| /* |
| * Copyright © 2014 Intel Corporation |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice (including the next |
| * paragraph) shall be included in all copies or substantial portions of the |
| * Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING |
| * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS |
| * IN THE SOFTWARE. |
| * |
| * Authors: |
| * Ben Widawsky <ben@bwidawsk.net> |
| * Michel Thierry <michel.thierry@intel.com> |
| * Thomas Daniel <thomas.daniel@intel.com> |
| * Oscar Mateo <oscar.mateo@intel.com> |
| * |
| */ |
| |
| /** |
| * DOC: Logical Rings, Logical Ring Contexts and Execlists |
| * |
| * Motivation: |
| * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts". |
| * These expanded contexts enable a number of new abilities, especially |
| * "Execlists" (also implemented in this file). |
| * |
| * One of the main differences with the legacy HW contexts is that logical |
| * ring contexts incorporate many more things to the context's state, like |
| * PDPs or ringbuffer control registers: |
| * |
| * The reason why PDPs are included in the context is straightforward: as |
| * PPGTTs (per-process GTTs) are actually per-context, having the PDPs |
| * contained there mean you don't need to do a ppgtt->switch_mm yourself, |
| * instead, the GPU will do it for you on the context switch. |
| * |
| * But, what about the ringbuffer control registers (head, tail, etc..)? |
| * shouldn't we just need a set of those per engine command streamer? This is |
| * where the name "Logical Rings" starts to make sense: by virtualizing the |
| * rings, the engine cs shifts to a new "ring buffer" with every context |
| * switch. When you want to submit a workload to the GPU you: A) choose your |
| * context, B) find its appropriate virtualized ring, C) write commands to it |
| * and then, finally, D) tell the GPU to switch to that context. |
| * |
| * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch |
| * to a contexts is via a context execution list, ergo "Execlists". |
| * |
| * LRC implementation: |
| * Regarding the creation of contexts, we have: |
| * |
| * - One global default context. |
| * - One local default context for each opened fd. |
| * - One local extra context for each context create ioctl call. |
| * |
| * Now that ringbuffers belong per-context (and not per-engine, like before) |
| * and that contexts are uniquely tied to a given engine (and not reusable, |
| * like before) we need: |
| * |
| * - One ringbuffer per-engine inside each context. |
| * - One backing object per-engine inside each context. |
| * |
| * The global default context starts its life with these new objects fully |
| * allocated and populated. The local default context for each opened fd is |
| * more complex, because we don't know at creation time which engine is going |
| * to use them. To handle this, we have implemented a deferred creation of LR |
| * contexts: |
| * |
| * The local context starts its life as a hollow or blank holder, that only |
| * gets populated for a given engine once we receive an execbuffer. If later |
| * on we receive another execbuffer ioctl for the same context but a different |
| * engine, we allocate/populate a new ringbuffer and context backing object and |
| * so on. |
| * |
| * Finally, regarding local contexts created using the ioctl call: as they are |
| * only allowed with the render ring, we can allocate & populate them right |
| * away (no need to defer anything, at least for now). |
| * |
| * Execlists implementation: |
| * Execlists are the new method by which, on gen8+ hardware, workloads are |
| * submitted for execution (as opposed to the legacy, ringbuffer-based, method). |
| * This method works as follows: |
| * |
| * When a request is committed, its commands (the BB start and any leading or |
| * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer |
| * for the appropriate context. The tail pointer in the hardware context is not |
| * updated at this time, but instead, kept by the driver in the ringbuffer |
| * structure. A structure representing this request is added to a request queue |
| * for the appropriate engine: this structure contains a copy of the context's |
| * tail after the request was written to the ring buffer and a pointer to the |
| * context itself. |
| * |
| * If the engine's request queue was empty before the request was added, the |
| * queue is processed immediately. Otherwise the queue will be processed during |
| * a context switch interrupt. In any case, elements on the queue will get sent |
| * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a |
| * globally unique 20-bits submission ID. |
| * |
| * When execution of a request completes, the GPU updates the context status |
| * buffer with a context complete event and generates a context switch interrupt. |
| * During the interrupt handling, the driver examines the events in the buffer: |
| * for each context complete event, if the announced ID matches that on the head |
| * of the request queue, then that request is retired and removed from the queue. |
| * |
| * After processing, if any requests were retired and the queue is not empty |
| * then a new execution list can be submitted. The two requests at the front of |
| * the queue are next to be submitted but since a context may not occur twice in |
| * an execution list, if subsequent requests have the same ID as the first then |
| * the two requests must be combined. This is done simply by discarding requests |
| * at the head of the queue until either only one requests is left (in which case |
| * we use a NULL second context) or the first two requests have unique IDs. |
| * |
| * By always executing the first two requests in the queue the driver ensures |
| * that the GPU is kept as busy as possible. In the case where a single context |
| * completes but a second context is still executing, the request for this second |
| * context will be at the head of the queue when we remove the first one. This |
| * request will then be resubmitted along with a new request for a different context, |
| * which will cause the hardware to continue executing the second request and queue |
| * the new request (the GPU detects the condition of a context getting preempted |
| * with the same context and optimizes the context switch flow by not doing |
| * preemption, but just sampling the new tail pointer). |
| * |
| */ |
| #include <linux/interrupt.h> |
| |
| #include "i915_drv.h" |
| #include "i915_perf.h" |
| #include "i915_trace.h" |
| #include "i915_vgpu.h" |
| #include "intel_context.h" |
| #include "intel_engine_pm.h" |
| #include "intel_gt.h" |
| #include "intel_gt_pm.h" |
| #include "intel_gt_requests.h" |
| #include "intel_lrc_reg.h" |
| #include "intel_mocs.h" |
| #include "intel_reset.h" |
| #include "intel_ring.h" |
| #include "intel_workarounds.h" |
| |
| #define RING_EXECLIST_QFULL (1 << 0x2) |
| #define RING_EXECLIST1_VALID (1 << 0x3) |
| #define RING_EXECLIST0_VALID (1 << 0x4) |
| #define RING_EXECLIST_ACTIVE_STATUS (3 << 0xE) |
| #define RING_EXECLIST1_ACTIVE (1 << 0x11) |
| #define RING_EXECLIST0_ACTIVE (1 << 0x12) |
| |
| #define GEN8_CTX_STATUS_IDLE_ACTIVE (1 << 0) |
| #define GEN8_CTX_STATUS_PREEMPTED (1 << 1) |
| #define GEN8_CTX_STATUS_ELEMENT_SWITCH (1 << 2) |
| #define GEN8_CTX_STATUS_ACTIVE_IDLE (1 << 3) |
| #define GEN8_CTX_STATUS_COMPLETE (1 << 4) |
| #define GEN8_CTX_STATUS_LITE_RESTORE (1 << 15) |
| |
| #define GEN8_CTX_STATUS_COMPLETED_MASK \ |
| (GEN8_CTX_STATUS_COMPLETE | GEN8_CTX_STATUS_PREEMPTED) |
| |
| #define CTX_DESC_FORCE_RESTORE BIT_ULL(2) |
| |
| #define GEN12_CTX_STATUS_SWITCHED_TO_NEW_QUEUE (0x1) /* lower csb dword */ |
| #define GEN12_CTX_SWITCH_DETAIL(csb_dw) ((csb_dw) & 0xF) /* upper csb dword */ |
| #define GEN12_CSB_SW_CTX_ID_MASK GENMASK(25, 15) |
| #define GEN12_IDLE_CTX_ID 0x7FF |
| #define GEN12_CSB_CTX_VALID(csb_dw) \ |
| (FIELD_GET(GEN12_CSB_SW_CTX_ID_MASK, csb_dw) != GEN12_IDLE_CTX_ID) |
| |
| /* Typical size of the average request (2 pipecontrols and a MI_BB) */ |
| #define EXECLISTS_REQUEST_SIZE 64 /* bytes */ |
| |
| struct virtual_engine { |
| struct intel_engine_cs base; |
| struct intel_context context; |
| |
| /* |
| * We allow only a single request through the virtual engine at a time |
| * (each request in the timeline waits for the completion fence of |
| * the previous before being submitted). By restricting ourselves to |
| * only submitting a single request, each request is placed on to a |
| * physical to maximise load spreading (by virtue of the late greedy |
| * scheduling -- each real engine takes the next available request |
| * upon idling). |
| */ |
| struct i915_request *request; |
| |
| /* |
| * We keep a rbtree of available virtual engines inside each physical |
| * engine, sorted by priority. Here we preallocate the nodes we need |
| * for the virtual engine, indexed by physical_engine->id. |
| */ |
| struct ve_node { |
| struct rb_node rb; |
| int prio; |
| } nodes[I915_NUM_ENGINES]; |
| |
| /* |
| * Keep track of bonded pairs -- restrictions upon on our selection |
| * of physical engines any particular request may be submitted to. |
| * If we receive a submit-fence from a master engine, we will only |
| * use one of sibling_mask physical engines. |
| */ |
| struct ve_bond { |
| const struct intel_engine_cs *master; |
| intel_engine_mask_t sibling_mask; |
| } *bonds; |
| unsigned int num_bonds; |
| |
| /* And finally, which physical engines this virtual engine maps onto. */ |
| unsigned int num_siblings; |
| struct intel_engine_cs *siblings[0]; |
| }; |
| |
| static struct virtual_engine *to_virtual_engine(struct intel_engine_cs *engine) |
| { |
| GEM_BUG_ON(!intel_engine_is_virtual(engine)); |
| return container_of(engine, struct virtual_engine, base); |
| } |
| |
| static int __execlists_context_alloc(struct intel_context *ce, |
| struct intel_engine_cs *engine); |
| |
| static void execlists_init_reg_state(u32 *reg_state, |
| const struct intel_context *ce, |
| const struct intel_engine_cs *engine, |
| const struct intel_ring *ring, |
| bool close); |
| static void |
| __execlists_update_reg_state(const struct intel_context *ce, |
| const struct intel_engine_cs *engine, |
| u32 head); |
| |
| static void mark_eio(struct i915_request *rq) |
| { |
| if (i915_request_completed(rq)) |
| return; |
| |
| GEM_BUG_ON(i915_request_signaled(rq)); |
| |
| i915_request_set_error_once(rq, -EIO); |
| i915_request_mark_complete(rq); |
| } |
| |
| static struct i915_request * |
| active_request(const struct intel_timeline * const tl, struct i915_request *rq) |
| { |
| struct i915_request *active = rq; |
| |
| rcu_read_lock(); |
| list_for_each_entry_continue_reverse(rq, &tl->requests, link) { |
| if (i915_request_completed(rq)) |
| break; |
| |
| active = rq; |
| } |
| rcu_read_unlock(); |
| |
| return active; |
| } |
| |
| static inline u32 intel_hws_preempt_address(struct intel_engine_cs *engine) |
| { |
| return (i915_ggtt_offset(engine->status_page.vma) + |
| I915_GEM_HWS_PREEMPT_ADDR); |
| } |
| |
| static inline void |
| ring_set_paused(const struct intel_engine_cs *engine, int state) |
| { |
| /* |
| * We inspect HWS_PREEMPT with a semaphore inside |
| * engine->emit_fini_breadcrumb. If the dword is true, |
| * the ring is paused as the semaphore will busywait |
| * until the dword is false. |
| */ |
| engine->status_page.addr[I915_GEM_HWS_PREEMPT] = state; |
| if (state) |
| wmb(); |
| } |
| |
| static inline struct i915_priolist *to_priolist(struct rb_node *rb) |
| { |
| return rb_entry(rb, struct i915_priolist, node); |
| } |
| |
| static inline int rq_prio(const struct i915_request *rq) |
| { |
| return READ_ONCE(rq->sched.attr.priority); |
| } |
| |
| static int effective_prio(const struct i915_request *rq) |
| { |
| int prio = rq_prio(rq); |
| |
| /* |
| * If this request is special and must not be interrupted at any |
| * cost, so be it. Note we are only checking the most recent request |
| * in the context and so may be masking an earlier vip request. It |
| * is hoped that under the conditions where nopreempt is used, this |
| * will not matter (i.e. all requests to that context will be |
| * nopreempt for as long as desired). |
| */ |
| if (i915_request_has_nopreempt(rq)) |
| prio = I915_PRIORITY_UNPREEMPTABLE; |
| |
| /* |
| * On unwinding the active request, we give it a priority bump |
| * if it has completed waiting on any semaphore. If we know that |
| * the request has already started, we can prevent an unwanted |
| * preempt-to-idle cycle by taking that into account now. |
| */ |
| if (__i915_request_has_started(rq)) |
| prio |= I915_PRIORITY_NOSEMAPHORE; |
| |
| /* Restrict mere WAIT boosts from triggering preemption */ |
| BUILD_BUG_ON(__NO_PREEMPTION & ~I915_PRIORITY_MASK); /* only internal */ |
| return prio | __NO_PREEMPTION; |
| } |
| |
| static int queue_prio(const struct intel_engine_execlists *execlists) |
| { |
| struct i915_priolist *p; |
| struct rb_node *rb; |
| |
| rb = rb_first_cached(&execlists->queue); |
| if (!rb) |
| return INT_MIN; |
| |
| /* |
| * As the priolist[] are inverted, with the highest priority in [0], |
| * we have to flip the index value to become priority. |
| */ |
| p = to_priolist(rb); |
| return ((p->priority + 1) << I915_USER_PRIORITY_SHIFT) - ffs(p->used); |
| } |
| |
| static inline bool need_preempt(const struct intel_engine_cs *engine, |
| const struct i915_request *rq, |
| struct rb_node *rb) |
| { |
| int last_prio; |
| |
| if (!intel_engine_has_semaphores(engine)) |
| return false; |
| |
| /* |
| * Check if the current priority hint merits a preemption attempt. |
| * |
| * We record the highest value priority we saw during rescheduling |
| * prior to this dequeue, therefore we know that if it is strictly |
| * less than the current tail of ESLP[0], we do not need to force |
| * a preempt-to-idle cycle. |
| * |
| * However, the priority hint is a mere hint that we may need to |
| * preempt. If that hint is stale or we may be trying to preempt |
| * ourselves, ignore the request. |
| * |
| * More naturally we would write |
| * prio >= max(0, last); |
| * except that we wish to prevent triggering preemption at the same |
| * priority level: the task that is running should remain running |
| * to preserve FIFO ordering of dependencies. |
| */ |
| last_prio = max(effective_prio(rq), I915_PRIORITY_NORMAL - 1); |
| if (engine->execlists.queue_priority_hint <= last_prio) |
| return false; |
| |
| /* |
| * Check against the first request in ELSP[1], it will, thanks to the |
| * power of PI, be the highest priority of that context. |
| */ |
| if (!list_is_last(&rq->sched.link, &engine->active.requests) && |
| rq_prio(list_next_entry(rq, sched.link)) > last_prio) |
| return true; |
| |
| if (rb) { |
| struct virtual_engine *ve = |
| rb_entry(rb, typeof(*ve), nodes[engine->id].rb); |
| bool preempt = false; |
| |
| if (engine == ve->siblings[0]) { /* only preempt one sibling */ |
| struct i915_request *next; |
| |
| rcu_read_lock(); |
| next = READ_ONCE(ve->request); |
| if (next) |
| preempt = rq_prio(next) > last_prio; |
| rcu_read_unlock(); |
| } |
| |
| if (preempt) |
| return preempt; |
| } |
| |
| /* |
| * If the inflight context did not trigger the preemption, then maybe |
| * it was the set of queued requests? Pick the highest priority in |
| * the queue (the first active priolist) and see if it deserves to be |
| * running instead of ELSP[0]. |
| * |
| * The highest priority request in the queue can not be either |
| * ELSP[0] or ELSP[1] as, thanks again to PI, if it was the same |
| * context, it's priority would not exceed ELSP[0] aka last_prio. |
| */ |
| return queue_prio(&engine->execlists) > last_prio; |
| } |
| |
| __maybe_unused static inline bool |
| assert_priority_queue(const struct i915_request *prev, |
| const struct i915_request *next) |
| { |
| /* |
| * Without preemption, the prev may refer to the still active element |
| * which we refuse to let go. |
| * |
| * Even with preemption, there are times when we think it is better not |
| * to preempt and leave an ostensibly lower priority request in flight. |
| */ |
| if (i915_request_is_active(prev)) |
| return true; |
| |
| return rq_prio(prev) >= rq_prio(next); |
| } |
| |
| /* |
| * The context descriptor encodes various attributes of a context, |
| * including its GTT address and some flags. Because it's fairly |
| * expensive to calculate, we'll just do it once and cache the result, |
| * which remains valid until the context is unpinned. |
| * |
| * This is what a descriptor looks like, from LSB to MSB:: |
| * |
| * bits 0-11: flags, GEN8_CTX_* (cached in ctx->desc_template) |
| * bits 12-31: LRCA, GTT address of (the HWSP of) this context |
| * bits 32-52: ctx ID, a globally unique tag (highest bit used by GuC) |
| * bits 53-54: mbz, reserved for use by hardware |
| * bits 55-63: group ID, currently unused and set to 0 |
| * |
| * Starting from Gen11, the upper dword of the descriptor has a new format: |
| * |
| * bits 32-36: reserved |
| * bits 37-47: SW context ID |
| * bits 48:53: engine instance |
| * bit 54: mbz, reserved for use by hardware |
| * bits 55-60: SW counter |
| * bits 61-63: engine class |
| * |
| * engine info, SW context ID and SW counter need to form a unique number |
| * (Context ID) per lrc. |
| */ |
| static u32 |
| lrc_descriptor(struct intel_context *ce, struct intel_engine_cs *engine) |
| { |
| u32 desc; |
| |
| desc = INTEL_LEGACY_32B_CONTEXT; |
| if (i915_vm_is_4lvl(ce->vm)) |
| desc = INTEL_LEGACY_64B_CONTEXT; |
| desc <<= GEN8_CTX_ADDRESSING_MODE_SHIFT; |
| |
| desc |= GEN8_CTX_VALID | GEN8_CTX_PRIVILEGE; |
| if (IS_GEN(engine->i915, 8)) |
| desc |= GEN8_CTX_L3LLC_COHERENT; |
| |
| return i915_ggtt_offset(ce->state) | desc; |
| } |
| |
| static inline unsigned int dword_in_page(void *addr) |
| { |
| return offset_in_page(addr) / sizeof(u32); |
| } |
| |
| static void set_offsets(u32 *regs, |
| const u8 *data, |
| const struct intel_engine_cs *engine, |
| bool clear) |
| #define NOP(x) (BIT(7) | (x)) |
| #define LRI(count, flags) ((flags) << 6 | (count) | BUILD_BUG_ON_ZERO(count >= BIT(6))) |
| #define POSTED BIT(0) |
| #define REG(x) (((x) >> 2) | BUILD_BUG_ON_ZERO(x >= 0x200)) |
| #define REG16(x) \ |
| (((x) >> 9) | BIT(7) | BUILD_BUG_ON_ZERO(x >= 0x10000)), \ |
| (((x) >> 2) & 0x7f) |
| #define END(x) 0, (x) |
| { |
| const u32 base = engine->mmio_base; |
| |
| while (*data) { |
| u8 count, flags; |
| |
| if (*data & BIT(7)) { /* skip */ |
| count = *data++ & ~BIT(7); |
| if (clear) |
| memset32(regs, MI_NOOP, count); |
| regs += count; |
| continue; |
| } |
| |
| count = *data & 0x3f; |
| flags = *data >> 6; |
| data++; |
| |
| *regs = MI_LOAD_REGISTER_IMM(count); |
| if (flags & POSTED) |
| *regs |= MI_LRI_FORCE_POSTED; |
| if (INTEL_GEN(engine->i915) >= 11) |
| *regs |= MI_LRI_CS_MMIO; |
| regs++; |
| |
| GEM_BUG_ON(!count); |
| do { |
| u32 offset = 0; |
| u8 v; |
| |
| do { |
| v = *data++; |
| offset <<= 7; |
| offset |= v & ~BIT(7); |
| } while (v & BIT(7)); |
| |
| regs[0] = base + (offset << 2); |
| if (clear) |
| regs[1] = 0; |
| regs += 2; |
| } while (--count); |
| } |
| |
| if (clear) { |
| u8 count = *++data; |
| |
| /* Clear past the tail for HW access */ |
| GEM_BUG_ON(dword_in_page(regs) > count); |
| memset32(regs, MI_NOOP, count - dword_in_page(regs)); |
| |
| /* Close the batch; used mainly by live_lrc_layout() */ |
| *regs = MI_BATCH_BUFFER_END; |
| if (INTEL_GEN(engine->i915) >= 10) |
| *regs |= BIT(0); |
| } |
| } |
| |
| static const u8 gen8_xcs_offsets[] = { |
| NOP(1), |
| LRI(11, 0), |
| REG16(0x244), |
| REG(0x034), |
| REG(0x030), |
| REG(0x038), |
| REG(0x03c), |
| REG(0x168), |
| REG(0x140), |
| REG(0x110), |
| REG(0x11c), |
| REG(0x114), |
| REG(0x118), |
| |
| NOP(9), |
| LRI(9, 0), |
| REG16(0x3a8), |
| REG16(0x28c), |
| REG16(0x288), |
| REG16(0x284), |
| REG16(0x280), |
| REG16(0x27c), |
| REG16(0x278), |
| REG16(0x274), |
| REG16(0x270), |
| |
| NOP(13), |
| LRI(2, 0), |
| REG16(0x200), |
| REG(0x028), |
| |
| END(80) |
| }; |
| |
| static const u8 gen9_xcs_offsets[] = { |
| NOP(1), |
| LRI(14, POSTED), |
| REG16(0x244), |
| REG(0x034), |
| REG(0x030), |
| REG(0x038), |
| REG(0x03c), |
| REG(0x168), |
| REG(0x140), |
| REG(0x110), |
| REG(0x11c), |
| REG(0x114), |
| REG(0x118), |
| REG(0x1c0), |
| REG(0x1c4), |
| REG(0x1c8), |
| |
| NOP(3), |
| LRI(9, POSTED), |
| REG16(0x3a8), |
| REG16(0x28c), |
| REG16(0x288), |
| REG16(0x284), |
| REG16(0x280), |
| REG16(0x27c), |
| REG16(0x278), |
| REG16(0x274), |
| REG16(0x270), |
| |
| NOP(13), |
| LRI(1, POSTED), |
| REG16(0x200), |
| |
| NOP(13), |
| LRI(44, POSTED), |
| REG(0x028), |
| REG(0x09c), |
| REG(0x0c0), |
| REG(0x178), |
| REG(0x17c), |
| REG16(0x358), |
| REG(0x170), |
| REG(0x150), |
| REG(0x154), |
| REG(0x158), |
| REG16(0x41c), |
| REG16(0x600), |
| REG16(0x604), |
| REG16(0x608), |
| REG16(0x60c), |
| REG16(0x610), |
| REG16(0x614), |
| REG16(0x618), |
| REG16(0x61c), |
| REG16(0x620), |
| REG16(0x624), |
| REG16(0x628), |
| REG16(0x62c), |
| REG16(0x630), |
| REG16(0x634), |
| REG16(0x638), |
| REG16(0x63c), |
| REG16(0x640), |
| REG16(0x644), |
| REG16(0x648), |
| REG16(0x64c), |
| REG16(0x650), |
| REG16(0x654), |
| REG16(0x658), |
| REG16(0x65c), |
| REG16(0x660), |
| REG16(0x664), |
| REG16(0x668), |
| REG16(0x66c), |
| REG16(0x670), |
| REG16(0x674), |
| REG16(0x678), |
| REG16(0x67c), |
| REG(0x068), |
| |
| END(176) |
| }; |
| |
| static const u8 gen12_xcs_offsets[] = { |
| NOP(1), |
| LRI(13, POSTED), |
| REG16(0x244), |
| REG(0x034), |
| REG(0x030), |
| REG(0x038), |
| REG(0x03c), |
| REG(0x168), |
| REG(0x140), |
| REG(0x110), |
| REG(0x1c0), |
| REG(0x1c4), |
| REG(0x1c8), |
| REG(0x180), |
| REG16(0x2b4), |
| |
| NOP(5), |
| LRI(9, POSTED), |
| REG16(0x3a8), |
| REG16(0x28c), |
| REG16(0x288), |
| REG16(0x284), |
| REG16(0x280), |
| REG16(0x27c), |
| REG16(0x278), |
| REG16(0x274), |
| REG16(0x270), |
| |
| END(80) |
| }; |
| |
| static const u8 gen8_rcs_offsets[] = { |
| NOP(1), |
| LRI(14, POSTED), |
| REG16(0x244), |
| REG(0x034), |
| REG(0x030), |
| REG(0x038), |
| REG(0x03c), |
| REG(0x168), |
| REG(0x140), |
| REG(0x110), |
| REG(0x11c), |
| REG(0x114), |
| REG(0x118), |
| REG(0x1c0), |
| REG(0x1c4), |
| REG(0x1c8), |
| |
| NOP(3), |
| LRI(9, POSTED), |
| REG16(0x3a8), |
| REG16(0x28c), |
| REG16(0x288), |
| REG16(0x284), |
| REG16(0x280), |
| REG16(0x27c), |
| REG16(0x278), |
| REG16(0x274), |
| REG16(0x270), |
| |
| NOP(13), |
| LRI(1, 0), |
| REG(0x0c8), |
| |
| END(80) |
| }; |
| |
| static const u8 gen9_rcs_offsets[] = { |
| NOP(1), |
| LRI(14, POSTED), |
| REG16(0x244), |
| REG(0x34), |
| REG(0x30), |
| REG(0x38), |
| REG(0x3c), |
| REG(0x168), |
| REG(0x140), |
| REG(0x110), |
| REG(0x11c), |
| REG(0x114), |
| REG(0x118), |
| REG(0x1c0), |
| REG(0x1c4), |
| REG(0x1c8), |
| |
| NOP(3), |
| LRI(9, POSTED), |
| REG16(0x3a8), |
| REG16(0x28c), |
| REG16(0x288), |
| REG16(0x284), |
| REG16(0x280), |
| REG16(0x27c), |
| REG16(0x278), |
| REG16(0x274), |
| REG16(0x270), |
| |
| NOP(13), |
| LRI(1, 0), |
| REG(0xc8), |
| |
| NOP(13), |
| LRI(44, POSTED), |
| REG(0x28), |
| REG(0x9c), |
| REG(0xc0), |
| REG(0x178), |
| REG(0x17c), |
| REG16(0x358), |
| REG(0x170), |
| REG(0x150), |
| REG(0x154), |
| REG(0x158), |
| REG16(0x41c), |
| REG16(0x600), |
| REG16(0x604), |
| REG16(0x608), |
| REG16(0x60c), |
| REG16(0x610), |
| REG16(0x614), |
| REG16(0x618), |
| REG16(0x61c), |
| REG16(0x620), |
| REG16(0x624), |
| REG16(0x628), |
| REG16(0x62c), |
| REG16(0x630), |
| REG16(0x634), |
| REG16(0x638), |
| REG16(0x63c), |
| REG16(0x640), |
| REG16(0x644), |
| REG16(0x648), |
| REG16(0x64c), |
| REG16(0x650), |
| REG16(0x654), |
| REG16(0x658), |
| REG16(0x65c), |
| REG16(0x660), |
| REG16(0x664), |
| REG16(0x668), |
| REG16(0x66c), |
| REG16(0x670), |
| REG16(0x674), |
| REG16(0x678), |
| REG16(0x67c), |
| REG(0x68), |
| |
| END(176) |
| }; |
| |
| static const u8 gen11_rcs_offsets[] = { |
| NOP(1), |
| LRI(15, POSTED), |
| REG16(0x244), |
| REG(0x034), |
| REG(0x030), |
| REG(0x038), |
| REG(0x03c), |
| REG(0x168), |
| REG(0x140), |
| REG(0x110), |
| REG(0x11c), |
| REG(0x114), |
| REG(0x118), |
| REG(0x1c0), |
| REG(0x1c4), |
| REG(0x1c8), |
| REG(0x180), |
| |
| NOP(1), |
| LRI(9, POSTED), |
| REG16(0x3a8), |
| REG16(0x28c), |
| REG16(0x288), |
| REG16(0x284), |
| REG16(0x280), |
| REG16(0x27c), |
| REG16(0x278), |
| REG16(0x274), |
| REG16(0x270), |
| |
| LRI(1, POSTED), |
| REG(0x1b0), |
| |
| NOP(10), |
| LRI(1, 0), |
| REG(0x0c8), |
| |
| END(80) |
| }; |
| |
| static const u8 gen12_rcs_offsets[] = { |
| NOP(1), |
| LRI(13, POSTED), |
| REG16(0x244), |
| REG(0x034), |
| REG(0x030), |
| REG(0x038), |
| REG(0x03c), |
| REG(0x168), |
| REG(0x140), |
| REG(0x110), |
| REG(0x1c0), |
| REG(0x1c4), |
| REG(0x1c8), |
| REG(0x180), |
| REG16(0x2b4), |
| |
| NOP(5), |
| LRI(9, POSTED), |
| REG16(0x3a8), |
| REG16(0x28c), |
| REG16(0x288), |
| REG16(0x284), |
| REG16(0x280), |
| REG16(0x27c), |
| REG16(0x278), |
| REG16(0x274), |
| REG16(0x270), |
| |
| LRI(3, POSTED), |
| REG(0x1b0), |
| REG16(0x5a8), |
| REG16(0x5ac), |
| |
| NOP(6), |
| LRI(1, 0), |
| REG(0x0c8), |
| |
| END(80) |
| }; |
| |
| #undef END |
| #undef REG16 |
| #undef REG |
| #undef LRI |
| #undef NOP |
| |
| static const u8 *reg_offsets(const struct intel_engine_cs *engine) |
| { |
| /* |
| * The gen12+ lists only have the registers we program in the basic |
| * default state. We rely on the context image using relative |
| * addressing to automatic fixup the register state between the |
| * physical engines for virtual engine. |
| */ |
| GEM_BUG_ON(INTEL_GEN(engine->i915) >= 12 && |
| !intel_engine_has_relative_mmio(engine)); |
| |
| if (engine->class == RENDER_CLASS) { |
| if (INTEL_GEN(engine->i915) >= 12) |
| return gen12_rcs_offsets; |
| else if (INTEL_GEN(engine->i915) >= 11) |
| return gen11_rcs_offsets; |
| else if (INTEL_GEN(engine->i915) >= 9) |
| return gen9_rcs_offsets; |
| else |
| return gen8_rcs_offsets; |
| } else { |
| if (INTEL_GEN(engine->i915) >= 12) |
| return gen12_xcs_offsets; |
| else if (INTEL_GEN(engine->i915) >= 9) |
| return gen9_xcs_offsets; |
| else |
| return gen8_xcs_offsets; |
| } |
| } |
| |
| static struct i915_request * |
| __unwind_incomplete_requests(struct intel_engine_cs *engine) |
| { |
| struct i915_request *rq, *rn, *active = NULL; |
| struct list_head *uninitialized_var(pl); |
| int prio = I915_PRIORITY_INVALID; |
| |
| lockdep_assert_held(&engine->active.lock); |
| |
| list_for_each_entry_safe_reverse(rq, rn, |
| &engine->active.requests, |
| sched.link) { |
| if (i915_request_completed(rq)) |
| continue; /* XXX */ |
| |
| __i915_request_unsubmit(rq); |
| |
| /* |
| * Push the request back into the queue for later resubmission. |
| * If this request is not native to this physical engine (i.e. |
| * it came from a virtual source), push it back onto the virtual |
| * engine so that it can be moved across onto another physical |
| * engine as load dictates. |
| */ |
| if (likely(rq->execution_mask == engine->mask)) { |
| GEM_BUG_ON(rq_prio(rq) == I915_PRIORITY_INVALID); |
| if (rq_prio(rq) != prio) { |
| prio = rq_prio(rq); |
| pl = i915_sched_lookup_priolist(engine, prio); |
| } |
| GEM_BUG_ON(RB_EMPTY_ROOT(&engine->execlists.queue.rb_root)); |
| |
| list_move(&rq->sched.link, pl); |
| set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags); |
| |
| active = rq; |
| } else { |
| struct intel_engine_cs *owner = rq->context->engine; |
| |
| /* |
| * Decouple the virtual breadcrumb before moving it |
| * back to the virtual engine -- we don't want the |
| * request to complete in the background and try |
| * and cancel the breadcrumb on the virtual engine |
| * (instead of the old engine where it is linked)! |
| */ |
| if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, |
| &rq->fence.flags)) { |
| spin_lock_nested(&rq->lock, |
| SINGLE_DEPTH_NESTING); |
| i915_request_cancel_breadcrumb(rq); |
| spin_unlock(&rq->lock); |
| } |
| WRITE_ONCE(rq->engine, owner); |
| owner->submit_request(rq); |
| active = NULL; |
| } |
| } |
| |
| return active; |
| } |
| |
| struct i915_request * |
| execlists_unwind_incomplete_requests(struct intel_engine_execlists *execlists) |
| { |
| struct intel_engine_cs *engine = |
| container_of(execlists, typeof(*engine), execlists); |
| |
| return __unwind_incomplete_requests(engine); |
| } |
| |
| static inline void |
| execlists_context_status_change(struct i915_request *rq, unsigned long status) |
| { |
| /* |
| * Only used when GVT-g is enabled now. When GVT-g is disabled, |
| * The compiler should eliminate this function as dead-code. |
| */ |
| if (!IS_ENABLED(CONFIG_DRM_I915_GVT)) |
| return; |
| |
| atomic_notifier_call_chain(&rq->engine->context_status_notifier, |
| status, rq); |
| } |
| |
| static void intel_engine_context_in(struct intel_engine_cs *engine) |
| { |
| unsigned long flags; |
| |
| if (READ_ONCE(engine->stats.enabled) == 0) |
| return; |
| |
| write_seqlock_irqsave(&engine->stats.lock, flags); |
| |
| if (engine->stats.enabled > 0) { |
| if (engine->stats.active++ == 0) |
| engine->stats.start = ktime_get(); |
| GEM_BUG_ON(engine->stats.active == 0); |
| } |
| |
| write_sequnlock_irqrestore(&engine->stats.lock, flags); |
| } |
| |
| static void intel_engine_context_out(struct intel_engine_cs *engine) |
| { |
| unsigned long flags; |
| |
| if (READ_ONCE(engine->stats.enabled) == 0) |
| return; |
| |
| write_seqlock_irqsave(&engine->stats.lock, flags); |
| |
| if (engine->stats.enabled > 0) { |
| ktime_t last; |
| |
| if (engine->stats.active && --engine->stats.active == 0) { |
| /* |
| * Decrement the active context count and in case GPU |
| * is now idle add up to the running total. |
| */ |
| last = ktime_sub(ktime_get(), engine->stats.start); |
| |
| engine->stats.total = ktime_add(engine->stats.total, |
| last); |
| } else if (engine->stats.active == 0) { |
| /* |
| * After turning on engine stats, context out might be |
| * the first event in which case we account from the |
| * time stats gathering was turned on. |
| */ |
| last = ktime_sub(ktime_get(), engine->stats.enabled_at); |
| |
| engine->stats.total = ktime_add(engine->stats.total, |
| last); |
| } |
| } |
| |
| write_sequnlock_irqrestore(&engine->stats.lock, flags); |
| } |
| |
| static int lrc_ring_mi_mode(const struct intel_engine_cs *engine) |
| { |
| if (INTEL_GEN(engine->i915) >= 12) |
| return 0x60; |
| else if (INTEL_GEN(engine->i915) >= 9) |
| return 0x54; |
| else if (engine->class == RENDER_CLASS) |
| return 0x58; |
| else |
| return -1; |
| } |
| |
| static void |
| execlists_check_context(const struct intel_context *ce, |
| const struct intel_engine_cs *engine) |
| { |
| const struct intel_ring *ring = ce->ring; |
| u32 *regs = ce->lrc_reg_state; |
| bool valid = true; |
| int x; |
| |
| if (regs[CTX_RING_START] != i915_ggtt_offset(ring->vma)) { |
| pr_err("%s: context submitted with incorrect RING_START [%08x], expected %08x\n", |
| engine->name, |
| regs[CTX_RING_START], |
| i915_ggtt_offset(ring->vma)); |
| regs[CTX_RING_START] = i915_ggtt_offset(ring->vma); |
| valid = false; |
| } |
| |
| if ((regs[CTX_RING_CTL] & ~(RING_WAIT | RING_WAIT_SEMAPHORE)) != |
| (RING_CTL_SIZE(ring->size) | RING_VALID)) { |
| pr_err("%s: context submitted with incorrect RING_CTL [%08x], expected %08x\n", |
| engine->name, |
| regs[CTX_RING_CTL], |
| (u32)(RING_CTL_SIZE(ring->size) | RING_VALID)); |
| regs[CTX_RING_CTL] = RING_CTL_SIZE(ring->size) | RING_VALID; |
| valid = false; |
| } |
| |
| x = lrc_ring_mi_mode(engine); |
| if (x != -1 && regs[x + 1] & (regs[x + 1] >> 16) & STOP_RING) { |
| pr_err("%s: context submitted with STOP_RING [%08x] in RING_MI_MODE\n", |
| engine->name, regs[x + 1]); |
| regs[x + 1] &= ~STOP_RING; |
| regs[x + 1] |= STOP_RING << 16; |
| valid = false; |
| } |
| |
| WARN_ONCE(!valid, "Invalid lrc state found before submission\n"); |
| } |
| |
| static void restore_default_state(struct intel_context *ce, |
| struct intel_engine_cs *engine) |
| { |
| u32 *regs = ce->lrc_reg_state; |
| |
| if (engine->pinned_default_state) |
| memcpy(regs, /* skip restoring the vanilla PPHWSP */ |
| engine->pinned_default_state + LRC_STATE_PN * PAGE_SIZE, |
| engine->context_size - PAGE_SIZE); |
| |
| execlists_init_reg_state(regs, ce, engine, ce->ring, false); |
| } |
| |
| static void reset_active(struct i915_request *rq, |
| struct intel_engine_cs *engine) |
| { |
| struct intel_context * const ce = rq->context; |
| u32 head; |
| |
| /* |
| * The executing context has been cancelled. We want to prevent |
| * further execution along this context and propagate the error on |
| * to anything depending on its results. |
| * |
| * In __i915_request_submit(), we apply the -EIO and remove the |
| * requests' payloads for any banned requests. But first, we must |
| * rewind the context back to the start of the incomplete request so |
| * that we do not jump back into the middle of the batch. |
| * |
| * We preserve the breadcrumbs and semaphores of the incomplete |
| * requests so that inter-timeline dependencies (i.e other timelines) |
| * remain correctly ordered. And we defer to __i915_request_submit() |
| * so that all asynchronous waits are correctly handled. |
| */ |
| ENGINE_TRACE(engine, "{ rq=%llx:%lld }\n", |
| rq->fence.context, rq->fence.seqno); |
| |
| /* On resubmission of the active request, payload will be scrubbed */ |
| if (i915_request_completed(rq)) |
| head = rq->tail; |
| else |
| head = active_request(ce->timeline, rq)->head; |
| head = intel_ring_wrap(ce->ring, head); |
| |
| /* Scrub the context image to prevent replaying the previous batch */ |
| restore_default_state(ce, engine); |
| __execlists_update_reg_state(ce, engine, head); |
| |
| /* We've switched away, so this should be a no-op, but intent matters */ |
| ce->lrc.desc |= CTX_DESC_FORCE_RESTORE; |
| } |
| |
| static u32 intel_context_get_runtime(const struct intel_context *ce) |
| { |
| /* |
| * We can use either ppHWSP[16] which is recorded before the context |
| * switch (and so excludes the cost of context switches) or use the |
| * value from the context image itself, which is saved/restored earlier |
| * and so includes the cost of the save. |
| */ |
| return READ_ONCE(ce->lrc_reg_state[CTX_TIMESTAMP]); |
| } |
| |
| static void st_update_runtime_underflow(struct intel_context *ce, s32 dt) |
| { |
| #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) |
| ce->runtime.num_underflow += dt < 0; |
| ce->runtime.max_underflow = max_t(u32, ce->runtime.max_underflow, -dt); |
| #endif |
| } |
| |
| static void intel_context_update_runtime(struct intel_context *ce) |
| { |
| u32 old; |
| s32 dt; |
| |
| if (intel_context_is_barrier(ce)) |
| return; |
| |
| old = ce->runtime.last; |
| ce->runtime.last = intel_context_get_runtime(ce); |
| dt = ce->runtime.last - old; |
| |
| if (unlikely(dt <= 0)) { |
| CE_TRACE(ce, "runtime underflow: last=%u, new=%u, delta=%d\n", |
| old, ce->runtime.last, dt); |
| st_update_runtime_underflow(ce, dt); |
| return; |
| } |
| |
| ewma_runtime_add(&ce->runtime.avg, dt); |
| ce->runtime.total += dt; |
| } |
| |
| static inline struct intel_engine_cs * |
| __execlists_schedule_in(struct i915_request *rq) |
| { |
| struct intel_engine_cs * const engine = rq->engine; |
| struct intel_context * const ce = rq->context; |
| |
| intel_context_get(ce); |
| |
| if (unlikely(intel_context_is_banned(ce))) |
| reset_active(rq, engine); |
| |
| if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) |
| execlists_check_context(ce, engine); |
| |
| if (ce->tag) { |
| /* Use a fixed tag for OA and friends */ |
| GEM_BUG_ON(ce->tag <= BITS_PER_LONG); |
| ce->lrc.ccid = ce->tag; |
| } else { |
| /* We don't need a strict matching tag, just different values */ |
| unsigned int tag = ffs(engine->context_tag); |
| |
| GEM_BUG_ON(tag == 0 || tag >= BITS_PER_LONG); |
| clear_bit(tag - 1, &engine->context_tag); |
| ce->lrc.ccid = tag << (GEN11_SW_CTX_ID_SHIFT - 32); |
| |
| BUILD_BUG_ON(BITS_PER_LONG > GEN12_MAX_CONTEXT_HW_ID); |
| } |
| |
| ce->lrc.ccid |= engine->execlists.ccid; |
| |
| __intel_gt_pm_get(engine->gt); |
| execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_IN); |
| intel_engine_context_in(engine); |
| |
| return engine; |
| } |
| |
| static inline struct i915_request * |
| execlists_schedule_in(struct i915_request *rq, int idx) |
| { |
| struct intel_context * const ce = rq->context; |
| struct intel_engine_cs *old; |
| |
| GEM_BUG_ON(!intel_engine_pm_is_awake(rq->engine)); |
| trace_i915_request_in(rq, idx); |
| |
| old = READ_ONCE(ce->inflight); |
| do { |
| if (!old) { |
| WRITE_ONCE(ce->inflight, __execlists_schedule_in(rq)); |
| break; |
| } |
| } while (!try_cmpxchg(&ce->inflight, &old, ptr_inc(old))); |
| |
| GEM_BUG_ON(intel_context_inflight(ce) != rq->engine); |
| return i915_request_get(rq); |
| } |
| |
| static void kick_siblings(struct i915_request *rq, struct intel_context *ce) |
| { |
| struct virtual_engine *ve = container_of(ce, typeof(*ve), context); |
| struct i915_request *next = READ_ONCE(ve->request); |
| |
| if (next && next->execution_mask & ~rq->execution_mask) |
| tasklet_schedule(&ve->base.execlists.tasklet); |
| } |
| |
| static inline void |
| __execlists_schedule_out(struct i915_request *rq, |
| struct intel_engine_cs * const engine, |
| unsigned int ccid) |
| { |
| struct intel_context * const ce = rq->context; |
| |
| /* |
| * NB process_csb() is not under the engine->active.lock and hence |
| * schedule_out can race with schedule_in meaning that we should |
| * refrain from doing non-trivial work here. |
| */ |
| |
| /* |
| * If we have just completed this context, the engine may now be |
| * idle and we want to re-enter powersaving. |
| */ |
| if (list_is_last_rcu(&rq->link, &ce->timeline->requests) && |
| i915_request_completed(rq)) |
| intel_engine_add_retire(engine, ce->timeline); |
| |
| ccid >>= GEN11_SW_CTX_ID_SHIFT - 32; |
| ccid &= GEN12_MAX_CONTEXT_HW_ID; |
| if (ccid < BITS_PER_LONG) { |
| GEM_BUG_ON(ccid == 0); |
| GEM_BUG_ON(test_bit(ccid - 1, &engine->context_tag)); |
| set_bit(ccid - 1, &engine->context_tag); |
| } |
| |
| intel_context_update_runtime(ce); |
| intel_engine_context_out(engine); |
| execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_OUT); |
| intel_gt_pm_put_async(engine->gt); |
| |
| /* |
| * If this is part of a virtual engine, its next request may |
| * have been blocked waiting for access to the active context. |
| * We have to kick all the siblings again in case we need to |
| * switch (e.g. the next request is not runnable on this |
| * engine). Hopefully, we will already have submitted the next |
| * request before the tasklet runs and do not need to rebuild |
| * each virtual tree and kick everyone again. |
| */ |
| if (ce->engine != engine) |
| kick_siblings(rq, ce); |
| |
| intel_context_put(ce); |
| } |
| |
| static inline void |
| execlists_schedule_out(struct i915_request *rq) |
| { |
| struct intel_context * const ce = rq->context; |
| struct intel_engine_cs *cur, *old; |
| u32 ccid; |
| |
| trace_i915_request_out(rq); |
| |
| ccid = rq->context->lrc.ccid; |
| old = READ_ONCE(ce->inflight); |
| do |
| cur = ptr_unmask_bits(old, 2) ? ptr_dec(old) : NULL; |
| while (!try_cmpxchg(&ce->inflight, &old, cur)); |
| if (!cur) |
| __execlists_schedule_out(rq, old, ccid); |
| |
| i915_request_put(rq); |
| } |
| |
| static u64 execlists_update_context(struct i915_request *rq) |
| { |
| struct intel_context *ce = rq->context; |
| u64 desc = ce->lrc.desc; |
| u32 tail, prev; |
| |
| /* |
| * WaIdleLiteRestore:bdw,skl |
| * |
| * We should never submit the context with the same RING_TAIL twice |
| * just in case we submit an empty ring, which confuses the HW. |
| * |
| * We append a couple of NOOPs (gen8_emit_wa_tail) after the end of |
| * the normal request to be able to always advance the RING_TAIL on |
| * subsequent resubmissions (for lite restore). Should that fail us, |
| * and we try and submit the same tail again, force the context |
| * reload. |
| * |
| * If we need to return to a preempted context, we need to skip the |
| * lite-restore and force it to reload the RING_TAIL. Otherwise, the |
| * HW has a tendency to ignore us rewinding the TAIL to the end of |
| * an earlier request. |
| */ |
| tail = intel_ring_set_tail(rq->ring, rq->tail); |
| prev = ce->lrc_reg_state[CTX_RING_TAIL]; |
| if (unlikely(intel_ring_direction(rq->ring, tail, prev) <= 0)) |
| desc |= CTX_DESC_FORCE_RESTORE; |
| ce->lrc_reg_state[CTX_RING_TAIL] = tail; |
| rq->tail = rq->wa_tail; |
| |
| /* |
| * Make sure the context image is complete before we submit it to HW. |
| * |
| * Ostensibly, writes (including the WCB) should be flushed prior to |
| * an uncached write such as our mmio register access, the empirical |
| * evidence (esp. on Braswell) suggests that the WC write into memory |
| * may not be visible to the HW prior to the completion of the UC |
| * register write and that we may begin execution from the context |
| * before its image is complete leading to invalid PD chasing. |
| */ |
| wmb(); |
| |
| ce->lrc.desc &= ~CTX_DESC_FORCE_RESTORE; |
| return desc; |
| } |
| |
| static inline void write_desc(struct intel_engine_execlists *execlists, u64 desc, u32 port) |
| { |
| if (execlists->ctrl_reg) { |
| writel(lower_32_bits(desc), execlists->submit_reg + port * 2); |
| writel(upper_32_bits(desc), execlists->submit_reg + port * 2 + 1); |
| } else { |
| writel(upper_32_bits(desc), execlists->submit_reg); |
| writel(lower_32_bits(desc), execlists->submit_reg); |
| } |
| } |
| |
| static __maybe_unused void |
| trace_ports(const struct intel_engine_execlists *execlists, |
| const char *msg, |
| struct i915_request * const *ports) |
| { |
| const struct intel_engine_cs *engine = |
| container_of(execlists, typeof(*engine), execlists); |
| |
| if (!ports[0]) |
| return; |
| |
| ENGINE_TRACE(engine, "%s { %llx:%lld%s, %llx:%lld }\n", msg, |
| ports[0]->fence.context, |
| ports[0]->fence.seqno, |
| i915_request_completed(ports[0]) ? "!" : |
| i915_request_started(ports[0]) ? "*" : |
| "", |
| ports[1] ? ports[1]->fence.context : 0, |
| ports[1] ? ports[1]->fence.seqno : 0); |
| } |
| |
| static inline bool |
| reset_in_progress(const struct intel_engine_execlists *execlists) |
| { |
| return unlikely(!__tasklet_is_enabled(&execlists->tasklet)); |
| } |
| |
| static __maybe_unused bool |
| assert_pending_valid(const struct intel_engine_execlists *execlists, |
| const char *msg) |
| { |
| struct i915_request * const *port, *rq; |
| struct intel_context *ce = NULL; |
| bool sentinel = false; |
| |
| trace_ports(execlists, msg, execlists->pending); |
| |
| /* We may be messing around with the lists during reset, lalala */ |
| if (reset_in_progress(execlists)) |
| return true; |
| |
| if (!execlists->pending[0]) { |
| GEM_TRACE_ERR("Nothing pending for promotion!\n"); |
| return false; |
| } |
| |
| if (execlists->pending[execlists_num_ports(execlists)]) { |
| GEM_TRACE_ERR("Excess pending[%d] for promotion!\n", |
| execlists_num_ports(execlists)); |
| return false; |
| } |
| |
| for (port = execlists->pending; (rq = *port); port++) { |
| unsigned long flags; |
| bool ok = true; |
| |
| GEM_BUG_ON(!kref_read(&rq->fence.refcount)); |
| GEM_BUG_ON(!i915_request_is_active(rq)); |
| |
| if (ce == rq->context) { |
| GEM_TRACE_ERR("Dup context:%llx in pending[%zd]\n", |
| ce->timeline->fence_context, |
| port - execlists->pending); |
| return false; |
| } |
| ce = rq->context; |
| |
| /* |
| * Sentinels are supposed to be lonely so they flush the |
| * current exection off the HW. Check that they are the |
| * only request in the pending submission. |
| */ |
| if (sentinel) { |
| GEM_TRACE_ERR("context:%llx after sentinel in pending[%zd]\n", |
| ce->timeline->fence_context, |
| port - execlists->pending); |
| return false; |
| } |
| |
| sentinel = i915_request_has_sentinel(rq); |
| if (sentinel && port != execlists->pending) { |
| GEM_TRACE_ERR("sentinel context:%llx not in prime position[%zd]\n", |
| ce->timeline->fence_context, |
| port - execlists->pending); |
| return false; |
| } |
| |
| /* Hold tightly onto the lock to prevent concurrent retires! */ |
| if (!spin_trylock_irqsave(&rq->lock, flags)) |
| continue; |
| |
| if (i915_request_completed(rq)) |
| goto unlock; |
| |
| if (i915_active_is_idle(&ce->active) && |
| !intel_context_is_barrier(ce)) { |
| GEM_TRACE_ERR("Inactive context:%llx in pending[%zd]\n", |
| ce->timeline->fence_context, |
| port - execlists->pending); |
| ok = false; |
| goto unlock; |
| } |
| |
| if (!i915_vma_is_pinned(ce->state)) { |
| GEM_TRACE_ERR("Unpinned context:%llx in pending[%zd]\n", |
| ce->timeline->fence_context, |
| port - execlists->pending); |
| ok = false; |
| goto unlock; |
| } |
| |
| if (!i915_vma_is_pinned(ce->ring->vma)) { |
| GEM_TRACE_ERR("Unpinned ring:%llx in pending[%zd]\n", |
| ce->timeline->fence_context, |
| port - execlists->pending); |
| ok = false; |
| goto unlock; |
| } |
| |
| unlock: |
| spin_unlock_irqrestore(&rq->lock, flags); |
| if (!ok) |
| return false; |
| } |
| |
| return ce; |
| } |
| |
| static void execlists_submit_ports(struct intel_engine_cs *engine) |
| { |
| struct intel_engine_execlists *execlists = &engine->execlists; |
| unsigned int n; |
| |
| GEM_BUG_ON(!assert_pending_valid(execlists, "submit")); |
| |
| /* |
| * We can skip acquiring intel_runtime_pm_get() here as it was taken |
| * on our behalf by the request (see i915_gem_mark_busy()) and it will |
| * not be relinquished until the device is idle (see |
| * i915_gem_idle_work_handler()). As a precaution, we make sure |
| * that all ELSP are drained i.e. we have processed the CSB, |
| * before allowing ourselves to idle and calling intel_runtime_pm_put(). |
| */ |
| GEM_BUG_ON(!intel_engine_pm_is_awake(engine)); |
| |
| /* |
| * ELSQ note: the submit queue is not cleared after being submitted |
| * to the HW so we need to make sure we always clean it up. This is |
| * currently ensured by the fact that we always write the same number |
| * of elsq entries, keep this in mind before changing the loop below. |
| */ |
| for (n = execlists_num_ports(execlists); n--; ) { |
| struct i915_request *rq = execlists->pending[n]; |
| |
| write_desc(execlists, |
| rq ? execlists_update_context(rq) : 0, |
| n); |
| } |
| |
| /* we need to manually load the submit queue */ |
| if (execlists->ctrl_reg) |
| writel(EL_CTRL_LOAD, execlists->ctrl_reg); |
| } |
| |
| static bool ctx_single_port_submission(const struct intel_context *ce) |
| { |
| return (IS_ENABLED(CONFIG_DRM_I915_GVT) && |
| intel_context_force_single_submission(ce)); |
| } |
| |
| static bool can_merge_ctx(const struct intel_context *prev, |
| const struct intel_context *next) |
| { |
| if (prev != next) |
| return false; |
| |
| if (ctx_single_port_submission(prev)) |
| return false; |
| |
| return true; |
| } |
| |
| static unsigned long i915_request_flags(const struct i915_request *rq) |
| { |
| return READ_ONCE(rq->fence.flags); |
| } |
| |
| static bool can_merge_rq(const struct i915_request *prev, |
| const struct i915_request *next) |
| { |
| GEM_BUG_ON(prev == next); |
| GEM_BUG_ON(!assert_priority_queue(prev, next)); |
| |
| /* |
| * We do not submit known completed requests. Therefore if the next |
| * request is already completed, we can pretend to merge it in |
| * with the previous context (and we will skip updating the ELSP |
| * and tracking). Thus hopefully keeping the ELSP full with active |
| * contexts, despite the best efforts of preempt-to-busy to confuse |
| * us. |
| */ |
| if (i915_request_completed(next)) |
| return true; |
| |
| if (unlikely((i915_request_flags(prev) ^ i915_request_flags(next)) & |
| (BIT(I915_FENCE_FLAG_NOPREEMPT) | |
| BIT(I915_FENCE_FLAG_SENTINEL)))) |
| return false; |
| |
| if (!can_merge_ctx(prev->context, next->context)) |
| return false; |
| |
| GEM_BUG_ON(i915_seqno_passed(prev->fence.seqno, next->fence.seqno)); |
| return true; |
| } |
| |
| static void virtual_update_register_offsets(u32 *regs, |
| struct intel_engine_cs *engine) |
| { |
| set_offsets(regs, reg_offsets(engine), engine, false); |
| } |
| |
| static bool virtual_matches(const struct virtual_engine *ve, |
| const struct i915_request *rq, |
| const struct intel_engine_cs *engine) |
| { |
| const struct intel_engine_cs *inflight; |
| |
| if (!(rq->execution_mask & engine->mask)) /* We peeked too soon! */ |
| return false; |
| |
| /* |
| * We track when the HW has completed saving the context image |
| * (i.e. when we have seen the final CS event switching out of |
| * the context) and must not overwrite the context image before |
| * then. This restricts us to only using the active engine |
| * while the previous virtualized request is inflight (so |
| * we reuse the register offsets). This is a very small |
| * hystersis on the greedy seelction algorithm. |
| */ |
| inflight = intel_context_inflight(&ve->context); |
| if (inflight && inflight != engine) |
| return false; |
| |
| return true; |
| } |
| |
| static void virtual_xfer_breadcrumbs(struct virtual_engine *ve, |
| struct i915_request *rq) |
| { |
| struct intel_engine_cs *old = ve->siblings[0]; |
| |
| /* All unattached (rq->engine == old) must already be completed */ |
| |
| spin_lock(&old->breadcrumbs.irq_lock); |
| if (!list_empty(&ve->context.signal_link)) { |
| list_del_init(&ve->context.signal_link); |
| |
| /* |
| * We cannot acquire the new engine->breadcrumbs.irq_lock |
| * (as we are holding a breadcrumbs.irq_lock already), |
| * so attach this request to the signaler on submission. |
| * The queued irq_work will occur when we finally drop |
| * the engine->active.lock after dequeue. |
| */ |
| set_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &rq->fence.flags); |
| |
| /* Also transfer the pending irq_work for the old breadcrumb. */ |
| intel_engine_signal_breadcrumbs(rq->engine); |
| } |
| spin_unlock(&old->breadcrumbs.irq_lock); |
| } |
| |
| #define for_each_waiter(p__, rq__) \ |
| list_for_each_entry_lockless(p__, \ |
| &(rq__)->sched.waiters_list, \ |
| wait_link) |
| |
| #define for_each_signaler(p__, rq__) \ |
| list_for_each_entry_rcu(p__, \ |
| &(rq__)->sched.signalers_list, \ |
| signal_link) |
| |
| static void defer_request(struct i915_request *rq, struct list_head * const pl) |
| { |
| LIST_HEAD(list); |
| |
| /* |
| * We want to move the interrupted request to the back of |
| * the round-robin list (i.e. its priority level), but |
| * in doing so, we must then move all requests that were in |
| * flight and were waiting for the interrupted request to |
| * be run after it again. |
| */ |
| do { |
| struct i915_dependency *p; |
| |
| GEM_BUG_ON(i915_request_is_active(rq)); |
| list_move_tail(&rq->sched.link, pl); |
| |
| for_each_waiter(p, rq) { |
| struct i915_request *w = |
| container_of(p->waiter, typeof(*w), sched); |
| |
| if (p->flags & I915_DEPENDENCY_WEAK) |
| continue; |
| |
| /* Leave semaphores spinning on the other engines */ |
| if (w->engine != rq->engine) |
| continue; |
| |
| /* No waiter should start before its signaler */ |
| GEM_BUG_ON(i915_request_started(w) && |
| !i915_request_completed(rq)); |
| |
| GEM_BUG_ON(i915_request_is_active(w)); |
| if (!i915_request_is_ready(w)) |
| continue; |
| |
| if (rq_prio(w) < rq_prio(rq)) |
| continue; |
| |
| GEM_BUG_ON(rq_prio(w) > rq_prio(rq)); |
| list_move_tail(&w->sched.link, &list); |
| } |
| |
| rq = list_first_entry_or_null(&list, typeof(*rq), sched.link); |
| } while (rq); |
| } |
| |
| static void defer_active(struct intel_engine_cs *engine) |
| { |
| struct i915_request *rq; |
| |
| rq = __unwind_incomplete_requests(engine); |
| if (!rq) |
| return; |
| |
| defer_request(rq, i915_sched_lookup_priolist(engine, rq_prio(rq))); |
| } |
| |
| static bool |
| need_timeslice(const struct intel_engine_cs *engine, |
| const struct i915_request *rq) |
| { |
| int hint; |
| |
| if (!intel_engine_has_timeslices(engine)) |
| return false; |
| |
| hint = engine->execlists.queue_priority_hint; |
| if (!list_is_last(&rq->sched.link, &engine->active.requests)) |
| hint = max(hint, rq_prio(list_next_entry(rq, sched.link))); |
| |
| return hint >= effective_prio(rq); |
| } |
| |
| static bool |
| timeslice_yield(const struct intel_engine_execlists *el, |
| const struct i915_request *rq) |
| { |
| /* |
| * Once bitten, forever smitten! |
| * |
| * If the active context ever busy-waited on a semaphore, |
| * it will be treated as a hog until the end of its timeslice (i.e. |
| * until it is scheduled out and replaced by a new submission, |
| * possibly even its own lite-restore). The HW only sends an interrupt |
| * on the first miss, and we do know if that semaphore has been |
| * signaled, or even if it is now stuck on another semaphore. Play |
| * safe, yield if it might be stuck -- it will be given a fresh |
| * timeslice in the near future. |
| */ |
| return rq->context->lrc.ccid == READ_ONCE(el->yield); |
| } |
| |
| static bool |
| timeslice_expired(const struct intel_engine_execlists *el, |
| const struct i915_request *rq) |
| { |
| return timer_expired(&el->timer) || timeslice_yield(el, rq); |
| } |
| |
| static int |
| switch_prio(struct intel_engine_cs *engine, const struct i915_request *rq) |
| { |
| if (list_is_last(&rq->sched.link, &engine->active.requests)) |
| return INT_MIN; |
| |
| return rq_prio(list_next_entry(rq, sched.link)); |
| } |
| |
| static inline unsigned long |
| timeslice(const struct intel_engine_cs *engine) |
| { |
| return READ_ONCE(engine->props.timeslice_duration_ms); |
| } |
| |
| static unsigned long active_timeslice(const struct intel_engine_cs *engine) |
| { |
| const struct intel_engine_execlists *execlists = &engine->execlists; |
| const struct i915_request *rq = *execlists->active; |
| |
| if (!rq || i915_request_completed(rq)) |
| return 0; |
| |
| if (READ_ONCE(execlists->switch_priority_hint) < effective_prio(rq)) |
| return 0; |
| |
| return timeslice(engine); |
| } |
| |
| static void set_timeslice(struct intel_engine_cs *engine) |
| { |
| if (!intel_engine_has_timeslices(engine)) |
| return; |
| |
| set_timer_ms(&engine->execlists.timer, active_timeslice(engine)); |
| } |
| |
| static void start_timeslice(struct intel_engine_cs *engine) |
| { |
| struct intel_engine_execlists *execlists = &engine->execlists; |
| int prio = queue_prio(execlists); |
| |
| WRITE_ONCE(execlists->switch_priority_hint, prio); |
| if (prio == INT_MIN) |
| return; |
| |
| if (timer_pending(&execlists->timer)) |
| return; |
| |
| set_timer_ms(&execlists->timer, timeslice(engine)); |
| } |
| |
| static void record_preemption(struct intel_engine_execlists *execlists) |
| { |
| (void)I915_SELFTEST_ONLY(execlists->preempt_hang.count++); |
| } |
| |
| static unsigned long active_preempt_timeout(struct intel_engine_cs *engine, |
| const struct i915_request *rq) |
| { |
| if (!rq) |
| return 0; |
| |
| /* Force a fast reset for terminated contexts (ignoring sysfs!) */ |
| if (unlikely(intel_context_is_banned(rq->context))) |
| return 1; |
| |
| return READ_ONCE(engine->props.preempt_timeout_ms); |
| } |
| |
| static void set_preempt_timeout(struct intel_engine_cs *engine, |
| const struct i915_request *rq) |
| { |
| if (!intel_engine_has_preempt_reset(engine)) |
| return; |
| |
| set_timer_ms(&engine->execlists.preempt, |
| active_preempt_timeout(engine, rq)); |
| } |
| |
| static inline void clear_ports(struct i915_request **ports, int count) |
| { |
| memset_p((void **)ports, NULL, count); |
| } |
| |
| static void execlists_dequeue(struct intel_engine_cs *engine) |
| { |
| struct intel_engine_execlists * const execlists = &engine->execlists; |
| struct i915_request **port = execlists->pending; |
| struct i915_request ** const last_port = port + execlists->port_mask; |
| struct i915_request * const *active; |
| struct i915_request *last; |
| struct rb_node *rb; |
| bool submit = false; |
| |
| /* |
| * Hardware submission is through 2 ports. Conceptually each port |
| * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is |
| * static for a context, and unique to each, so we only execute |
| * requests belonging to a single context from each ring. RING_HEAD |
| * is maintained by the CS in the context image, it marks the place |
| * where it got up to last time, and through RING_TAIL we tell the CS |
| * where we want to execute up to this time. |
| * |
| * In this list the requests are in order of execution. Consecutive |
| * requests from the same context are adjacent in the ringbuffer. We |
| * can combine these requests into a single RING_TAIL update: |
| * |
| * RING_HEAD...req1...req2 |
| * ^- RING_TAIL |
| * since to execute req2 the CS must first execute req1. |
| * |
| * Our goal then is to point each port to the end of a consecutive |
| * sequence of requests as being the most optimal (fewest wake ups |
| * and context switches) submission. |
| */ |
| |
| for (rb = rb_first_cached(&execlists->virtual); rb; ) { |
| struct virtual_engine *ve = |
| rb_entry(rb, typeof(*ve), nodes[engine->id].rb); |
| struct i915_request *rq = READ_ONCE(ve->request); |
| |
| if (!rq) { /* lazily cleanup after another engine handled rq */ |
| rb_erase_cached(rb, &execlists->virtual); |
| RB_CLEAR_NODE(rb); |
| rb = rb_first_cached(&execlists->virtual); |
| continue; |
| } |
| |
| if (!virtual_matches(ve, rq, engine)) { |
| rb = rb_next(rb); |
| continue; |
| } |
| |
| break; |
| } |
| |
| /* |
| * If the queue is higher priority than the last |
| * request in the currently active context, submit afresh. |
| * We will resubmit again afterwards in case we need to split |
| * the active context to interject the preemption request, |
| * i.e. we will retrigger preemption following the ack in case |
| * of trouble. |
| */ |
| active = READ_ONCE(execlists->active); |
| while ((last = *active) && i915_request_completed(last)) |
| active++; |
| |
| if (last) { |
| if (need_preempt(engine, last, rb)) { |
| ENGINE_TRACE(engine, |
| "preempting last=%llx:%lld, prio=%d, hint=%d\n", |
| last->fence.context, |
| last->fence.seqno, |
| last->sched.attr.priority, |
| execlists->queue_priority_hint); |
| record_preemption(execlists); |
| |
| /* |
| * Don't let the RING_HEAD advance past the breadcrumb |
| * as we unwind (and until we resubmit) so that we do |
| * not accidentally tell it to go backwards. |
| */ |
| ring_set_paused(engine, 1); |
| |
| /* |
| * Note that we have not stopped the GPU at this point, |
| * so we are unwinding the incomplete requests as they |
| * remain inflight and so by the time we do complete |
| * the preemption, some of the unwound requests may |
| * complete! |
| */ |
| __unwind_incomplete_requests(engine); |
| |
| last = NULL; |
| } else if (need_timeslice(engine, last) && |
| timeslice_expired(execlists, last)) { |
| ENGINE_TRACE(engine, |
| "expired last=%llx:%lld, prio=%d, hint=%d, yield?=%s\n", |
| last->fence.context, |
| last->fence.seqno, |
| last->sched.attr.priority, |
| execlists->queue_priority_hint, |
| yesno(timeslice_yield(execlists, last))); |
| |
| ring_set_paused(engine, 1); |
| defer_active(engine); |
| |
| /* |
| * Unlike for preemption, if we rewind and continue |
| * executing the same context as previously active, |
| * the order of execution will remain the same and |
| * the tail will only advance. We do not need to |
| * force a full context restore, as a lite-restore |
| * is sufficient to resample the monotonic TAIL. |
| * |
| * If we switch to any other context, similarly we |
| * will not rewind TAIL of current context, and |
| * normal save/restore will preserve state and allow |
| * us to later continue executing the same request. |
| */ |
| last = NULL; |
| } else { |
| /* |
| * Otherwise if we already have a request pending |
| * for execution after the current one, we can |
| * just wait until the next CS event before |
| * queuing more. In either case we will force a |
| * lite-restore preemption event, but if we wait |
| * we hopefully coalesce several updates into a single |
| * submission. |
| */ |
| if (!list_is_last(&last->sched.link, |
| &engine->active.requests)) { |
| /* |
| * Even if ELSP[1] is occupied and not worthy |
| * of timeslices, our queue might be. |
| */ |
| start_timeslice(engine); |
| return; |
| } |
| } |
| } |
| |
| while (rb) { /* XXX virtual is always taking precedence */ |
| struct virtual_engine *ve = |
| rb_entry(rb, typeof(*ve), nodes[engine->id].rb); |
| struct i915_request *rq; |
| |
| spin_lock(&ve->base.active.lock); |
| |
| rq = ve->request; |
| if (unlikely(!rq)) { /* lost the race to a sibling */ |
| spin_unlock(&ve->base.active.lock); |
| rb_erase_cached(rb, &execlists->virtual); |
| RB_CLEAR_NODE(rb); |
| rb = rb_first_cached(&execlists->virtual); |
| continue; |
| } |
| |
| GEM_BUG_ON(rq != ve->request); |
| GEM_BUG_ON(rq->engine != &ve->base); |
| GEM_BUG_ON(rq->context != &ve->context); |
| |
| if (rq_prio(rq) >= queue_prio(execlists)) { |
| if (!virtual_matches(ve, rq, engine)) { |
| spin_unlock(&ve->base.active.lock); |
| rb = rb_next(rb); |
| continue; |
| } |
| |
| if (last && !can_merge_rq(last, rq)) { |
| spin_unlock(&ve->base.active.lock); |
| start_timeslice(engine); |
| return; /* leave this for another sibling */ |
| } |
| |
| ENGINE_TRACE(engine, |
| "virtual rq=%llx:%lld%s, new engine? %s\n", |
| rq->fence.context, |
| rq->fence.seqno, |
| i915_request_completed(rq) ? "!" : |
| i915_request_started(rq) ? "*" : |
| "", |
| yesno(engine != ve->siblings[0])); |
| |
| WRITE_ONCE(ve->request, NULL); |
| WRITE_ONCE(ve->base.execlists.queue_priority_hint, |
| INT_MIN); |
| rb_erase_cached(rb, &execlists->virtual); |
| RB_CLEAR_NODE(rb); |
| |
| GEM_BUG_ON(!(rq->execution_mask & engine->mask)); |
| WRITE_ONCE(rq->engine, engine); |
| |
| if (engine != ve->siblings[0]) { |
| u32 *regs = ve->context.lrc_reg_state; |
| unsigned int n; |
| |
| GEM_BUG_ON(READ_ONCE(ve->context.inflight)); |
| |
| if (!intel_engine_has_relative_mmio(engine)) |
| virtual_update_register_offsets(regs, |
| engine); |
| |
| if (!list_empty(&ve->context.signals)) |
| virtual_xfer_breadcrumbs(ve, rq); |
| |
| /* |
| * Move the bound engine to the top of the list |
| * for future execution. We then kick this |
| * tasklet first before checking others, so that |
| * we preferentially reuse this set of bound |
| * registers. |
| */ |
| for (n = 1; n < ve->num_siblings; n++) { |
| if (ve->siblings[n] == engine) { |
| swap(ve->siblings[n], |
| ve->siblings[0]); |
| break; |
| } |
| } |
| |
| GEM_BUG_ON(ve->siblings[0] != engine); |
| } |
| |
| if (__i915_request_submit(rq)) { |
| submit = true; |
| last = rq; |
| } |
| i915_request_put(rq); |
| |
| /* |
| * Hmm, we have a bunch of virtual engine requests, |
| * but the first one was already completed (thanks |
| * preempt-to-busy!). Keep looking at the veng queue |
| * until we have no more relevant requests (i.e. |
| * the normal submit queue has higher priority). |
| */ |
| if (!submit) { |
| spin_unlock(&ve->base.active.lock); |
| rb = rb_first_cached(&execlists->virtual); |
| continue; |
| } |
| } |
| |
| spin_unlock(&ve->base.active.lock); |
| break; |
| } |
| |
| while ((rb = rb_first_cached(&execlists->queue))) { |
| struct i915_priolist *p = to_priolist(rb); |
| struct i915_request *rq, *rn; |
| int i; |
| |
| priolist_for_each_request_consume(rq, rn, p, i) { |
| bool merge = true; |
| |
| /* |
| * Can we combine this request with the current port? |
| * It has to be the same context/ringbuffer and not |
| * have any exceptions (e.g. GVT saying never to |
| * combine contexts). |
| * |
| * If we can combine the requests, we can execute both |
| * by updating the RING_TAIL to point to the end of the |
| * second request, and so we never need to tell the |
| * hardware about the first. |
| */ |
| if (last && !can_merge_rq(last, rq)) { |
| /* |
| * If we are on the second port and cannot |
| * combine this request with the last, then we |
| * are done. |
| */ |
| if (port == last_port) |
| goto done; |
| |
| /* |
| * We must not populate both ELSP[] with the |
| * same LRCA, i.e. we must submit 2 different |
| * contexts if we submit 2 ELSP. |
| */ |
| if (last->context == rq->context) |
| goto done; |
| |
| if (i915_request_has_sentinel(last)) |
| goto done; |
| |
| /* |
| * If GVT overrides us we only ever submit |
| * port[0], leaving port[1] empty. Note that we |
| * also have to be careful that we don't queue |
| * the same context (even though a different |
| * request) to the second port. |
| */ |
| if (ctx_single_port_submission(last->context) || |
| ctx_single_port_submission(rq->context)) |
| goto done; |
| |
| merge = false; |
| } |
| |
| if (__i915_request_submit(rq)) { |
| if (!merge) { |
| *port = execlists_schedule_in(last, port - execlists->pending); |
| port++; |
| last = NULL; |
| } |
| |
| GEM_BUG_ON(last && |
| !can_merge_ctx(last->context, |
| rq->context)); |
| GEM_BUG_ON(last && |
| i915_seqno_passed(last->fence.seqno, |
| rq->fence.seqno)); |
| |
| submit = true; |
| last = rq; |
| } |
| } |
| |
| rb_erase_cached(&p->node, &execlists->queue); |
| i915_priolist_free(p); |
| } |
| |
| done: |
| /* |
| * Here be a bit of magic! Or sleight-of-hand, whichever you prefer. |
| * |
| * We choose the priority hint such that if we add a request of greater |
| * priority than this, we kick the submission tasklet to decide on |
| * the right order of submitting the requests to hardware. We must |
| * also be prepared to reorder requests as they are in-flight on the |
| * HW. We derive the priority hint then as the first "hole" in |
| * the HW submission ports and if there are no available slots, |
| * the priority of the lowest executing request, i.e. last. |
| * |
| * When we do receive a higher priority request ready to run from the |
| * user, see queue_request(), the priority hint is bumped to that |
| * request triggering preemption on the next dequeue (or subsequent |
| * interrupt for secondary ports). |
| */ |
| execlists->queue_priority_hint = queue_prio(execlists); |
| |
| if (submit) { |
| *port = execlists_schedule_in(last, port - execlists->pending); |
| execlists->switch_priority_hint = |
| switch_prio(engine, *execlists->pending); |
| |
| /* |
| * Skip if we ended up with exactly the same set of requests, |
| * e.g. trying to timeslice a pair of ordered contexts |
| */ |
| if (!memcmp(active, execlists->pending, |
| (port - execlists->pending + 1) * sizeof(*port))) { |
| do |
| execlists_schedule_out(fetch_and_zero(port)); |
| while (port-- != execlists->pending); |
| |
| goto skip_submit; |
| } |
| clear_ports(port + 1, last_port - port); |
| |
| WRITE_ONCE(execlists->yield, -1); |
| execlists_submit_ports(engine); |
| set_preempt_timeout(engine, *active); |
| } else { |
| skip_submit: |
| ring_set_paused(engine, 0); |
| } |
| } |
| |
| static void |
| cancel_port_requests(struct intel_engine_execlists * const execlists) |
| { |
| struct i915_request * const *port; |
| |
| for (port = execlists->pending; *port; port++) |
| execlists_schedule_out(*port); |
| clear_ports(execlists->pending, ARRAY_SIZE(execlists->pending)); |
| |
| /* Mark the end of active before we overwrite *active */ |
| for (port = xchg(&execlists->active, execlists->pending); *port; port++) |
| execlists_schedule_out(*port); |
| clear_ports(execlists->inflight, ARRAY_SIZE(execlists->inflight)); |
| |
| smp_wmb(); /* complete the seqlock for execlists_active() */ |
| WRITE_ONCE(execlists->active, execlists->inflight); |
| } |
| |
| static inline void |
| invalidate_csb_entries(const u32 *first, const u32 *last) |
| { |
| clflush((void *)first); |
| clflush((void *)last); |
| } |
| |
| /* |
| * Starting with Gen12, the status has a new format: |
| * |
| * bit 0: switched to new queue |
| * bit 1: reserved |
| * bit 2: semaphore wait mode (poll or signal), only valid when |
| * switch detail is set to "wait on semaphore" |
| * bits 3-5: engine class |
| * bits 6-11: engine instance |
| * bits 12-14: reserved |
| * bits 15-25: sw context id of the lrc the GT switched to |
| * bits 26-31: sw counter of the lrc the GT switched to |
| * bits 32-35: context switch detail |
| * - 0: ctx complete |
| * - 1: wait on sync flip |
| * - 2: wait on vblank |
| * - 3: wait on scanline |
| * - 4: wait on semaphore |
| * - 5: context preempted (not on SEMAPHORE_WAIT or |
| * WAIT_FOR_EVENT) |
| * bit 36: reserved |
| * bits 37-43: wait detail (for switch detail 1 to 4) |
| * bits 44-46: reserved |
| * bits 47-57: sw context id of the lrc the GT switched away from |
| * bits 58-63: sw counter of the lrc the GT switched away from |
| */ |
| static inline bool |
| gen12_csb_parse(const struct intel_engine_execlists *execlists, const u32 *csb) |
| { |
| u32 lower_dw = csb[0]; |
| u32 upper_dw = csb[1]; |
| bool ctx_to_valid = GEN12_CSB_CTX_VALID(lower_dw); |
| bool ctx_away_valid = GEN12_CSB_CTX_VALID(upper_dw); |
| bool new_queue = lower_dw & GEN12_CTX_STATUS_SWITCHED_TO_NEW_QUEUE; |
| |
| /* |
| * The context switch detail is not guaranteed to be 5 when a preemption |
| * occurs, so we can't just check for that. The check below works for |
| * all the cases we care about, including preemptions of WAIT |
| * instructions and lite-restore. Preempt-to-idle via the CTRL register |
| * would require some extra handling, but we don't support that. |
| */ |
| if (!ctx_away_valid || new_queue) { |
| GEM_BUG_ON(!ctx_to_valid); |
| return true; |
| } |
| |
| /* |
| * switch detail = 5 is covered by the case above and we do not expect a |
| * context switch on an unsuccessful wait instruction since we always |
| * use polling mode. |
| */ |
| GEM_BUG_ON(GEN12_CTX_SWITCH_DETAIL(upper_dw)); |
| return false; |
| } |
| |
| static inline bool |
| gen8_csb_parse(const struct intel_engine_execlists *execlists, const u32 *csb) |
| { |
| return *csb & (GEN8_CTX_STATUS_IDLE_ACTIVE | GEN8_CTX_STATUS_PREEMPTED); |
| } |
| |
| static void process_csb(struct intel_engine_cs *engine) |
| { |
| struct intel_engine_execlists * const execlists = &engine->execlists; |
| const u32 * const buf = execlists->csb_status; |
| const u8 num_entries = execlists->csb_size; |
| u8 head, tail; |
| |
| /* |
| * As we modify our execlists state tracking we require exclusive |
| * access. Either we are inside the tasklet, or the tasklet is disabled |
| * and we assume that is only inside the reset paths and so serialised. |
| */ |
| GEM_BUG_ON(!tasklet_is_locked(&execlists->tasklet) && |
| !reset_in_progress(execlists)); |
| GEM_BUG_ON(!intel_engine_in_execlists_submission_mode(engine)); |
| |
| /* |
| * Note that csb_write, csb_status may be either in HWSP or mmio. |
| * When reading from the csb_write mmio register, we have to be |
| * careful to only use the GEN8_CSB_WRITE_PTR portion, which is |
| * the low 4bits. As it happens we know the next 4bits are always |
| * zero and so we can simply masked off the low u8 of the register |
| * and treat it identically to reading from the HWSP (without having |
| * to use explicit shifting and masking, and probably bifurcating |
| * the code to handle the legacy mmio read). |
| */ |
| head = execlists->csb_head; |
| tail = READ_ONCE(*execlists->csb_write); |
| if (unlikely(head == tail)) |
| return; |
| |
| /* |
| * Hopefully paired with a wmb() in HW! |
| * |
| * We must complete the read of the write pointer before any reads |
| * from the CSB, so that we do not see stale values. Without an rmb |
| * (lfence) the HW may speculatively perform the CSB[] reads *before* |
| * we perform the READ_ONCE(*csb_write). |
| */ |
| rmb(); |
| |
| ENGINE_TRACE(engine, "cs-irq head=%d, tail=%d\n", head, tail); |
| do { |
| bool promote; |
| |
| if (++head == num_entries) |
| head = 0; |
| |
| /* |
| * We are flying near dragons again. |
| * |
| * We hold a reference to the request in execlist_port[] |
| * but no more than that. We are operating in softirq |
| * context and so cannot hold any mutex or sleep. That |
| * prevents us stopping the requests we are processing |
| * in port[] from being retired simultaneously (the |
| * breadcrumb will be complete before we see the |
| * context-switch). As we only hold the reference to the |
| * request, any pointer chasing underneath the request |
| * is subject to a potential use-after-free. Thus we |
| * store all of the bookkeeping within port[] as |
| * required, and avoid using unguarded pointers beneath |
| * request itself. The same applies to the atomic |
| * status notifier. |
| */ |
| |
| ENGINE_TRACE(engine, "csb[%d]: status=0x%08x:0x%08x\n", |
| head, buf[2 * head + 0], buf[2 * head + 1]); |
| |
| if (INTEL_GEN(engine->i915) >= 12) |
| promote = gen12_csb_parse(execlists, buf + 2 * head); |
| else |
| promote = gen8_csb_parse(execlists, buf + 2 * head); |
| if (promote) { |
| struct i915_request * const *old = execlists->active; |
| |
| GEM_BUG_ON(!assert_pending_valid(execlists, "promote")); |
| |
| ring_set_paused(engine, 0); |
| |
| /* Point active to the new ELSP; prevent overwriting */ |
| WRITE_ONCE(execlists->active, execlists->pending); |
| smp_wmb(); /* notify execlists_active() */ |
| |
| /* cancel old inflight, prepare for switch */ |
| trace_ports(execlists, "preempted", old); |
| while (*old) |
| execlists_schedule_out(*old++); |
| |
| /* switch pending to inflight */ |
| memcpy(execlists->inflight, |
| execlists->pending, |
| execlists_num_ports(execlists) * |
| sizeof(*execlists->pending)); |
| smp_wmb(); /* complete the seqlock */ |
| WRITE_ONCE(execlists->active, execlists->inflight); |
| |
| WRITE_ONCE(execlists->pending[0], NULL); |
| } else { |
| GEM_BUG_ON(!*execlists->active); |
| |
| /* port0 completed, advanced to port1 */ |
| trace_ports(execlists, "completed", execlists->active); |
| |
| /* |
| * We rely on the hardware being strongly |
| * ordered, that the breadcrumb write is |
| * coherent (visible from the CPU) before the |
| * user interrupt and CSB is processed. |
| */ |
| if (GEM_SHOW_DEBUG() && |
| !i915_request_completed(*execlists->active) && |
| !reset_in_progress(execlists)) { |
| struct i915_request *rq __maybe_unused = |
| *execlists->active; |
| const u32 *regs __maybe_unused = |
| rq->context->lrc_reg_state; |
| |
| ENGINE_TRACE(engine, |
| "ring:{start:0x%08x, head:%04x, tail:%04x, ctl:%08x, mode:%08x}\n", |
| ENGINE_READ(engine, RING_START), |
| ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR, |
| ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR, |
| ENGINE_READ(engine, RING_CTL), |
| ENGINE_READ(engine, RING_MI_MODE)); |
| ENGINE_TRACE(engine, |
| "rq:{start:%08x, head:%04x, tail:%04x, seqno:%llx:%d, hwsp:%d}, ", |
| i915_ggtt_offset(rq->ring->vma), |
| rq->head, rq->tail, |
| rq->fence.context, |
| lower_32_bits(rq->fence.seqno), |
| hwsp_seqno(rq)); |
| ENGINE_TRACE(engine, |
| "ctx:{start:%08x, head:%04x, tail:%04x}, ", |
| regs[CTX_RING_START], |
| regs[CTX_RING_HEAD], |
| regs[CTX_RING_TAIL]); |
| |
| GEM_BUG_ON("context completed before request"); |
| } |
| |
| execlists_schedule_out(*execlists->active++); |
| |
| GEM_BUG_ON(execlists->active - execlists->inflight > |
| execlists_num_ports(execlists)); |
| } |
| } while (head != tail); |
| |
| execlists->csb_head = head; |
| set_timeslice(engine); |
| |
| /* |
| * Gen11 has proven to fail wrt global observation point between |
| * entry and tail update, failing on the ordering and thus |
| * we see an old entry in the context status buffer. |
| * |
| * Forcibly evict out entries for the next gpu csb update, |
| * to increase the odds that we get a fresh entries with non |
| * working hardware. The cost for doing so comes out mostly with |
| * the wash as hardware, working or not, will need to do the |
| * invalidation before. |
| */ |
| invalidate_csb_entries(&buf[0], &buf[num_entries - 1]); |
| } |
| |
| static void __execlists_submission_tasklet(struct intel_engine_cs *const engine) |
| { |
| lockdep_assert_held(&engine->active.lock); |
| if (!READ_ONCE(engine->execlists.pending[0])) { |
| rcu_read_lock(); /* protect peeking at execlists->active */ |
| execlists_dequeue(engine); |
| rcu_read_unlock(); |
| } |
| } |
| |
| static void __execlists_hold(struct i915_request *rq) |
| { |
| LIST_HEAD(list); |
| |
| do { |
| struct i915_dependency *p; |
| |
| if (i915_request_is_active(rq)) |
| __i915_request_unsubmit(rq); |
| |
| clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags); |
| list_move_tail(&rq->sched.link, &rq->engine->active.hold); |
| i915_request_set_hold(rq); |
| RQ_TRACE(rq, "on hold\n"); |
| |
| for_each_waiter(p, rq) { |
| struct i915_request *w = |
| container_of(p->waiter, typeof(*w), sched); |
| |
| /* Leave semaphores spinning on the other engines */ |
| if (w->engine != rq->engine) |
| continue; |
| |
| if (!i915_request_is_ready(w)) |
| continue; |
| |
| if (i915_request_completed(w)) |
| continue; |
| |
| if (i915_request_on_hold(w)) |
| continue; |
| |
| list_move_tail(&w->sched.link, &list); |
| } |
| |
| rq = list_first_entry_or_null(&list, typeof(*rq), sched.link); |
| } while (rq); |
| } |
| |
| static bool execlists_hold(struct intel_engine_cs *engine, |
| struct i915_request *rq) |
| { |
| spin_lock_irq(&engine->active.lock); |
| |
| if (i915_request_completed(rq)) { /* too late! */ |
| rq = NULL; |
| goto unlock; |
| } |
| |
| if (rq->engine != engine) { /* preempted virtual engine */ |
| struct virtual_engine *ve = to_virtual_engine(rq->engine); |
| |
| /* |
| * intel_context_inflight() is only protected by virtue |
| * of process_csb() being called only by the tasklet (or |
| * directly from inside reset while the tasklet is suspended). |
| * Assert that neither of those are allowed to run while we |
| * poke at the request queues. |
| */ |
| GEM_BUG_ON(!reset_in_progress(&engine->execlists)); |
| |
| /* |
| * An unsubmitted request along a virtual engine will |
| * remain on the active (this) engine until we are able |
| * to process the context switch away (and so mark the |
| * context as no longer in flight). That cannot have happened |
| * yet, otherwise we would not be hanging! |
| */ |
| spin_lock(&ve->base.active.lock); |
| GEM_BUG_ON(intel_context_inflight(rq->context) != engine); |
| GEM_BUG_ON(ve->request != rq); |
| ve->request = NULL; |
| spin_unlock(&ve->base.active.lock); |
| i915_request_put(rq); |
| |
| rq->engine = engine; |
| } |
| |
| /* |
| * Transfer this request onto the hold queue to prevent it |
| * being resumbitted to HW (and potentially completed) before we have |
| * released it. Since we may have already submitted following |
| * requests, we need to remove those as well. |
| */ |
| GEM_BUG_ON(i915_request_on_hold(rq)); |
| GEM_BUG_ON(rq->engine != engine); |
| __execlists_hold(rq); |
| GEM_BUG_ON(list_empty(&engine->active.hold)); |
| |
| unlock: |
| spin_unlock_irq(&engine->active.lock); |
| return rq; |
| } |
| |
| static bool hold_request(const struct i915_request *rq) |
| { |
| struct i915_dependency *p; |
| bool result = false; |
| |
| /* |
| * If one of our ancestors is on hold, we must also be on hold, |
| * otherwise we will bypass it and execute before it. |
| */ |
| rcu_read_lock(); |
| for_each_signaler(p, rq) { |
| const struct i915_request *s = |
| container_of(p->signaler, typeof(*s), sched); |
| |
| if (s->engine != rq->engine) |
| continue; |
| |
| result = i915_request_on_hold(s); |
| if (result) |
| break; |
| } |
| rcu_read_unlock(); |
| |
| return result; |
| } |
| |
| static void __execlists_unhold(struct i915_request *rq) |
| { |
| LIST_HEAD(list); |
| |
| do { |
| struct i915_dependency *p; |
| |
| RQ_TRACE(rq, "hold release\n"); |
| |
| GEM_BUG_ON(!i915_request_on_hold(rq)); |
| GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit)); |
| |
| i915_request_clear_hold(rq); |
| list_move_tail(&rq->sched.link, |
| i915_sched_lookup_priolist(rq->engine, |
| rq_prio(rq))); |
| set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags); |
| |
| /* Also release any children on this engine that are ready */ |
| for_each_waiter(p, rq) { |
| struct i915_request *w = |
| container_of(p->waiter, typeof(*w), sched); |
| |
| /* Propagate any change in error status */ |
| if (rq->fence.error) |
| i915_request_set_error_once(w, rq->fence.error); |
| |
| if (w->engine != rq->engine) |
| continue; |
| |
| if (!i915_request_on_hold(w)) |
| continue; |
| |
| /* Check that no other parents are also on hold */ |
| if (hold_request(w)) |
| continue; |
| |
| list_move_tail(&w->sched.link, &list); |
| } |
| |
| rq = list_first_entry_or_null(&list, typeof(*rq), sched.link); |
| } while (rq); |
| } |
| |
| static void execlists_unhold(struct intel_engine_cs *engine, |
| struct i915_request *rq) |
| { |
| spin_lock_irq(&engine->active.lock); |
| |
| /* |
| * Move this request back to the priority queue, and all of its |
| * children and grandchildren that were suspended along with it. |
| */ |
| __execlists_unhold(rq); |
| |
| if (rq_prio(rq) > engine->execlists.queue_priority_hint) { |
| engine->execlists.queue_priority_hint = rq_prio(rq); |
| tasklet_hi_schedule(&engine->execlists.tasklet); |
| } |
| |
| spin_unlock_irq(&engine->active.lock); |
| } |
| |
| struct execlists_capture { |
| struct work_struct work; |
| struct i915_request *rq; |
| struct i915_gpu_coredump *error; |
| }; |
| |
| static void execlists_capture_work(struct work_struct *work) |
| { |
| struct execlists_capture *cap = container_of(work, typeof(*cap), work); |
| const gfp_t gfp = GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN; |
| struct intel_engine_cs *engine = cap->rq->engine; |
| struct intel_gt_coredump *gt = cap->error->gt; |
| struct intel_engine_capture_vma *vma; |
| |
| /* Compress all the objects attached to the request, slow! */ |
| vma = intel_engine_coredump_add_request(gt->engine, cap->rq, gfp); |
| if (vma) { |
| struct i915_vma_compress *compress = |
| i915_vma_capture_prepare(gt); |
| |
| intel_engine_coredump_add_vma(gt->engine, vma, compress); |
| i915_vma_capture_finish(gt, compress); |
| } |
| |
| gt->simulated = gt->engine->simulated; |
| cap->error->simulated = gt->simulated; |
| |
| /* Publish the error state, and announce it to the world */ |
| i915_error_state_store(cap->error); |
| i915_gpu_coredump_put(cap->error); |
| |
| /* Return this request and all that depend upon it for signaling */ |
| execlists_unhold(engine, cap->rq); |
| i915_request_put(cap->rq); |
| |
| kfree(cap); |
| } |
| |
| static struct execlists_capture *capture_regs(struct intel_engine_cs *engine) |
| { |
| const gfp_t gfp = GFP_ATOMIC | __GFP_NOWARN; |
| struct execlists_capture *cap; |
| |
| cap = kmalloc(sizeof(*cap), gfp); |
| if (!cap) |
| return NULL; |
| |
| cap->error = i915_gpu_coredump_alloc(engine->i915, gfp); |
| if (!cap->error) |
| goto err_cap; |
| |
| cap->error->gt = intel_gt_coredump_alloc(engine->gt, gfp); |
| if (!cap->error->gt) |
| goto err_gpu; |
| |
| cap->error->gt->engine = intel_engine_coredump_alloc(engine, gfp); |
| if (!cap->error->gt->engine) |
| goto err_gt; |
| |
| return cap; |
| |
| err_gt: |
| kfree(cap->error->gt); |
| err_gpu: |
| kfree(cap->error); |
| err_cap: |
| kfree(cap); |
| return NULL; |
| } |
| |
| static bool execlists_capture(struct intel_engine_cs *engine) |
| { |
| struct execlists_capture *cap; |
| |
| if (!IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)) |
| return true; |
| |
| /* |
| * We need to _quickly_ capture the engine state before we reset. |
| * We are inside an atomic section (softirq) here and we are delaying |
| * the forced preemption event. |
| */ |
| cap = capture_regs(engine); |
| if (!cap) |
| return true; |
| |
| spin_lock_irq(&engine->active.lock); |
| cap->rq = execlists_active(&engine->execlists); |
| if (cap->rq) { |
| cap->rq = active_request(cap->rq->context->timeline, cap->rq); |
| cap->rq = i915_request_get_rcu(cap->rq); |
| } |
| spin_unlock_irq(&engine->active.lock); |
| if (!cap->rq) |
| goto err_free; |
| |
| /* |
| * Remove the request from the execlists queue, and take ownership |
| * of the request. We pass it to our worker who will _slowly_ compress |
| * all the pages the _user_ requested for debugging their batch, after |
| * which we return it to the queue for signaling. |
| * |
| * By removing them from the execlists queue, we also remove the |
| * requests from being processed by __unwind_incomplete_requests() |
| * during the intel_engine_reset(), and so they will *not* be replayed |
| * afterwards. |
| * |
| * Note that because we have not yet reset the engine at this point, |
| * it is possible for the request that we have identified as being |
| * guilty, did in fact complete and we will then hit an arbitration |
| * point allowing the outstanding preemption to succeed. The likelihood |
| * of that is very low (as capturing of the engine registers should be |
| * fast enough to run inside an irq-off atomic section!), so we will |
| * simply hold that request accountable for being non-preemptible |
| * long enough to force the reset. |
| */ |
| if (!execlists_hold(engine, cap->rq)) |
| goto err_rq; |
| |
| INIT_WORK(&cap->work, execlists_capture_work); |
| schedule_work(&cap->work); |
| return true; |
| |
| err_rq: |
| i915_request_put(cap->rq); |
| err_free: |
| i915_gpu_coredump_put(cap->error); |
| kfree(cap); |
| return false; |
| } |
| |
| static void execlists_reset(struct intel_engine_cs *engine, const char *msg) |
| { |
| const unsigned int bit = I915_RESET_ENGINE + engine->id; |
| unsigned long *lock = &engine->gt->reset.flags; |
| |
| if (!intel_has_reset_engine(engine->gt)) |
| return; |
| |
| if (test_and_set_bit(bit, lock)) |
| return; |
| |
| ENGINE_TRACE(engine, "reset for %s\n", msg); |
| |
| /* Mark this tasklet as disabled to avoid waiting for it to complete */ |
| tasklet_disable_nosync(&engine->execlists.tasklet); |
| |
| ring_set_paused(engine, 1); /* Freeze the current request in place */ |
| if (execlists_capture(engine)) |
| intel_engine_reset(engine, msg); |
| else |
| ring_set_paused(engine, 0); |
| |
| tasklet_enable(&engine->execlists.tasklet); |
| clear_and_wake_up_bit(bit, lock); |
| } |
| |
| static bool preempt_timeout(const struct intel_engine_cs *const engine) |
| { |
| const struct timer_list *t = &engine->execlists.preempt; |
| |
| if (!CONFIG_DRM_I915_PREEMPT_TIMEOUT) |
| return false; |
| |
| if (!timer_expired(t)) |
| return false; |
| |
| return READ_ONCE(engine->execlists.pending[0]); |
| } |
| |
| /* |
| * Check the unread Context Status Buffers and manage the submission of new |
| * contexts to the ELSP accordingly. |
| */ |
| static void execlists_submission_tasklet(unsigned long data) |
| { |
| struct intel_engine_cs * const engine = (struct intel_engine_cs *)data; |
| bool timeout = preempt_timeout(engine); |
| |
| process_csb(engine); |
| |
| if (unlikely(READ_ONCE(engine->execlists.error_interrupt))) { |
| engine->execlists.error_interrupt = 0; |
| if (ENGINE_READ(engine, RING_ESR)) /* confirm the error */ |
| execlists_reset(engine, "CS error"); |
| } |
| |
| if (!READ_ONCE(engine->execlists.pending[0]) || timeout) { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&engine->active.lock, flags); |
| __execlists_submission_tasklet(engine); |
| spin_unlock_irqrestore(&engine->active.lock, flags); |
| |
| /* Recheck after serialising with direct-submission */ |
| if (unlikely(timeout && preempt_timeout(engine))) |
| execlists_reset(engine, "preemption time out"); |
| } |
| } |
| |
| static void __execlists_kick(struct intel_engine_execlists *execlists) |
| { |
| /* Kick the tasklet for some interrupt coalescing and reset handling */ |
| tasklet_hi_schedule(&execlists->tasklet); |
| } |
| |
| #define execlists_kick(t, member) \ |
| __execlists_kick(container_of(t, struct intel_engine_execlists, member)) |
| |
| static void execlists_timeslice(struct timer_list *timer) |
| { |
| execlists_kick(timer, timer); |
| } |
| |
| static void execlists_preempt(struct timer_list *timer) |
| { |
| execlists_kick(timer, preempt); |
| } |
| |
| static void queue_request(struct intel_engine_cs *engine, |
| struct i915_request *rq) |
| { |
| GEM_BUG_ON(!list_empty(&rq->sched.link)); |
| list_add_tail(&rq->sched.link, |
| i915_sched_lookup_priolist(engine, rq_prio(rq))); |
| set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags); |
| } |
| |
| static void __submit_queue_imm(struct intel_engine_cs *engine) |
| { |
| struct intel_engine_execlists * const execlists = &engine->execlists; |
| |
| if (reset_in_progress(execlists)) |
| return; /* defer until we restart the engine following reset */ |
| |
| if (execlists->tasklet.func == execlists_submission_tasklet) |
| __execlists_submission_tasklet(engine); |
| else |
| tasklet_hi_schedule(&execlists->tasklet); |
| } |
| |
| static void submit_queue(struct intel_engine_cs *engine, |
| const struct i915_request *rq) |
| { |
| struct intel_engine_execlists *execlists = &engine->execlists; |
| |
| if (rq_prio(rq) <= execlists->queue_priority_hint) |
| return; |
| |
| execlists->queue_priority_hint = rq_prio(rq); |
| __submit_queue_imm(engine); |
| } |
| |
| static bool ancestor_on_hold(const struct intel_engine_cs *engine, |
| const struct i915_request *rq) |
| { |
| GEM_BUG_ON(i915_request_on_hold(rq)); |
| return !list_empty(&engine->active.hold) && hold_request(rq); |
| } |
| |
| static void execlists_submit_request(struct i915_request *request) |
| { |
| struct intel_engine_cs *engine = request->engine; |
| unsigned long flags; |
| |
| /* Will be called from irq-context when using foreign fences. */ |
| spin_lock_irqsave(&engine->active.lock, flags); |
| |
| if (unlikely(ancestor_on_hold(engine, request))) { |
| RQ_TRACE(request, "ancestor on hold\n"); |
| list_add_tail(&request->sched.link, &engine->active.hold); |
| i915_request_set_hold(request); |
| } else { |
| queue_request(engine, request); |
| |
| GEM_BUG_ON(RB_EMPTY_ROOT(&engine->execlists.queue.rb_root)); |
| GEM_BUG_ON(list_empty(&request->sched.link)); |
| |
| submit_queue(engine, request); |
| } |
| |
| spin_unlock_irqrestore(&engine->active.lock, flags); |
| } |
| |
| static void __execlists_context_fini(struct intel_context *ce) |
| { |
| intel_ring_put(ce->ring); |
| i915_vma_put(ce->state); |
| } |
| |
| static void execlists_context_destroy(struct kref *kref) |
| { |
| struct intel_context *ce = container_of(kref, typeof(*ce), ref); |
| |
| GEM_BUG_ON(!i915_active_is_idle(&ce->active)); |
| GEM_BUG_ON(intel_context_is_pinned(ce)); |
| |
| if (ce->state) |
| __execlists_context_fini(ce); |
| |
| intel_context_fini(ce); |
| intel_context_free(ce); |
| } |
| |
| static void |
| set_redzone(void *vaddr, const struct intel_engine_cs *engine) |
| { |
| if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) |
| return; |
| |
| vaddr += engine->context_size; |
| |
| memset(vaddr, CONTEXT_REDZONE, I915_GTT_PAGE_SIZE); |
| } |
| |
| static void |
| check_redzone(const void *vaddr, const struct intel_engine_cs *engine) |
| { |
| if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) |
| return; |
| |
| vaddr += engine->context_size; |
| |
| if (memchr_inv(vaddr, CONTEXT_REDZONE, I915_GTT_PAGE_SIZE)) |
| dev_err_once(engine->i915->drm.dev, |
| "%s context redzone overwritten!\n", |
| engine->name); |
| } |
| |
| static void execlists_context_unpin(struct intel_context *ce) |
| { |
| check_redzone((void *)ce->lrc_reg_state - LRC_STATE_PN * PAGE_SIZE, |
| ce->engine); |
| |
| i915_gem_object_unpin_map(ce->state->obj); |
| } |
| |
| static void |
| __execlists_update_reg_state(const struct intel_context *ce, |
| const struct intel_engine_cs *engine, |
| u32 head) |
| { |
| struct intel_ring *ring = ce->ring; |
| u32 *regs = ce->lrc_reg_state; |
| |
| GEM_BUG_ON(!intel_ring_offset_valid(ring, head)); |
| GEM_BUG_ON(!intel_ring_offset_valid(ring, ring->tail)); |
| |
| regs[CTX_RING_START] = i915_ggtt_offset(ring->vma); |
| regs[CTX_RING_HEAD] = head; |
| regs[CTX_RING_TAIL] = ring->tail; |
| regs[CTX_RING_CTL] = RING_CTL_SIZE(ring->size) | RING_VALID; |
| |
| /* RPCS */ |
| if (engine->class == RENDER_CLASS) { |
| regs[CTX_R_PWR_CLK_STATE] = |
| intel_sseu_make_rpcs(engine->i915, &ce->sseu); |
| |
| i915_oa_init_reg_state(ce, engine); |
| } |
| } |
| |
| static int |
| __execlists_context_pin(struct intel_context *ce, |
| struct intel_engine_cs *engine) |
| { |
| void *vaddr; |
| |
| GEM_BUG_ON(!ce->state); |
| GEM_BUG_ON(!i915_vma_is_pinned(ce->state)); |
| |
| vaddr = i915_gem_object_pin_map(ce->state->obj, |
| i915_coherent_map_type(engine->i915) | |
| I915_MAP_OVERRIDE); |
| if (IS_ERR(vaddr)) |
| return PTR_ERR(vaddr); |
| |
| ce->lrc.lrca = lrc_descriptor(ce, engine) | CTX_DESC_FORCE_RESTORE; |
| ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE; |
| __execlists_update_reg_state(ce, engine, ce->ring->tail); |
| |
| return 0; |
| } |
| |
| static int execlists_context_pin(struct intel_context *ce) |
| { |
| return __execlists_context_pin(ce, ce->engine); |
| } |
| |
| static int execlists_context_alloc(struct intel_context *ce) |
| { |
| return __execlists_context_alloc(ce, ce->engine); |
| } |
| |
| static void execlists_context_reset(struct intel_context *ce) |
| { |
| CE_TRACE(ce, "reset\n"); |
| GEM_BUG_ON(!intel_context_is_pinned(ce)); |
| |
| intel_ring_reset(ce->ring, ce->ring->emit); |
| |
| /* Scrub away the garbage */ |
| execlists_init_reg_state(ce->lrc_reg_state, |
| ce, ce->engine, ce->ring, true); |
| __execlists_update_reg_state(ce, ce->engine, ce->ring->tail); |
| |
| ce->lrc.desc |= CTX_DESC_FORCE_RESTORE; |
| } |
| |
| static const struct intel_context_ops execlists_context_ops = { |
| .alloc = execlists_context_alloc, |
| |
| .pin = execlists_context_pin, |
| .unpin = execlists_context_unpin, |
| |
| .enter = intel_context_enter_engine, |
| .exit = intel_context_exit_engine, |
| |
| .reset = execlists_context_reset, |
| .destroy = execlists_context_destroy, |
| }; |
| |
| static int gen8_emit_init_breadcrumb(struct i915_request *rq) |
| { |
| u32 *cs; |
| |
| if (!i915_request_timeline(rq)->has_initial_breadcrumb) |
| return 0; |
| |
| cs = intel_ring_begin(rq, 6); |
| if (IS_ERR(cs)) |
| return PTR_ERR(cs); |
| |
| /* |
| * Check if we have been preempted before we even get started. |
| * |
| * After this point i915_request_started() reports true, even if |
| * we get preempted and so are no longer running. |
| */ |
| *cs++ = MI_ARB_CHECK; |
| *cs++ = MI_NOOP; |
| |
| *cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT; |
| *cs++ = i915_request_timeline(rq)->hwsp_offset; |
| *cs++ = 0; |
| *cs++ = rq->fence.seqno - 1; |
| |
| intel_ring_advance(rq, cs); |
| |
| /* Record the updated position of the request's payload */ |
| rq->infix = intel_ring_offset(rq, cs); |
| |
| return 0; |
| } |
| |
| static int execlists_request_alloc(struct i915_request *request) |
| { |
| int ret; |
| |
| GEM_BUG_ON(!intel_context_is_pinned(request->context)); |
| |
| /* |
| * Flush enough space to reduce the likelihood of waiting after |
| * we start building the request - in which case we will just |
| * have to repeat work. |
| */ |
| request->reserved_space += EXECLISTS_REQUEST_SIZE; |
| |
| /* |
| * Note that after this point, we have committed to using |
| * this request as it is being used to both track the |
| * state of engine initialisation and liveness of the |
| * golden renderstate above. Think twice before you try |
| * to cancel/unwind this request now. |
| */ |
| |
| /* Unconditionally invalidate GPU caches and TLBs. */ |
| ret = request->engine->emit_flush(request, EMIT_INVALIDATE); |
| if (ret) |
| return ret; |
| |
| request->reserved_space -= EXECLISTS_REQUEST_SIZE; |
| return 0; |
| } |
| |
| /* |
| * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after |
| * PIPE_CONTROL instruction. This is required for the flush to happen correctly |
| * but there is a slight complication as this is applied in WA batch where the |
| * values are only initialized once so we cannot take register value at the |
| * beginning and reuse it further; hence we save its value to memory, upload a |
| * constant value with bit21 set and then we restore it back with the saved value. |
| * To simplify the WA, a constant value is formed by using the default value |
| * of this register. This shouldn't be a problem because we are only modifying |
| * it for a short period and this batch in non-premptible. We can ofcourse |
| * use additional instructions that read the actual value of the register |
| * at that time and set our bit of interest but it makes the WA complicated. |
| * |
| * This WA is also required for Gen9 so extracting as a function avoids |
| * code duplication. |
| */ |
| static u32 * |
| gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine, u32 *batch) |
| { |
| /* NB no one else is allowed to scribble over scratch + 256! */ |
| *batch++ = MI_STORE_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT; |
| *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4); |
| *batch++ = intel_gt_scratch_offset(engine->gt, |
| INTEL_GT_SCRATCH_FIELD_COHERENTL3_WA); |
| *batch++ = 0; |
| |
| *batch++ = MI_LOAD_REGISTER_IMM(1); |
| *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4); |
| *batch++ = 0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES; |
| |
| batch = gen8_emit_pipe_control(batch, |
| PIPE_CONTROL_CS_STALL | |
| PIPE_CONTROL_DC_FLUSH_ENABLE, |
| 0); |
| |
| *batch++ = MI_LOAD_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT; |
| *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4); |
| *batch++ = intel_gt_scratch_offset(engine->gt, |
| INTEL_GT_SCRATCH_FIELD_COHERENTL3_WA); |
| *batch++ = 0; |
| |
| return batch; |
| } |
| |
| /* |
| * Typically we only have one indirect_ctx and per_ctx batch buffer which are |
| * initialized at the beginning and shared across all contexts but this field |
| * helps us to have multiple batches at different offsets and select them based |
| * on a criteria. At the moment this batch always start at the beginning of the page |
| * and at this point we don't have multiple wa_ctx batch buffers. |
| * |
| * The number of WA applied are not known at the beginning; we use this field |
| * to return the no of DWORDS written. |
| * |
| * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END |
| * so it adds NOOPs as padding to make it cacheline aligned. |
| * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together |
| * makes a complete batch buffer. |
| */ |
| static u32 *gen8_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch) |
| { |
| /* WaDisableCtxRestoreArbitration:bdw,chv */ |
| *batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE; |
| |
| /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */ |
| if (IS_BROADWELL(engine->i915)) |
| batch = gen8_emit_flush_coherentl3_wa(engine, batch); |
| |
| /* WaClearSlmSpaceAtContextSwitch:bdw,chv */ |
| /* Actual scratch location is at 128 bytes offset */ |
| batch = gen8_emit_pipe_control(batch, |
| PIPE_CONTROL_FLUSH_L3 | |
| PIPE_CONTROL_STORE_DATA_INDEX | |
| PIPE_CONTROL_CS_STALL | |
| PIPE_CONTROL_QW_WRITE, |
| LRC_PPHWSP_SCRATCH_ADDR); |
| |
| *batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE; |
| |
| /* Pad to end of cacheline */ |
| while ((unsigned long)batch % CACHELINE_BYTES) |
| *batch++ = MI_NOOP; |
| |
| /* |
| * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because |
| * execution depends on the length specified in terms of cache lines |
| * in the register CTX_RCS_INDIRECT_CTX |
| */ |
| |
| return batch; |
| } |
| |
| struct lri { |
| i915_reg_t reg; |
| u32 value; |
| }; |
| |
| static u32 *emit_lri(u32 *batch, const struct lri *lri, unsigned int count) |
| { |
| GEM_BUG_ON(!count || count > 63); |
| |
| *batch++ = MI_LOAD_REGISTER_IMM(count); |
| do { |
| *batch++ = i915_mmio_reg_offset(lri->reg); |
| *batch++ = lri->value; |
| } while (lri++, --count); |
| *batch++ = MI_NOOP; |
| |
| return batch; |
| } |
| |
| static u32 *gen9_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch) |
| { |
| static const struct lri lri[] = { |
| /* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl,glk */ |
| { |
| COMMON_SLICE_CHICKEN2, |
| __MASKED_FIELD(GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE, |
| 0), |
| }, |
| |
| /* BSpec: 11391 */ |
| { |
| FF_SLICE_CHICKEN, |
| __MASKED_FIELD(FF_SLICE_CHICKEN_CL_PROVOKING_VERTEX_FIX, |
| FF_SLICE_CHICKEN_CL_PROVOKING_VERTEX_FIX), |
| }, |
| |
| /* BSpec: 11299 */ |
| { |
| _3D_CHICKEN3, |
| __MASKED_FIELD(_3D_CHICKEN_SF_PROVOKING_VERTEX_FIX, |
| _3D_CHICKEN_SF_PROVOKING_VERTEX_FIX), |
| } |
| }; |
| |
| *batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE; |
| |
| /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt,glk */ |
| batch = gen8_emit_flush_coherentl3_wa(engine, batch); |
| |
| /* WaClearSlmSpaceAtContextSwitch:skl,bxt,kbl,glk,cfl */ |
| batch = gen8_emit_pipe_control(batch, |
| PIPE_CONTROL_FLUSH_L3 | |
| PIPE_CONTROL_STORE_DATA_INDEX | |
| PIPE_CONTROL_CS_STALL | |
| PIPE_CONTROL_QW_WRITE, |
| LRC_PPHWSP_SCRATCH_ADDR); |
| |
| batch = emit_lri(batch, lri, ARRAY_SIZE(lri)); |
| |
| /* WaMediaPoolStateCmdInWABB:bxt,glk */ |
| if (HAS_POOLED_EU(engine->i915)) { |
| /* |
| * EU pool configuration is setup along with golden context |
| * during context initialization. This value depends on |
| * device type (2x6 or 3x6) and needs to be updated based |
| * on which subslice is disabled especially for 2x6 |
| * devices, however it is safe to load default |
| * configuration of 3x6 device instead of masking off |
| * corresponding bits because HW ignores bits of a disabled |
| * subslice and drops down to appropriate config. Please |
| * see render_state_setup() in i915_gem_render_state.c for |
| * possible configurations, to avoid duplication they are |
| * not shown here again. |
| */ |
| *batch++ = GEN9_MEDIA_POOL_STATE; |
| *batch++ = GEN9_MEDIA_POOL_ENABLE; |
| *batch++ = 0x00777000; |
| *batch++ = 0; |
| *batch++ = 0; |
| *batch++ = 0; |
| } |
| |
| *batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE; |
| |
| /* Pad to end of cacheline */ |
| while ((unsigned long)batch % CACHELINE_BYTES) |
| *batch++ = MI_NOOP; |
| |
| return batch; |
| } |
| |
| static u32 * |
| gen10_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch) |
| { |
| int i; |
| |
| /* |
| * WaPipeControlBefore3DStateSamplePattern: cnl |
| * |
| * Ensure the engine is idle prior to programming a |
| * 3DSTATE_SAMPLE_PATTERN during a context restore. |
| */ |
| batch = gen8_emit_pipe_control(batch, |
| PIPE_CONTROL_CS_STALL, |
| 0); |
| /* |
| * WaPipeControlBefore3DStateSamplePattern says we need 4 dwords for |
| * the PIPE_CONTROL followed by 12 dwords of 0x0, so 16 dwords in |
| * total. However, a PIPE_CONTROL is 6 dwords long, not 4, which is |
| * confusing. Since gen8_emit_pipe_control() already advances the |
| * batch by 6 dwords, we advance the other 10 here, completing a |
| * cacheline. It's not clear if the workaround requires this padding |
| * before other commands, or if it's just the regular padding we would |
| * already have for the workaround bb, so leave it here for now. |
| */ |
| for (i = 0; i < 10; i++) |
| *batch++ = MI_NOOP; |
| |
| /* Pad to end of cacheline */ |
| while ((unsigned long)batch % CACHELINE_BYTES) |
| *batch++ = MI_NOOP; |
| |
| return batch; |
| } |
| |
| #define CTX_WA_BB_OBJ_SIZE (PAGE_SIZE) |
| |
| static int lrc_setup_wa_ctx(struct intel_engine_cs *engine) |
| { |
| struct drm_i915_gem_object *obj; |
| struct i915_vma *vma; |
| int err; |
| |
| obj = i915_gem_object_create_shmem(engine->i915, CTX_WA_BB_OBJ_SIZE); |
| if (IS_ERR(obj)) |
| return PTR_ERR(obj); |
| |
| vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL); |
| if (IS_ERR(vma)) { |
| err = PTR_ERR(vma); |
| goto err; |
| } |
| |
| err = i915_ggtt_pin(vma, 0, PIN_HIGH); |
| if (err) |
| goto err; |
| |
| engine->wa_ctx.vma = vma; |
| return 0; |
| |
| err: |
| i915_gem_object_put(obj); |
| return err; |
| } |
| |
| static void lrc_destroy_wa_ctx(struct intel_engine_cs *engine) |
| { |
| i915_vma_unpin_and_release(&engine->wa_ctx.vma, 0); |
| } |
| |
| typedef u32 *(*wa_bb_func_t)(struct intel_engine_cs *engine, u32 *batch); |
| |
| static int intel_init_workaround_bb(struct intel_engine_cs *engine) |
| { |
| struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx; |
| struct i915_wa_ctx_bb *wa_bb[2] = { &wa_ctx->indirect_ctx, |
| &wa_ctx->per_ctx }; |
| wa_bb_func_t wa_bb_fn[2]; |
| struct page *page; |
| void *batch, *batch_ptr; |
| unsigned int i; |
| int ret; |
| |
| if (engine->class != RENDER_CLASS) |
| return 0; |
| |
| switch (INTEL_GEN(engine->i915)) { |
| case 12: |
| case 11: |
| return 0; |
| case 10: |
| wa_bb_fn[0] = gen10_init_indirectctx_bb; |
| wa_bb_fn[1] = NULL; |
| break; |
| case 9: |
| wa_bb_fn[0] = gen9_init_indirectctx_bb; |
| wa_bb_fn[1] = NULL; |
| break; |
| case 8: |
| wa_bb_fn[0] = gen8_init_indirectctx_bb; |
| wa_bb_fn[1] = NULL; |
| break; |
| default: |
| MISSING_CASE(INTEL_GEN(engine->i915)); |
| return 0; |
| } |
| |
| ret = lrc_setup_wa_ctx(engine); |
| if (ret) { |
| DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret); |
| return ret; |
| } |
| |
| page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0); |
| batch = batch_ptr = kmap_atomic(page); |
| |
| /* |
| * Emit the two workaround batch buffers, recording the offset from the |
| * start of the workaround batch buffer object for each and their |
| * respective sizes. |
| */ |
| for (i = 0; i < ARRAY_SIZE(wa_bb_fn); i++) { |
| wa_bb[i]->offset = batch_ptr - batch; |
| if (GEM_DEBUG_WARN_ON(!IS_ALIGNED(wa_bb[i]->offset, |
| CACHELINE_BYTES))) { |
| ret = -EINVAL; |
| break; |
| } |
| if (wa_bb_fn[i]) |
| batch_ptr = wa_bb_fn[i](engine, batch_ptr); |
| wa_bb[i]->size = batch_ptr - (batch + wa_bb[i]->offset); |
| } |
| |
| BUG_ON(batch_ptr - batch > CTX_WA_BB_OBJ_SIZE); |
| |
| kunmap_atomic(batch); |
| if (ret) |
| lrc_destroy_wa_ctx(engine); |
| |
| return ret; |
| } |
| |
| static void enable_error_interrupt(struct intel_engine_cs *engine) |
| { |
| u32 status; |
| |
| engine->execlists.error_interrupt = 0; |
| ENGINE_WRITE(engine, RING_EMR, ~0u); |
| ENGINE_WRITE(engine, RING_EIR, ~0u); /* clear all existing errors */ |
| |
| status = ENGINE_READ(engine, RING_ESR); |
| if (unlikely(status)) { |
| dev_err(engine->i915->drm.dev, |
| "engine '%s' resumed still in error: %08x\n", |
| engine->name, status); |
| __intel_gt_reset(engine->gt, engine->mask); |
| } |
| |
| /* |
| * On current gen8+, we have 2 signals to play with |
| * |
| * - I915_ERROR_INSTUCTION (bit 0) |
| * |
| * Generate an error if the command parser encounters an invalid |
| * instruction |
| * |
| * This is a fatal error. |
| * |
| * - CP_PRIV (bit 2) |
| * |
| * Generate an error on privilege violation (where the CP replaces |
| * the instruction with a no-op). This also fires for writes into |
| * read-only scratch pages. |
| * |
| * This is a non-fatal error, parsing continues. |
| * |
| * * there are a few others defined for odd HW that we do not use |
| * |
| * Since CP_PRIV fires for cases where we have chosen to ignore the |
| * error (as the HW is validating and suppressing the mistakes), we |
| * only unmask the instruction error bit. |
| */ |
| ENGINE_WRITE(engine, RING_EMR, ~I915_ERROR_INSTRUCTION); |
| } |
| |
| static void enable_execlists(struct intel_engine_cs *engine) |
| { |
| u32 mode; |
| |
| assert_forcewakes_active(engine->uncore, FORCEWAKE_ALL); |
| |
| intel_engine_set_hwsp_writemask(engine, ~0u); /* HWSTAM */ |
| |
| if (INTEL_GEN(engine->i915) >= 11) |
| mode = _MASKED_BIT_ENABLE(GEN11_GFX_DISABLE_LEGACY_MODE); |
| else |
| mode = _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE); |
| ENGINE_WRITE_FW(engine, RING_MODE_GEN7, mode); |
| |
| ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING)); |
| |
| ENGINE_WRITE_FW(engine, |
| RING_HWS_PGA, |
| i915_ggtt_offset(engine->status_page.vma)); |
| ENGINE_POSTING_READ(engine, RING_HWS_PGA); |
| |
| enable_error_interrupt(engine); |
| |
| engine->context_tag = GENMASK(BITS_PER_LONG - 2, 0); |
| } |
| |
| static bool unexpected_starting_state(struct intel_engine_cs *engine) |
| { |
| bool unexpected = false; |
| |
| if (ENGINE_READ_FW(engine, RING_MI_MODE) & STOP_RING) { |
| DRM_DEBUG_DRIVER("STOP_RING still set in RING_MI_MODE\n"); |
| unexpected = true; |
| } |
| |
| return unexpected; |
| } |
| |
| static int execlists_resume(struct intel_engine_cs *engine) |
| { |
| intel_mocs_init_engine(engine); |
| |
| intel_engine_reset_breadcrumbs(engine); |
| |
| if (GEM_SHOW_DEBUG() && unexpected_starting_state(engine)) { |
| struct drm_printer p = drm_debug_printer(__func__); |
| |
| intel_engine_dump(engine, &p, NULL); |
| } |
| |
| enable_execlists(engine); |
| |
| return 0; |
| } |
| |
| static void execlists_reset_prepare(struct intel_engine_cs *engine) |
| { |
| struct intel_engine_execlists * const execlists = &engine->execlists; |
| unsigned long flags; |
| |
| ENGINE_TRACE(engine, "depth<-%d\n", |
| atomic_read(&execlists->tasklet.count)); |
| |
| /* |
| * Prevent request submission to the hardware until we have |
| * completed the reset in i915_gem_reset_finish(). If a request |
| * is completed by one engine, it may then queue a request |
| * to a second via its execlists->tasklet *just* as we are |
| * calling engine->resume() and also writing the ELSP. |
| * Turning off the execlists->tasklet until the reset is over |
| * prevents the race. |
| */ |
| __tasklet_disable_sync_once(&execlists->tasklet); |
| GEM_BUG_ON(!reset_in_progress(execlists)); |
| |
| /* And flush any current direct submission. */ |
| spin_lock_irqsave(&engine->active.lock, flags); |
| spin_unlock_irqrestore(&engine->active.lock, flags); |
| |
| /* |
| * We stop engines, otherwise we might get failed reset and a |
| * dead gpu (on elk). Also as modern gpu as kbl can suffer |
| * from system hang if batchbuffer is progressing when |
| * the reset is issued, regardless of READY_TO_RESET ack. |
| * Thus assume it is best to stop engines on all gens |
| * where we have a gpu reset. |
| * |
| * WaKBLVECSSemaphoreWaitPoll:kbl (on ALL_ENGINES) |
| * |
| * FIXME: Wa for more modern gens needs to be validated |
| */ |
| intel_engine_stop_cs(engine); |
| } |
| |
| static void reset_csb_pointers(struct intel_engine_cs *engine) |
| { |
| struct intel_engine_execlists * const execlists = &engine->execlists; |
| const unsigned int reset_value = execlists->csb_size - 1; |
| |
| ring_set_paused(engine, 0); |
| |
| /* |
| * After a reset, the HW starts writing into CSB entry [0]. We |
| * therefore have to set our HEAD pointer back one entry so that |
| * the *first* entry we check is entry 0. To complicate this further, |
| * as we don't wait for the first interrupt after reset, we have to |
| * fake the HW write to point back to the last entry so that our |
| * inline comparison of our cached head position against the last HW |
| * write works even before the first interrupt. |
| */ |
| execlists->csb_head = reset_value; |
| WRITE_ONCE(*execlists->csb_write, reset_value); |
| wmb(); /* Make sure this is visible to HW (paranoia?) */ |
| |
| /* |
| * Sometimes Icelake forgets to reset its pointers on a GPU reset. |
| * Bludgeon them with a mmio update to be sure. |
| */ |
| ENGINE_WRITE(engine, RING_CONTEXT_STATUS_PTR, |
| reset_value << 8 | reset_value); |
| ENGINE_POSTING_READ(engine, RING_CONTEXT_STATUS_PTR); |
| |
| invalidate_csb_entries(&execlists->csb_status[0], |
| &execlists->csb_status[reset_value]); |
| } |
| |
| static void __reset_stop_ring(u32 *regs, const struct intel_engine_cs *engine) |
| { |
| int x; |
| |
| x = lrc_ring_mi_mode(engine); |
| if (x != -1) { |
| regs[x + 1] &= ~STOP_RING; |
| regs[x + 1] |= STOP_RING << 16; |
| } |
| } |
| |
| static void __execlists_reset_reg_state(const struct intel_context *ce, |
| const struct intel_engine_cs *engine) |
| { |
| u32 *regs = ce->lrc_reg_state; |
| |
| __reset_stop_ring(regs, engine); |
| } |
| |
| static void __execlists_reset(struct intel_engine_cs *engine, bool stalled) |
| { |
| struct intel_engine_execlists * const execlists = &engine->execlists; |
| struct intel_context *ce; |
| struct i915_request *rq; |
| u32 head; |
| |
| mb(); /* paranoia: read the CSB pointers from after the reset */ |
| clflush(execlists->csb_write); |
| mb(); |
| |
| process_csb(engine); /* drain preemption events */ |
| |
| /* Following the reset, we need to reload the CSB read/write pointers */ |
| reset_csb_pointers(engine); |
| |
| /* |
| * Save the currently executing context, even if we completed |
| * its request, it was still running at the time of the |
| * reset and will have been clobbered. |
| */ |
| rq = execlists_active(execlists); |
| if (!rq) |
| goto unwind; |
| |
| ce = rq->context; |
| GEM_BUG_ON(!i915_vma_is_pinned(ce->state)); |
| |
| if (i915_request_completed(rq)) { |
| /* Idle context; tidy up the ring so we can restart afresh */ |
| head = intel_ring_wrap(ce->ring, rq->tail); |
| goto out_replay; |
| } |
| |
| /* We still have requests in-flight; the engine should be active */ |
| GEM_BUG_ON(!intel_engine_pm_is_awake(engine)); |
| |
| /* Context has requests still in-flight; it should not be idle! */ |
| GEM_BUG_ON(i915_active_is_idle(&ce->active)); |
| |
| rq = active_request(ce->timeline, rq); |
| head = intel_ring_wrap(ce->ring, rq->head); |
| GEM_BUG_ON(head == ce->ring->tail); |
| |
| /* |
| * If this request hasn't started yet, e.g. it is waiting on a |
| * semaphore, we need to avoid skipping the request or else we |
| * break the signaling chain. However, if the context is corrupt |
| * the request will not restart and we will be stuck with a wedged |
| * device. It is quite often the case that if we issue a reset |
| * while the GPU is loading the context image, that the context |
| * image becomes corrupt. |
| * |
| * Otherwise, if we have not started yet, the request should replay |
| * perfectly and we do not need to flag the result as being erroneous. |
| */ |
| if (!i915_request_started(rq)) |
| goto out_replay; |
| |
| /* |
| * If the request was innocent, we leave the request in the ELSP |
| * and will try to replay it on restarting. The context image may |
| * have been corrupted by the reset, in which case we may have |
| * to service a new GPU hang, but more likely we can continue on |
| * without impact. |
| * |
| * If the request was guilty, we presume the context is corrupt |
| * and have to at least restore the RING register in the context |
| * image back to the expected values to skip over the guilty request. |
| */ |
| __i915_request_reset(rq, stalled); |
| if (!stalled) |
| goto out_replay; |
| |
| /* |
| * We want a simple context + ring to execute the breadcrumb update. |
| * We cannot rely on the context being intact across the GPU hang, |
| * so clear it and rebuild just what we need for the breadcrumb. |
| * All pending requests for this context will be zapped, and any |
| * future request will be after userspace has had the opportunity |
| * to recreate its own state. |
| */ |
| GEM_BUG_ON(!intel_context_is_pinned(ce)); |
| restore_default_state(ce, engine); |
| |
| out_replay: |
| ENGINE_TRACE(engine, "replay {head:%04x, tail:%04x}\n", |
| head, ce->ring->tail); |
| __execlists_reset_reg_state(ce, engine); |
| __execlists_update_reg_state(ce, engine, head); |
| ce->lrc.desc |= CTX_DESC_FORCE_RESTORE; /* paranoid: GPU was reset! */ |
| |
| unwind: |
| /* Push back any incomplete requests for replay after the reset. */ |
| cancel_port_requests(execlists); |
| __unwind_incomplete_requests(engine); |
| } |
| |
| static void execlists_reset_rewind(struct intel_engine_cs *engine, bool stalled) |
| { |
| unsigned long flags; |
| |
| ENGINE_TRACE(engine, "\n"); |
| |
| spin_lock_irqsave(&engine->active.lock, flags); |
| |
| __execlists_reset(engine, stalled); |
| |
| spin_unlock_irqrestore(&engine->active.lock, flags); |
| } |
| |
| static void nop_submission_tasklet(unsigned long data) |
| { |
| struct intel_engine_cs * const engine = (struct intel_engine_cs *)data; |
| |
| /* The driver is wedged; don't process any more events. */ |
| WRITE_ONCE(engine->execlists.queue_priority_hint, INT_MIN); |
| } |
| |
| static void execlists_reset_cancel(struct intel_engine_cs *engine) |
| { |
| struct intel_engine_execlists * const execlists = &engine->execlists; |
| struct i915_request *rq, *rn; |
| struct rb_node *rb; |
| unsigned long flags; |
| |
| ENGINE_TRACE(engine, "\n"); |
| |
| /* |
| * Before we call engine->cancel_requests(), we should have exclusive |
| * access to the submission state. This is arranged for us by the |
| * caller disabling the interrupt generation, the tasklet and other |
| * threads that may then access the same state, giving us a free hand |
| * to reset state. However, we still need to let lockdep be aware that |
| * we know this state may be accessed in hardirq context, so we |
| * disable the irq around this manipulation and we want to keep |
| * the spinlock focused on its duties and not accidentally conflate |
| * coverage to the submission's irq state. (Similarly, although we |
| * shouldn't need to disable irq around the manipulation of the |
| * submission's irq state, we also wish to remind ourselves that |
| * it is irq state.) |
| */ |
| spin_lock_irqsave(&engine->active.lock, flags); |
| |
| __execlists_reset(engine, true); |
| |
| /* Mark all executing requests as skipped. */ |
| list_for_each_entry(rq, &engine->active.requests, sched.link) |
| mark_eio(rq); |
| |
| /* Flush the queued requests to the timeline list (for retiring). */ |
| while ((rb = rb_first_cached(&execlists->queue))) { |
| struct i915_priolist *p = to_priolist(rb); |
| int i; |
| |
| priolist_for_each_request_consume(rq, rn, p, i) { |
| mark_eio(rq); |
| __i915_request_submit(rq); |
| } |
| |
| rb_erase_cached(&p->node, &execlists->queue); |
| i915_priolist_free(p); |
| } |
| |
| /* On-hold requests will be flushed to timeline upon their release */ |
| list_for_each_entry(rq, &engine->active.hold, sched.link) |
| mark_eio(rq); |
| |
| /* Cancel all attached virtual engines */ |
| while ((rb = rb_first_cached(&execlists->virtual))) { |
| struct virtual_engine *ve = |
| rb_entry(rb, typeof(*ve), nodes[engine->id].rb); |
| |
| rb_erase_cached(rb, &execlists->virtual); |
| RB_CLEAR_NODE(rb); |
| |
| spin_lock(&ve->base.active.lock); |
| rq = fetch_and_zero(&ve->request); |
| if (rq) { |
| mark_eio(rq); |
| |
| rq->engine = engine; |
| __i915_request_submit(rq); |
| i915_request_put(rq); |
| |
| ve->base.execlists.queue_priority_hint = INT_MIN; |
| } |
| spin_unlock(&ve->base.active.lock); |
| } |
| |
| /* Remaining _unready_ requests will be nop'ed when submitted */ |
| |
| execlists->queue_priority_hint = INT_MIN; |
| execlists->queue = RB_ROOT_CACHED; |
| |
| GEM_BUG_ON(__tasklet_is_enabled(&execlists->tasklet)); |
| execlists->tasklet.func = nop_submission_tasklet; |
| |
| spin_unlock_irqrestore(&engine->active.lock, flags); |
| } |
| |
| static void execlists_reset_finish(struct intel_engine_cs *engine) |
| { |
| struct intel_engine_execlists * const execlists = &engine->execlists; |
| |
| /* |
| * After a GPU reset, we may have requests to replay. Do so now while |
| * we still have the forcewake to be sure that the GPU is not allowed |
| * to sleep before we restart and reload a context. |
| */ |
| GEM_BUG_ON(!reset_in_progress(execlists)); |
| if (!RB_EMPTY_ROOT(&execlists->queue.rb_root)) |
| execlists->tasklet.func(execlists->tasklet.data); |
| |
| if (__tasklet_enable(&execlists->tasklet)) |
| /* And kick in case we missed a new request submission. */ |
| tasklet_hi_schedule(&execlists->tasklet); |
| ENGINE_TRACE(engine, "depth->%d\n", |
| atomic_read(&execlists->tasklet.count)); |
| } |
| |
| static int gen8_emit_bb_start_noarb(struct i915_request *rq, |
| u64 offset, u32 len, |
| const unsigned int flags) |
| { |
| u32 *cs; |
| |
| cs = intel_ring_begin(rq, 4); |
| if (IS_ERR(cs)) |
| return PTR_ERR(cs); |
| |
| /* |
| * WaDisableCtxRestoreArbitration:bdw,chv |
| * |
| * We don't need to perform MI_ARB_ENABLE as often as we do (in |
| * particular all the gen that do not need the w/a at all!), if we |
| * took care to make sure that on every switch into this context |
| * (both ordinary and for preemption) that arbitrartion was enabled |
| * we would be fine. However, for gen8 there is another w/a that |
| * requires us to not preempt inside GPGPU execution, so we keep |
| * arbitration disabled for gen8 batches. Arbitration will be |
| * re-enabled before we close the request |
| * (engine->emit_fini_breadcrumb). |
| */ |
| *cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE; |
| |
| /* FIXME(BDW+): Address space and security selectors. */ |
| *cs++ = MI_BATCH_BUFFER_START_GEN8 | |
| (flags & I915_DISPATCH_SECURE ? 0 : BIT(8)); |
| *cs++ = lower_32_bits(offset); |
| *cs++ = upper_32_bits(offset); |
| |
| intel_ring_advance(rq, cs); |
| |
| return 0; |
| } |
| |
| static int gen8_emit_bb_start(struct i915_request *rq, |
| u64 offset, u32 len, |
| const unsigned int flags) |
| { |
| u32 *cs; |
| |
| cs = intel_ring_begin(rq, 6); |
| if (IS_ERR(cs)) |
| return PTR_ERR(cs); |
| |
| *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE; |
| |
| *cs++ = MI_BATCH_BUFFER_START_GEN8 | |
| (flags & I915_DISPATCH_SECURE ? 0 : BIT(8)); |
| *cs++ = lower_32_bits(offset); |
| *cs++ = upper_32_bits(offset); |
| |
| *cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE; |
| *cs++ = MI_NOOP; |
| |
| intel_ring_advance(rq, cs); |
| |
| return 0; |
| } |
| |
| static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine) |
| { |
| ENGINE_WRITE(engine, RING_IMR, |
| ~(engine->irq_enable_mask | engine->irq_keep_mask)); |
| ENGINE_POSTING_READ(engine, RING_IMR); |
| } |
| |
| static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine) |
| { |
| ENGINE_WRITE(engine, RING_IMR, ~engine->irq_keep_mask); |
| } |
| |
| static int gen8_emit_flush(struct i915_request *request, u32 mode) |
| { |
| u32 cmd, *cs; |
| |
| cs = intel_ring_begin(request, 4); |
| if (IS_ERR(cs)) |
| return PTR_ERR(cs); |
| |
| cmd = MI_FLUSH_DW + 1; |
| |
| /* We always require a command barrier so that subsequent |
| * commands, such as breadcrumb interrupts, are strictly ordered |
| * wrt the contents of the write cache being flushed to memory |
| * (and thus being coherent from the CPU). |
| */ |
| cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW; |
| |
| if (mode & EMIT_INVALIDATE) { |
| cmd |= MI_INVALIDATE_TLB; |
| if (request->engine->class == VIDEO_DECODE_CLASS) |
| cmd |= MI_INVALIDATE_BSD; |
| } |
| |
| *cs++ = cmd; |
| *cs++ = LRC_PPHWSP_SCRATCH_ADDR; |
| *cs++ = 0; /* upper addr */ |
| *cs++ = 0; /* value */ |
| intel_ring_advance(request, cs); |
| |
| return 0; |
| } |
| |
| static int gen8_emit_flush_render(struct i915_request *request, |
| u32 mode) |
| { |
| bool vf_flush_wa = false, dc_flush_wa = false; |
| u32 *cs, flags = 0; |
| int len; |
| |
| flags |= PIPE_CONTROL_CS_STALL; |
| |
| if (mode & EMIT_FLUSH) { |
| flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH; |
| flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH; |
| flags |= PIPE_CONTROL_DC_FLUSH_ENABLE; |
| flags |= PIPE_CONTROL_FLUSH_ENABLE; |
| } |
| |
| if (mode & EMIT_INVALIDATE) { |
| flags |= PIPE_CONTROL_TLB_INVALIDATE; |
| flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE; |
| flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE; |
| flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE; |
| flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE; |
| flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE; |
| flags |= PIPE_CONTROL_QW_WRITE; |
| flags |= PIPE_CONTROL_STORE_DATA_INDEX; |
| |
| /* |
| * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL |
| * pipe control. |
| */ |
| if (IS_GEN(request->i915, 9)) |
| vf_flush_wa = true; |
| |
| /* WaForGAMHang:kbl */ |
| if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0)) |
| dc_flush_wa = true; |
| } |
| |
| len = 6; |
| |
| if (vf_flush_wa) |
| len += 6; |
| |
| if (dc_flush_wa) |
| len += 12; |
| |
| cs = intel_ring_begin(request, len); |
| if (IS_ERR(cs)) |
| return PTR_ERR(cs); |
| |
| if (vf_flush_wa) |
| cs = gen8_emit_pipe_control(cs, 0, 0); |
| |
| if (dc_flush_wa) |
| cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_DC_FLUSH_ENABLE, |
| 0); |
| |
| cs = gen8_emit_pipe_control(cs, flags, LRC_PPHWSP_SCRATCH_ADDR); |
| |
| if (dc_flush_wa) |
| cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_CS_STALL, 0); |
| |
| intel_ring_advance(request, cs); |
| |
| return 0; |
| } |
| |
| static int gen11_emit_flush_render(struct i915_request *request, |
| u32 mode) |
| { |
| if (mode & EMIT_FLUSH) { |
| u32 *cs; |
| u32 flags = 0; |
| |
| flags |= PIPE_CONTROL_CS_STALL; |
| |
| flags |= PIPE_CONTROL_TILE_CACHE_FLUSH; |
| flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH; |
| flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH; |
| flags |= PIPE_CONTROL_DC_FLUSH_ENABLE; |
| flags |= PIPE_CONTROL_FLUSH_ENABLE; |
| flags |= PIPE_CONTROL_QW_WRITE; |
| flags |= PIPE_CONTROL_STORE_DATA_INDEX; |
| |
| cs = intel_ring_begin(request, 6); |
| if (IS_ERR(cs)) |
| return PTR_ERR(cs); |
| |
| cs = gen8_emit_pipe_control(cs, flags, LRC_PPHWSP_SCRATCH_ADDR); |
| intel_ring_advance(request, cs); |
| } |
| |
| if (mode & EMIT_INVALIDATE) { |
| u32 *cs; |
| u32 flags = 0; |
| |
| flags |= PIPE_CONTROL_CS_STALL; |
| |
| flags |= PIPE_CONTROL_COMMAND_CACHE_INVALIDATE; |
| flags |= PIPE_CONTROL_TLB_INVALIDATE; |
| flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE; |
| flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE; |
| flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE; |
| flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE; |
| flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE; |
| flags |= PIPE_CONTROL_QW_WRITE; |
| flags |= PIPE_CONTROL_STORE_DATA_INDEX; |
| |
| cs = intel_ring_begin(request, 6); |
| if (IS_ERR(cs)) |
| return PTR_ERR(cs); |
| |
| cs = gen8_emit_pipe_control(cs, flags, LRC_PPHWSP_SCRATCH_ADDR); |
| intel_ring_advance(request, cs); |
| } |
| |
| return 0; |
| } |
| |
| static u32 preparser_disable(bool state) |
| { |
| return MI_ARB_CHECK | 1 << 8 | state; |
| } |
| |
| static int gen12_emit_flush_render(struct i915_request *request, |
| u32 mode) |
| { |
| if (mode & EMIT_FLUSH) { |
| u32 flags = 0; |
| u32 *cs; |
| |
| flags |= PIPE_CONTROL_TILE_CACHE_FLUSH; |
| flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH; |
| flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH; |
| /* Wa_1409600907:tgl */ |
| flags |= PIPE_CONTROL_DEPTH_STALL; |
| flags |= PIPE_CONTROL_DC_FLUSH_ENABLE; |
| flags |= PIPE_CONTROL_FLUSH_ENABLE; |
| flags |= PIPE_CONTROL_HDC_PIPELINE_FLUSH; |
| |
| flags |= PIPE_CONTROL_STORE_DATA_INDEX; |
| flags |= PIPE_CONTROL_QW_WRITE; |
| |
| flags |= PIPE_CONTROL_CS_STALL; |
| |
| cs = intel_ring_begin(request, 6); |
| if (IS_ERR(cs)) |
| return PTR_ERR(cs); |
| |
| cs = gen8_emit_pipe_control(cs, flags, LRC_PPHWSP_SCRATCH_ADDR); |
| intel_ring_advance(request, cs); |
| } |
| |
| if (mode & EMIT_INVALIDATE) { |
| u32 flags = 0; |
| u32 *cs; |
| |
| flags |= PIPE_CONTROL_COMMAND_CACHE_INVALIDATE; |
| flags |= PIPE_CONTROL_TLB_INVALIDATE; |
| flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE; |
| flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE; |
| flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE; |
| flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE; |
| flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE; |
| flags |= PIPE_CONTROL_L3_RO_CACHE_INVALIDATE; |
| |
| flags |= PIPE_CONTROL_STORE_DATA_INDEX; |
| flags |= PIPE_CONTROL_QW_WRITE; |
| |
| flags |= PIPE_CONTROL_CS_STALL; |
| |
| cs = intel_ring_begin(request, 8); |
| if (IS_ERR(cs)) |
| return PTR_ERR(cs); |
| |
| /* |
| * Prevent the pre-parser from skipping past the TLB |
| * invalidate and loading a stale page for the batch |
| * buffer / request payload. |
| */ |
| *cs++ = preparser_disable(true); |
| |
| cs = gen8_emit_pipe_control(cs, flags, LRC_PPHWSP_SCRATCH_ADDR); |
| |
| *cs++ = preparser_disable(false); |
| intel_ring_advance(request, cs); |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Reserve space for 2 NOOPs at the end of each request to be |
| * used as a workaround for not being allowed to do lite |
| * restore with HEAD==TAIL (WaIdleLiteRestore). |
| */ |
| static u32 *gen8_emit_wa_tail(struct i915_request *request, u32 *cs) |
| { |
| /* Ensure there's always at least one preemption point per-request. */ |
| *cs++ = MI_ARB_CHECK; |
| *cs++ = MI_NOOP; |
| request->wa_tail = intel_ring_offset(request, cs); |
| |
| return cs; |
| } |
| |
| static u32 *emit_preempt_busywait(struct i915_request *request, u32 *cs) |
| { |
| *cs++ = MI_SEMAPHORE_WAIT | |
| MI_SEMAPHORE_GLOBAL_GTT | |
| MI_SEMAPHORE_POLL | |
| MI_SEMAPHORE_SAD_EQ_SDD; |
| *cs++ = 0; |
| *cs++ = intel_hws_preempt_address(request->engine); |
| *cs++ = 0; |
| |
| return cs; |
| } |
| |
| static __always_inline u32* |
| gen8_emit_fini_breadcrumb_footer(struct i915_request *request, |
| u32 *cs) |
| { |
| *cs++ = MI_USER_INTERRUPT; |
| |
| *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE; |
| if (intel_engine_has_semaphores(request->engine)) |
| cs = emit_preempt_busywait(request, cs); |
| |
| request->tail = intel_ring_offset(request, cs); |
| assert_ring_tail_valid(request->ring, request->tail); |
| |
| return gen8_emit_wa_tail(request, cs); |
| } |
| |
| static u32 *gen8_emit_fini_breadcrumb(struct i915_request *request, u32 *cs) |
| { |
| cs = gen8_emit_ggtt_write(cs, |
| request->fence.seqno, |
| i915_request_active_timeline(request)->hwsp_offset, |
| 0); |
| |
| return gen8_emit_fini_breadcrumb_footer(request, cs); |
| } |
| |
| static u32 *gen8_emit_fini_breadcrumb_rcs(struct i915_request *request, u32 *cs) |
| { |
| cs = gen8_emit_pipe_control(cs, |
| PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH | |
| PIPE_CONTROL_DEPTH_CACHE_FLUSH | |
| PIPE_CONTROL_DC_FLUSH_ENABLE, |
| 0); |
| |
| /* XXX flush+write+CS_STALL all in one upsets gem_concurrent_blt:kbl */ |
| cs = gen8_emit_ggtt_write_rcs(cs, |
| request->fence.seqno, |
| i915_request_active_timeline(request)->hwsp_offset, |
| PIPE_CONTROL_FLUSH_ENABLE | |
| PIPE_CONTROL_CS_STALL); |
| |
| return gen8_emit_fini_breadcrumb_footer(request, cs); |
| } |
| |
| static u32 * |
| gen11_emit_fini_breadcrumb_rcs(struct i915_request *request, u32 *cs) |
| { |
| cs = gen8_emit_ggtt_write_rcs(cs, |
| request->fence.seqno, |
| i915_request_active_timeline(request)->hwsp_offset, |
| PIPE_CONTROL_CS_STALL | |
| PIPE_CONTROL_TILE_CACHE_FLUSH | |
| PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH | |
| PIPE_CONTROL_DEPTH_CACHE_FLUSH | |
| PIPE_CONTROL_DC_FLUSH_ENABLE | |
| PIPE_CONTROL_FLUSH_ENABLE); |
| |
| return gen8_emit_fini_breadcrumb_footer(request, cs); |
| } |
| |
| /* |
| * Note that the CS instruction pre-parser will not stall on the breadcrumb |
| * flush and will continue pre-fetching the instructions after it before the |
| * memory sync is completed. On pre-gen12 HW, the pre-parser will stop at |
| * BB_START/END instructions, so, even though we might pre-fetch the pre-amble |
| * of the next request before the memory has been flushed, we're guaranteed that |
| * we won't access the batch itself too early. |
| * However, on gen12+ the parser can pre-fetch across the BB_START/END commands, |
| * so, if the current request is modifying an instruction in the next request on |
| * the same intel_context, we might pre-fetch and then execute the pre-update |
| * instruction. To avoid this, the users of self-modifying code should either |
| * disable the parser around the code emitting the memory writes, via a new flag |
| * added to MI_ARB_CHECK, or emit the writes from a different intel_context. For |
| * the in-kernel use-cases we've opted to use a separate context, see |
| * reloc_gpu() as an example. |
| * All the above applies only to the instructions themselves. Non-inline data |
| * used by the instructions is not pre-fetched. |
| */ |
| |
| static u32 *gen12_emit_preempt_busywait(struct i915_request *request, u32 *cs) |
| { |
| *cs++ = MI_SEMAPHORE_WAIT_TOKEN | |
| MI_SEMAPHORE_GLOBAL_GTT | |
| MI_SEMAPHORE_POLL | |
| MI_SEMAPHORE_SAD_EQ_SDD; |
| *cs++ = 0; |
| *cs++ = intel_hws_preempt_address(request->engine); |
| *cs++ = 0; |
| *cs++ = 0; |
| *cs++ = MI_NOOP; |
| |
| return cs; |
| } |
| |
| static __always_inline u32* |
| gen12_emit_fini_breadcrumb_footer(struct i915_request *request, u32 *cs) |
| { |
| *cs++ = MI_USER_INTERRUPT; |
| |
| *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE; |
| if (intel_engine_has_semaphores(request->engine)) |
| cs = gen12_emit_preempt_busywait(request, cs); |
| |
| request->tail = intel_ring_offset(request, cs); |
| assert_ring_tail_valid(request->ring, request->tail); |
| |
| return gen8_emit_wa_tail(request, cs); |
| } |
| |
| static u32 *gen12_emit_fini_breadcrumb(struct i915_request *request, u32 *cs) |
| { |
| cs = gen8_emit_ggtt_write(cs, |
| request->fence.seqno, |
| i915_request_active_timeline(request)->hwsp_offset, |
| 0); |
| |
| return gen12_emit_fini_breadcrumb_footer(request, cs); |
| } |
| |
| static u32 * |
| gen12_emit_fini_breadcrumb_rcs(struct i915_request *request, u32 *cs) |
| { |
| cs = gen8_emit_ggtt_write_rcs(cs, |
| request->fence.seqno, |
| i915_request_active_timeline(request)->hwsp_offset, |
| PIPE_CONTROL_CS_STALL | |
| PIPE_CONTROL_TILE_CACHE_FLUSH | |
| PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH | |
| PIPE_CONTROL_DEPTH_CACHE_FLUSH | |
| /* Wa_1409600907:tgl */ |
| PIPE_CONTROL_DEPTH_STALL | |
| PIPE_CONTROL_DC_FLUSH_ENABLE | |
| PIPE_CONTROL_FLUSH_ENABLE | |
| PIPE_CONTROL_HDC_PIPELINE_FLUSH); |
| |
| return gen12_emit_fini_breadcrumb_footer(request, cs); |
| } |
| |
| static void execlists_park(struct intel_engine_cs *engine) |
| { |
| cancel_timer(&engine->execlists.timer); |
| cancel_timer(&engine->execlists.preempt); |
| } |
| |
| void intel_execlists_set_default_submission(struct intel_engine_cs *engine) |
| { |
| engine->submit_request = execlists_submit_request; |
| engine->schedule = i915_schedule; |
| engine->execlists.tasklet.func = execlists_submission_tasklet; |
| |
| engine->reset.prepare = execlists_reset_prepare; |
| engine->reset.rewind = execlists_reset_rewind; |
| engine->reset.cancel = execlists_reset_cancel; |
| engine->reset.finish = execlists_reset_finish; |
| |
| engine->park = execlists_park; |
| engine->unpark = NULL; |
| |
| engine->flags |= I915_ENGINE_SUPPORTS_STATS; |
| if (!intel_vgpu_active(engine->i915)) { |
| engine->flags |= I915_ENGINE_HAS_SEMAPHORES; |
| if (HAS_LOGICAL_RING_PREEMPTION(engine->i915)) { |
| engine->flags |= I915_ENGINE_HAS_PREEMPTION; |
| if (IS_ACTIVE(CONFIG_DRM_I915_TIMESLICE_DURATION)) |
| engine->flags |= I915_ENGINE_HAS_TIMESLICES; |
| } |
| } |
| |
| if (INTEL_GEN(engine->i915) >= 12) |
| engine->flags |= I915_ENGINE_HAS_RELATIVE_MMIO; |
| |
| if (intel_engine_has_preemption(engine)) |
| engine->emit_bb_start = gen8_emit_bb_start; |
| else |
| engine->emit_bb_start = gen8_emit_bb_start_noarb; |
| } |
| |
| static void execlists_shutdown(struct intel_engine_cs *engine) |
| { |
| /* Synchronise with residual timers and any softirq they raise */ |
| del_timer_sync(&engine->execlists.timer); |
| del_timer_sync(&engine->execlists.preempt); |
| tasklet_kill(&engine->execlists.tasklet); |
| } |
| |
| static void execlists_release(struct intel_engine_cs *engine) |
| { |
| execlists_shutdown(engine); |
| |
| intel_engine_cleanup_common(engine); |
| lrc_destroy_wa_ctx(engine); |
| } |
| |
| static void |
| logical_ring_default_vfuncs(struct intel_engine_cs *engine) |
| { |
| /* Default vfuncs which can be overriden by each engine. */ |
| |
| engine->resume = execlists_resume; |
| |
| engine->cops = &execlists_context_ops; |
| engine->request_alloc = execlists_request_alloc; |
| |
| engine->emit_flush = gen8_emit_flush; |
| engine->emit_init_breadcrumb = gen8_emit_init_breadcrumb; |
| engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb; |
| if (INTEL_GEN(engine->i915) >= 12) |
| engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb; |
| |
| engine->set_default_submission = intel_execlists_set_default_submission; |
| |
| if (INTEL_GEN(engine->i915) < 11) { |
| engine->irq_enable = gen8_logical_ring_enable_irq; |
| engine->irq_disable = gen8_logical_ring_disable_irq; |
| } else { |
| /* |
| * TODO: On Gen11 interrupt masks need to be clear |
| * to allow C6 entry. Keep interrupts enabled at |
| * and take the hit of generating extra interrupts |
| * until a more refined solution exists. |
| */ |
| } |
| } |
| |
| static inline void |
| logical_ring_default_irqs(struct intel_engine_cs *engine) |
| { |
| unsigned int shift = 0; |
| |
| if (INTEL_GEN(engine->i915) < 11) { |
| const u8 irq_shifts[] = { |
| [RCS0] = GEN8_RCS_IRQ_SHIFT, |
| [BCS0] = GEN8_BCS_IRQ_SHIFT, |
| [VCS0] = GEN8_VCS0_IRQ_SHIFT, |
| [VCS1] = GEN8_VCS1_IRQ_SHIFT, |
| [VECS0] = GEN8_VECS_IRQ_SHIFT, |
| }; |
| |
| shift = irq_shifts[engine->id]; |
| } |
| |
| engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift; |
| engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift; |
| engine->irq_keep_mask |= GT_CS_MASTER_ERROR_INTERRUPT << shift; |
| engine->irq_keep_mask |= GT_WAIT_SEMAPHORE_INTERRUPT << shift; |
| } |
| |
| static void rcs_submission_override(struct intel_engine_cs *engine) |
| { |
| switch (INTEL_GEN(engine->i915)) { |
| case 12: |
| engine->emit_flush = gen12_emit_flush_render; |
| engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_rcs; |
| break; |
| case 11: |
| engine->emit_flush = gen11_emit_flush_render; |
| engine->emit_fini_breadcrumb = gen11_emit_fini_breadcrumb_rcs; |
| break; |
| default: |
| engine->emit_flush = gen8_emit_flush_render; |
| engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_rcs; |
| break; |
| } |
| } |
| |
| int intel_execlists_submission_setup(struct intel_engine_cs *engine) |
| { |
| struct intel_engine_execlists * const execlists = &engine->execlists; |
| struct drm_i915_private *i915 = engine->i915; |
| struct intel_uncore *uncore = engine->uncore; |
| u32 base = engine->mmio_base; |
| |
| tasklet_init(&engine->execlists.tasklet, |
| execlists_submission_tasklet, (unsigned long)engine); |
| timer_setup(&engine->execlists.timer, execlists_timeslice, 0); |
| timer_setup(&engine->execlists.preempt, execlists_preempt, 0); |
| |
| logical_ring_default_vfuncs(engine); |
| logical_ring_default_irqs(engine); |
| |
| if (engine->class == RENDER_CLASS) |
| rcs_submission_override(engine); |
| |
| if (intel_init_workaround_bb(engine)) |
| /* |
| * We continue even if we fail to initialize WA batch |
| * because we only expect rare glitches but nothing |
| * critical to prevent us from using GPU |
| */ |
| DRM_ERROR("WA batch buffer initialization failed\n"); |
| |
| if (HAS_LOGICAL_RING_ELSQ(i915)) { |
| execlists->submit_reg = uncore->regs + |
| i915_mmio_reg_offset(RING_EXECLIST_SQ_CONTENTS(base)); |
| execlists->ctrl_reg = uncore->regs + |
| i915_mmio_reg_offset(RING_EXECLIST_CONTROL(base)); |
| } else { |
| execlists->submit_reg = uncore->regs + |
| i915_mmio_reg_offset(RING_ELSP(base)); |
| } |
| |
| execlists->csb_status = |
| &engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX]; |
| |
| execlists->csb_write = |
| &engine->status_page.addr[intel_hws_csb_write_index(i915)]; |
| |
| if (INTEL_GEN(i915) < 11) |
| execlists->csb_size = GEN8_CSB_ENTRIES; |
| else |
| execlists->csb_size = GEN11_CSB_ENTRIES; |
| |
| if (INTEL_GEN(engine->i915) >= 11) { |
| execlists->ccid |= engine->instance << (GEN11_ENGINE_INSTANCE_SHIFT - 32); |
| execlists->ccid |= engine->class << (GEN11_ENGINE_CLASS_SHIFT - 32); |
| } |
| |
| reset_csb_pointers(engine); |
| |
| /* Finally, take ownership and responsibility for cleanup! */ |
| engine->release = execlists_release; |
| |
| return 0; |
| } |
| |
| static u32 intel_lr_indirect_ctx_offset(const struct intel_engine_cs *engine) |
| { |
| u32 indirect_ctx_offset; |
| |
| switch (INTEL_GEN(engine->i915)) { |
| default: |
| MISSING_CASE(INTEL_GEN(engine->i915)); |
| /* fall through */ |
| case 12: |
| indirect_ctx_offset = |
| GEN12_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT; |
| break; |
| case 11: |
| indirect_ctx_offset = |
| GEN11_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT; |
| break; |
| case 10: |
| indirect_ctx_offset = |
| GEN10_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT; |
| break; |
| case 9: |
| indirect_ctx_offset = |
| GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT; |
| break; |
| case 8: |
| indirect_ctx_offset = |
| GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT; |
| break; |
| } |
| |
| return indirect_ctx_offset; |
| } |
| |
| |
| static void init_common_reg_state(u32 * const regs, |
| const struct intel_engine_cs *engine, |
| const struct intel_ring *ring, |
| bool inhibit) |
| { |
| u32 ctl; |
| |
| ctl = _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH); |
| ctl |= _MASKED_BIT_DISABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT); |
| if (inhibit) |
| ctl |= CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT; |
| if (INTEL_GEN(engine->i915) < 11) |
| ctl |= _MASKED_BIT_DISABLE(CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT | |
| CTX_CTRL_RS_CTX_ENABLE); |
| regs[CTX_CONTEXT_CONTROL] = ctl; |
| |
| regs[CTX_RING_CTL] = RING_CTL_SIZE(ring->size) | RING_VALID; |
| } |
| |
| static void init_wa_bb_reg_state(u32 * const regs, |
| const struct intel_engine_cs *engine, |
| u32 pos_bb_per_ctx) |
| { |
| const struct i915_ctx_workarounds * const wa_ctx = &engine->wa_ctx; |
| |
| if (wa_ctx->per_ctx.size) { |
| const u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma); |
| |
| regs[pos_bb_per_ctx] = |
| (ggtt_offset + wa_ctx->per_ctx.offset) | 0x01; |
| } |
| |
| if (wa_ctx->indirect_ctx.size) { |
| const u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma); |
| |
| regs[pos_bb_per_ctx + 2] = |
| (ggtt_offset + wa_ctx->indirect_ctx.offset) | |
| (wa_ctx->indirect_ctx.size / CACHELINE_BYTES); |
| |
| regs[pos_bb_per_ctx + 4] = |
| intel_lr_indirect_ctx_offset(engine) << 6; |
| } |
| } |
| |
| static void init_ppgtt_reg_state(u32 *regs, const struct i915_ppgtt *ppgtt) |
| { |
| if (i915_vm_is_4lvl(&ppgtt->vm)) { |
| /* 64b PPGTT (48bit canonical) |
| * PDP0_DESCRIPTOR contains the base address to PML4 and |
| * other PDP Descriptors are ignored. |
| */ |
| ASSIGN_CTX_PML4(ppgtt, regs); |
| } else { |
| ASSIGN_CTX_PDP(ppgtt, regs, 3); |
| ASSIGN_CTX_PDP(ppgtt, regs, 2); |
| ASSIGN_CTX_PDP(ppgtt, regs, 1); |
| ASSIGN_CTX_PDP(ppgtt, regs, 0); |
| } |
| } |
| |
| static struct i915_ppgtt *vm_alias(struct i915_address_space *vm) |
| { |
| if (i915_is_ggtt(vm)) |
| return i915_vm_to_ggtt(vm)->alias; |
| else |
| return i915_vm_to_ppgtt(vm); |
| } |
| |
| static void execlists_init_reg_state(u32 *regs, |
| const struct intel_context *ce, |
| const struct intel_engine_cs *engine, |
| const struct intel_ring *ring, |
| bool inhibit) |
| { |
| /* |
| * A context is actually a big batch buffer with several |
| * MI_LOAD_REGISTER_IMM commands followed by (reg, value) pairs. The |
| * values we are setting here are only for the first context restore: |
| * on a subsequent save, the GPU will recreate this batchbuffer with new |
| * values (including all the missing MI_LOAD_REGISTER_IMM commands that |
| * we are not initializing here). |
| * |
| * Must keep consistent with virtual_update_register_offsets(). |
| */ |
| set_offsets(regs, reg_offsets(engine), engine, inhibit); |
| |
| init_common_reg_state(regs, engine, ring, inhibit); |
| init_ppgtt_reg_state(regs, vm_alias(ce->vm)); |
| |
| init_wa_bb_reg_state(regs, engine, |
| INTEL_GEN(engine->i915) >= 12 ? |
| GEN12_CTX_BB_PER_CTX_PTR : |
| CTX_BB_PER_CTX_PTR); |
| |
| __reset_stop_ring(regs, engine); |
| } |
| |
| static int |
| populate_lr_context(struct intel_context *ce, |
| struct drm_i915_gem_object *ctx_obj, |
| struct intel_engine_cs *engine, |
| struct intel_ring *ring) |
| { |
| bool inhibit = true; |
| void *vaddr; |
| int ret; |
| |
| vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB); |
| if (IS_ERR(vaddr)) { |
| ret = PTR_ERR(vaddr); |
| DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret); |
| return ret; |
| } |
| |
| set_redzone(vaddr, engine); |
| |
| if (engine->default_state) { |
| void *defaults; |
| |
| defaults = i915_gem_object_pin_map(engine->default_state, |
| I915_MAP_WB); |
| if (IS_ERR(defaults)) { |
| ret = PTR_ERR(defaults); |
| goto err_unpin_ctx; |
| } |
| |
| memcpy(vaddr, defaults, engine->context_size); |
| i915_gem_object_unpin_map(engine->default_state); |
| __set_bit(CONTEXT_VALID_BIT, &ce->flags); |
| inhibit = false; |
| } |
| |
| /* Clear the ppHWSP (inc. per-context counters) */ |
| memset(vaddr, 0, PAGE_SIZE); |
| |
| /* |
| * The second page of the context object contains some registers which |
| * must be set up prior to the first execution. |
| */ |
| execlists_init_reg_state(vaddr + LRC_STATE_PN * PAGE_SIZE, |
| ce, engine, ring, inhibit); |
| |
| ret = 0; |
| err_unpin_ctx: |
| __i915_gem_object_flush_map(ctx_obj, 0, engine->context_size); |
| i915_gem_object_unpin_map(ctx_obj); |
| return ret; |
| } |
| |
| static int __execlists_context_alloc(struct intel_context *ce, |
| struct intel_engine_cs *engine) |
| { |
| struct drm_i915_gem_object *ctx_obj; |
| struct intel_ring *ring; |
| struct i915_vma *vma; |
| u32 context_size; |
| int ret; |
| |
| GEM_BUG_ON(ce->state); |
| context_size = round_up(engine->context_size, I915_GTT_PAGE_SIZE); |
| |
| if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) |
| context_size += I915_GTT_PAGE_SIZE; /* for redzone */ |
| |
| ctx_obj = i915_gem_object_create_shmem(engine->i915, context_size); |
| if (IS_ERR(ctx_obj)) |
| return PTR_ERR(ctx_obj); |
| |
| vma = i915_vma_instance(ctx_obj, &engine->gt->ggtt->vm, NULL); |
| if (IS_ERR(vma)) { |
| ret = PTR_ERR(vma); |
| goto error_deref_obj; |
| } |
| |
| if (!ce->timeline) { |
| struct intel_timeline *tl; |
| struct i915_vma *hwsp; |
| |
| /* |
| * Use the static global HWSP for the kernel context, and |
| * a dynamically allocated cacheline for everyone else. |
| */ |
| hwsp = NULL; |
| if (unlikely(intel_context_is_barrier(ce))) |
| hwsp = engine->status_page.vma; |
| |
| tl = intel_timeline_create(engine->gt, hwsp); |
| if (IS_ERR(tl)) { |
| ret = PTR_ERR(tl); |
| goto error_deref_obj; |
| } |
| |
| ce->timeline = tl; |
| } |
| |
| ring = intel_engine_create_ring(engine, (unsigned long)ce->ring); |
| if (IS_ERR(ring)) { |
| ret = PTR_ERR(ring); |
| goto error_deref_obj; |
| } |
| |
| ret = populate_lr_context(ce, ctx_obj, engine, ring); |
| if (ret) { |
| DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret); |
| goto error_ring_free; |
| } |
| |
| ce->ring = ring; |
| ce->state = vma; |
| |
| return 0; |
| |
| error_ring_free: |
| intel_ring_put(ring); |
| error_deref_obj: |
| i915_gem_object_put(ctx_obj); |
| return ret; |
| } |
| |
| static struct list_head *virtual_queue(struct virtual_engine *ve) |
| { |
| return &ve->base.execlists.default_priolist.requests[0]; |
| } |
| |
| static void virtual_context_destroy(struct kref *kref) |
| { |
| struct virtual_engine *ve = |
| container_of(kref, typeof(*ve), context.ref); |
| unsigned int n; |
| |
| GEM_BUG_ON(!list_empty(virtual_queue(ve))); |
| GEM_BUG_ON(ve->request); |
| GEM_BUG_ON(ve->context.inflight); |
| |
| for (n = 0; n < ve->num_siblings; n++) { |
| struct intel_engine_cs *sibling = ve->siblings[n]; |
| struct rb_node *node = &ve->nodes[sibling->id].rb; |
| unsigned long flags; |
| |
| if (RB_EMPTY_NODE(node)) |
| continue; |
| |
| spin_lock_irqsave(&sibling->active.lock, flags); |
| |
| /* Detachment is lazily performed in the execlists tasklet */ |
| if (!RB_EMPTY_NODE(node)) |
| rb_erase_cached(node, &sibling->execlists.virtual); |
| |
| spin_unlock_irqrestore(&sibling->active.lock, flags); |
| } |
| GEM_BUG_ON(__tasklet_is_scheduled(&ve->base.execlists.tasklet)); |
| |
| if (ve->context.state) |
| __execlists_context_fini(&ve->context); |
| intel_context_fini(&ve->context); |
| |
| kfree(ve->bonds); |
| kfree(ve); |
| } |
| |
| static void virtual_engine_initial_hint(struct virtual_engine *ve) |
| { |
| int swp; |
| |
| /* |
| * Pick a random sibling on starting to help spread the load around. |
| * |
| * New contexts are typically created with exactly the same order |
| * of siblings, and often started in batches. Due to the way we iterate |
| * the array of sibling when submitting requests, sibling[0] is |
| * prioritised for dequeuing. If we make sure that sibling[0] is fairly |
| * randomised across the system, we also help spread the load by the |
| * first engine we inspect being different each time. |
| * |
| * NB This does not force us to execute on this engine, it will just |
| * typically be the first we inspect for submission. |
| */ |
| swp = prandom_u32_max(ve->num_siblings); |
| if (!swp) |
| return; |
| |
| swap(ve->siblings[swp], ve->siblings[0]); |
| if (!intel_engine_has_relative_mmio(ve->siblings[0])) |
| virtual_update_register_offsets(ve->context.lrc_reg_state, |
| ve->siblings[0]); |
| } |
| |
| static int virtual_context_alloc(struct intel_context *ce) |
| { |
| struct virtual_engine *ve = container_of(ce, typeof(*ve), context); |
| |
| return __execlists_context_alloc(ce, ve->siblings[0]); |
| } |
| |
| static int virtual_context_pin(struct intel_context *ce) |
| { |
| struct virtual_engine *ve = container_of(ce, typeof(*ve), context); |
| int err; |
| |
| /* Note: we must use a real engine class for setting up reg state */ |
| err = __execlists_context_pin(ce, ve->siblings[0]); |
| if (err) |
| return err; |
| |
| virtual_engine_initial_hint(ve); |
| return 0; |
| } |
| |
| static void virtual_context_enter(struct intel_context *ce) |
| { |
| struct virtual_engine *ve = container_of(ce, typeof(*ve), context); |
| unsigned int n; |
| |
| for (n = 0; n < ve->num_siblings; n++) |
| intel_engine_pm_get(ve->siblings[n]); |
| |
| intel_timeline_enter(ce->timeline); |
| } |
| |
| static void virtual_context_exit(struct intel_context *ce) |
| { |
| struct virtual_engine *ve = container_of(ce, typeof(*ve), context); |
| unsigned int n; |
| |
| intel_timeline_exit(ce->timeline); |
| |
| for (n = 0; n < ve->num_siblings; n++) |
| intel_engine_pm_put(ve->siblings[n]); |
| } |
| |
| static const struct intel_context_ops virtual_context_ops = { |
| .alloc = virtual_context_alloc, |
| |
| .pin = virtual_context_pin, |
| .unpin = execlists_context_unpin, |
| |
| .enter = virtual_context_enter, |
| .exit = virtual_context_exit, |
| |
| .destroy = virtual_context_destroy, |
| }; |
| |
| static intel_engine_mask_t virtual_submission_mask(struct virtual_engine *ve) |
| { |
| struct i915_request *rq; |
| intel_engine_mask_t mask; |
| |
| rq = READ_ONCE(ve->request); |
| if (!rq) |
| return 0; |
| |
| /* The rq is ready for submission; rq->execution_mask is now stable. */ |
| mask = rq->execution_mask; |
| if (unlikely(!mask)) { |
| /* Invalid selection, submit to a random engine in error */ |
| i915_request_set_error_once(rq, -ENODEV); |
| mask = ve->siblings[0]->mask; |
| } |
| |
| ENGINE_TRACE(&ve->base, "rq=%llx:%lld, mask=%x, prio=%d\n", |
| rq->fence.context, rq->fence.seqno, |
| mask, ve->base.execlists.queue_priority_hint); |
| |
| return mask; |
| } |
| |
| static void virtual_submission_tasklet(unsigned long data) |
| { |
| struct virtual_engine * const ve = (struct virtual_engine *)data; |
| const int prio = READ_ONCE(ve->base.execlists.queue_priority_hint); |
| intel_engine_mask_t mask; |
| unsigned int n; |
| |
| rcu_read_lock(); |
| mask = virtual_submission_mask(ve); |
| rcu_read_unlock(); |
| if (unlikely(!mask)) |
| return; |
| |
| local_irq_disable(); |
| for (n = 0; READ_ONCE(ve->request) && n < ve->num_siblings; n++) { |
| struct intel_engine_cs *sibling = ve->siblings[n]; |
| struct ve_node * const node = &ve->nodes[sibling->id]; |
| struct rb_node **parent, *rb; |
| bool first; |
| |
| if (unlikely(!(mask & sibling->mask))) { |
| if (!RB_EMPTY_NODE(&node->rb)) { |
| spin_lock(&sibling->active.lock); |
| rb_erase_cached(&node->rb, |
| &sibling->execlists.virtual); |
| RB_CLEAR_NODE(&node->rb); |
| spin_unlock(&sibling->active.lock); |
| } |
| continue; |
| } |
| |
| spin_lock(&sibling->active.lock); |
| |
| if (!RB_EMPTY_NODE(&node->rb)) { |
| /* |
| * Cheat and avoid rebalancing the tree if we can |
| * reuse this node in situ. |
| */ |
| first = rb_first_cached(&sibling->execlists.virtual) == |
| &node->rb; |
| if (prio == node->prio || (prio > node->prio && first)) |
| goto submit_engine; |
| |
| rb_erase_cached(&node->rb, &sibling->execlists.virtual); |
| } |
| |
| rb = NULL; |
| first = true; |
| parent = &sibling->execlists.virtual.rb_root.rb_node; |
| while (*parent) { |
| struct ve_node *other; |
| |
| rb = *parent; |
| other = rb_entry(rb, typeof(*other), rb); |
| if (prio > other->prio) { |
| parent = &rb->rb_left; |
| } else { |
| parent = &rb->rb_right; |
| first = false; |
| } |
| } |
| |
| rb_link_node(&node->rb, rb, parent); |
| rb_insert_color_cached(&node->rb, |
| &sibling->execlists.virtual, |
| first); |
| |
| submit_engine: |
| GEM_BUG_ON(RB_EMPTY_NODE(&node->rb)); |
| node->prio = prio; |
| if (first && prio > sibling->execlists.queue_priority_hint) { |
| sibling->execlists.queue_priority_hint = prio; |
| tasklet_hi_schedule(&sibling->execlists.tasklet); |
| } |
| |
| spin_unlock(&sibling->active.lock); |
| } |
| local_irq_enable(); |
| } |
| |
| static void virtual_submit_request(struct i915_request *rq) |
| { |
| struct virtual_engine *ve = to_virtual_engine(rq->engine); |
| struct i915_request *old; |
| unsigned long flags; |
| |
| ENGINE_TRACE(&ve->base, "rq=%llx:%lld\n", |
| rq->fence.context, |
| rq->fence.seqno); |
| |
| GEM_BUG_ON(ve->base.submit_request != virtual_submit_request); |
| |
| spin_lock_irqsave(&ve->base.active.lock, flags); |
| |
| old = ve->request; |
| if (old) { /* background completion event from preempt-to-busy */ |
| GEM_BUG_ON(!i915_request_completed(old)); |
| __i915_request_submit(old); |
| i915_request_put(old); |
| } |
| |
| if (i915_request_completed(rq)) { |
| __i915_request_submit(rq); |
| |
| ve->base.execlists.queue_priority_hint = INT_MIN; |
| ve->request = NULL; |
| } else { |
| ve->base.execlists.queue_priority_hint = rq_prio(rq); |
| ve->request = i915_request_get(rq); |
| |
| GEM_BUG_ON(!list_empty(virtual_queue(ve))); |
| list_move_tail(&rq->sched.link, virtual_queue(ve)); |
| |
| tasklet_schedule(&ve->base.execlists.tasklet); |
| } |
| |
| spin_unlock_irqrestore(&ve->base.active.lock, flags); |
| } |
| |
| static struct ve_bond * |
| virtual_find_bond(struct virtual_engine *ve, |
| const struct intel_engine_cs *master) |
| { |
| int i; |
| |
| for (i = 0; i < ve->num_bonds; i++) { |
| if (ve->bonds[i].master == master) |
| return &ve->bonds[i]; |
| } |
| |
| return NULL; |
| } |
| |
| static void |
| virtual_bond_execute(struct i915_request *rq, struct dma_fence *signal) |
| { |
| struct virtual_engine *ve = to_virtual_engine(rq->engine); |
| intel_engine_mask_t allowed, exec; |
| struct ve_bond *bond; |
| |
| allowed = ~to_request(signal)->engine->mask; |
| |
| bond = virtual_find_bond(ve, to_request(signal)->engine); |
| if (bond) |
| allowed &= bond->sibling_mask; |
| |
| /* Restrict the bonded request to run on only the available engines */ |
| exec = READ_ONCE(rq->execution_mask); |
| while (!try_cmpxchg(&rq->execution_mask, &exec, exec & allowed)) |
| ; |
| |
| /* Prevent the master from being re-run on the bonded engines */ |
| to_request(signal)->execution_mask &= ~allowed; |
| } |
| |
| struct intel_context * |
| intel_execlists_create_virtual(struct intel_engine_cs **siblings, |
| unsigned int count) |
| { |
| struct virtual_engine *ve; |
| unsigned int n; |
| int err; |
| |
| if (count == 0) |
| return ERR_PTR(-EINVAL); |
| |
| if (count == 1) |
| return intel_context_create(siblings[0]); |
| |
| ve = kzalloc(struct_size(ve, siblings, count), GFP_KERNEL); |
| if (!ve) |
| return ERR_PTR(-ENOMEM); |
| |
| ve->base.i915 = siblings[0]->i915; |
| ve->base.gt = siblings[0]->gt; |
| ve->base.uncore = siblings[0]->uncore; |
| ve->base.id = -1; |
| |
| ve->base.class = OTHER_CLASS; |
| ve->base.uabi_class = I915_ENGINE_CLASS_INVALID; |
| ve->base.instance = I915_ENGINE_CLASS_INVALID_VIRTUAL; |
| ve->base.uabi_instance = I915_ENGINE_CLASS_INVALID_VIRTUAL; |
| |
| /* |
| * The decision on whether to submit a request using semaphores |
| * depends on the saturated state of the engine. We only compute |
| * this during HW submission of the request, and we need for this |
| * state to be globally applied to all requests being submitted |
| * to this engine. Virtual engines encompass more than one physical |
| * engine and so we cannot accurately tell in advance if one of those |
| * engines is already saturated and so cannot afford to use a semaphore |
| * and be pessimized in priority for doing so -- if we are the only |
| * context using semaphores after all other clients have stopped, we |
| * will be starved on the saturated system. Such a global switch for |
| * semaphores is less than ideal, but alas is the current compromise. |
| */ |
| ve->base.saturated = ALL_ENGINES; |
| |
| snprintf(ve->base.name, sizeof(ve->base.name), "virtual"); |
| |
| intel_engine_init_active(&ve->base, ENGINE_VIRTUAL); |
| intel_engine_init_breadcrumbs(&ve->base); |
| intel_engine_init_execlists(&ve->base); |
| |
| ve->base.cops = &virtual_context_ops; |
| ve->base.request_alloc = execlists_request_alloc; |
| |
| ve->base.schedule = i915_schedule; |
| ve->base.submit_request = virtual_submit_request; |
| ve->base.bond_execute = virtual_bond_execute; |
| |
| INIT_LIST_HEAD(virtual_queue(ve)); |
| ve->base.execlists.queue_priority_hint = INT_MIN; |
| tasklet_init(&ve->base.execlists.tasklet, |
| virtual_submission_tasklet, |
| (unsigned long)ve); |
| |
| intel_context_init(&ve->context, &ve->base); |
| |
| for (n = 0; n < count; n++) { |
| struct intel_engine_cs *sibling = siblings[n]; |
| |
| GEM_BUG_ON(!is_power_of_2(sibling->mask)); |
| if (sibling->mask & ve->base.mask) { |
| DRM_DEBUG("duplicate %s entry in load balancer\n", |
| sibling->name); |
| err = -EINVAL; |
| goto err_put; |
| } |
| |
| /* |
| * The virtual engine implementation is tightly coupled to |
| * the execlists backend -- we push out request directly |
| * into a tree inside each physical engine. We could support |
| * layering if we handle cloning of the requests and |
| * submitting a copy into each backend. |
| */ |
| if (sibling->execlists.tasklet.func != |
| execlists_submission_tasklet) { |
| err = -ENODEV; |
| goto err_put; |
| } |
| |
| GEM_BUG_ON(RB_EMPTY_NODE(&ve->nodes[sibling->id].rb)); |
| RB_CLEAR_NODE(&ve->nodes[sibling->id].rb); |
| |
| ve->siblings[ve->num_siblings++] = sibling; |
| ve->base.mask |= sibling->mask; |
| |
| /* |
| * All physical engines must be compatible for their emission |
| * functions (as we build the instructions during request |
| * construction and do not alter them before submission |
| * on the physical engine). We use the engine class as a guide |
| * here, although that could be refined. |
| */ |
| if (ve->base.class != OTHER_CLASS) { |
| if (ve->base.class != sibling->class) { |
| DRM_DEBUG("invalid mixing of engine class, sibling %d, already %d\n", |
| sibling->class, ve->base.class); |
| err = -EINVAL; |
| goto err_put; |
| } |
| continue; |
| } |
| |
| ve->base.class = sibling->class; |
| ve->base.uabi_class = sibling->uabi_class; |
| snprintf(ve->base.name, sizeof(ve->base.name), |
| "v%dx%d", ve->base.class, count); |
| ve->base.context_size = sibling->context_size; |
| |
| ve->base.emit_bb_start = sibling->emit_bb_start; |
| ve->base.emit_flush = sibling->emit_flush; |
| ve->base.emit_init_breadcrumb = sibling->emit_init_breadcrumb; |
| ve->base.emit_fini_breadcrumb = sibling->emit_fini_breadcrumb; |
| ve->base.emit_fini_breadcrumb_dw = |
| sibling->emit_fini_breadcrumb_dw; |
| |
| ve->base.flags = sibling->flags; |
| } |
| |
| ve->base.flags |= I915_ENGINE_IS_VIRTUAL; |
| |
| return &ve->context; |
| |
| err_put: |
| intel_context_put(&ve->context); |
| return ERR_PTR(err); |
| } |
| |
| struct intel_context * |
| intel_execlists_clone_virtual(struct intel_engine_cs *src) |
| { |
| struct virtual_engine *se = to_virtual_engine(src); |
| struct intel_context *dst; |
| |
| dst = intel_execlists_create_virtual(se->siblings, |
| se->num_siblings); |
| if (IS_ERR(dst)) |
| return dst; |
| |
| if (se->num_bonds) { |
| struct virtual_engine *de = to_virtual_engine(dst->engine); |
| |
| de->bonds = kmemdup(se->bonds, |
| sizeof(*se->bonds) * se->num_bonds, |
| GFP_KERNEL); |
| if (!de->bonds) { |
| intel_context_put(dst); |
| return ERR_PTR(-ENOMEM); |
| } |
| |
| de->num_bonds = se->num_bonds; |
| } |
| |
| return dst; |
| } |
| |
| int intel_virtual_engine_attach_bond(struct intel_engine_cs *engine, |
| const struct intel_engine_cs *master, |
| const struct intel_engine_cs *sibling) |
| { |
| struct virtual_engine *ve = to_virtual_engine(engine); |
| struct ve_bond *bond; |
| int n; |
| |
| /* Sanity check the sibling is part of the virtual engine */ |
| for (n = 0; n < ve->num_siblings; n++) |
| if (sibling == ve->siblings[n]) |
| break; |
| if (n == ve->num_siblings) |
| return -EINVAL; |
| |
| bond = virtual_find_bond(ve, master); |
| if (bond) { |
| bond->sibling_mask |= sibling->mask; |
| return 0; |
| } |
| |
| bond = krealloc(ve->bonds, |
| sizeof(*bond) * (ve->num_bonds + 1), |
| GFP_KERNEL); |
| if (!bond) |
| return -ENOMEM; |
| |
| bond[ve->num_bonds].master = master; |
| bond[ve->num_bonds].sibling_mask = sibling->mask; |
| |
| ve->bonds = bond; |
| ve->num_bonds++; |
| |
| return 0; |
| } |
| |
| struct intel_engine_cs * |
| intel_virtual_engine_get_sibling(struct intel_engine_cs *engine, |
| unsigned int sibling) |
| { |
| struct virtual_engine *ve = to_virtual_engine(engine); |
| |
| if (sibling >= ve->num_siblings) |
| return NULL; |
| |
| return ve->siblings[sibling]; |
| } |
| |
| void intel_execlists_show_requests(struct intel_engine_cs *engine, |
| struct drm_printer *m, |
| void (*show_request)(struct drm_printer *m, |
| struct i915_request *rq, |
| const char *prefix), |
| unsigned int max) |
| { |
| const struct intel_engine_execlists *execlists = &engine->execlists; |
| struct i915_request *rq, *last; |
| unsigned long flags; |
| unsigned int count; |
| struct rb_node *rb; |
| |
| spin_lock_irqsave(&engine->active.lock, flags); |
| |
| last = NULL; |
| count = 0; |
| list_for_each_entry(rq, &engine->active.requests, sched.link) { |
| if (count++ < max - 1) |
| show_request(m, rq, "\t\tE "); |
| else |
| last = rq; |
| } |
| if (last) { |
| if (count > max) { |
| drm_printf(m, |
| "\t\t...skipping %d executing requests...\n", |
| count - max); |
| } |
| show_request(m, last, "\t\tE "); |
| } |
| |
| if (execlists->switch_priority_hint != INT_MIN) |
| drm_printf(m, "\t\tSwitch priority hint: %d\n", |
| READ_ONCE(execlists->switch_priority_hint)); |
| if (execlists->queue_priority_hint != INT_MIN) |
| drm_printf(m, "\t\tQueue priority hint: %d\n", |
| READ_ONCE(execlists->queue_priority_hint)); |
| |
| last = NULL; |
| count = 0; |
| for (rb = rb_first_cached(&execlists->queue); rb; rb = rb_next(rb)) { |
| struct i915_priolist *p = rb_entry(rb, typeof(*p), node); |
| int i; |
| |
| priolist_for_each_request(rq, p, i) { |
| if (count++ < max - 1) |
| show_request(m, rq, "\t\tQ "); |
| else |
| last = rq; |
| } |
| } |
| if (last) { |
| if (count > max) { |
| drm_printf(m, |
| "\t\t...skipping %d queued requests...\n", |
| count - max); |
| } |
| show_request(m, last, "\t\tQ "); |
| } |
| |
| last = NULL; |
| count = 0; |
| for (rb = rb_first_cached(&execlists->virtual); rb; rb = rb_next(rb)) { |
| struct virtual_engine *ve = |
| rb_entry(rb, typeof(*ve), nodes[engine->id].rb); |
| struct i915_request *rq = READ_ONCE(ve->request); |
| |
| if (rq) { |
| if (count++ < max - 1) |
| show_request(m, rq, "\t\tV "); |
| else |
| last = rq; |
| } |
| } |
| if (last) { |
| if (count > max) { |
| drm_printf(m, |
| "\t\t...skipping %d virtual requests...\n", |
| count - max); |
| } |
| show_request(m, last, "\t\tV "); |
| } |
| |
| spin_unlock_irqrestore(&engine->active.lock, flags); |
| } |
| |
| void intel_lr_context_reset(struct intel_engine_cs *engine, |
| struct intel_context *ce, |
| u32 head, |
| bool scrub) |
| { |
| GEM_BUG_ON(!intel_context_is_pinned(ce)); |
| |
| /* |
| * We want a simple context + ring to execute the breadcrumb update. |
| * We cannot rely on the context being intact across the GPU hang, |
| * so clear it and rebuild just what we need for the breadcrumb. |
| * All pending requests for this context will be zapped, and any |
| * future request will be after userspace has had the opportunity |
| * to recreate its own state. |
| */ |
| if (scrub) |
| restore_default_state(ce, engine); |
| |
| /* Rerun the request; its payload has been neutered (if guilty). */ |
| __execlists_update_reg_state(ce, engine, head); |
| } |
| |
| bool |
| intel_engine_in_execlists_submission_mode(const struct intel_engine_cs *engine) |
| { |
| return engine->set_default_submission == |
| intel_execlists_set_default_submission; |
| } |
| |
| #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) |
| #include "selftest_lrc.c" |
| #endif |