| // SPDX-License-Identifier: GPL-2.0-or-later |
| /* |
| * ASPEED Static Memory Controller driver |
| * |
| * Copyright (c) 2015-2016, IBM Corporation. |
| */ |
| |
| #include <linux/bug.h> |
| #include <linux/device.h> |
| #include <linux/io.h> |
| #include <linux/module.h> |
| #include <linux/mutex.h> |
| #include <linux/mtd/mtd.h> |
| #include <linux/mtd/partitions.h> |
| #include <linux/mtd/spi-nor.h> |
| #include <linux/of.h> |
| #include <linux/of_platform.h> |
| #include <linux/sizes.h> |
| #include <linux/sysfs.h> |
| |
| #define DEVICE_NAME "aspeed-smc" |
| |
| /* |
| * The driver only support SPI flash |
| */ |
| enum aspeed_smc_flash_type { |
| smc_type_nor = 0, |
| smc_type_nand = 1, |
| smc_type_spi = 2, |
| }; |
| |
| struct aspeed_smc_chip; |
| |
| struct aspeed_smc_info { |
| u32 maxsize; /* maximum size of chip window */ |
| u8 nce; /* number of chip enables */ |
| bool hastype; /* flash type field exists in config reg */ |
| u8 we0; /* shift for write enable bit for CE0 */ |
| u8 ctl0; /* offset in regs of ctl for CE0 */ |
| |
| void (*set_4b)(struct aspeed_smc_chip *chip); |
| }; |
| |
| static void aspeed_smc_chip_set_4b_spi_2400(struct aspeed_smc_chip *chip); |
| static void aspeed_smc_chip_set_4b(struct aspeed_smc_chip *chip); |
| |
| static const struct aspeed_smc_info fmc_2400_info = { |
| .maxsize = 64 * 1024 * 1024, |
| .nce = 5, |
| .hastype = true, |
| .we0 = 16, |
| .ctl0 = 0x10, |
| .set_4b = aspeed_smc_chip_set_4b, |
| }; |
| |
| static const struct aspeed_smc_info spi_2400_info = { |
| .maxsize = 64 * 1024 * 1024, |
| .nce = 1, |
| .hastype = false, |
| .we0 = 0, |
| .ctl0 = 0x04, |
| .set_4b = aspeed_smc_chip_set_4b_spi_2400, |
| }; |
| |
| static const struct aspeed_smc_info fmc_2500_info = { |
| .maxsize = 256 * 1024 * 1024, |
| .nce = 3, |
| .hastype = true, |
| .we0 = 16, |
| .ctl0 = 0x10, |
| .set_4b = aspeed_smc_chip_set_4b, |
| }; |
| |
| static const struct aspeed_smc_info spi_2500_info = { |
| .maxsize = 128 * 1024 * 1024, |
| .nce = 2, |
| .hastype = false, |
| .we0 = 16, |
| .ctl0 = 0x10, |
| .set_4b = aspeed_smc_chip_set_4b, |
| }; |
| |
| enum aspeed_smc_ctl_reg_value { |
| smc_base, /* base value without mode for other commands */ |
| smc_read, /* command reg for (maybe fast) reads */ |
| smc_write, /* command reg for writes */ |
| smc_max, |
| }; |
| |
| struct aspeed_smc_controller; |
| |
| struct aspeed_smc_chip { |
| int cs; |
| struct aspeed_smc_controller *controller; |
| void __iomem *ctl; /* control register */ |
| void __iomem *ahb_base; /* base of chip window */ |
| u32 ahb_window_size; /* chip mapping window size */ |
| u32 ctl_val[smc_max]; /* control settings */ |
| enum aspeed_smc_flash_type type; /* what type of flash */ |
| struct spi_nor nor; |
| }; |
| |
| struct aspeed_smc_controller { |
| struct device *dev; |
| |
| struct mutex mutex; /* controller access mutex */ |
| const struct aspeed_smc_info *info; /* type info of controller */ |
| void __iomem *regs; /* controller registers */ |
| void __iomem *ahb_base; /* per-chip windows resource */ |
| u32 ahb_window_size; /* full mapping window size */ |
| |
| struct aspeed_smc_chip *chips[0]; /* pointers to attached chips */ |
| }; |
| |
| /* |
| * SPI Flash Configuration Register (AST2500 SPI) |
| * or |
| * Type setting Register (AST2500 FMC). |
| * CE0 and CE1 can only be of type SPI. CE2 can be of type NOR but the |
| * driver does not support it. |
| */ |
| #define CONFIG_REG 0x0 |
| #define CONFIG_DISABLE_LEGACY BIT(31) /* 1 */ |
| |
| #define CONFIG_CE2_WRITE BIT(18) |
| #define CONFIG_CE1_WRITE BIT(17) |
| #define CONFIG_CE0_WRITE BIT(16) |
| |
| #define CONFIG_CE2_TYPE BIT(4) /* AST2500 FMC only */ |
| #define CONFIG_CE1_TYPE BIT(2) /* AST2500 FMC only */ |
| #define CONFIG_CE0_TYPE BIT(0) /* AST2500 FMC only */ |
| |
| /* |
| * CE Control Register |
| */ |
| #define CE_CONTROL_REG 0x4 |
| |
| /* |
| * CEx Control Register |
| */ |
| #define CONTROL_AAF_MODE BIT(31) |
| #define CONTROL_IO_MODE_MASK GENMASK(30, 28) |
| #define CONTROL_IO_DUAL_DATA BIT(29) |
| #define CONTROL_IO_DUAL_ADDR_DATA (BIT(29) | BIT(28)) |
| #define CONTROL_IO_QUAD_DATA BIT(30) |
| #define CONTROL_IO_QUAD_ADDR_DATA (BIT(30) | BIT(28)) |
| #define CONTROL_CE_INACTIVE_SHIFT 24 |
| #define CONTROL_CE_INACTIVE_MASK GENMASK(27, \ |
| CONTROL_CE_INACTIVE_SHIFT) |
| /* 0 = 16T ... 15 = 1T T=HCLK */ |
| #define CONTROL_COMMAND_SHIFT 16 |
| #define CONTROL_DUMMY_COMMAND_OUT BIT(15) |
| #define CONTROL_IO_DUMMY_HI BIT(14) |
| #define CONTROL_IO_DUMMY_HI_SHIFT 14 |
| #define CONTROL_CLK_DIV4 BIT(13) /* others */ |
| #define CONTROL_IO_ADDRESS_4B BIT(13) /* AST2400 SPI */ |
| #define CONTROL_RW_MERGE BIT(12) |
| #define CONTROL_IO_DUMMY_LO_SHIFT 6 |
| #define CONTROL_IO_DUMMY_LO GENMASK(7, \ |
| CONTROL_IO_DUMMY_LO_SHIFT) |
| #define CONTROL_IO_DUMMY_MASK (CONTROL_IO_DUMMY_HI | \ |
| CONTROL_IO_DUMMY_LO) |
| #define CONTROL_IO_DUMMY_SET(dummy) \ |
| (((((dummy) >> 2) & 0x1) << CONTROL_IO_DUMMY_HI_SHIFT) | \ |
| (((dummy) & 0x3) << CONTROL_IO_DUMMY_LO_SHIFT)) |
| |
| #define CONTROL_CLOCK_FREQ_SEL_SHIFT 8 |
| #define CONTROL_CLOCK_FREQ_SEL_MASK GENMASK(11, \ |
| CONTROL_CLOCK_FREQ_SEL_SHIFT) |
| #define CONTROL_LSB_FIRST BIT(5) |
| #define CONTROL_CLOCK_MODE_3 BIT(4) |
| #define CONTROL_IN_DUAL_DATA BIT(3) |
| #define CONTROL_CE_STOP_ACTIVE_CONTROL BIT(2) |
| #define CONTROL_COMMAND_MODE_MASK GENMASK(1, 0) |
| #define CONTROL_COMMAND_MODE_NORMAL 0 |
| #define CONTROL_COMMAND_MODE_FREAD 1 |
| #define CONTROL_COMMAND_MODE_WRITE 2 |
| #define CONTROL_COMMAND_MODE_USER 3 |
| |
| #define CONTROL_KEEP_MASK \ |
| (CONTROL_AAF_MODE | CONTROL_CE_INACTIVE_MASK | CONTROL_CLK_DIV4 | \ |
| CONTROL_CLOCK_FREQ_SEL_MASK | CONTROL_LSB_FIRST | CONTROL_CLOCK_MODE_3) |
| |
| /* |
| * The Segment Register uses a 8MB unit to encode the start address |
| * and the end address of the mapping window of a flash SPI slave : |
| * |
| * | byte 1 | byte 2 | byte 3 | byte 4 | |
| * +--------+--------+--------+--------+ |
| * | end | start | 0 | 0 | |
| */ |
| #define SEGMENT_ADDR_REG0 0x30 |
| #define SEGMENT_ADDR_START(_r) ((((_r) >> 16) & 0xFF) << 23) |
| #define SEGMENT_ADDR_END(_r) ((((_r) >> 24) & 0xFF) << 23) |
| #define SEGMENT_ADDR_VALUE(start, end) \ |
| (((((start) >> 23) & 0xFF) << 16) | ((((end) >> 23) & 0xFF) << 24)) |
| #define SEGMENT_ADDR_REG(controller, cs) \ |
| ((controller)->regs + SEGMENT_ADDR_REG0 + (cs) * 4) |
| |
| /* |
| * In user mode all data bytes read or written to the chip decode address |
| * range are transferred to or from the SPI bus. The range is treated as a |
| * fifo of arbitratry 1, 2, or 4 byte width but each write has to be aligned |
| * to its size. The address within the multiple 8kB range is ignored when |
| * sending bytes to the SPI bus. |
| * |
| * On the arm architecture, as of Linux version 4.3, memcpy_fromio and |
| * memcpy_toio on little endian targets use the optimized memcpy routines |
| * that were designed for well behavied memory storage. These routines |
| * have a stutter if the source and destination are not both word aligned, |
| * once with a duplicate access to the source after aligning to the |
| * destination to a word boundary, and again with a duplicate access to |
| * the source when the final byte count is not word aligned. |
| * |
| * When writing or reading the fifo this stutter discards data or sends |
| * too much data to the fifo and can not be used by this driver. |
| * |
| * While the low level io string routines that implement the insl family do |
| * the desired accesses and memory increments, the cross architecture io |
| * macros make them essentially impossible to use on a memory mapped address |
| * instead of a a token from the call to iomap of an io port. |
| * |
| * These fifo routines use readl and friends to a constant io port and update |
| * the memory buffer pointer and count via explicit code. The final updates |
| * to len are optimistically suppressed. |
| */ |
| static int aspeed_smc_read_from_ahb(void *buf, void __iomem *src, size_t len) |
| { |
| size_t offset = 0; |
| |
| if (IS_ALIGNED((uintptr_t)src, sizeof(uintptr_t)) && |
| IS_ALIGNED((uintptr_t)buf, sizeof(uintptr_t))) { |
| ioread32_rep(src, buf, len >> 2); |
| offset = len & ~0x3; |
| len -= offset; |
| } |
| ioread8_rep(src, (u8 *)buf + offset, len); |
| return 0; |
| } |
| |
| static int aspeed_smc_write_to_ahb(void __iomem *dst, const void *buf, |
| size_t len) |
| { |
| size_t offset = 0; |
| |
| if (IS_ALIGNED((uintptr_t)dst, sizeof(uintptr_t)) && |
| IS_ALIGNED((uintptr_t)buf, sizeof(uintptr_t))) { |
| iowrite32_rep(dst, buf, len >> 2); |
| offset = len & ~0x3; |
| len -= offset; |
| } |
| iowrite8_rep(dst, (const u8 *)buf + offset, len); |
| return 0; |
| } |
| |
| static inline u32 aspeed_smc_chip_write_bit(struct aspeed_smc_chip *chip) |
| { |
| return BIT(chip->controller->info->we0 + chip->cs); |
| } |
| |
| static void aspeed_smc_chip_check_config(struct aspeed_smc_chip *chip) |
| { |
| struct aspeed_smc_controller *controller = chip->controller; |
| u32 reg; |
| |
| reg = readl(controller->regs + CONFIG_REG); |
| |
| if (reg & aspeed_smc_chip_write_bit(chip)) |
| return; |
| |
| dev_dbg(controller->dev, "config write is not set ! @%p: 0x%08x\n", |
| controller->regs + CONFIG_REG, reg); |
| reg |= aspeed_smc_chip_write_bit(chip); |
| writel(reg, controller->regs + CONFIG_REG); |
| } |
| |
| static void aspeed_smc_start_user(struct spi_nor *nor) |
| { |
| struct aspeed_smc_chip *chip = nor->priv; |
| u32 ctl = chip->ctl_val[smc_base]; |
| |
| /* |
| * When the chip is controlled in user mode, we need write |
| * access to send the opcodes to it. So check the config. |
| */ |
| aspeed_smc_chip_check_config(chip); |
| |
| ctl |= CONTROL_COMMAND_MODE_USER | |
| CONTROL_CE_STOP_ACTIVE_CONTROL; |
| writel(ctl, chip->ctl); |
| |
| ctl &= ~CONTROL_CE_STOP_ACTIVE_CONTROL; |
| writel(ctl, chip->ctl); |
| } |
| |
| static void aspeed_smc_stop_user(struct spi_nor *nor) |
| { |
| struct aspeed_smc_chip *chip = nor->priv; |
| |
| u32 ctl = chip->ctl_val[smc_read]; |
| u32 ctl2 = ctl | CONTROL_COMMAND_MODE_USER | |
| CONTROL_CE_STOP_ACTIVE_CONTROL; |
| |
| writel(ctl2, chip->ctl); /* stop user CE control */ |
| writel(ctl, chip->ctl); /* default to fread or read mode */ |
| } |
| |
| static int aspeed_smc_prep(struct spi_nor *nor, enum spi_nor_ops ops) |
| { |
| struct aspeed_smc_chip *chip = nor->priv; |
| |
| mutex_lock(&chip->controller->mutex); |
| return 0; |
| } |
| |
| static void aspeed_smc_unprep(struct spi_nor *nor, enum spi_nor_ops ops) |
| { |
| struct aspeed_smc_chip *chip = nor->priv; |
| |
| mutex_unlock(&chip->controller->mutex); |
| } |
| |
| static int aspeed_smc_read_reg(struct spi_nor *nor, u8 opcode, u8 *buf, |
| size_t len) |
| { |
| struct aspeed_smc_chip *chip = nor->priv; |
| |
| aspeed_smc_start_user(nor); |
| aspeed_smc_write_to_ahb(chip->ahb_base, &opcode, 1); |
| aspeed_smc_read_from_ahb(buf, chip->ahb_base, len); |
| aspeed_smc_stop_user(nor); |
| return 0; |
| } |
| |
| static int aspeed_smc_write_reg(struct spi_nor *nor, u8 opcode, const u8 *buf, |
| size_t len) |
| { |
| struct aspeed_smc_chip *chip = nor->priv; |
| |
| aspeed_smc_start_user(nor); |
| aspeed_smc_write_to_ahb(chip->ahb_base, &opcode, 1); |
| aspeed_smc_write_to_ahb(chip->ahb_base, buf, len); |
| aspeed_smc_stop_user(nor); |
| return 0; |
| } |
| |
| static void aspeed_smc_send_cmd_addr(struct spi_nor *nor, u8 cmd, u32 addr) |
| { |
| struct aspeed_smc_chip *chip = nor->priv; |
| __be32 temp; |
| u32 cmdaddr; |
| |
| switch (nor->addr_width) { |
| default: |
| WARN_ONCE(1, "Unexpected address width %u, defaulting to 3\n", |
| nor->addr_width); |
| /* FALLTHROUGH */ |
| case 3: |
| cmdaddr = addr & 0xFFFFFF; |
| cmdaddr |= cmd << 24; |
| |
| temp = cpu_to_be32(cmdaddr); |
| aspeed_smc_write_to_ahb(chip->ahb_base, &temp, 4); |
| break; |
| case 4: |
| temp = cpu_to_be32(addr); |
| aspeed_smc_write_to_ahb(chip->ahb_base, &cmd, 1); |
| aspeed_smc_write_to_ahb(chip->ahb_base, &temp, 4); |
| break; |
| } |
| } |
| |
| static ssize_t aspeed_smc_read_user(struct spi_nor *nor, loff_t from, |
| size_t len, u_char *read_buf) |
| { |
| struct aspeed_smc_chip *chip = nor->priv; |
| int i; |
| u8 dummy = 0xFF; |
| |
| aspeed_smc_start_user(nor); |
| aspeed_smc_send_cmd_addr(nor, nor->read_opcode, from); |
| for (i = 0; i < chip->nor.read_dummy / 8; i++) |
| aspeed_smc_write_to_ahb(chip->ahb_base, &dummy, sizeof(dummy)); |
| |
| aspeed_smc_read_from_ahb(read_buf, chip->ahb_base, len); |
| aspeed_smc_stop_user(nor); |
| return len; |
| } |
| |
| static ssize_t aspeed_smc_write_user(struct spi_nor *nor, loff_t to, |
| size_t len, const u_char *write_buf) |
| { |
| struct aspeed_smc_chip *chip = nor->priv; |
| |
| aspeed_smc_start_user(nor); |
| aspeed_smc_send_cmd_addr(nor, nor->program_opcode, to); |
| aspeed_smc_write_to_ahb(chip->ahb_base, write_buf, len); |
| aspeed_smc_stop_user(nor); |
| return len; |
| } |
| |
| static int aspeed_smc_unregister(struct aspeed_smc_controller *controller) |
| { |
| struct aspeed_smc_chip *chip; |
| int n; |
| |
| for (n = 0; n < controller->info->nce; n++) { |
| chip = controller->chips[n]; |
| if (chip) |
| mtd_device_unregister(&chip->nor.mtd); |
| } |
| |
| return 0; |
| } |
| |
| static int aspeed_smc_remove(struct platform_device *dev) |
| { |
| return aspeed_smc_unregister(platform_get_drvdata(dev)); |
| } |
| |
| static const struct of_device_id aspeed_smc_matches[] = { |
| { .compatible = "aspeed,ast2400-fmc", .data = &fmc_2400_info }, |
| { .compatible = "aspeed,ast2400-spi", .data = &spi_2400_info }, |
| { .compatible = "aspeed,ast2500-fmc", .data = &fmc_2500_info }, |
| { .compatible = "aspeed,ast2500-spi", .data = &spi_2500_info }, |
| { } |
| }; |
| MODULE_DEVICE_TABLE(of, aspeed_smc_matches); |
| |
| /* |
| * Each chip has a mapping window defined by a segment address |
| * register defining a start and an end address on the AHB bus. These |
| * addresses can be configured to fit the chip size and offer a |
| * contiguous memory region across chips. For the moment, we only |
| * check that each chip segment is valid. |
| */ |
| static void __iomem *aspeed_smc_chip_base(struct aspeed_smc_chip *chip, |
| struct resource *res) |
| { |
| struct aspeed_smc_controller *controller = chip->controller; |
| u32 offset = 0; |
| u32 reg; |
| |
| if (controller->info->nce > 1) { |
| reg = readl(SEGMENT_ADDR_REG(controller, chip->cs)); |
| |
| if (SEGMENT_ADDR_START(reg) >= SEGMENT_ADDR_END(reg)) |
| return NULL; |
| |
| offset = SEGMENT_ADDR_START(reg) - res->start; |
| } |
| |
| return controller->ahb_base + offset; |
| } |
| |
| static u32 aspeed_smc_ahb_base_phy(struct aspeed_smc_controller *controller) |
| { |
| u32 seg0_val = readl(SEGMENT_ADDR_REG(controller, 0)); |
| |
| return SEGMENT_ADDR_START(seg0_val); |
| } |
| |
| static u32 chip_set_segment(struct aspeed_smc_chip *chip, u32 cs, u32 start, |
| u32 size) |
| { |
| struct aspeed_smc_controller *controller = chip->controller; |
| void __iomem *seg_reg; |
| u32 seg_oldval, seg_newval, ahb_base_phy, end; |
| |
| ahb_base_phy = aspeed_smc_ahb_base_phy(controller); |
| |
| seg_reg = SEGMENT_ADDR_REG(controller, cs); |
| seg_oldval = readl(seg_reg); |
| |
| /* |
| * If the chip size is not specified, use the default segment |
| * size, but take into account the possible overlap with the |
| * previous segment |
| */ |
| if (!size) |
| size = SEGMENT_ADDR_END(seg_oldval) - start; |
| |
| /* |
| * The segment cannot exceed the maximum window size of the |
| * controller. |
| */ |
| if (start + size > ahb_base_phy + controller->ahb_window_size) { |
| size = ahb_base_phy + controller->ahb_window_size - start; |
| dev_warn(chip->nor.dev, "CE%d window resized to %dMB", |
| cs, size >> 20); |
| } |
| |
| end = start + size; |
| seg_newval = SEGMENT_ADDR_VALUE(start, end); |
| writel(seg_newval, seg_reg); |
| |
| /* |
| * Restore default value if something goes wrong. The chip |
| * might have set some bogus value and we would loose access |
| * to the chip. |
| */ |
| if (seg_newval != readl(seg_reg)) { |
| dev_err(chip->nor.dev, "CE%d window invalid", cs); |
| writel(seg_oldval, seg_reg); |
| start = SEGMENT_ADDR_START(seg_oldval); |
| end = SEGMENT_ADDR_END(seg_oldval); |
| size = end - start; |
| } |
| |
| dev_info(chip->nor.dev, "CE%d window [ 0x%.8x - 0x%.8x ] %dMB", |
| cs, start, end, size >> 20); |
| |
| return size; |
| } |
| |
| /* |
| * The segment register defines the mapping window on the AHB bus and |
| * it needs to be configured depending on the chip size. The segment |
| * register of the following CE also needs to be tuned in order to |
| * provide a contiguous window across multiple chips. |
| * |
| * This is expected to be called in increasing CE order |
| */ |
| static u32 aspeed_smc_chip_set_segment(struct aspeed_smc_chip *chip) |
| { |
| struct aspeed_smc_controller *controller = chip->controller; |
| u32 ahb_base_phy, start; |
| u32 size = chip->nor.mtd.size; |
| |
| /* |
| * Each controller has a chip size limit for direct memory |
| * access |
| */ |
| if (size > controller->info->maxsize) |
| size = controller->info->maxsize; |
| |
| /* |
| * The AST2400 SPI controller only handles one chip and does |
| * not have segment registers. Let's use the chip size for the |
| * AHB window. |
| */ |
| if (controller->info == &spi_2400_info) |
| goto out; |
| |
| /* |
| * The AST2500 SPI controller has a HW bug when the CE0 chip |
| * size reaches 128MB. Enforce a size limit of 120MB to |
| * prevent the controller from using bogus settings in the |
| * segment register. |
| */ |
| if (chip->cs == 0 && controller->info == &spi_2500_info && |
| size == SZ_128M) { |
| size = 120 << 20; |
| dev_info(chip->nor.dev, |
| "CE%d window resized to %dMB (AST2500 HW quirk)", |
| chip->cs, size >> 20); |
| } |
| |
| ahb_base_phy = aspeed_smc_ahb_base_phy(controller); |
| |
| /* |
| * As a start address for the current segment, use the default |
| * start address if we are handling CE0 or use the previous |
| * segment ending address |
| */ |
| if (chip->cs) { |
| u32 prev = readl(SEGMENT_ADDR_REG(controller, chip->cs - 1)); |
| |
| start = SEGMENT_ADDR_END(prev); |
| } else { |
| start = ahb_base_phy; |
| } |
| |
| size = chip_set_segment(chip, chip->cs, start, size); |
| |
| /* Update chip base address on the AHB bus */ |
| chip->ahb_base = controller->ahb_base + (start - ahb_base_phy); |
| |
| /* |
| * Now, make sure the next segment does not overlap with the |
| * current one we just configured, even if there is no |
| * available chip. That could break access in Command Mode. |
| */ |
| if (chip->cs < controller->info->nce - 1) |
| chip_set_segment(chip, chip->cs + 1, start + size, 0); |
| |
| out: |
| if (size < chip->nor.mtd.size) |
| dev_warn(chip->nor.dev, |
| "CE%d window too small for chip %dMB", |
| chip->cs, (u32)chip->nor.mtd.size >> 20); |
| |
| return size; |
| } |
| |
| static void aspeed_smc_chip_enable_write(struct aspeed_smc_chip *chip) |
| { |
| struct aspeed_smc_controller *controller = chip->controller; |
| u32 reg; |
| |
| reg = readl(controller->regs + CONFIG_REG); |
| |
| reg |= aspeed_smc_chip_write_bit(chip); |
| writel(reg, controller->regs + CONFIG_REG); |
| } |
| |
| static void aspeed_smc_chip_set_type(struct aspeed_smc_chip *chip, int type) |
| { |
| struct aspeed_smc_controller *controller = chip->controller; |
| u32 reg; |
| |
| chip->type = type; |
| |
| reg = readl(controller->regs + CONFIG_REG); |
| reg &= ~(3 << (chip->cs * 2)); |
| reg |= chip->type << (chip->cs * 2); |
| writel(reg, controller->regs + CONFIG_REG); |
| } |
| |
| /* |
| * The first chip of the AST2500 FMC flash controller is strapped by |
| * hardware, or autodetected, but other chips need to be set. Enforce |
| * the 4B setting for all chips. |
| */ |
| static void aspeed_smc_chip_set_4b(struct aspeed_smc_chip *chip) |
| { |
| struct aspeed_smc_controller *controller = chip->controller; |
| u32 reg; |
| |
| reg = readl(controller->regs + CE_CONTROL_REG); |
| reg |= 1 << chip->cs; |
| writel(reg, controller->regs + CE_CONTROL_REG); |
| } |
| |
| /* |
| * The AST2400 SPI flash controller does not have a CE Control |
| * register. It uses the CE0 control register to set 4Byte mode at the |
| * controller level. |
| */ |
| static void aspeed_smc_chip_set_4b_spi_2400(struct aspeed_smc_chip *chip) |
| { |
| chip->ctl_val[smc_base] |= CONTROL_IO_ADDRESS_4B; |
| chip->ctl_val[smc_read] |= CONTROL_IO_ADDRESS_4B; |
| } |
| |
| static int aspeed_smc_chip_setup_init(struct aspeed_smc_chip *chip, |
| struct resource *res) |
| { |
| struct aspeed_smc_controller *controller = chip->controller; |
| const struct aspeed_smc_info *info = controller->info; |
| u32 reg, base_reg; |
| |
| /* |
| * Always turn on the write enable bit to allow opcodes to be |
| * sent in user mode. |
| */ |
| aspeed_smc_chip_enable_write(chip); |
| |
| /* The driver only supports SPI type flash */ |
| if (info->hastype) |
| aspeed_smc_chip_set_type(chip, smc_type_spi); |
| |
| /* |
| * Configure chip base address in memory |
| */ |
| chip->ahb_base = aspeed_smc_chip_base(chip, res); |
| if (!chip->ahb_base) { |
| dev_warn(chip->nor.dev, "CE%d window closed", chip->cs); |
| return -EINVAL; |
| } |
| |
| /* |
| * Get value of the inherited control register. U-Boot usually |
| * does some timing calibration on the FMC chip, so it's good |
| * to keep them. In the future, we should handle calibration |
| * from Linux. |
| */ |
| reg = readl(chip->ctl); |
| dev_dbg(controller->dev, "control register: %08x\n", reg); |
| |
| base_reg = reg & CONTROL_KEEP_MASK; |
| if (base_reg != reg) { |
| dev_dbg(controller->dev, |
| "control register changed to: %08x\n", |
| base_reg); |
| } |
| chip->ctl_val[smc_base] = base_reg; |
| |
| /* |
| * Retain the prior value of the control register as the |
| * default if it was normal access mode. Otherwise start with |
| * the sanitized base value set to read mode. |
| */ |
| if ((reg & CONTROL_COMMAND_MODE_MASK) == |
| CONTROL_COMMAND_MODE_NORMAL) |
| chip->ctl_val[smc_read] = reg; |
| else |
| chip->ctl_val[smc_read] = chip->ctl_val[smc_base] | |
| CONTROL_COMMAND_MODE_NORMAL; |
| |
| dev_dbg(controller->dev, "default control register: %08x\n", |
| chip->ctl_val[smc_read]); |
| return 0; |
| } |
| |
| static int aspeed_smc_chip_setup_finish(struct aspeed_smc_chip *chip) |
| { |
| struct aspeed_smc_controller *controller = chip->controller; |
| const struct aspeed_smc_info *info = controller->info; |
| u32 cmd; |
| |
| if (chip->nor.addr_width == 4 && info->set_4b) |
| info->set_4b(chip); |
| |
| /* This is for direct AHB access when using Command Mode. */ |
| chip->ahb_window_size = aspeed_smc_chip_set_segment(chip); |
| |
| /* |
| * base mode has not been optimized yet. use it for writes. |
| */ |
| chip->ctl_val[smc_write] = chip->ctl_val[smc_base] | |
| chip->nor.program_opcode << CONTROL_COMMAND_SHIFT | |
| CONTROL_COMMAND_MODE_WRITE; |
| |
| dev_dbg(controller->dev, "write control register: %08x\n", |
| chip->ctl_val[smc_write]); |
| |
| /* |
| * TODO: Adjust clocks if fast read is supported and interpret |
| * SPI-NOR flags to adjust controller settings. |
| */ |
| if (chip->nor.read_proto == SNOR_PROTO_1_1_1) { |
| if (chip->nor.read_dummy == 0) |
| cmd = CONTROL_COMMAND_MODE_NORMAL; |
| else |
| cmd = CONTROL_COMMAND_MODE_FREAD; |
| } else { |
| dev_err(chip->nor.dev, "unsupported SPI read mode\n"); |
| return -EINVAL; |
| } |
| |
| chip->ctl_val[smc_read] |= cmd | |
| CONTROL_IO_DUMMY_SET(chip->nor.read_dummy / 8); |
| |
| dev_dbg(controller->dev, "base control register: %08x\n", |
| chip->ctl_val[smc_read]); |
| return 0; |
| } |
| |
| static const struct spi_nor_controller_ops aspeed_smc_controller_ops = { |
| .prepare = aspeed_smc_prep, |
| .unprepare = aspeed_smc_unprep, |
| .read_reg = aspeed_smc_read_reg, |
| .write_reg = aspeed_smc_write_reg, |
| .read = aspeed_smc_read_user, |
| .write = aspeed_smc_write_user, |
| }; |
| |
| static int aspeed_smc_setup_flash(struct aspeed_smc_controller *controller, |
| struct device_node *np, struct resource *r) |
| { |
| const struct spi_nor_hwcaps hwcaps = { |
| .mask = SNOR_HWCAPS_READ | |
| SNOR_HWCAPS_READ_FAST | |
| SNOR_HWCAPS_PP, |
| }; |
| const struct aspeed_smc_info *info = controller->info; |
| struct device *dev = controller->dev; |
| struct device_node *child; |
| unsigned int cs; |
| int ret = -ENODEV; |
| |
| for_each_available_child_of_node(np, child) { |
| struct aspeed_smc_chip *chip; |
| struct spi_nor *nor; |
| struct mtd_info *mtd; |
| |
| /* This driver does not support NAND or NOR flash devices. */ |
| if (!of_device_is_compatible(child, "jedec,spi-nor")) |
| continue; |
| |
| ret = of_property_read_u32(child, "reg", &cs); |
| if (ret) { |
| dev_err(dev, "Couldn't not read chip select.\n"); |
| break; |
| } |
| |
| if (cs >= info->nce) { |
| dev_err(dev, "Chip select %d out of range.\n", |
| cs); |
| ret = -ERANGE; |
| break; |
| } |
| |
| if (controller->chips[cs]) { |
| dev_err(dev, "Chip select %d already in use by %s\n", |
| cs, dev_name(controller->chips[cs]->nor.dev)); |
| ret = -EBUSY; |
| break; |
| } |
| |
| chip = devm_kzalloc(controller->dev, sizeof(*chip), GFP_KERNEL); |
| if (!chip) { |
| ret = -ENOMEM; |
| break; |
| } |
| |
| chip->controller = controller; |
| chip->ctl = controller->regs + info->ctl0 + cs * 4; |
| chip->cs = cs; |
| |
| nor = &chip->nor; |
| mtd = &nor->mtd; |
| |
| nor->dev = dev; |
| nor->priv = chip; |
| spi_nor_set_flash_node(nor, child); |
| nor->controller_ops = &aspeed_smc_controller_ops; |
| |
| ret = aspeed_smc_chip_setup_init(chip, r); |
| if (ret) |
| break; |
| |
| /* |
| * TODO: Add support for Dual and Quad SPI protocols |
| * attach when board support is present as determined |
| * by of property. |
| */ |
| ret = spi_nor_scan(nor, NULL, &hwcaps); |
| if (ret) |
| break; |
| |
| ret = aspeed_smc_chip_setup_finish(chip); |
| if (ret) |
| break; |
| |
| ret = mtd_device_register(mtd, NULL, 0); |
| if (ret) |
| break; |
| |
| controller->chips[cs] = chip; |
| } |
| |
| if (ret) { |
| of_node_put(child); |
| aspeed_smc_unregister(controller); |
| } |
| |
| return ret; |
| } |
| |
| static int aspeed_smc_probe(struct platform_device *pdev) |
| { |
| struct device_node *np = pdev->dev.of_node; |
| struct device *dev = &pdev->dev; |
| struct aspeed_smc_controller *controller; |
| const struct of_device_id *match; |
| const struct aspeed_smc_info *info; |
| struct resource *res; |
| int ret; |
| |
| match = of_match_device(aspeed_smc_matches, &pdev->dev); |
| if (!match || !match->data) |
| return -ENODEV; |
| info = match->data; |
| |
| controller = devm_kzalloc(&pdev->dev, |
| struct_size(controller, chips, info->nce), |
| GFP_KERNEL); |
| if (!controller) |
| return -ENOMEM; |
| controller->info = info; |
| controller->dev = dev; |
| |
| mutex_init(&controller->mutex); |
| platform_set_drvdata(pdev, controller); |
| |
| res = platform_get_resource(pdev, IORESOURCE_MEM, 0); |
| controller->regs = devm_ioremap_resource(dev, res); |
| if (IS_ERR(controller->regs)) |
| return PTR_ERR(controller->regs); |
| |
| res = platform_get_resource(pdev, IORESOURCE_MEM, 1); |
| controller->ahb_base = devm_ioremap_resource(dev, res); |
| if (IS_ERR(controller->ahb_base)) |
| return PTR_ERR(controller->ahb_base); |
| |
| controller->ahb_window_size = resource_size(res); |
| |
| ret = aspeed_smc_setup_flash(controller, np, res); |
| if (ret) |
| dev_err(dev, "Aspeed SMC probe failed %d\n", ret); |
| |
| return ret; |
| } |
| |
| static struct platform_driver aspeed_smc_driver = { |
| .probe = aspeed_smc_probe, |
| .remove = aspeed_smc_remove, |
| .driver = { |
| .name = DEVICE_NAME, |
| .of_match_table = aspeed_smc_matches, |
| } |
| }; |
| |
| module_platform_driver(aspeed_smc_driver); |
| |
| MODULE_DESCRIPTION("ASPEED Static Memory Controller Driver"); |
| MODULE_AUTHOR("Cedric Le Goater <clg@kaod.org>"); |
| MODULE_LICENSE("GPL v2"); |