| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * A driver for the CMOS camera controller in the Marvell 88ALP01 "cafe" |
| * multifunction chip. Currently works with the Omnivision OV7670 |
| * sensor. |
| * |
| * The data sheet for this device can be found at: |
| * http://wiki.laptop.org/images/5/5c/88ALP01_Datasheet_July_2007.pdf |
| * |
| * Copyright 2006-11 One Laptop Per Child Association, Inc. |
| * Copyright 2006-11 Jonathan Corbet <corbet@lwn.net> |
| * Copyright 2018 Lubomir Rintel <lkundrak@v3.sk> |
| * |
| * Written by Jonathan Corbet, corbet@lwn.net. |
| * |
| * v4l2_device/v4l2_subdev conversion by: |
| * Copyright (C) 2009 Hans Verkuil <hverkuil@xs4all.nl> |
| */ |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/init.h> |
| #include <linux/pci.h> |
| #include <linux/i2c.h> |
| #include <linux/interrupt.h> |
| #include <linux/spinlock.h> |
| #include <linux/slab.h> |
| #include <linux/videodev2.h> |
| #include <media/v4l2-device.h> |
| #include <media/i2c/ov7670.h> |
| #include <linux/device.h> |
| #include <linux/wait.h> |
| #include <linux/delay.h> |
| #include <linux/io.h> |
| #include <linux/clkdev.h> |
| |
| #include "mcam-core.h" |
| |
| #define CAFE_VERSION 0x000002 |
| |
| |
| /* |
| * Parameters. |
| */ |
| MODULE_AUTHOR("Jonathan Corbet <corbet@lwn.net>"); |
| MODULE_DESCRIPTION("Marvell 88ALP01 CMOS Camera Controller driver"); |
| MODULE_LICENSE("GPL"); |
| MODULE_SUPPORTED_DEVICE("Video"); |
| |
| |
| |
| |
| struct cafe_camera { |
| int registered; /* Fully initialized? */ |
| struct mcam_camera mcam; |
| struct pci_dev *pdev; |
| struct i2c_adapter *i2c_adapter; |
| wait_queue_head_t smbus_wait; /* Waiting on i2c events */ |
| }; |
| |
| /* |
| * Most of the camera controller registers are defined in mcam-core.h, |
| * but the Cafe platform has some additional registers of its own; |
| * they are described here. |
| */ |
| |
| /* |
| * "General purpose register" has a couple of GPIOs used for sensor |
| * power and reset on OLPC XO 1.0 systems. |
| */ |
| #define REG_GPR 0xb4 |
| #define GPR_C1EN 0x00000020 /* Pad 1 (power down) enable */ |
| #define GPR_C0EN 0x00000010 /* Pad 0 (reset) enable */ |
| #define GPR_C1 0x00000002 /* Control 1 value */ |
| /* |
| * Control 0 is wired to reset on OLPC machines. For ov7x sensors, |
| * it is active low. |
| */ |
| #define GPR_C0 0x00000001 /* Control 0 value */ |
| |
| /* |
| * These registers control the SMBUS module for communicating |
| * with the sensor. |
| */ |
| #define REG_TWSIC0 0xb8 /* TWSI (smbus) control 0 */ |
| #define TWSIC0_EN 0x00000001 /* TWSI enable */ |
| #define TWSIC0_MODE 0x00000002 /* 1 = 16-bit, 0 = 8-bit */ |
| #define TWSIC0_SID 0x000003fc /* Slave ID */ |
| /* |
| * Subtle trickery: the slave ID field starts with bit 2. But the |
| * Linux i2c stack wants to treat the bottommost bit as a separate |
| * read/write bit, which is why slave ID's are usually presented |
| * >>1. For consistency with that behavior, we shift over three |
| * bits instead of two. |
| */ |
| #define TWSIC0_SID_SHIFT 3 |
| #define TWSIC0_CLKDIV 0x0007fc00 /* Clock divider */ |
| #define TWSIC0_MASKACK 0x00400000 /* Mask ack from sensor */ |
| #define TWSIC0_OVMAGIC 0x00800000 /* Make it work on OV sensors */ |
| |
| #define REG_TWSIC1 0xbc /* TWSI control 1 */ |
| #define TWSIC1_DATA 0x0000ffff /* Data to/from camchip */ |
| #define TWSIC1_ADDR 0x00ff0000 /* Address (register) */ |
| #define TWSIC1_ADDR_SHIFT 16 |
| #define TWSIC1_READ 0x01000000 /* Set for read op */ |
| #define TWSIC1_WSTAT 0x02000000 /* Write status */ |
| #define TWSIC1_RVALID 0x04000000 /* Read data valid */ |
| #define TWSIC1_ERROR 0x08000000 /* Something screwed up */ |
| |
| /* |
| * Here's the weird global control registers |
| */ |
| #define REG_GL_CSR 0x3004 /* Control/status register */ |
| #define GCSR_SRS 0x00000001 /* SW Reset set */ |
| #define GCSR_SRC 0x00000002 /* SW Reset clear */ |
| #define GCSR_MRS 0x00000004 /* Master reset set */ |
| #define GCSR_MRC 0x00000008 /* HW Reset clear */ |
| #define GCSR_CCIC_EN 0x00004000 /* CCIC Clock enable */ |
| #define REG_GL_IMASK 0x300c /* Interrupt mask register */ |
| #define GIMSK_CCIC_EN 0x00000004 /* CCIC Interrupt enable */ |
| |
| #define REG_GL_FCR 0x3038 /* GPIO functional control register */ |
| #define GFCR_GPIO_ON 0x08 /* Camera GPIO enabled */ |
| #define REG_GL_GPIOR 0x315c /* GPIO register */ |
| #define GGPIO_OUT 0x80000 /* GPIO output */ |
| #define GGPIO_VAL 0x00008 /* Output pin value */ |
| |
| #define REG_LEN (REG_GL_IMASK + 4) |
| |
| |
| /* |
| * Debugging and related. |
| */ |
| #define cam_err(cam, fmt, arg...) \ |
| dev_err(&(cam)->pdev->dev, fmt, ##arg); |
| #define cam_warn(cam, fmt, arg...) \ |
| dev_warn(&(cam)->pdev->dev, fmt, ##arg); |
| |
| /* -------------------------------------------------------------------- */ |
| /* |
| * The I2C/SMBUS interface to the camera itself starts here. The |
| * controller handles SMBUS itself, presenting a relatively simple register |
| * interface; all we have to do is to tell it where to route the data. |
| */ |
| #define CAFE_SMBUS_TIMEOUT (HZ) /* generous */ |
| |
| static inline struct cafe_camera *to_cam(struct v4l2_device *dev) |
| { |
| struct mcam_camera *m = container_of(dev, struct mcam_camera, v4l2_dev); |
| return container_of(m, struct cafe_camera, mcam); |
| } |
| |
| |
| static int cafe_smbus_write_done(struct mcam_camera *mcam) |
| { |
| unsigned long flags; |
| int c1; |
| |
| /* |
| * We must delay after the interrupt, or the controller gets confused |
| * and never does give us good status. Fortunately, we don't do this |
| * often. |
| */ |
| udelay(20); |
| spin_lock_irqsave(&mcam->dev_lock, flags); |
| c1 = mcam_reg_read(mcam, REG_TWSIC1); |
| spin_unlock_irqrestore(&mcam->dev_lock, flags); |
| return (c1 & (TWSIC1_WSTAT|TWSIC1_ERROR)) != TWSIC1_WSTAT; |
| } |
| |
| static int cafe_smbus_write_data(struct cafe_camera *cam, |
| u16 addr, u8 command, u8 value) |
| { |
| unsigned int rval; |
| unsigned long flags; |
| struct mcam_camera *mcam = &cam->mcam; |
| |
| spin_lock_irqsave(&mcam->dev_lock, flags); |
| rval = TWSIC0_EN | ((addr << TWSIC0_SID_SHIFT) & TWSIC0_SID); |
| rval |= TWSIC0_OVMAGIC; /* Make OV sensors work */ |
| /* |
| * Marvell sez set clkdiv to all 1's for now. |
| */ |
| rval |= TWSIC0_CLKDIV; |
| mcam_reg_write(mcam, REG_TWSIC0, rval); |
| (void) mcam_reg_read(mcam, REG_TWSIC1); /* force write */ |
| rval = value | ((command << TWSIC1_ADDR_SHIFT) & TWSIC1_ADDR); |
| mcam_reg_write(mcam, REG_TWSIC1, rval); |
| spin_unlock_irqrestore(&mcam->dev_lock, flags); |
| |
| /* Unfortunately, reading TWSIC1 too soon after sending a command |
| * causes the device to die. |
| * Use a busy-wait because we often send a large quantity of small |
| * commands at-once; using msleep() would cause a lot of context |
| * switches which take longer than 2ms, resulting in a noticeable |
| * boot-time and capture-start delays. |
| */ |
| mdelay(2); |
| |
| /* |
| * Another sad fact is that sometimes, commands silently complete but |
| * cafe_smbus_write_done() never becomes aware of this. |
| * This happens at random and appears to possible occur with any |
| * command. |
| * We don't understand why this is. We work around this issue |
| * with the timeout in the wait below, assuming that all commands |
| * complete within the timeout. |
| */ |
| wait_event_timeout(cam->smbus_wait, cafe_smbus_write_done(mcam), |
| CAFE_SMBUS_TIMEOUT); |
| |
| spin_lock_irqsave(&mcam->dev_lock, flags); |
| rval = mcam_reg_read(mcam, REG_TWSIC1); |
| spin_unlock_irqrestore(&mcam->dev_lock, flags); |
| |
| if (rval & TWSIC1_WSTAT) { |
| cam_err(cam, "SMBUS write (%02x/%02x/%02x) timed out\n", addr, |
| command, value); |
| return -EIO; |
| } |
| if (rval & TWSIC1_ERROR) { |
| cam_err(cam, "SMBUS write (%02x/%02x/%02x) error\n", addr, |
| command, value); |
| return -EIO; |
| } |
| return 0; |
| } |
| |
| |
| |
| static int cafe_smbus_read_done(struct mcam_camera *mcam) |
| { |
| unsigned long flags; |
| int c1; |
| |
| /* |
| * We must delay after the interrupt, or the controller gets confused |
| * and never does give us good status. Fortunately, we don't do this |
| * often. |
| */ |
| udelay(20); |
| spin_lock_irqsave(&mcam->dev_lock, flags); |
| c1 = mcam_reg_read(mcam, REG_TWSIC1); |
| spin_unlock_irqrestore(&mcam->dev_lock, flags); |
| return c1 & (TWSIC1_RVALID|TWSIC1_ERROR); |
| } |
| |
| |
| |
| static int cafe_smbus_read_data(struct cafe_camera *cam, |
| u16 addr, u8 command, u8 *value) |
| { |
| unsigned int rval; |
| unsigned long flags; |
| struct mcam_camera *mcam = &cam->mcam; |
| |
| spin_lock_irqsave(&mcam->dev_lock, flags); |
| rval = TWSIC0_EN | ((addr << TWSIC0_SID_SHIFT) & TWSIC0_SID); |
| rval |= TWSIC0_OVMAGIC; /* Make OV sensors work */ |
| /* |
| * Marvel sez set clkdiv to all 1's for now. |
| */ |
| rval |= TWSIC0_CLKDIV; |
| mcam_reg_write(mcam, REG_TWSIC0, rval); |
| (void) mcam_reg_read(mcam, REG_TWSIC1); /* force write */ |
| rval = TWSIC1_READ | ((command << TWSIC1_ADDR_SHIFT) & TWSIC1_ADDR); |
| mcam_reg_write(mcam, REG_TWSIC1, rval); |
| spin_unlock_irqrestore(&mcam->dev_lock, flags); |
| |
| wait_event_timeout(cam->smbus_wait, |
| cafe_smbus_read_done(mcam), CAFE_SMBUS_TIMEOUT); |
| spin_lock_irqsave(&mcam->dev_lock, flags); |
| rval = mcam_reg_read(mcam, REG_TWSIC1); |
| spin_unlock_irqrestore(&mcam->dev_lock, flags); |
| |
| if (rval & TWSIC1_ERROR) { |
| cam_err(cam, "SMBUS read (%02x/%02x) error\n", addr, command); |
| return -EIO; |
| } |
| if (!(rval & TWSIC1_RVALID)) { |
| cam_err(cam, "SMBUS read (%02x/%02x) timed out\n", addr, |
| command); |
| return -EIO; |
| } |
| *value = rval & 0xff; |
| return 0; |
| } |
| |
| /* |
| * Perform a transfer over SMBUS. This thing is called under |
| * the i2c bus lock, so we shouldn't race with ourselves... |
| */ |
| static int cafe_smbus_xfer(struct i2c_adapter *adapter, u16 addr, |
| unsigned short flags, char rw, u8 command, |
| int size, union i2c_smbus_data *data) |
| { |
| struct cafe_camera *cam = i2c_get_adapdata(adapter); |
| int ret = -EINVAL; |
| |
| /* |
| * This interface would appear to only do byte data ops. OK |
| * it can do word too, but the cam chip has no use for that. |
| */ |
| if (size != I2C_SMBUS_BYTE_DATA) { |
| cam_err(cam, "funky xfer size %d\n", size); |
| return -EINVAL; |
| } |
| |
| if (rw == I2C_SMBUS_WRITE) |
| ret = cafe_smbus_write_data(cam, addr, command, data->byte); |
| else if (rw == I2C_SMBUS_READ) |
| ret = cafe_smbus_read_data(cam, addr, command, &data->byte); |
| return ret; |
| } |
| |
| |
| static void cafe_smbus_enable_irq(struct cafe_camera *cam) |
| { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&cam->mcam.dev_lock, flags); |
| mcam_reg_set_bit(&cam->mcam, REG_IRQMASK, TWSIIRQS); |
| spin_unlock_irqrestore(&cam->mcam.dev_lock, flags); |
| } |
| |
| static u32 cafe_smbus_func(struct i2c_adapter *adapter) |
| { |
| return I2C_FUNC_SMBUS_READ_BYTE_DATA | |
| I2C_FUNC_SMBUS_WRITE_BYTE_DATA; |
| } |
| |
| static const struct i2c_algorithm cafe_smbus_algo = { |
| .smbus_xfer = cafe_smbus_xfer, |
| .functionality = cafe_smbus_func |
| }; |
| |
| static int cafe_smbus_setup(struct cafe_camera *cam) |
| { |
| struct i2c_adapter *adap; |
| int ret; |
| |
| adap = kzalloc(sizeof(*adap), GFP_KERNEL); |
| if (adap == NULL) |
| return -ENOMEM; |
| adap->owner = THIS_MODULE; |
| adap->algo = &cafe_smbus_algo; |
| strscpy(adap->name, "cafe_ccic", sizeof(adap->name)); |
| adap->dev.parent = &cam->pdev->dev; |
| i2c_set_adapdata(adap, cam); |
| ret = i2c_add_adapter(adap); |
| if (ret) { |
| printk(KERN_ERR "Unable to register cafe i2c adapter\n"); |
| kfree(adap); |
| return ret; |
| } |
| |
| cam->i2c_adapter = adap; |
| cafe_smbus_enable_irq(cam); |
| return 0; |
| } |
| |
| static void cafe_smbus_shutdown(struct cafe_camera *cam) |
| { |
| i2c_del_adapter(cam->i2c_adapter); |
| kfree(cam->i2c_adapter); |
| } |
| |
| |
| /* |
| * Controller-level stuff |
| */ |
| |
| static void cafe_ctlr_init(struct mcam_camera *mcam) |
| { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&mcam->dev_lock, flags); |
| /* |
| * Added magic to bring up the hardware on the B-Test board |
| */ |
| mcam_reg_write(mcam, 0x3038, 0x8); |
| mcam_reg_write(mcam, 0x315c, 0x80008); |
| /* |
| * Go through the dance needed to wake the device up. |
| * Note that these registers are global and shared |
| * with the NAND and SD devices. Interaction between the |
| * three still needs to be examined. |
| */ |
| mcam_reg_write(mcam, REG_GL_CSR, GCSR_SRS|GCSR_MRS); /* Needed? */ |
| mcam_reg_write(mcam, REG_GL_CSR, GCSR_SRC|GCSR_MRC); |
| mcam_reg_write(mcam, REG_GL_CSR, GCSR_SRC|GCSR_MRS); |
| /* |
| * Here we must wait a bit for the controller to come around. |
| */ |
| spin_unlock_irqrestore(&mcam->dev_lock, flags); |
| msleep(5); |
| spin_lock_irqsave(&mcam->dev_lock, flags); |
| |
| mcam_reg_write(mcam, REG_GL_CSR, GCSR_CCIC_EN|GCSR_SRC|GCSR_MRC); |
| mcam_reg_set_bit(mcam, REG_GL_IMASK, GIMSK_CCIC_EN); |
| /* |
| * Mask all interrupts. |
| */ |
| mcam_reg_write(mcam, REG_IRQMASK, 0); |
| spin_unlock_irqrestore(&mcam->dev_lock, flags); |
| } |
| |
| |
| static int cafe_ctlr_power_up(struct mcam_camera *mcam) |
| { |
| /* |
| * Part one of the sensor dance: turn the global |
| * GPIO signal on. |
| */ |
| mcam_reg_write(mcam, REG_GL_FCR, GFCR_GPIO_ON); |
| mcam_reg_write(mcam, REG_GL_GPIOR, GGPIO_OUT|GGPIO_VAL); |
| /* |
| * Put the sensor into operational mode (assumes OLPC-style |
| * wiring). Control 0 is reset - set to 1 to operate. |
| * Control 1 is power down, set to 0 to operate. |
| */ |
| mcam_reg_write(mcam, REG_GPR, GPR_C1EN|GPR_C0EN); /* pwr up, reset */ |
| mcam_reg_write(mcam, REG_GPR, GPR_C1EN|GPR_C0EN|GPR_C0); |
| |
| return 0; |
| } |
| |
| static void cafe_ctlr_power_down(struct mcam_camera *mcam) |
| { |
| mcam_reg_write(mcam, REG_GPR, GPR_C1EN|GPR_C0EN|GPR_C1); |
| mcam_reg_write(mcam, REG_GL_FCR, GFCR_GPIO_ON); |
| mcam_reg_write(mcam, REG_GL_GPIOR, GGPIO_OUT); |
| } |
| |
| |
| |
| /* |
| * The platform interrupt handler. |
| */ |
| static irqreturn_t cafe_irq(int irq, void *data) |
| { |
| struct cafe_camera *cam = data; |
| struct mcam_camera *mcam = &cam->mcam; |
| unsigned int irqs, handled; |
| |
| spin_lock(&mcam->dev_lock); |
| irqs = mcam_reg_read(mcam, REG_IRQSTAT); |
| handled = cam->registered && mccic_irq(mcam, irqs); |
| if (irqs & TWSIIRQS) { |
| mcam_reg_write(mcam, REG_IRQSTAT, TWSIIRQS); |
| wake_up(&cam->smbus_wait); |
| handled = 1; |
| } |
| spin_unlock(&mcam->dev_lock); |
| return IRQ_RETVAL(handled); |
| } |
| |
| /* -------------------------------------------------------------------------- */ |
| |
| static struct ov7670_config sensor_cfg = { |
| /* |
| * Exclude QCIF mode, because it only captures a tiny portion |
| * of the sensor FOV |
| */ |
| .min_width = 320, |
| .min_height = 240, |
| |
| /* |
| * Set the clock speed for the XO 1; I don't believe this |
| * driver has ever run anywhere else. |
| */ |
| .clock_speed = 45, |
| .use_smbus = 1, |
| }; |
| |
| static struct i2c_board_info ov7670_info = { |
| .type = "ov7670", |
| .addr = 0x42 >> 1, |
| .platform_data = &sensor_cfg, |
| }; |
| |
| /* -------------------------------------------------------------------------- */ |
| /* |
| * PCI interface stuff. |
| */ |
| |
| static int cafe_pci_probe(struct pci_dev *pdev, |
| const struct pci_device_id *id) |
| { |
| int ret; |
| struct cafe_camera *cam; |
| struct mcam_camera *mcam; |
| |
| /* |
| * Start putting together one of our big camera structures. |
| */ |
| ret = -ENOMEM; |
| cam = kzalloc(sizeof(struct cafe_camera), GFP_KERNEL); |
| if (cam == NULL) |
| goto out; |
| cam->pdev = pdev; |
| mcam = &cam->mcam; |
| mcam->chip_id = MCAM_CAFE; |
| spin_lock_init(&mcam->dev_lock); |
| init_waitqueue_head(&cam->smbus_wait); |
| mcam->plat_power_up = cafe_ctlr_power_up; |
| mcam->plat_power_down = cafe_ctlr_power_down; |
| mcam->dev = &pdev->dev; |
| snprintf(mcam->bus_info, sizeof(mcam->bus_info), "PCI:%s", pci_name(pdev)); |
| /* |
| * Vmalloc mode for buffers is traditional with this driver. |
| * We *might* be able to run DMA_contig, especially on a system |
| * with CMA in it. |
| */ |
| mcam->buffer_mode = B_vmalloc; |
| /* |
| * Get set up on the PCI bus. |
| */ |
| ret = pci_enable_device(pdev); |
| if (ret) |
| goto out_free; |
| pci_set_master(pdev); |
| |
| ret = -EIO; |
| mcam->regs = pci_iomap(pdev, 0, 0); |
| if (!mcam->regs) { |
| printk(KERN_ERR "Unable to ioremap cafe-ccic regs\n"); |
| goto out_disable; |
| } |
| mcam->regs_size = pci_resource_len(pdev, 0); |
| ret = request_irq(pdev->irq, cafe_irq, IRQF_SHARED, "cafe-ccic", cam); |
| if (ret) |
| goto out_iounmap; |
| |
| /* |
| * Initialize the controller. |
| */ |
| cafe_ctlr_init(mcam); |
| |
| /* |
| * Set up I2C/SMBUS communications. We have to drop the mutex here |
| * because the sensor could attach in this call chain, leading to |
| * unsightly deadlocks. |
| */ |
| ret = cafe_smbus_setup(cam); |
| if (ret) |
| goto out_pdown; |
| |
| mcam->asd.match_type = V4L2_ASYNC_MATCH_I2C; |
| mcam->asd.match.i2c.adapter_id = i2c_adapter_id(cam->i2c_adapter); |
| mcam->asd.match.i2c.address = ov7670_info.addr; |
| |
| ret = mccic_register(mcam); |
| if (ret) |
| goto out_smbus_shutdown; |
| |
| clkdev_create(mcam->mclk, "xclk", "%d-%04x", |
| i2c_adapter_id(cam->i2c_adapter), ov7670_info.addr); |
| |
| if (i2c_new_device(cam->i2c_adapter, &ov7670_info)) { |
| cam->registered = 1; |
| return 0; |
| } |
| |
| mccic_shutdown(mcam); |
| out_smbus_shutdown: |
| cafe_smbus_shutdown(cam); |
| out_pdown: |
| cafe_ctlr_power_down(mcam); |
| free_irq(pdev->irq, cam); |
| out_iounmap: |
| pci_iounmap(pdev, mcam->regs); |
| out_disable: |
| pci_disable_device(pdev); |
| out_free: |
| kfree(cam); |
| out: |
| return ret; |
| } |
| |
| |
| /* |
| * Shut down an initialized device |
| */ |
| static void cafe_shutdown(struct cafe_camera *cam) |
| { |
| mccic_shutdown(&cam->mcam); |
| cafe_smbus_shutdown(cam); |
| free_irq(cam->pdev->irq, cam); |
| pci_iounmap(cam->pdev, cam->mcam.regs); |
| } |
| |
| |
| static void cafe_pci_remove(struct pci_dev *pdev) |
| { |
| struct v4l2_device *v4l2_dev = dev_get_drvdata(&pdev->dev); |
| struct cafe_camera *cam = to_cam(v4l2_dev); |
| |
| if (cam == NULL) { |
| printk(KERN_WARNING "pci_remove on unknown pdev %p\n", pdev); |
| return; |
| } |
| cafe_shutdown(cam); |
| kfree(cam); |
| } |
| |
| |
| #ifdef CONFIG_PM |
| /* |
| * Basic power management. |
| */ |
| static int cafe_pci_suspend(struct pci_dev *pdev, pm_message_t state) |
| { |
| struct v4l2_device *v4l2_dev = dev_get_drvdata(&pdev->dev); |
| struct cafe_camera *cam = to_cam(v4l2_dev); |
| int ret; |
| |
| ret = pci_save_state(pdev); |
| if (ret) |
| return ret; |
| mccic_suspend(&cam->mcam); |
| pci_disable_device(pdev); |
| return 0; |
| } |
| |
| |
| static int cafe_pci_resume(struct pci_dev *pdev) |
| { |
| struct v4l2_device *v4l2_dev = dev_get_drvdata(&pdev->dev); |
| struct cafe_camera *cam = to_cam(v4l2_dev); |
| int ret = 0; |
| |
| pci_restore_state(pdev); |
| ret = pci_enable_device(pdev); |
| |
| if (ret) { |
| cam_warn(cam, "Unable to re-enable device on resume!\n"); |
| return ret; |
| } |
| cafe_ctlr_init(&cam->mcam); |
| return mccic_resume(&cam->mcam); |
| } |
| |
| #endif /* CONFIG_PM */ |
| |
| static const struct pci_device_id cafe_ids[] = { |
| { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, |
| PCI_DEVICE_ID_MARVELL_88ALP01_CCIC) }, |
| { 0, } |
| }; |
| |
| MODULE_DEVICE_TABLE(pci, cafe_ids); |
| |
| static struct pci_driver cafe_pci_driver = { |
| .name = "cafe1000-ccic", |
| .id_table = cafe_ids, |
| .probe = cafe_pci_probe, |
| .remove = cafe_pci_remove, |
| #ifdef CONFIG_PM |
| .suspend = cafe_pci_suspend, |
| .resume = cafe_pci_resume, |
| #endif |
| }; |
| |
| |
| |
| |
| static int __init cafe_init(void) |
| { |
| int ret; |
| |
| printk(KERN_NOTICE "Marvell M88ALP01 'CAFE' Camera Controller version %d\n", |
| CAFE_VERSION); |
| ret = pci_register_driver(&cafe_pci_driver); |
| if (ret) { |
| printk(KERN_ERR "Unable to register cafe_ccic driver\n"); |
| goto out; |
| } |
| ret = 0; |
| |
| out: |
| return ret; |
| } |
| |
| |
| static void __exit cafe_exit(void) |
| { |
| pci_unregister_driver(&cafe_pci_driver); |
| } |
| |
| module_init(cafe_init); |
| module_exit(cafe_exit); |