTIVE_ERR: |
| case DMA_RX_RDSETUP_ESTATUS_ERR: |
| case DMA_RX_UNKNOWN_FRM_ERR: |
| case TRANS_RX_SSP_FRM_LEN_ERR: |
| case TRANS_TX_OPEN_CNX_ERR_STP_RESOURCES_BUSY: |
| { |
| slot->abort = 1; |
| ts->stat = SAS_PHY_DOWN; |
| break; |
| } |
| default: |
| { |
| ts->stat = SAS_PROTO_RESPONSE; |
| break; |
| } |
| } |
| hisi_sas_sata_done(task, slot); |
| } |
| break; |
| default: |
| break; |
| } |
| } |
| |
| static void slot_complete_v2_hw(struct hisi_hba *hisi_hba, |
| struct hisi_sas_slot *slot) |
| { |
| struct sas_task *task = slot->task; |
| struct hisi_sas_device *sas_dev; |
| struct device *dev = hisi_hba->dev; |
| struct task_status_struct *ts; |
| struct domain_device *device; |
| struct sas_ha_struct *ha; |
| struct hisi_sas_complete_v2_hdr *complete_queue = |
| hisi_hba->complete_hdr[slot->cmplt_queue]; |
| struct hisi_sas_complete_v2_hdr *complete_hdr = |
| &complete_queue[slot->cmplt_queue_slot]; |
| unsigned long flags; |
| bool is_internal = slot->is_internal; |
| u32 dw0; |
| |
| if (unlikely(!task || !task->lldd_task || !task->dev)) |
| return; |
| |
| ts = &task->task_status; |
| device = task->dev; |
| ha = device->port->ha; |
| sas_dev = device->lldd_dev; |
| |
| spin_lock_irqsave(&task->task_state_lock, flags); |
| task->task_state_flags &= |
| ~(SAS_TASK_STATE_PENDING | SAS_TASK_AT_INITIATOR); |
| spin_unlock_irqrestore(&task->task_state_lock, flags); |
| |
| memset(ts, 0, sizeof(*ts)); |
| ts->resp = SAS_TASK_COMPLETE; |
| |
| if (unlikely(!sas_dev)) { |
| dev_dbg(dev, "slot complete: port has no device\n"); |
| ts->stat = SAS_PHY_DOWN; |
| goto out; |
| } |
| |
| /* Use SAS+TMF status codes */ |
| dw0 = le32_to_cpu(complete_hdr->dw0); |
| switch ((dw0 & CMPLT_HDR_ABORT_STAT_MSK) >> |
| CMPLT_HDR_ABORT_STAT_OFF) { |
| case STAT_IO_ABORTED: |
| /* this io has been aborted by abort command */ |
| ts->stat = SAS_ABORTED_TASK; |
| goto out; |
| case STAT_IO_COMPLETE: |
| /* internal abort command complete */ |
| ts->stat = TMF_RESP_FUNC_SUCC; |
| del_timer(&slot->internal_abort_timer); |
| goto out; |
| case STAT_IO_NO_DEVICE: |
| ts->stat = TMF_RESP_FUNC_COMPLETE; |
| del_timer(&slot->internal_abort_timer); |
| goto out; |
| case STAT_IO_NOT_VALID: |
| /* abort single io, controller don't find |
| * the io need to abort |
| */ |
| ts->stat = TMF_RESP_FUNC_FAILED; |
| del_timer(&slot->internal_abort_timer); |
| goto out; |
| default: |
| break; |
| } |
| |
| if ((dw0 & CMPLT_HDR_ERX_MSK) && (!(dw0 & CMPLT_HDR_RSPNS_XFRD_MSK))) { |
| u32 err_phase = (dw0 & CMPLT_HDR_ERR_PHASE_MSK) |
| >> CMPLT_HDR_ERR_PHASE_OFF; |
| u32 *error_info = hisi_sas_status_buf_addr_mem(slot); |
| |
| /* Analyse error happens on which phase TX or RX */ |
| if (ERR_ON_TX_PHASE(err_phase)) |
| slot_err_v2_hw(hisi_hba, task, slot, 1); |
| else if (ERR_ON_RX_PHASE(err_phase)) |
| slot_err_v2_hw(hisi_hba, task, slot, 2); |
| |
| if (ts->stat != SAS_DATA_UNDERRUN) |
| dev_info(dev, "erroneous completion iptt=%d task=%pK dev id=%d CQ hdr: 0x%x 0x%x 0x%x 0x%x Error info: 0x%x 0x%x 0x%x 0x%x\n", |
| slot->idx, task, sas_dev->device_id, |
| complete_hdr->dw0, complete_hdr->dw1, |
| complete_hdr->act, complete_hdr->dw3, |
| error_info[0], error_info[1], |
| error_info[2], error_info[3]); |
| |
| if (unlikely(slot->abort)) { |
| sas_task_abort(task); |
| return; |
| } |
| goto out; |
| } |
| |
| switch (task->task_proto) { |
| case SAS_PROTOCOL_SSP: |
| { |
| struct hisi_sas_status_buffer *status_buffer = |
| hisi_sas_status_buf_addr_mem(slot); |
| struct ssp_response_iu *iu = (struct ssp_response_iu *) |
| &status_buffer->iu[0]; |
| |
| sas_ssp_task_response(dev, task, iu); |
| break; |
| } |
| case SAS_PROTOCOL_SMP: |
| { |
| struct scatterlist *sg_resp = &task->smp_task.smp_resp; |
| void *to = page_address(sg_page(sg_resp)); |
| |
| ts->stat = SAM_STAT_GOOD; |
| |
| dma_unmap_sg(dev, &task->smp_task.smp_req, 1, |
| DMA_TO_DEVICE); |
| memcpy(to + sg_resp->offset, |
| hisi_sas_status_buf_addr_mem(slot) + |
| sizeof(struct hisi_sas_err_record), |
| sg_resp->length); |
| break; |
| } |
| case SAS_PROTOCOL_SATA: |
| case SAS_PROTOCOL_STP: |
| case SAS_PROTOCOL_SATA | SAS_PROTOCOL_STP: |
| { |
| ts->stat = SAM_STAT_GOOD; |
| hisi_sas_sata_done(task, slot); |
| break; |
| } |
| default: |
| ts->stat = SAM_STAT_CHECK_CONDITION; |
| break; |
| } |
| |
| if (!slot->port->port_attached) { |
| dev_warn(dev, "slot complete: port %d has removed\n", |
| slot->port->sas_port.id); |
| ts->stat = SAS_PHY_DOWN; |
| } |
| |
| out: |
| spin_lock_irqsave(&task->task_state_lock, flags); |
| if (task->task_state_flags & SAS_TASK_STATE_ABORTED) { |
| spin_unlock_irqrestore(&task->task_state_lock, flags); |
| dev_info(dev, "slot complete: task(%pK) aborted\n", task); |
| return; |
| } |
| task->task_state_flags |= SAS_TASK_STATE_DONE; |
| spin_unlock_irqrestore(&task->task_state_lock, flags); |
| hisi_sas_slot_task_free(hisi_hba, task, slot); |
| |
| if (!is_internal && (task->task_proto != SAS_PROTOCOL_SMP)) { |
| spin_lock_irqsave(&device->done_lock, flags); |
| if (test_bit(SAS_HA_FROZEN, &ha->state)) { |
| spin_unlock_irqrestore(&device->done_lock, flags); |
| dev_info(dev, "slot complete: task(%pK) ignored\n", |
| task); |
| return; |
| } |
| spin_unlock_irqrestore(&device->done_lock, flags); |
| } |
| |
| if (task->task_done) |
| task->task_done(task); |
| } |
| |
| static void prep_ata_v2_hw(struct hisi_hba *hisi_hba, |
| struct hisi_sas_slot *slot) |
| { |
| struct sas_task *task = slot->task; |
| struct domain_device *device = task->dev; |
| struct domain_device *parent_dev = device->parent; |
| struct hisi_sas_device *sas_dev = device->lldd_dev; |
| struct hisi_sas_cmd_hdr *hdr = slot->cmd_hdr; |
| struct asd_sas_port *sas_port = device->port; |
| struct hisi_sas_port *port = to_hisi_sas_port(sas_port); |
| struct hisi_sas_tmf_task *tmf = slot->tmf; |
| u8 *buf_cmd; |
| int has_data = 0, hdr_tag = 0; |
| u32 dw0, dw1 = 0, dw2 = 0; |
| |
| /* create header */ |
| /* dw0 */ |
| dw0 = port->id << CMD_HDR_PORT_OFF; |
| if (parent_dev && dev_is_expander(parent_dev->dev_type)) |
| dw0 |= 3 << CMD_HDR_CMD_OFF; |
| else |
| dw0 |= 4 << CMD_HDR_CMD_OFF; |
| |
| if (tmf && tmf->force_phy) { |
| dw0 |= CMD_HDR_FORCE_PHY_MSK; |
| dw0 |= (1 << tmf->phy_id) << CMD_HDR_PHY_ID_OFF; |
| } |
| |
| hdr->dw0 = cpu_to_le32(dw0); |
| |
| /* dw1 */ |
| switch (task->data_dir) { |
| case DMA_TO_DEVICE: |
| has_data = 1; |
| dw1 |= DIR_TO_DEVICE << CMD_HDR_DIR_OFF; |
| break; |
| case DMA_FROM_DEVICE: |
| has_data = 1; |
| dw1 |= DIR_TO_INI << CMD_HDR_DIR_OFF; |
| break; |
| default: |
| dw1 &= ~CMD_HDR_DIR_MSK; |
| } |
| |
| if ((task->ata_task.fis.command == ATA_CMD_DEV_RESET) && |
| (task->ata_task.fis.control & ATA_SRST)) |
| dw1 |= 1 << CMD_HDR_RESET_OFF; |
| |
| dw1 |= (hisi_sas_get_ata_protocol( |
| &task->ata_task.fis, task->data_dir)) |
| << CMD_HDR_FRAME_TYPE_OFF; |
| dw1 |= sas_dev->device_id << CMD_HDR_DEV_ID_OFF; |
| hdr->dw1 = cpu_to_le32(dw1); |
| |
| /* dw2 */ |
| if (task->ata_task.use_ncq) { |
| struct ata_queued_cmd *qc = task->uldd_task; |
| |
| hdr_tag = qc->tag; |
| task->ata_task.fis.sector_count |= (u8) (hdr_tag << 3); |
| dw2 |= hdr_tag << CMD_HDR_NCQ_TAG_OFF; |
| } |
| |
| dw2 |= (HISI_SAS_MAX_STP_RESP_SZ / 4) << CMD_HDR_CFL_OFF | |
| 2 << CMD_HDR_SG_MOD_OFF; |
| hdr->dw2 = cpu_to_le32(dw2); |
| |
| /* dw3 */ |
| hdr->transfer_tags = cpu_to_le32(slot->idx); |
| |
| if (has_data) |
| prep_prd_sge_v2_hw(hisi_hba, slot, hdr, task->scatter, |
| slot->n_elem); |
| |
| hdr->data_transfer_len = cpu_to_le32(task->total_xfer_len); |
| hdr->cmd_table_addr = cpu_to_le64(hisi_sas_cmd_hdr_addr_dma(slot)); |
| hdr->sts_buffer_addr = cpu_to_le64(hisi_sas_status_buf_addr_dma(slot)); |
| |
| buf_cmd = hisi_sas_cmd_hdr_addr_mem(slot); |
| |
| if (likely(!task->ata_task.device_control_reg_update)) |
| task->ata_task.fis.flags |= 0x80; /* C=1: update ATA cmd reg */ |
| /* fill in command FIS */ |
| memcpy(buf_cmd, &task->ata_task.fis, sizeof(struct host_to_dev_fis)); |
| } |
| |
| static void hisi_sas_internal_abort_quirk_timeout(struct timer_list *t) |
| { |
| struct hisi_sas_slot *slot = from_timer(slot, t, internal_abort_timer); |
| struct hisi_sas_port *port = slot->port; |
| struct asd_sas_port *asd_sas_port; |
| struct asd_sas_phy *sas_phy; |
| |
| if (!port) |
| return; |
| |
| asd_sas_port = &port->sas_port; |
| |
| /* Kick the hardware - send break command */ |
| list_for_each_entry(sas_phy, &asd_sas_port->phy_list, port_phy_el) { |
| struct hisi_sas_phy *phy = sas_phy->lldd_phy; |
| struct hisi_hba *hisi_hba = phy->hisi_hba; |
| int phy_no = sas_phy->id; |
| u32 link_dfx2; |
| |
| link_dfx2 = hisi_sas_phy_read32(hisi_hba, phy_no, LINK_DFX2); |
| if ((link_dfx2 == LINK_DFX2_RCVR_HOLD_STS_MSK) || |
| (link_dfx2 & LINK_DFX2_SEND_HOLD_STS_MSK)) { |
| u32 txid_auto; |
| |
| txid_auto = hisi_sas_phy_read32(hisi_hba, phy_no, |
| TXID_AUTO); |
| txid_auto |= TXID_AUTO_CTB_MSK; |
| hisi_sas_phy_write32(hisi_hba, phy_no, TXID_AUTO, |
| txid_auto); |
| return; |
| } |
| } |
| } |
| |
| static void prep_abort_v2_hw(struct hisi_hba *hisi_hba, |
| struct hisi_sas_slot *slot, |
| int device_id, int abort_flag, int tag_to_abort) |
| { |
| struct sas_task *task = slot->task; |
| struct domain_device *dev = task->dev; |
| struct hisi_sas_cmd_hdr *hdr = slot->cmd_hdr; |
| struct hisi_sas_port *port = slot->port; |
| struct timer_list *timer = &slot->internal_abort_timer; |
| |
| /* setup the quirk timer */ |
| timer_setup(timer, hisi_sas_internal_abort_quirk_timeout, 0); |
| /* Set the timeout to 10ms less than internal abort timeout */ |
| mod_timer(timer, jiffies + msecs_to_jiffies(100)); |
| |
| /* dw0 */ |
| hdr->dw0 = cpu_to_le32((5 << CMD_HDR_CMD_OFF) | /*abort*/ |
| (port->id << CMD_HDR_PORT_OFF) | |
| (dev_is_sata(dev) << |
| CMD_HDR_ABORT_DEVICE_TYPE_OFF) | |
| (abort_flag << CMD_HDR_ABORT_FLAG_OFF)); |
| |
| /* dw1 */ |
| hdr->dw1 = cpu_to_le32(device_id << CMD_HDR_DEV_ID_OFF); |
| |
| /* dw7 */ |
| hdr->dw7 = cpu_to_le32(tag_to_abort << CMD_HDR_ABORT_IPTT_OFF); |
| hdr->transfer_tags = cpu_to_le32(slot->idx); |
| } |
| |
| static int phy_up_v2_hw(int phy_no, struct hisi_hba *hisi_hba) |
| { |
| int i, res = IRQ_HANDLED; |
| u32 port_id, link_rate; |
| struct hisi_sas_phy *phy = &hisi_hba->phy[phy_no]; |
| struct asd_sas_phy *sas_phy = &phy->sas_phy; |
| struct device *dev = hisi_hba->dev; |
| u32 *frame_rcvd = (u32 *)sas_phy->frame_rcvd; |
| struct sas_identify_frame *id = (struct sas_identify_frame *)frame_rcvd; |
| unsigned long flags; |
| |
| hisi_sas_phy_write32(hisi_hba, phy_no, PHYCTRL_PHY_ENA_MSK, 1); |
| |
| if (is_sata_phy_v2_hw(hisi_hba, phy_no)) |
| goto end; |
| |
| del_timer(&phy->timer); |
| |
| if (phy_no == 8) { |
| u32 port_state = hisi_sas_read32(hisi_hba, PORT_STATE); |
| |
| port_id = (port_state & PORT_STATE_PHY8_PORT_NUM_MSK) >> |
| PORT_STATE_PHY8_PORT_NUM_OFF; |
| link_rate = (port_state & PORT_STATE_PHY8_CONN_RATE_MSK) >> |
| PORT_STATE_PHY8_CONN_RATE_OFF; |
| } else { |
| port_id = hisi_sas_read32(hisi_hba, PHY_PORT_NUM_MA); |
| port_id = (port_id >> (4 * phy_no)) & 0xf; |
| link_rate = hisi_sas_read32(hisi_hba, PHY_CONN_RATE); |
| link_rate = (link_rate >> (phy_no * 4)) & 0xf; |
| } |
| |
| if (port_id == 0xf) { |
| dev_err(dev, "phyup: phy%d invalid portid\n", phy_no); |
| res = IRQ_NONE; |
| goto end; |
| } |
| |
| for (i = 0; i < 6; i++) { |
| u32 idaf = hisi_sas_phy_read32(hisi_hba, phy_no, |
| RX_IDAF_DWORD0 + (i * 4)); |
| frame_rcvd[i] = __swab32(idaf); |
| } |
| |
| sas_phy->linkrate = link_rate; |
| sas_phy->oob_mode = SAS_OOB_MODE; |
| memcpy(sas_phy->attached_sas_addr, &id->sas_addr, SAS_ADDR_SIZE); |
| dev_info(dev, "phyup: phy%d link_rate=%d\n", phy_no, link_rate); |
| phy->port_id = port_id; |
| phy->phy_type &= ~(PORT_TYPE_SAS | PORT_TYPE_SATA); |
| phy->phy_type |= PORT_TYPE_SAS; |
| phy->phy_attached = 1; |
| phy->identify.device_type = id->dev_type; |
| phy->frame_rcvd_size = sizeof(struct sas_identify_frame); |
| if (phy->identify.device_type == SAS_END_DEVICE) |
| phy->identify.target_port_protocols = |
| SAS_PROTOCOL_SSP; |
| else if (phy->identify.device_type != SAS_PHY_UNUSED) { |
| phy->identify.target_port_protocols = |
| SAS_PROTOCOL_SMP; |
| if (!timer_pending(&hisi_hba->timer)) |
| set_link_timer_quirk(hisi_hba); |
| } |
| hisi_sas_notify_phy_event(phy, HISI_PHYE_PHY_UP); |
| spin_lock_irqsave(&phy->lock, flags); |
| if (phy->reset_completion) { |
| phy->in_reset = 0; |
| complete(phy->reset_completion); |
| } |
| spin_unlock_irqrestore(&phy->lock, flags); |
| |
| end: |
| hisi_sas_phy_write32(hisi_hba, phy_no, CHL_INT0, |
| CHL_INT0_SL_PHY_ENABLE_MSK); |
| hisi_sas_phy_write32(hisi_hba, phy_no, PHYCTRL_PHY_ENA_MSK, 0); |
| |
| return res; |
| } |
| |
| static bool check_any_wideports_v2_hw(struct hisi_hba *hisi_hba) |
| { |
| u32 port_state; |
| |
| port_state = hisi_sas_read32(hisi_hba, PORT_STATE); |
| if (port_state & 0x1ff) |
| return true; |
| |
| return false; |
| } |
| |
| static int phy_down_v2_hw(int phy_no, struct hisi_hba *hisi_hba) |
| { |
| u32 phy_state, sl_ctrl, txid_auto; |
| struct hisi_sas_phy *phy = &hisi_hba->phy[phy_no]; |
| struct hisi_sas_port *port = phy->port; |
| struct device *dev = hisi_hba->dev; |
| |
| del_timer(&phy->timer); |
| hisi_sas_phy_write32(hisi_hba, phy_no, PHYCTRL_NOT_RDY_MSK, 1); |
| |
| phy_state = hisi_sas_read32(hisi_hba, PHY_STATE); |
| dev_info(dev, "phydown: phy%d phy_state=0x%x\n", phy_no, phy_state); |
| hisi_sas_phy_down(hisi_hba, phy_no, (phy_state & 1 << phy_no) ? 1 : 0); |
| |
| sl_ctrl = hisi_sas_phy_read32(hisi_hba, phy_no, SL_CONTROL); |
| hisi_sas_phy_write32(hisi_hba, phy_no, SL_CONTROL, |
| sl_ctrl & ~SL_CONTROL_CTA_MSK); |
| if (port && !get_wideport_bitmap_v2_hw(hisi_hba, port->id)) |
| if (!check_any_wideports_v2_hw(hisi_hba) && |
| timer_pending(&hisi_hba->timer)) |
| del_timer(&hisi_hba->timer); |
| |
| txid_auto = hisi_sas_phy_read32(hisi_hba, phy_no, TXID_AUTO); |
| hisi_sas_phy_write32(hisi_hba, phy_no, TXID_AUTO, |
| txid_auto | TXID_AUTO_CT3_MSK); |
| |
| hisi_sas_phy_write32(hisi_hba, phy_no, CHL_INT0, CHL_INT0_NOT_RDY_MSK); |
| hisi_sas_phy_write32(hisi_hba, phy_no, PHYCTRL_NOT_RDY_MSK, 0); |
| |
| return IRQ_HANDLED; |
| } |
| |
| static irqreturn_t int_phy_updown_v2_hw(int irq_no, void *p) |
| { |
| struct hisi_hba *hisi_hba = p; |
| u32 irq_msk; |
| int phy_no = 0; |
| irqreturn_t res = IRQ_NONE; |
| |
| irq_msk = (hisi_sas_read32(hisi_hba, HGC_INVLD_DQE_INFO) |
| >> HGC_INVLD_DQE_INFO_FB_CH0_OFF) & 0x1ff; |
| while (irq_msk) { |
| if (irq_msk & 1) { |
| u32 reg_value = hisi_sas_phy_read32(hisi_hba, phy_no, |
| CHL_INT0); |
| |
| switch (reg_value & (CHL_INT0_NOT_RDY_MSK | |
| CHL_INT0_SL_PHY_ENABLE_MSK)) { |
| |
| case CHL_INT0_SL_PHY_ENABLE_MSK: |
| /* phy up */ |
| if (phy_up_v2_hw(phy_no, hisi_hba) == |
| IRQ_HANDLED) |
| res = IRQ_HANDLED; |
| break; |
| |
| case CHL_INT0_NOT_RDY_MSK: |
| /* phy down */ |
| if (phy_down_v2_hw(phy_no, hisi_hba) == |
| IRQ_HANDLED) |
| res = IRQ_HANDLED; |
| break; |
| |
| case (CHL_INT0_NOT_RDY_MSK | |
| CHL_INT0_SL_PHY_ENABLE_MSK): |
| reg_value = hisi_sas_read32(hisi_hba, |
| PHY_STATE); |
| if (reg_value & BIT(phy_no)) { |
| /* phy up */ |
| if (phy_up_v2_hw(phy_no, hisi_hba) == |
| IRQ_HANDLED) |
| res = IRQ_HANDLED; |
| } else { |
| /* phy down */ |
| if (phy_down_v2_hw(phy_no, hisi_hba) == |
| IRQ_HANDLED) |
| res = IRQ_HANDLED; |
| } |
| break; |
| |
| default: |
| break; |
| } |
| |
| } |
| irq_msk >>= 1; |
| phy_no++; |
| } |
| |
| return res; |
| } |
| |
| static void phy_bcast_v2_hw(int phy_no, struct hisi_hba *hisi_hba) |
| { |
| struct hisi_sas_phy *phy = &hisi_hba->phy[phy_no]; |
| struct asd_sas_phy *sas_phy = &phy->sas_phy; |
| u32 bcast_status; |
| |
| hisi_sas_phy_write32(hisi_hba, phy_no, SL_RX_BCAST_CHK_MSK, 1); |
| bcast_status = hisi_sas_phy_read32(hisi_hba, phy_no, RX_PRIMS_STATUS); |
| if ((bcast_status & RX_BCAST_CHG_MSK) && |
| !test_bit(HISI_SAS_RESET_BIT, &hisi_hba->flags)) |
| sas_notify_port_event(sas_phy, PORTE_BROADCAST_RCVD); |
| hisi_sas_phy_write32(hisi_hba, phy_no, CHL_INT0, |
| CHL_INT0_SL_RX_BCST_ACK_MSK); |
| hisi_sas_phy_write32(hisi_hba, phy_no, SL_RX_BCAST_CHK_MSK, 0); |
| } |
| |
| static const struct hisi_sas_hw_error port_ecc_axi_error[] = { |
| { |
| .irq_msk = BIT(CHL_INT1_DMAC_TX_ECC_ERR_OFF), |
| .msg = "dmac_tx_ecc_bad_err", |
| }, |
| { |
| .irq_msk = BIT(CHL_INT1_DMAC_RX_ECC_ERR_OFF), |
| .msg = "dmac_rx_ecc_bad_err", |
| }, |
| { |
| .irq_msk = BIT(CHL_INT1_DMAC_TX_AXI_WR_ERR_OFF), |
| .msg = "dma_tx_axi_wr_err", |
| }, |
| { |
| .irq_msk = BIT(CHL_INT1_DMAC_TX_AXI_RD_ERR_OFF), |
| .msg = "dma_tx_axi_rd_err", |
| }, |
| { |
| .irq_msk = BIT(CHL_INT1_DMAC_RX_AXI_WR_ERR_OFF), |
| .msg = "dma_rx_axi_wr_err", |
| }, |
| { |
| .irq_msk = BIT(CHL_INT1_DMAC_RX_AXI_RD_ERR_OFF), |
| .msg = "dma_rx_axi_rd_err", |
| }, |
| }; |
| |
| static irqreturn_t int_chnl_int_v2_hw(int irq_no, void *p) |
| { |
| struct hisi_hba *hisi_hba = p; |
| struct device *dev = hisi_hba->dev; |
| u32 ent_msk, ent_tmp, irq_msk; |
| int phy_no = 0; |
| |
| ent_msk = hisi_sas_read32(hisi_hba, ENT_INT_SRC_MSK3); |
| ent_tmp = ent_msk; |
| ent_msk |= ENT_INT_SRC_MSK3_ENT95_MSK_MSK; |
| hisi_sas_write32(hisi_hba, ENT_INT_SRC_MSK3, ent_msk); |
| |
| irq_msk = (hisi_sas_read32(hisi_hba, HGC_INVLD_DQE_INFO) >> |
| HGC_INVLD_DQE_INFO_FB_CH3_OFF) & 0x1ff; |
| |
| while (irq_msk) { |
| u32 irq_value0 = hisi_sas_phy_read32(hisi_hba, phy_no, |
| CHL_INT0); |
| u32 irq_value1 = hisi_sas_phy_read32(hisi_hba, phy_no, |
| CHL_INT1); |
| u32 irq_value2 = hisi_sas_phy_read32(hisi_hba, phy_no, |
| CHL_INT2); |
| |
| if ((irq_msk & (1 << phy_no)) && irq_value1) { |
| int i; |
| |
| for (i = 0; i < ARRAY_SIZE(port_ecc_axi_error); i++) { |
| const struct hisi_sas_hw_error *error = |
| &port_ecc_axi_error[i]; |
| |
| if (!(irq_value1 & error->irq_msk)) |
| continue; |
| |
| dev_warn(dev, "%s error (phy%d 0x%x) found!\n", |
| error->msg, phy_no, irq_value1); |
| queue_work(hisi_hba->wq, &hisi_hba->rst_work); |
| } |
| |
| hisi_sas_phy_write32(hisi_hba, phy_no, |
| CHL_INT1, irq_value1); |
| } |
| |
| if ((irq_msk & (1 << phy_no)) && irq_value2) { |
| struct hisi_sas_phy *phy = &hisi_hba->phy[phy_no]; |
| |
| if (irq_value2 & BIT(CHL_INT2_SL_IDAF_TOUT_CONF_OFF)) { |
| dev_warn(dev, "phy%d identify timeout\n", |
| phy_no); |
| hisi_sas_notify_phy_event(phy, |
| HISI_PHYE_LINK_RESET); |
| } |
| |
| hisi_sas_phy_write32(hisi_hba, phy_no, |
| CHL_INT2, irq_value2); |
| } |
| |
| if ((irq_msk & (1 << phy_no)) && irq_value0) { |
| if (irq_value0 & CHL_INT0_SL_RX_BCST_ACK_MSK) |
| phy_bcast_v2_hw(phy_no, hisi_hba); |
| |
| if (irq_value0 & CHL_INT0_PHY_RDY_MSK) |
| hisi_sas_phy_oob_ready(hisi_hba, phy_no); |
| |
| hisi_sas_phy_write32(hisi_hba, phy_no, |
| CHL_INT0, irq_value0 |
| & (~CHL_INT0_HOTPLUG_TOUT_MSK) |
| & (~CHL_INT0_SL_PHY_ENABLE_MSK) |
| & (~CHL_INT0_NOT_RDY_MSK)); |
| } |
| irq_msk &= ~(1 << phy_no); |
| phy_no++; |
| } |
| |
| hisi_sas_write32(hisi_hba, ENT_INT_SRC_MSK3, ent_tmp); |
| |
| return IRQ_HANDLED; |
| } |
| |
| static void |
| one_bit_ecc_error_process_v2_hw(struct hisi_hba *hisi_hba, u32 irq_value) |
| { |
| struct device *dev = hisi_hba->dev; |
| const struct hisi_sas_hw_error *ecc_error; |
| u32 val; |
| int i; |
| |
| for (i = 0; i < ARRAY_SIZE(one_bit_ecc_errors); i++) { |
| ecc_error = &one_bit_ecc_errors[i]; |
| if (irq_value & ecc_error->irq_msk) { |
| val = hisi_sas_read32(hisi_hba, ecc_error->reg); |
| val &= ecc_error->msk; |
| val >>= ecc_error->shift; |
| dev_warn(dev, "%s found: mem addr is 0x%08X\n", |
| ecc_error->msg, val); |
| } |
| } |
| } |
| |
| static void multi_bit_ecc_error_process_v2_hw(struct hisi_hba *hisi_hba, |
| u32 irq_value) |
| { |
| struct device *dev = hisi_hba->dev; |
| const struct hisi_sas_hw_error *ecc_error; |
| u32 val; |
| int i; |
| |
| for (i = 0; i < ARRAY_SIZE(multi_bit_ecc_errors); i++) { |
| ecc_error = &multi_bit_ecc_errors[i]; |
| if (irq_value & ecc_error->irq_msk) { |
| val = hisi_sas_read32(hisi_hba, ecc_error->reg); |
| val &= ecc_error->msk; |
| val >>= ecc_error->shift; |
| dev_err(dev, "%s (0x%x) found: mem addr is 0x%08X\n", |
| ecc_error->msg, irq_value, val); |
| queue_work(hisi_hba->wq, &hisi_hba->rst_work); |
| } |
| } |
| |
| return; |
| } |
| |
| static irqreturn_t fatal_ecc_int_v2_hw(int irq_no, void *p) |
| { |
| struct hisi_hba *hisi_hba = p; |
| u32 irq_value, irq_msk; |
| |
| irq_msk = hisi_sas_read32(hisi_hba, SAS_ECC_INTR_MSK); |
| hisi_sas_write32(hisi_hba, SAS_ECC_INTR_MSK, irq_msk | 0xffffffff); |
| |
| irq_value = hisi_sas_read32(hisi_hba, SAS_ECC_INTR); |
| if (irq_value) { |
| one_bit_ecc_error_process_v2_hw(hisi_hba, irq_value); |
| multi_bit_ecc_error_process_v2_hw(hisi_hba, irq_value); |
| } |
| |
| hisi_sas_write32(hisi_hba, SAS_ECC_INTR, irq_value); |
| hisi_sas_write32(hisi_hba, SAS_ECC_INTR_MSK, irq_msk); |
| |
| return IRQ_HANDLED; |
| } |
| |
| static const struct hisi_sas_hw_error axi_error[] = { |
| { .msk = BIT(0), .msg = "IOST_AXI_W_ERR" }, |
| { .msk = BIT(1), .msg = "IOST_AXI_R_ERR" }, |
| { .msk = BIT(2), .msg = "ITCT_AXI_W_ERR" }, |
| { .msk = BIT(3), .msg = "ITCT_AXI_R_ERR" }, |
| { .msk = BIT(4), .msg = "SATA_AXI_W_ERR" }, |
| { .msk = BIT(5), .msg = "SATA_AXI_R_ERR" }, |
| { .msk = BIT(6), .msg = "DQE_AXI_R_ERR" }, |
| { .msk = BIT(7), .msg = "CQE_AXI_W_ERR" }, |
| {} |
| }; |
| |
| static const struct hisi_sas_hw_error fifo_error[] = { |
| { .msk = BIT(8), .msg = "CQE_WINFO_FIFO" }, |
| { .msk = BIT(9), .msg = "CQE_MSG_FIFIO" }, |
| { .msk = BIT(10), .msg = "GETDQE_FIFO" }, |
| { .msk = BIT(11), .msg = "CMDP_FIFO" }, |
| { .msk = BIT(12), .msg = "AWTCTRL_FIFO" }, |
| {} |
| }; |
| |
| static const struct hisi_sas_hw_error fatal_axi_errors[] = { |
| { |
| .irq_msk = BIT(ENT_INT_SRC3_WP_DEPTH_OFF), |
| .msg = "write pointer and depth", |
| }, |
| { |
| .irq_msk = BIT(ENT_INT_SRC3_IPTT_SLOT_NOMATCH_OFF), |
| .msg = "iptt no match slot", |
| }, |
| { |
| .irq_msk = BIT(ENT_INT_SRC3_RP_DEPTH_OFF), |
| .msg = "read pointer and depth", |
| }, |
| { |
| .irq_msk = BIT(ENT_INT_SRC3_AXI_OFF), |
| .reg = HGC_AXI_FIFO_ERR_INFO, |
| .sub = axi_error, |
| }, |
| { |
| .irq_msk = BIT(ENT_INT_SRC3_FIFO_OFF), |
| .reg = HGC_AXI_FIFO_ERR_INFO, |
| .sub = fifo_error, |
| }, |
| { |
| .irq_msk = BIT(ENT_INT_SRC3_LM_OFF), |
| .msg = "LM add/fetch list", |
| }, |
| { |
| .irq_msk = BIT(ENT_INT_SRC3_ABT_OFF), |
| .msg = "SAS_HGC_ABT fetch LM list", |
| }, |
| }; |
| |
| static irqreturn_t fatal_axi_int_v2_hw(int irq_no, void *p) |
| { |
| struct hisi_hba *hisi_hba = p; |
| u32 irq_value, irq_msk, err_value; |
| struct device *dev = hisi_hba->dev; |
| const struct hisi_sas_hw_error *axi_error; |
| int i; |
| |
| irq_msk = hisi_sas_read32(hisi_hba, ENT_INT_SRC_MSK3); |
| hisi_sas_write32(hisi_hba, ENT_INT_SRC_MSK3, irq_msk | 0xfffffffe); |
| |
| irq_value = hisi_sas_read32(hisi_hba, ENT_INT_SRC3); |
| |
| for (i = 0; i < ARRAY_SIZE(fatal_axi_errors); i++) { |
| axi_error = &fatal_axi_errors[i]; |
| if (!(irq_value & axi_error->irq_msk)) |
| continue; |
| |
| hisi_sas_write32(hisi_hba, ENT_INT_SRC3, |
| 1 << axi_error->shift); |
| if (axi_error->sub) { |
| const struct hisi_sas_hw_error *sub = axi_error->sub; |
| |
| err_value = hisi_sas_read32(hisi_hba, axi_error->reg); |
| for (; sub->msk || sub->msg; sub++) { |
| if (!(err_value & sub->msk)) |
| continue; |
| dev_err(dev, "%s (0x%x) found!\n", |
| sub->msg, irq_value); |
| queue_work(hisi_hba->wq, &hisi_hba->rst_work); |
| } |
| } else { |
| dev_err(dev, "%s (0x%x) found!\n", |
| axi_error->msg, irq_value); |
| queue_work(hisi_hba->wq, &hisi_hba->rst_work); |
| } |
| } |
| |
| if (irq_value & BIT(ENT_INT_SRC3_ITC_INT_OFF)) { |
| u32 reg_val = hisi_sas_read32(hisi_hba, ITCT_CLR); |
| u32 dev_id = reg_val & ITCT_DEV_MSK; |
| struct hisi_sas_device *sas_dev = &hisi_hba->devices[dev_id]; |
| |
| hisi_sas_write32(hisi_hba, ITCT_CLR, 0); |
| dev_dbg(dev, "clear ITCT ok\n"); |
| complete(sas_dev->completion); |
| } |
| |
| hisi_sas_write32(hisi_hba, ENT_INT_SRC3, irq_value); |
| hisi_sas_write32(hisi_hba, ENT_INT_SRC_MSK3, irq_msk); |
| |
| return IRQ_HANDLED; |
| } |
| |
| static irqreturn_t cq_thread_v2_hw(int irq_no, void *p) |
| { |
| struct hisi_sas_cq *cq = p; |
| struct hisi_hba *hisi_hba = cq->hisi_hba; |
| struct hisi_sas_slot *slot; |
| struct hisi_sas_itct *itct; |
| struct hisi_sas_complete_v2_hdr *complete_queue; |
| u32 rd_point = cq->rd_point, wr_point, dev_id; |
| int queue = cq->id; |
| |
| if (unlikely(hisi_hba->reject_stp_links_msk)) |
| phys_try_accept_stp_links_v2_hw(hisi_hba); |
| |
| complete_queue = hisi_hba->complete_hdr[queue]; |
| |
| wr_point = hisi_sas_read32(hisi_hba, COMPL_Q_0_WR_PTR + |
| (0x14 * queue)); |
| |
| while (rd_point != wr_point) { |
| struct hisi_sas_complete_v2_hdr *complete_hdr; |
| int iptt; |
| |
| complete_hdr = &complete_queue[rd_point]; |
| |
| /* Check for NCQ completion */ |
| if (complete_hdr->act) { |
| u32 act_tmp = le32_to_cpu(complete_hdr->act); |
| int ncq_tag_count = ffs(act_tmp); |
| u32 dw1 = le32_to_cpu(complete_hdr->dw1); |
| |
| dev_id = (dw1 & CMPLT_HDR_DEV_ID_MSK) >> |
| CMPLT_HDR_DEV_ID_OFF; |
| itct = &hisi_hba->itct[dev_id]; |
| |
| /* The NCQ tags are held in the itct header */ |
| while (ncq_tag_count) { |
| __le64 *_ncq_tag = &itct->qw4_15[0], __ncq_tag; |
| u64 ncq_tag; |
| |
| ncq_tag_count--; |
| __ncq_tag = _ncq_tag[ncq_tag_count / 5]; |
| ncq_tag = le64_to_cpu(__ncq_tag); |
| iptt = (ncq_tag >> (ncq_tag_count % 5) * 12) & |
| 0xfff; |
| |
| slot = &hisi_hba->slot_info[iptt]; |
| slot->cmplt_queue_slot = rd_point; |
| slot->cmplt_queue = queue; |
| slot_complete_v2_hw(hisi_hba, slot); |
| |
| act_tmp &= ~(1 << ncq_tag_count); |
| ncq_tag_count = ffs(act_tmp); |
| } |
| } else { |
| u32 dw1 = le32_to_cpu(complete_hdr->dw1); |
| |
| iptt = dw1 & CMPLT_HDR_IPTT_MSK; |
| slot = &hisi_hba->slot_info[iptt]; |
| slot->cmplt_queue_slot = rd_point; |
| slot->cmplt_queue = queue; |
| slot_complete_v2_hw(hisi_hba, slot); |
| } |
| |
| if (++rd_point >= HISI_SAS_QUEUE_SLOTS) |
| rd_point = 0; |
| } |
| |
| /* update rd_point */ |
| cq->rd_point = rd_point; |
| hisi_sas_write32(hisi_hba, COMPL_Q_0_RD_PTR + (0x14 * queue), rd_point); |
| |
| return IRQ_HANDLED; |
| } |
| |
| static irqreturn_t cq_interrupt_v2_hw(int irq_no, void *p) |
| { |
| struct hisi_sas_cq *cq = p; |
| struct hisi_hba *hisi_hba = cq->hisi_hba; |
| int queue = cq->id; |
| |
| hisi_sas_write32(hisi_hba, OQ_INT_SRC, 1 << queue); |
| |
| return IRQ_WAKE_THREAD; |
| } |
| |
| static irqreturn_t sata_int_v2_hw(int irq_no, void *p) |
| { |
| struct hisi_sas_phy *phy = p; |
| struct hisi_hba *hisi_hba = phy->hisi_hba; |
| struct asd_sas_phy *sas_phy = &phy->sas_phy; |
| struct device *dev = hisi_hba->dev; |
| struct hisi_sas_initial_fis *initial_fis; |
| struct dev_to_host_fis *fis; |
| u32 ent_tmp, ent_msk, ent_int, port_id, link_rate, hard_phy_linkrate; |
| irqreturn_t res = IRQ_HANDLED; |
| u8 attached_sas_addr[SAS_ADDR_SIZE] = {0}; |
| unsigned long flags; |
| int phy_no, offset; |
| |
| del_timer(&phy->timer); |
| |
| phy_no = sas_phy->id; |
| initial_fis = &hisi_hba->initial_fis[phy_no]; |
| fis = &initial_fis->fis; |
| |
| offset = 4 * (phy_no / 4); |
| ent_msk = hisi_sas_read32(hisi_hba, ENT_INT_SRC_MSK1 + offset); |
| hisi_sas_write32(hisi_hba, ENT_INT_SRC_MSK1 + offset, |
| ent_msk | 1 << ((phy_no % 4) * 8)); |
| |
| ent_int = hisi_sas_read32(hisi_hba, ENT_INT_SRC1 + offset); |
| ent_tmp = ent_int & (1 << (ENT_INT_SRC1_D2H_FIS_CH1_OFF * |
| (phy_no % 4))); |
| ent_int >>= ENT_INT_SRC1_D2H_FIS_CH1_OFF * (phy_no % 4); |
| if ((ent_int & ENT_INT_SRC1_D2H_FIS_CH0_MSK) == 0) { |
| dev_warn(dev, "sata int: phy%d did not receive FIS\n", phy_no); |
| res = IRQ_NONE; |
| goto end; |
| } |
| |
| /* check ERR bit of Status Register */ |
| if (fis->status & ATA_ERR) { |
| dev_warn(dev, "sata int: phy%d FIS status: 0x%x\n", phy_no, |
| fis->status); |
| hisi_sas_notify_phy_event(phy, HISI_PHYE_LINK_RESET); |
| res = IRQ_NONE; |
| goto end; |
| } |
| |
| if (unlikely(phy_no == 8)) { |
| u32 port_state = hisi_sas_read32(hisi_hba, PORT_STATE); |
| |
| port_id = (port_state & PORT_STATE_PHY8_PORT_NUM_MSK) >> |
| PORT_STATE_PHY8_PORT_NUM_OFF; |
| link_rate = (port_state & PORT_STATE_PHY8_CONN_RATE_MSK) >> |
| PORT_STATE_PHY8_CONN_RATE_OFF; |
| } else { |
| port_id = hisi_sas_read32(hisi_hba, PHY_PORT_NUM_MA); |
| port_id = (port_id >> (4 * phy_no)) & 0xf; |
| link_rate = hisi_sas_read32(hisi_hba, PHY_CONN_RATE); |
| link_rate = (link_rate >> (phy_no * 4)) & 0xf; |
| } |
| |
| if (port_id == 0xf) { |
| dev_err(dev, "sata int: phy%d invalid portid\n", phy_no); |
| res = IRQ_NONE; |
| goto end; |
| } |
| |
| sas_phy->linkrate = link_rate; |
| hard_phy_linkrate = hisi_sas_phy_read32(hisi_hba, phy_no, |
| HARD_PHY_LINKRATE); |
| phy->maximum_linkrate = hard_phy_linkrate & 0xf; |
| phy->minimum_linkrate = (hard_phy_linkrate >> 4) & 0xf; |
| |
| sas_phy->oob_mode = SATA_OOB_MODE; |
| /* Make up some unique SAS address */ |
| attached_sas_addr[0] = 0x50; |
| attached_sas_addr[6] = hisi_hba->shost->host_no; |
| attached_sas_addr[7] = phy_no; |
| memcpy(sas_phy->attached_sas_addr, attached_sas_addr, SAS_ADDR_SIZE); |
| memcpy(sas_phy->frame_rcvd, fis, sizeof(struct dev_to_host_fis)); |
| dev_info(dev, "sata int phyup: phy%d link_rate=%d\n", phy_no, link_rate); |
| phy->phy_type &= ~(PORT_TYPE_SAS | PORT_TYPE_SATA); |
| phy->port_id = port_id; |
| phy->phy_type |= PORT_TYPE_SATA; |
| phy->phy_attached = 1; |
| phy->identify.device_type = SAS_SATA_DEV; |
| phy->frame_rcvd_size = sizeof(struct dev_to_host_fis); |
| phy->identify.target_port_protocols = SAS_PROTOCOL_SATA; |
| hisi_sas_notify_phy_event(phy, HISI_PHYE_PHY_UP); |
| |
| spin_lock_irqsave(&phy->lock, flags); |
| if (phy->reset_completion) { |
| phy->in_reset = 0; |
| complete(phy->reset_completion); |
| } |
| spin_unlock_irqrestore(&phy->lock, flags); |
| end: |
| hisi_sas_write32(hisi_hba, ENT_INT_SRC1 + offset, ent_tmp); |
| hisi_sas_write32(hisi_hba, ENT_INT_SRC_MSK1 + offset, ent_msk); |
| |
| return res; |
| } |
| |
| static irq_handler_t phy_interrupts[HISI_SAS_PHY_INT_NR] = { |
| int_phy_updown_v2_hw, |
| int_chnl_int_v2_hw, |
| }; |
| |
| static irq_handler_t fatal_interrupts[HISI_SAS_FATAL_INT_NR] = { |
| fatal_ecc_int_v2_hw, |
| fatal_axi_int_v2_hw |
| }; |
| |
| /* |
| * There is a limitation in the hip06 chipset that we need |
| * to map in all mbigen interrupts, even if they are not used. |
| */ |
| static int interrupt_init_v2_hw(struct hisi_hba *hisi_hba) |
| { |
| struct platform_device *pdev = hisi_hba->platform_dev; |
| struct device *dev = &pdev->dev; |
| int irq, rc = 0, irq_map[128]; |
| int i, phy_no, fatal_no, queue_no; |
| |
| for (i = 0; i < 128; i++) |
| irq_map[i] = platform_get_irq(pdev, i); |
| |
| for (i = 0; i < HISI_SAS_PHY_INT_NR; i++) { |
| irq = irq_map[i + 1]; /* Phy up/down is irq1 */ |
| rc = devm_request_irq(dev, irq, phy_interrupts[i], 0, |
| DRV_NAME " phy", hisi_hba); |
| if (rc) { |
| dev_err(dev, "irq init: could not request phy interrupt %d, rc=%d\n", |
| irq, rc); |
| rc = -ENOENT; |
| goto err_out; |
| } |
| } |
| |
| for (phy_no = 0; phy_no < hisi_hba->n_phy; phy_no++) { |
| struct hisi_sas_phy *phy = &hisi_hba->phy[phy_no]; |
| |
| irq = irq_map[phy_no + 72]; |
| rc = devm_request_irq(dev, irq, sata_int_v2_hw, 0, |
| DRV_NAME " sata", phy); |
| if (rc) { |
| dev_err(dev, "irq init: could not request sata interrupt %d, rc=%d\n", |
| irq, rc); |
| rc = -ENOENT; |
| goto err_out; |
| } |
| } |
| |
| for (fatal_no = 0; fatal_no < HISI_SAS_FATAL_INT_NR; fatal_no++) { |
| irq = irq_map[fatal_no + 81]; |
| rc = devm_request_irq(dev, irq, fatal_interrupts[fatal_no], 0, |
| DRV_NAME " fatal", hisi_hba); |
| if (rc) { |
| dev_err(dev, "irq init: could not request fatal interrupt %d, rc=%d\n", |
| irq, rc); |
| rc = -ENOENT; |
| goto err_out; |
| } |
| } |
| |
| for (queue_no = 0; queue_no < hisi_hba->queue_count; queue_no++) { |
| struct hisi_sas_cq *cq = &hisi_hba->cq[queue_no]; |
| |
| cq->irq_no = irq_map[queue_no + 96]; |
| rc = devm_request_threaded_irq(dev, cq->irq_no, |
| cq_interrupt_v2_hw, |
| cq_thread_v2_hw, IRQF_ONESHOT, |
| DRV_NAME " cq", cq); |
| if (rc) { |
| dev_err(dev, "irq init: could not request cq interrupt %d, rc=%d\n", |
| irq, rc); |
| rc = -ENOENT; |
| goto err_out; |
| } |
| } |
| |
| hisi_hba->cq_nvecs = hisi_hba->queue_count; |
| |
| err_out: |
| return rc; |
| } |
| |
| static int hisi_sas_v2_init(struct hisi_hba *hisi_hba) |
| { |
| int rc; |
| |
| memset(hisi_hba->sata_dev_bitmap, 0, sizeof(hisi_hba->sata_dev_bitmap)); |
| |
| rc = hw_init_v2_hw(hisi_hba); |
| if (rc) |
| return rc; |
| |
| rc = interrupt_init_v2_hw(hisi_hba); |
| if (rc) |
| return rc; |
| |
| return 0; |
| } |
| |
| static void interrupt_disable_v2_hw(struct hisi_hba *hisi_hba) |
| { |
| struct platform_device *pdev = hisi_hba->platform_dev; |
| int i; |
| |
| for (i = 0; i < hisi_hba->queue_count; i++) |
| hisi_sas_write32(hisi_hba, OQ0_INT_SRC_MSK + 0x4 * i, 0x1); |
| |
| hisi_sas_write32(hisi_hba, ENT_INT_SRC_MSK1, 0xffffffff); |
| hisi_sas_write32(hisi_hba, ENT_INT_SRC_MSK2, 0xffffffff); |
| hisi_sas_write32(hisi_hba, ENT_INT_SRC_MSK3, 0xffffffff); |
| hisi_sas_write32(hisi_hba, SAS_ECC_INTR_MSK, 0xffffffff); |
| |
| for (i = 0; i < hisi_hba->n_phy; i++) { |
| hisi_sas_phy_write32(hisi_hba, i, CHL_INT1_MSK, 0xffffffff); |
| hisi_sas_phy_write32(hisi_hba, i, CHL_INT2_MSK, 0xffffffff); |
| } |
| |
| for (i = 0; i < 128; i++) |
| synchronize_irq(platform_get_irq(pdev, i)); |
| } |
| |
| |
| static u32 get_phys_state_v2_hw(struct hisi_hba *hisi_hba) |
| { |
| return hisi_sas_read32(hisi_hba, PHY_STATE); |
| } |
| |
| static int soft_reset_v2_hw(struct hisi_hba *hisi_hba) |
| { |
| struct device *dev = hisi_hba->dev; |
| int rc, cnt; |
| |
| interrupt_disable_v2_hw(hisi_hba); |
| hisi_sas_write32(hisi_hba, DLVRY_QUEUE_ENABLE, 0x0); |
| |
| hisi_sas_stop_phys(hisi_hba); |
| |
| mdelay(10); |
| |
| hisi_sas_write32(hisi_hba, AXI_MASTER_CFG_BASE + AM_CTRL_GLOBAL, 0x1); |
| |
| /* wait until bus idle */ |
| cnt = 0; |
| while (1) { |
| u32 status = hisi_sas_read32_relaxed(hisi_hba, |
| AXI_MASTER_CFG_BASE + AM_CURR_TRANS_RETURN); |
| |
| if (status == 0x3) |
| break; |
| |
| udelay(10); |
| if (cnt++ > 10) { |
| dev_err(dev, "wait axi bus state to idle timeout!\n"); |
| return -1; |
| } |
| } |
| |
| hisi_sas_init_mem(hisi_hba); |
| |
| rc = hw_init_v2_hw(hisi_hba); |
| if (rc) |
| return rc; |
| |
| phys_reject_stp_links_v2_hw(hisi_hba); |
| |
| return 0; |
| } |
| |
| static int write_gpio_v2_hw(struct hisi_hba *hisi_hba, u8 reg_type, |
| u8 reg_index, u8 reg_count, u8 *write_data) |
| { |
| struct device *dev = hisi_hba->dev; |
| int phy_no, count; |
| |
| if (!hisi_hba->sgpio_regs) |
| return -EOPNOTSUPP; |
| |
| switch (reg_type) { |
| case SAS_GPIO_REG_TX: |
| count = reg_count * 4; |
| count = min(count, hisi_hba->n_phy); |
| |
| for (phy_no = 0; phy_no < count; phy_no++) { |
| /* |
| * GPIO_TX[n] register has the highest numbered drive |
| * of the four in the first byte and the lowest |
| * numbered drive in the fourth byte. |
| * See SFF-8485 Rev. 0.7 Table 24. |
| */ |
| void __iomem *reg_addr = hisi_hba->sgpio_regs + |
| reg_index * 4 + phy_no; |
| int data_idx = phy_no + 3 - (phy_no % 4) * 2; |
| |
| writeb(write_data[data_idx], reg_addr); |
| } |
| |
| break; |
| default: |
| dev_err(dev, "write gpio: unsupported or bad reg type %d\n", |
| reg_type); |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| static void wait_cmds_complete_timeout_v2_hw(struct hisi_hba *hisi_hba, |
| int delay_ms, int timeout_ms) |
| { |
| struct device *dev = hisi_hba->dev; |
| int entries, entries_old = 0, time; |
| |
| for (time = 0; time < timeout_ms; time += delay_ms) { |
| entries = hisi_sas_read32(hisi_hba, CQE_SEND_CNT); |
| if (entries == entries_old) |
| break; |
| |
| entries_old = entries; |
| msleep(delay_ms); |
| } |
| |
| if (time >= timeout_ms) { |
| dev_dbg(dev, "Wait commands complete timeout!\n"); |
| return; |
| } |
| |
| dev_dbg(dev, "wait commands complete %dms\n", time); |
| |
| } |
| |
| static struct device_attribute *host_attrs_v2_hw[] = { |
| &dev_attr_phy_event_threshold, |
| NULL |
| }; |
| |
| static struct scsi_host_template sht_v2_hw = { |
| .name = DRV_NAME, |
| .proc_name = DRV_NAME, |
| .module = THIS_MODULE, |
| .queuecommand = sas_queuecommand, |
| .dma_need_drain = ata_scsi_dma_need_drain, |
| .target_alloc = sas_target_alloc, |
| .slave_configure = hisi_sas_slave_configure, |
| .scan_finished = hisi_sas_scan_finished, |
| .scan_start = hisi_sas_scan_start, |
| .change_queue_depth = sas_change_queue_depth, |
| .bios_param = sas_bios_param, |
| .this_id = -1, |
| .sg_tablesize = HISI_SAS_SGE_PAGE_CNT, |
| .max_sectors = SCSI_DEFAULT_MAX_SECTORS, |
| .eh_device_reset_handler = sas_eh_device_reset_handler, |
| .eh_target_reset_handler = sas_eh_target_reset_handler, |
| .slave_alloc = sas_slave_alloc, |
| .target_destroy = sas_target_destroy, |
| .ioctl = sas_ioctl, |
| #ifdef CONFIG_COMPAT |
| .compat_ioctl = sas_ioctl, |
| #endif |
| .shost_attrs = host_attrs_v2_hw, |
| .host_reset = hisi_sas_host_reset, |
| }; |
| |
| static const struct hisi_sas_hw hisi_sas_v2_hw = { |
| .hw_init = hisi_sas_v2_init, |
| .setup_itct = setup_itct_v2_hw, |
| .slot_index_alloc = slot_index_alloc_quirk_v2_hw, |
| .alloc_dev = alloc_dev_quirk_v2_hw, |
| .sl_notify_ssp = sl_notify_ssp_v2_hw, |
| .get_wideport_bitmap = get_wideport_bitmap_v2_hw, |
| .clear_itct = clear_itct_v2_hw, |
| .free_device = free_device_v2_hw, |
| .prep_smp = prep_smp_v2_hw, |
| .prep_ssp = prep_ssp_v2_hw, |
| .prep_stp = prep_ata_v2_hw, |
| .prep_abort = prep_abort_v2_hw, |
| .start_delivery = start_delivery_v2_hw, |
| .phys_init = phys_init_v2_hw, |
| .phy_start = start_phy_v2_hw, |
| .phy_disable = disable_phy_v2_hw, |
| .phy_hard_reset = phy_hard_reset_v2_hw, |
| .get_events = phy_get_events_v2_hw, |
| .phy_set_linkrate = phy_set_linkrate_v2_hw, |
| .phy_get_max_linkrate = phy_get_max_linkrate_v2_hw, |
| .complete_hdr_size = sizeof(struct hisi_sas_complete_v2_hdr), |
| .soft_reset = soft_reset_v2_hw, |
| .get_phys_state = get_phys_state_v2_hw, |
| .write_gpio = write_gpio_v2_hw, |
| .wait_cmds_complete_timeout = wait_cmds_complete_timeout_v2_hw, |
| .sht = &sht_v2_hw, |
| }; |
| |
| static int hisi_sas_v2_probe(struct platform_device *pdev) |
| { |
| /* |
| * Check if we should defer the probe before we probe the |
| * upper layer, as it's hard to defer later on. |
| */ |
| int ret = platform_get_irq(pdev, 0); |
| |
| if (ret < 0) { |
| if (ret != -EPROBE_DEFER) |
| dev_err(&pdev->dev, "cannot obtain irq\n"); |
| return ret; |
| } |
| |
| return hisi_sas_probe(pdev, &hisi_sas_v2_hw); |
| } |
| |
| static int hisi_sas_v2_remove(struct platform_device *pdev) |
| { |
| return hisi_sas_remove(pdev); |
| } |
| |
| static const struct of_device_id sas_v2_of_match[] = { |
| { .compatible = "hisilicon,hip06-sas-v2",}, |
| { .compatible = "hisilicon,hip07-sas-v2",}, |
| {}, |
| }; |
| MODULE_DEVICE_TABLE(of, sas_v2_of_match); |
| |
| static const struct acpi_device_id sas_v2_acpi_match[] = { |
| { "HISI0162", 0 }, |
| { } |
| }; |
| |
| MODULE_DEVICE_TABLE(acpi, sas_v2_acpi_match); |
| |
| static struct platform_driver hisi_sas_v2_driver = { |
| .probe = hisi_sas_v2_probe, |
| .remove = hisi_sas_v2_remove, |
| .driver = { |
| .name = DRV_NAME, |
| .of_match_table = sas_v2_of_match, |
| .acpi_match_table = ACPI_PTR(sas_v2_acpi_match), |
| }, |
| }; |
| |
| module_platform_driver(hisi_sas_v2_driver); |
| |
| MODULE_LICENSE("GPL"); |
| MODULE_AUTHOR("John Garry <john.garry@huawei.com>"); |
| MODULE_DESCRIPTION("HISILICON SAS controller v2 hw driver"); |
| MODULE_ALIAS("platform:" DRV_NAME); |