| /****************************************************************************** |
| * |
| * This file is provided under a dual BSD/GPLv2 license. When using or |
| * redistributing this file, you may do so under either license. |
| * |
| * GPL LICENSE SUMMARY |
| * |
| * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved. |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of version 2 of the GNU General Public License as |
| * published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, but |
| * WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110, |
| * USA |
| * |
| * The full GNU General Public License is included in this distribution |
| * in the file called LICENSE.GPL. |
| * |
| * Contact Information: |
| * Intel Linux Wireless <ilw@linux.intel.com> |
| * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 |
| * |
| * BSD LICENSE |
| * |
| * Copyright(c) 2005 - 2011 Intel Corporation. All rights reserved. |
| * All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * |
| * * Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * * Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in |
| * the documentation and/or other materials provided with the |
| * distribution. |
| * * Neither the name Intel Corporation nor the names of its |
| * contributors may be used to endorse or promote products derived |
| * from this software without specific prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| *****************************************************************************/ |
| |
| #include <linux/slab.h> |
| #include <net/mac80211.h> |
| |
| #include "common.h" |
| #include "4965.h" |
| |
| /***************************************************************************** |
| * INIT calibrations framework |
| *****************************************************************************/ |
| |
| struct stats_general_data { |
| u32 beacon_silence_rssi_a; |
| u32 beacon_silence_rssi_b; |
| u32 beacon_silence_rssi_c; |
| u32 beacon_energy_a; |
| u32 beacon_energy_b; |
| u32 beacon_energy_c; |
| }; |
| |
| /***************************************************************************** |
| * RUNTIME calibrations framework |
| *****************************************************************************/ |
| |
| /* "false alarms" are signals that our DSP tries to lock onto, |
| * but then determines that they are either noise, or transmissions |
| * from a distant wireless network (also "noise", really) that get |
| * "stepped on" by stronger transmissions within our own network. |
| * This algorithm attempts to set a sensitivity level that is high |
| * enough to receive all of our own network traffic, but not so |
| * high that our DSP gets too busy trying to lock onto non-network |
| * activity/noise. */ |
| static int |
| il4965_sens_energy_cck(struct il_priv *il, u32 norm_fa, u32 rx_enable_time, |
| struct stats_general_data *rx_info) |
| { |
| u32 max_nrg_cck = 0; |
| int i = 0; |
| u8 max_silence_rssi = 0; |
| u32 silence_ref = 0; |
| u8 silence_rssi_a = 0; |
| u8 silence_rssi_b = 0; |
| u8 silence_rssi_c = 0; |
| u32 val; |
| |
| /* "false_alarms" values below are cross-multiplications to assess the |
| * numbers of false alarms within the measured period of actual Rx |
| * (Rx is off when we're txing), vs the min/max expected false alarms |
| * (some should be expected if rx is sensitive enough) in a |
| * hypothetical listening period of 200 time units (TU), 204.8 msec: |
| * |
| * MIN_FA/fixed-time < false_alarms/actual-rx-time < MAX_FA/beacon-time |
| * |
| * */ |
| u32 false_alarms = norm_fa * 200 * 1024; |
| u32 max_false_alarms = MAX_FA_CCK * rx_enable_time; |
| u32 min_false_alarms = MIN_FA_CCK * rx_enable_time; |
| struct il_sensitivity_data *data = NULL; |
| const struct il_sensitivity_ranges *ranges = il->hw_params.sens; |
| |
| data = &(il->sensitivity_data); |
| |
| data->nrg_auto_corr_silence_diff = 0; |
| |
| /* Find max silence rssi among all 3 receivers. |
| * This is background noise, which may include transmissions from other |
| * networks, measured during silence before our network's beacon */ |
| silence_rssi_a = |
| (u8) ((rx_info->beacon_silence_rssi_a & ALL_BAND_FILTER) >> 8); |
| silence_rssi_b = |
| (u8) ((rx_info->beacon_silence_rssi_b & ALL_BAND_FILTER) >> 8); |
| silence_rssi_c = |
| (u8) ((rx_info->beacon_silence_rssi_c & ALL_BAND_FILTER) >> 8); |
| |
| val = max(silence_rssi_b, silence_rssi_c); |
| max_silence_rssi = max(silence_rssi_a, (u8) val); |
| |
| /* Store silence rssi in 20-beacon history table */ |
| data->nrg_silence_rssi[data->nrg_silence_idx] = max_silence_rssi; |
| data->nrg_silence_idx++; |
| if (data->nrg_silence_idx >= NRG_NUM_PREV_STAT_L) |
| data->nrg_silence_idx = 0; |
| |
| /* Find max silence rssi across 20 beacon history */ |
| for (i = 0; i < NRG_NUM_PREV_STAT_L; i++) { |
| val = data->nrg_silence_rssi[i]; |
| silence_ref = max(silence_ref, val); |
| } |
| D_CALIB("silence a %u, b %u, c %u, 20-bcn max %u\n", silence_rssi_a, |
| silence_rssi_b, silence_rssi_c, silence_ref); |
| |
| /* Find max rx energy (min value!) among all 3 receivers, |
| * measured during beacon frame. |
| * Save it in 10-beacon history table. */ |
| i = data->nrg_energy_idx; |
| val = min(rx_info->beacon_energy_b, rx_info->beacon_energy_c); |
| data->nrg_value[i] = min(rx_info->beacon_energy_a, val); |
| |
| data->nrg_energy_idx++; |
| if (data->nrg_energy_idx >= 10) |
| data->nrg_energy_idx = 0; |
| |
| /* Find min rx energy (max value) across 10 beacon history. |
| * This is the minimum signal level that we want to receive well. |
| * Add backoff (margin so we don't miss slightly lower energy frames). |
| * This establishes an upper bound (min value) for energy threshold. */ |
| max_nrg_cck = data->nrg_value[0]; |
| for (i = 1; i < 10; i++) |
| max_nrg_cck = (u32) max(max_nrg_cck, (data->nrg_value[i])); |
| max_nrg_cck += 6; |
| |
| D_CALIB("rx energy a %u, b %u, c %u, 10-bcn max/min %u\n", |
| rx_info->beacon_energy_a, rx_info->beacon_energy_b, |
| rx_info->beacon_energy_c, max_nrg_cck - 6); |
| |
| /* Count number of consecutive beacons with fewer-than-desired |
| * false alarms. */ |
| if (false_alarms < min_false_alarms) |
| data->num_in_cck_no_fa++; |
| else |
| data->num_in_cck_no_fa = 0; |
| D_CALIB("consecutive bcns with few false alarms = %u\n", |
| data->num_in_cck_no_fa); |
| |
| /* If we got too many false alarms this time, reduce sensitivity */ |
| if (false_alarms > max_false_alarms && |
| data->auto_corr_cck > AUTO_CORR_MAX_TH_CCK) { |
| D_CALIB("norm FA %u > max FA %u\n", false_alarms, |
| max_false_alarms); |
| D_CALIB("... reducing sensitivity\n"); |
| data->nrg_curr_state = IL_FA_TOO_MANY; |
| /* Store for "fewer than desired" on later beacon */ |
| data->nrg_silence_ref = silence_ref; |
| |
| /* increase energy threshold (reduce nrg value) |
| * to decrease sensitivity */ |
| data->nrg_th_cck = data->nrg_th_cck - NRG_STEP_CCK; |
| /* Else if we got fewer than desired, increase sensitivity */ |
| } else if (false_alarms < min_false_alarms) { |
| data->nrg_curr_state = IL_FA_TOO_FEW; |
| |
| /* Compare silence level with silence level for most recent |
| * healthy number or too many false alarms */ |
| data->nrg_auto_corr_silence_diff = |
| (s32) data->nrg_silence_ref - (s32) silence_ref; |
| |
| D_CALIB("norm FA %u < min FA %u, silence diff %d\n", |
| false_alarms, min_false_alarms, |
| data->nrg_auto_corr_silence_diff); |
| |
| /* Increase value to increase sensitivity, but only if: |
| * 1a) previous beacon did *not* have *too many* false alarms |
| * 1b) AND there's a significant difference in Rx levels |
| * from a previous beacon with too many, or healthy # FAs |
| * OR 2) We've seen a lot of beacons (100) with too few |
| * false alarms */ |
| if (data->nrg_prev_state != IL_FA_TOO_MANY && |
| (data->nrg_auto_corr_silence_diff > NRG_DIFF || |
| data->num_in_cck_no_fa > MAX_NUMBER_CCK_NO_FA)) { |
| |
| D_CALIB("... increasing sensitivity\n"); |
| /* Increase nrg value to increase sensitivity */ |
| val = data->nrg_th_cck + NRG_STEP_CCK; |
| data->nrg_th_cck = min((u32) ranges->min_nrg_cck, val); |
| } else { |
| D_CALIB("... but not changing sensitivity\n"); |
| } |
| |
| /* Else we got a healthy number of false alarms, keep status quo */ |
| } else { |
| D_CALIB(" FA in safe zone\n"); |
| data->nrg_curr_state = IL_FA_GOOD_RANGE; |
| |
| /* Store for use in "fewer than desired" with later beacon */ |
| data->nrg_silence_ref = silence_ref; |
| |
| /* If previous beacon had too many false alarms, |
| * give it some extra margin by reducing sensitivity again |
| * (but don't go below measured energy of desired Rx) */ |
| if (IL_FA_TOO_MANY == data->nrg_prev_state) { |
| D_CALIB("... increasing margin\n"); |
| if (data->nrg_th_cck > (max_nrg_cck + NRG_MARGIN)) |
| data->nrg_th_cck -= NRG_MARGIN; |
| else |
| data->nrg_th_cck = max_nrg_cck; |
| } |
| } |
| |
| /* Make sure the energy threshold does not go above the measured |
| * energy of the desired Rx signals (reduced by backoff margin), |
| * or else we might start missing Rx frames. |
| * Lower value is higher energy, so we use max()! |
| */ |
| data->nrg_th_cck = max(max_nrg_cck, data->nrg_th_cck); |
| D_CALIB("new nrg_th_cck %u\n", data->nrg_th_cck); |
| |
| data->nrg_prev_state = data->nrg_curr_state; |
| |
| /* Auto-correlation CCK algorithm */ |
| if (false_alarms > min_false_alarms) { |
| |
| /* increase auto_corr values to decrease sensitivity |
| * so the DSP won't be disturbed by the noise |
| */ |
| if (data->auto_corr_cck < AUTO_CORR_MAX_TH_CCK) |
| data->auto_corr_cck = AUTO_CORR_MAX_TH_CCK + 1; |
| else { |
| val = data->auto_corr_cck + AUTO_CORR_STEP_CCK; |
| data->auto_corr_cck = |
| min((u32) ranges->auto_corr_max_cck, val); |
| } |
| val = data->auto_corr_cck_mrc + AUTO_CORR_STEP_CCK; |
| data->auto_corr_cck_mrc = |
| min((u32) ranges->auto_corr_max_cck_mrc, val); |
| } else if (false_alarms < min_false_alarms && |
| (data->nrg_auto_corr_silence_diff > NRG_DIFF || |
| data->num_in_cck_no_fa > MAX_NUMBER_CCK_NO_FA)) { |
| |
| /* Decrease auto_corr values to increase sensitivity */ |
| val = data->auto_corr_cck - AUTO_CORR_STEP_CCK; |
| data->auto_corr_cck = max((u32) ranges->auto_corr_min_cck, val); |
| val = data->auto_corr_cck_mrc - AUTO_CORR_STEP_CCK; |
| data->auto_corr_cck_mrc = |
| max((u32) ranges->auto_corr_min_cck_mrc, val); |
| } |
| |
| return 0; |
| } |
| |
| static int |
| il4965_sens_auto_corr_ofdm(struct il_priv *il, u32 norm_fa, u32 rx_enable_time) |
| { |
| u32 val; |
| u32 false_alarms = norm_fa * 200 * 1024; |
| u32 max_false_alarms = MAX_FA_OFDM * rx_enable_time; |
| u32 min_false_alarms = MIN_FA_OFDM * rx_enable_time; |
| struct il_sensitivity_data *data = NULL; |
| const struct il_sensitivity_ranges *ranges = il->hw_params.sens; |
| |
| data = &(il->sensitivity_data); |
| |
| /* If we got too many false alarms this time, reduce sensitivity */ |
| if (false_alarms > max_false_alarms) { |
| |
| D_CALIB("norm FA %u > max FA %u)\n", false_alarms, |
| max_false_alarms); |
| |
| val = data->auto_corr_ofdm + AUTO_CORR_STEP_OFDM; |
| data->auto_corr_ofdm = |
| min((u32) ranges->auto_corr_max_ofdm, val); |
| |
| val = data->auto_corr_ofdm_mrc + AUTO_CORR_STEP_OFDM; |
| data->auto_corr_ofdm_mrc = |
| min((u32) ranges->auto_corr_max_ofdm_mrc, val); |
| |
| val = data->auto_corr_ofdm_x1 + AUTO_CORR_STEP_OFDM; |
| data->auto_corr_ofdm_x1 = |
| min((u32) ranges->auto_corr_max_ofdm_x1, val); |
| |
| val = data->auto_corr_ofdm_mrc_x1 + AUTO_CORR_STEP_OFDM; |
| data->auto_corr_ofdm_mrc_x1 = |
| min((u32) ranges->auto_corr_max_ofdm_mrc_x1, val); |
| } |
| |
| /* Else if we got fewer than desired, increase sensitivity */ |
| else if (false_alarms < min_false_alarms) { |
| |
| D_CALIB("norm FA %u < min FA %u\n", false_alarms, |
| min_false_alarms); |
| |
| val = data->auto_corr_ofdm - AUTO_CORR_STEP_OFDM; |
| data->auto_corr_ofdm = |
| max((u32) ranges->auto_corr_min_ofdm, val); |
| |
| val = data->auto_corr_ofdm_mrc - AUTO_CORR_STEP_OFDM; |
| data->auto_corr_ofdm_mrc = |
| max((u32) ranges->auto_corr_min_ofdm_mrc, val); |
| |
| val = data->auto_corr_ofdm_x1 - AUTO_CORR_STEP_OFDM; |
| data->auto_corr_ofdm_x1 = |
| max((u32) ranges->auto_corr_min_ofdm_x1, val); |
| |
| val = data->auto_corr_ofdm_mrc_x1 - AUTO_CORR_STEP_OFDM; |
| data->auto_corr_ofdm_mrc_x1 = |
| max((u32) ranges->auto_corr_min_ofdm_mrc_x1, val); |
| } else { |
| D_CALIB("min FA %u < norm FA %u < max FA %u OK\n", |
| min_false_alarms, false_alarms, max_false_alarms); |
| } |
| return 0; |
| } |
| |
| static void |
| il4965_prepare_legacy_sensitivity_tbl(struct il_priv *il, |
| struct il_sensitivity_data *data, |
| __le16 *tbl) |
| { |
| tbl[HD_AUTO_CORR32_X4_TH_ADD_MIN_IDX] = |
| cpu_to_le16((u16) data->auto_corr_ofdm); |
| tbl[HD_AUTO_CORR32_X4_TH_ADD_MIN_MRC_IDX] = |
| cpu_to_le16((u16) data->auto_corr_ofdm_mrc); |
| tbl[HD_AUTO_CORR32_X1_TH_ADD_MIN_IDX] = |
| cpu_to_le16((u16) data->auto_corr_ofdm_x1); |
| tbl[HD_AUTO_CORR32_X1_TH_ADD_MIN_MRC_IDX] = |
| cpu_to_le16((u16) data->auto_corr_ofdm_mrc_x1); |
| |
| tbl[HD_AUTO_CORR40_X4_TH_ADD_MIN_IDX] = |
| cpu_to_le16((u16) data->auto_corr_cck); |
| tbl[HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_IDX] = |
| cpu_to_le16((u16) data->auto_corr_cck_mrc); |
| |
| tbl[HD_MIN_ENERGY_CCK_DET_IDX] = cpu_to_le16((u16) data->nrg_th_cck); |
| tbl[HD_MIN_ENERGY_OFDM_DET_IDX] = cpu_to_le16((u16) data->nrg_th_ofdm); |
| |
| tbl[HD_BARKER_CORR_TH_ADD_MIN_IDX] = |
| cpu_to_le16(data->barker_corr_th_min); |
| tbl[HD_BARKER_CORR_TH_ADD_MIN_MRC_IDX] = |
| cpu_to_le16(data->barker_corr_th_min_mrc); |
| tbl[HD_OFDM_ENERGY_TH_IN_IDX] = cpu_to_le16(data->nrg_th_cca); |
| |
| D_CALIB("ofdm: ac %u mrc %u x1 %u mrc_x1 %u thresh %u\n", |
| data->auto_corr_ofdm, data->auto_corr_ofdm_mrc, |
| data->auto_corr_ofdm_x1, data->auto_corr_ofdm_mrc_x1, |
| data->nrg_th_ofdm); |
| |
| D_CALIB("cck: ac %u mrc %u thresh %u\n", data->auto_corr_cck, |
| data->auto_corr_cck_mrc, data->nrg_th_cck); |
| } |
| |
| /* Prepare a C_SENSITIVITY, send to uCode if values have changed */ |
| static int |
| il4965_sensitivity_write(struct il_priv *il) |
| { |
| struct il_sensitivity_cmd cmd; |
| struct il_sensitivity_data *data = NULL; |
| struct il_host_cmd cmd_out = { |
| .id = C_SENSITIVITY, |
| .len = sizeof(struct il_sensitivity_cmd), |
| .flags = CMD_ASYNC, |
| .data = &cmd, |
| }; |
| |
| data = &(il->sensitivity_data); |
| |
| memset(&cmd, 0, sizeof(cmd)); |
| |
| il4965_prepare_legacy_sensitivity_tbl(il, data, &cmd.table[0]); |
| |
| /* Update uCode's "work" table, and copy it to DSP */ |
| cmd.control = C_SENSITIVITY_CONTROL_WORK_TBL; |
| |
| /* Don't send command to uCode if nothing has changed */ |
| if (!memcmp |
| (&cmd.table[0], &(il->sensitivity_tbl[0]), |
| sizeof(u16) * HD_TBL_SIZE)) { |
| D_CALIB("No change in C_SENSITIVITY\n"); |
| return 0; |
| } |
| |
| /* Copy table for comparison next time */ |
| memcpy(&(il->sensitivity_tbl[0]), &(cmd.table[0]), |
| sizeof(u16) * HD_TBL_SIZE); |
| |
| return il_send_cmd(il, &cmd_out); |
| } |
| |
| void |
| il4965_init_sensitivity(struct il_priv *il) |
| { |
| int ret = 0; |
| int i; |
| struct il_sensitivity_data *data = NULL; |
| const struct il_sensitivity_ranges *ranges = il->hw_params.sens; |
| |
| if (il->disable_sens_cal) |
| return; |
| |
| D_CALIB("Start il4965_init_sensitivity\n"); |
| |
| /* Clear driver's sensitivity algo data */ |
| data = &(il->sensitivity_data); |
| |
| if (ranges == NULL) |
| return; |
| |
| memset(data, 0, sizeof(struct il_sensitivity_data)); |
| |
| data->num_in_cck_no_fa = 0; |
| data->nrg_curr_state = IL_FA_TOO_MANY; |
| data->nrg_prev_state = IL_FA_TOO_MANY; |
| data->nrg_silence_ref = 0; |
| data->nrg_silence_idx = 0; |
| data->nrg_energy_idx = 0; |
| |
| for (i = 0; i < 10; i++) |
| data->nrg_value[i] = 0; |
| |
| for (i = 0; i < NRG_NUM_PREV_STAT_L; i++) |
| data->nrg_silence_rssi[i] = 0; |
| |
| data->auto_corr_ofdm = ranges->auto_corr_min_ofdm; |
| data->auto_corr_ofdm_mrc = ranges->auto_corr_min_ofdm_mrc; |
| data->auto_corr_ofdm_x1 = ranges->auto_corr_min_ofdm_x1; |
| data->auto_corr_ofdm_mrc_x1 = ranges->auto_corr_min_ofdm_mrc_x1; |
| data->auto_corr_cck = AUTO_CORR_CCK_MIN_VAL_DEF; |
| data->auto_corr_cck_mrc = ranges->auto_corr_min_cck_mrc; |
| data->nrg_th_cck = ranges->nrg_th_cck; |
| data->nrg_th_ofdm = ranges->nrg_th_ofdm; |
| data->barker_corr_th_min = ranges->barker_corr_th_min; |
| data->barker_corr_th_min_mrc = ranges->barker_corr_th_min_mrc; |
| data->nrg_th_cca = ranges->nrg_th_cca; |
| |
| data->last_bad_plcp_cnt_ofdm = 0; |
| data->last_fa_cnt_ofdm = 0; |
| data->last_bad_plcp_cnt_cck = 0; |
| data->last_fa_cnt_cck = 0; |
| |
| ret |= il4965_sensitivity_write(il); |
| D_CALIB("<<return 0x%X\n", ret); |
| } |
| |
| void |
| il4965_sensitivity_calibration(struct il_priv *il, void *resp) |
| { |
| u32 rx_enable_time; |
| u32 fa_cck; |
| u32 fa_ofdm; |
| u32 bad_plcp_cck; |
| u32 bad_plcp_ofdm; |
| u32 norm_fa_ofdm; |
| u32 norm_fa_cck; |
| struct il_sensitivity_data *data = NULL; |
| struct stats_rx_non_phy *rx_info; |
| struct stats_rx_phy *ofdm, *cck; |
| unsigned long flags; |
| struct stats_general_data statis; |
| |
| if (il->disable_sens_cal) |
| return; |
| |
| data = &(il->sensitivity_data); |
| |
| if (!il_is_any_associated(il)) { |
| D_CALIB("<< - not associated\n"); |
| return; |
| } |
| |
| spin_lock_irqsave(&il->lock, flags); |
| |
| rx_info = &(((struct il_notif_stats *)resp)->rx.general); |
| ofdm = &(((struct il_notif_stats *)resp)->rx.ofdm); |
| cck = &(((struct il_notif_stats *)resp)->rx.cck); |
| |
| if (rx_info->interference_data_flag != INTERFERENCE_DATA_AVAILABLE) { |
| D_CALIB("<< invalid data.\n"); |
| spin_unlock_irqrestore(&il->lock, flags); |
| return; |
| } |
| |
| /* Extract Statistics: */ |
| rx_enable_time = le32_to_cpu(rx_info->channel_load); |
| fa_cck = le32_to_cpu(cck->false_alarm_cnt); |
| fa_ofdm = le32_to_cpu(ofdm->false_alarm_cnt); |
| bad_plcp_cck = le32_to_cpu(cck->plcp_err); |
| bad_plcp_ofdm = le32_to_cpu(ofdm->plcp_err); |
| |
| statis.beacon_silence_rssi_a = |
| le32_to_cpu(rx_info->beacon_silence_rssi_a); |
| statis.beacon_silence_rssi_b = |
| le32_to_cpu(rx_info->beacon_silence_rssi_b); |
| statis.beacon_silence_rssi_c = |
| le32_to_cpu(rx_info->beacon_silence_rssi_c); |
| statis.beacon_energy_a = le32_to_cpu(rx_info->beacon_energy_a); |
| statis.beacon_energy_b = le32_to_cpu(rx_info->beacon_energy_b); |
| statis.beacon_energy_c = le32_to_cpu(rx_info->beacon_energy_c); |
| |
| spin_unlock_irqrestore(&il->lock, flags); |
| |
| D_CALIB("rx_enable_time = %u usecs\n", rx_enable_time); |
| |
| if (!rx_enable_time) { |
| D_CALIB("<< RX Enable Time == 0!\n"); |
| return; |
| } |
| |
| /* These stats increase monotonically, and do not reset |
| * at each beacon. Calculate difference from last value, or just |
| * use the new stats value if it has reset or wrapped around. */ |
| if (data->last_bad_plcp_cnt_cck > bad_plcp_cck) |
| data->last_bad_plcp_cnt_cck = bad_plcp_cck; |
| else { |
| bad_plcp_cck -= data->last_bad_plcp_cnt_cck; |
| data->last_bad_plcp_cnt_cck += bad_plcp_cck; |
| } |
| |
| if (data->last_bad_plcp_cnt_ofdm > bad_plcp_ofdm) |
| data->last_bad_plcp_cnt_ofdm = bad_plcp_ofdm; |
| else { |
| bad_plcp_ofdm -= data->last_bad_plcp_cnt_ofdm; |
| data->last_bad_plcp_cnt_ofdm += bad_plcp_ofdm; |
| } |
| |
| if (data->last_fa_cnt_ofdm > fa_ofdm) |
| data->last_fa_cnt_ofdm = fa_ofdm; |
| else { |
| fa_ofdm -= data->last_fa_cnt_ofdm; |
| data->last_fa_cnt_ofdm += fa_ofdm; |
| } |
| |
| if (data->last_fa_cnt_cck > fa_cck) |
| data->last_fa_cnt_cck = fa_cck; |
| else { |
| fa_cck -= data->last_fa_cnt_cck; |
| data->last_fa_cnt_cck += fa_cck; |
| } |
| |
| /* Total aborted signal locks */ |
| norm_fa_ofdm = fa_ofdm + bad_plcp_ofdm; |
| norm_fa_cck = fa_cck + bad_plcp_cck; |
| |
| D_CALIB("cck: fa %u badp %u ofdm: fa %u badp %u\n", fa_cck, |
| bad_plcp_cck, fa_ofdm, bad_plcp_ofdm); |
| |
| il4965_sens_auto_corr_ofdm(il, norm_fa_ofdm, rx_enable_time); |
| il4965_sens_energy_cck(il, norm_fa_cck, rx_enable_time, &statis); |
| |
| il4965_sensitivity_write(il); |
| } |
| |
| static inline u8 |
| il4965_find_first_chain(u8 mask) |
| { |
| if (mask & ANT_A) |
| return CHAIN_A; |
| if (mask & ANT_B) |
| return CHAIN_B; |
| return CHAIN_C; |
| } |
| |
| /** |
| * Run disconnected antenna algorithm to find out which antennas are |
| * disconnected. |
| */ |
| static void |
| il4965_find_disconn_antenna(struct il_priv *il, u32 * average_sig, |
| struct il_chain_noise_data *data) |
| { |
| u32 active_chains = 0; |
| u32 max_average_sig; |
| u16 max_average_sig_antenna_i; |
| u8 num_tx_chains; |
| u8 first_chain; |
| u16 i = 0; |
| |
| average_sig[0] = |
| data->chain_signal_a / |
| il->cfg->chain_noise_num_beacons; |
| average_sig[1] = |
| data->chain_signal_b / |
| il->cfg->chain_noise_num_beacons; |
| average_sig[2] = |
| data->chain_signal_c / |
| il->cfg->chain_noise_num_beacons; |
| |
| if (average_sig[0] >= average_sig[1]) { |
| max_average_sig = average_sig[0]; |
| max_average_sig_antenna_i = 0; |
| active_chains = (1 << max_average_sig_antenna_i); |
| } else { |
| max_average_sig = average_sig[1]; |
| max_average_sig_antenna_i = 1; |
| active_chains = (1 << max_average_sig_antenna_i); |
| } |
| |
| if (average_sig[2] >= max_average_sig) { |
| max_average_sig = average_sig[2]; |
| max_average_sig_antenna_i = 2; |
| active_chains = (1 << max_average_sig_antenna_i); |
| } |
| |
| D_CALIB("average_sig: a %d b %d c %d\n", average_sig[0], average_sig[1], |
| average_sig[2]); |
| D_CALIB("max_average_sig = %d, antenna %d\n", max_average_sig, |
| max_average_sig_antenna_i); |
| |
| /* Compare signal strengths for all 3 receivers. */ |
| for (i = 0; i < NUM_RX_CHAINS; i++) { |
| if (i != max_average_sig_antenna_i) { |
| s32 rssi_delta = (max_average_sig - average_sig[i]); |
| |
| /* If signal is very weak, compared with |
| * strongest, mark it as disconnected. */ |
| if (rssi_delta > MAXIMUM_ALLOWED_PATHLOSS) |
| data->disconn_array[i] = 1; |
| else |
| active_chains |= (1 << i); |
| D_CALIB("i = %d rssiDelta = %d " |
| "disconn_array[i] = %d\n", i, rssi_delta, |
| data->disconn_array[i]); |
| } |
| } |
| |
| /* |
| * The above algorithm sometimes fails when the ucode |
| * reports 0 for all chains. It's not clear why that |
| * happens to start with, but it is then causing trouble |
| * because this can make us enable more chains than the |
| * hardware really has. |
| * |
| * To be safe, simply mask out any chains that we know |
| * are not on the device. |
| */ |
| active_chains &= il->hw_params.valid_rx_ant; |
| |
| num_tx_chains = 0; |
| for (i = 0; i < NUM_RX_CHAINS; i++) { |
| /* loops on all the bits of |
| * il->hw_setting.valid_tx_ant */ |
| u8 ant_msk = (1 << i); |
| if (!(il->hw_params.valid_tx_ant & ant_msk)) |
| continue; |
| |
| num_tx_chains++; |
| if (data->disconn_array[i] == 0) |
| /* there is a Tx antenna connected */ |
| break; |
| if (num_tx_chains == il->hw_params.tx_chains_num && |
| data->disconn_array[i]) { |
| /* |
| * If all chains are disconnected |
| * connect the first valid tx chain |
| */ |
| first_chain = |
| il4965_find_first_chain(il->cfg->valid_tx_ant); |
| data->disconn_array[first_chain] = 0; |
| active_chains |= BIT(first_chain); |
| D_CALIB("All Tx chains are disconnected" |
| "- declare %d as connected\n", first_chain); |
| break; |
| } |
| } |
| |
| if (active_chains != il->hw_params.valid_rx_ant && |
| active_chains != il->chain_noise_data.active_chains) |
| D_CALIB("Detected that not all antennas are connected! " |
| "Connected: %#x, valid: %#x.\n", active_chains, |
| il->hw_params.valid_rx_ant); |
| |
| /* Save for use within RXON, TX, SCAN commands, etc. */ |
| data->active_chains = active_chains; |
| D_CALIB("active_chains (bitwise) = 0x%x\n", active_chains); |
| } |
| |
| static void |
| il4965_gain_computation(struct il_priv *il, u32 * average_noise, |
| u16 min_average_noise_antenna_i, u32 min_average_noise, |
| u8 default_chain) |
| { |
| int i, ret; |
| struct il_chain_noise_data *data = &il->chain_noise_data; |
| |
| data->delta_gain_code[min_average_noise_antenna_i] = 0; |
| |
| for (i = default_chain; i < NUM_RX_CHAINS; i++) { |
| s32 delta_g = 0; |
| |
| if (!data->disconn_array[i] && |
| data->delta_gain_code[i] == |
| CHAIN_NOISE_DELTA_GAIN_INIT_VAL) { |
| delta_g = average_noise[i] - min_average_noise; |
| data->delta_gain_code[i] = (u8) ((delta_g * 10) / 15); |
| data->delta_gain_code[i] = |
| min(data->delta_gain_code[i], |
| (u8) CHAIN_NOISE_MAX_DELTA_GAIN_CODE); |
| |
| data->delta_gain_code[i] = |
| (data->delta_gain_code[i] | (1 << 2)); |
| } else { |
| data->delta_gain_code[i] = 0; |
| } |
| } |
| D_CALIB("delta_gain_codes: a %d b %d c %d\n", data->delta_gain_code[0], |
| data->delta_gain_code[1], data->delta_gain_code[2]); |
| |
| /* Differential gain gets sent to uCode only once */ |
| if (!data->radio_write) { |
| struct il_calib_diff_gain_cmd cmd; |
| data->radio_write = 1; |
| |
| memset(&cmd, 0, sizeof(cmd)); |
| cmd.hdr.op_code = IL_PHY_CALIBRATE_DIFF_GAIN_CMD; |
| cmd.diff_gain_a = data->delta_gain_code[0]; |
| cmd.diff_gain_b = data->delta_gain_code[1]; |
| cmd.diff_gain_c = data->delta_gain_code[2]; |
| ret = il_send_cmd_pdu(il, C_PHY_CALIBRATION, sizeof(cmd), &cmd); |
| if (ret) |
| D_CALIB("fail sending cmd " "C_PHY_CALIBRATION\n"); |
| |
| /* TODO we might want recalculate |
| * rx_chain in rxon cmd */ |
| |
| /* Mark so we run this algo only once! */ |
| data->state = IL_CHAIN_NOISE_CALIBRATED; |
| } |
| } |
| |
| /* |
| * Accumulate 16 beacons of signal and noise stats for each of |
| * 3 receivers/antennas/rx-chains, then figure out: |
| * 1) Which antennas are connected. |
| * 2) Differential rx gain settings to balance the 3 receivers. |
| */ |
| void |
| il4965_chain_noise_calibration(struct il_priv *il, void *stat_resp) |
| { |
| struct il_chain_noise_data *data = NULL; |
| |
| u32 chain_noise_a; |
| u32 chain_noise_b; |
| u32 chain_noise_c; |
| u32 chain_sig_a; |
| u32 chain_sig_b; |
| u32 chain_sig_c; |
| u32 average_sig[NUM_RX_CHAINS] = { INITIALIZATION_VALUE }; |
| u32 average_noise[NUM_RX_CHAINS] = { INITIALIZATION_VALUE }; |
| u32 min_average_noise = MIN_AVERAGE_NOISE_MAX_VALUE; |
| u16 min_average_noise_antenna_i = INITIALIZATION_VALUE; |
| u16 i = 0; |
| u16 rxon_chnum = INITIALIZATION_VALUE; |
| u16 stat_chnum = INITIALIZATION_VALUE; |
| u8 rxon_band24; |
| u8 stat_band24; |
| unsigned long flags; |
| struct stats_rx_non_phy *rx_info; |
| |
| if (il->disable_chain_noise_cal) |
| return; |
| |
| data = &(il->chain_noise_data); |
| |
| /* |
| * Accumulate just the first "chain_noise_num_beacons" after |
| * the first association, then we're done forever. |
| */ |
| if (data->state != IL_CHAIN_NOISE_ACCUMULATE) { |
| if (data->state == IL_CHAIN_NOISE_ALIVE) |
| D_CALIB("Wait for noise calib reset\n"); |
| return; |
| } |
| |
| spin_lock_irqsave(&il->lock, flags); |
| |
| rx_info = &(((struct il_notif_stats *)stat_resp)->rx.general); |
| |
| if (rx_info->interference_data_flag != INTERFERENCE_DATA_AVAILABLE) { |
| D_CALIB(" << Interference data unavailable\n"); |
| spin_unlock_irqrestore(&il->lock, flags); |
| return; |
| } |
| |
| rxon_band24 = !!(il->staging.flags & RXON_FLG_BAND_24G_MSK); |
| rxon_chnum = le16_to_cpu(il->staging.channel); |
| |
| stat_band24 = |
| !!(((struct il_notif_stats *)stat_resp)-> |
| flag & STATS_REPLY_FLG_BAND_24G_MSK); |
| stat_chnum = |
| le32_to_cpu(((struct il_notif_stats *)stat_resp)->flag) >> 16; |
| |
| /* Make sure we accumulate data for just the associated channel |
| * (even if scanning). */ |
| if (rxon_chnum != stat_chnum || rxon_band24 != stat_band24) { |
| D_CALIB("Stats not from chan=%d, band24=%d\n", rxon_chnum, |
| rxon_band24); |
| spin_unlock_irqrestore(&il->lock, flags); |
| return; |
| } |
| |
| /* |
| * Accumulate beacon stats values across |
| * "chain_noise_num_beacons" |
| */ |
| chain_noise_a = |
| le32_to_cpu(rx_info->beacon_silence_rssi_a) & IN_BAND_FILTER; |
| chain_noise_b = |
| le32_to_cpu(rx_info->beacon_silence_rssi_b) & IN_BAND_FILTER; |
| chain_noise_c = |
| le32_to_cpu(rx_info->beacon_silence_rssi_c) & IN_BAND_FILTER; |
| |
| chain_sig_a = le32_to_cpu(rx_info->beacon_rssi_a) & IN_BAND_FILTER; |
| chain_sig_b = le32_to_cpu(rx_info->beacon_rssi_b) & IN_BAND_FILTER; |
| chain_sig_c = le32_to_cpu(rx_info->beacon_rssi_c) & IN_BAND_FILTER; |
| |
| spin_unlock_irqrestore(&il->lock, flags); |
| |
| data->beacon_count++; |
| |
| data->chain_noise_a = (chain_noise_a + data->chain_noise_a); |
| data->chain_noise_b = (chain_noise_b + data->chain_noise_b); |
| data->chain_noise_c = (chain_noise_c + data->chain_noise_c); |
| |
| data->chain_signal_a = (chain_sig_a + data->chain_signal_a); |
| data->chain_signal_b = (chain_sig_b + data->chain_signal_b); |
| data->chain_signal_c = (chain_sig_c + data->chain_signal_c); |
| |
| D_CALIB("chan=%d, band24=%d, beacon=%d\n", rxon_chnum, rxon_band24, |
| data->beacon_count); |
| D_CALIB("chain_sig: a %d b %d c %d\n", chain_sig_a, chain_sig_b, |
| chain_sig_c); |
| D_CALIB("chain_noise: a %d b %d c %d\n", chain_noise_a, chain_noise_b, |
| chain_noise_c); |
| |
| /* If this is the "chain_noise_num_beacons", determine: |
| * 1) Disconnected antennas (using signal strengths) |
| * 2) Differential gain (using silence noise) to balance receivers */ |
| if (data->beacon_count != il->cfg->chain_noise_num_beacons) |
| return; |
| |
| /* Analyze signal for disconnected antenna */ |
| il4965_find_disconn_antenna(il, average_sig, data); |
| |
| /* Analyze noise for rx balance */ |
| average_noise[0] = |
| data->chain_noise_a / il->cfg->chain_noise_num_beacons; |
| average_noise[1] = |
| data->chain_noise_b / il->cfg->chain_noise_num_beacons; |
| average_noise[2] = |
| data->chain_noise_c / il->cfg->chain_noise_num_beacons; |
| |
| for (i = 0; i < NUM_RX_CHAINS; i++) { |
| if (!data->disconn_array[i] && |
| average_noise[i] <= min_average_noise) { |
| /* This means that chain i is active and has |
| * lower noise values so far: */ |
| min_average_noise = average_noise[i]; |
| min_average_noise_antenna_i = i; |
| } |
| } |
| |
| D_CALIB("average_noise: a %d b %d c %d\n", average_noise[0], |
| average_noise[1], average_noise[2]); |
| |
| D_CALIB("min_average_noise = %d, antenna %d\n", min_average_noise, |
| min_average_noise_antenna_i); |
| |
| il4965_gain_computation(il, average_noise, min_average_noise_antenna_i, |
| min_average_noise, |
| il4965_find_first_chain(il->cfg->valid_rx_ant)); |
| |
| /* Some power changes may have been made during the calibration. |
| * Update and commit the RXON |
| */ |
| if (il->ops->update_chain_flags) |
| il->ops->update_chain_flags(il); |
| |
| data->state = IL_CHAIN_NOISE_DONE; |
| il_power_update_mode(il, false); |
| } |
| |
| void |
| il4965_reset_run_time_calib(struct il_priv *il) |
| { |
| int i; |
| memset(&(il->sensitivity_data), 0, sizeof(struct il_sensitivity_data)); |
| memset(&(il->chain_noise_data), 0, sizeof(struct il_chain_noise_data)); |
| for (i = 0; i < NUM_RX_CHAINS; i++) |
| il->chain_noise_data.delta_gain_code[i] = |
| CHAIN_NOISE_DELTA_GAIN_INIT_VAL; |
| |
| /* Ask for stats now, the uCode will send notification |
| * periodically after association */ |
| il_send_stats_request(il, CMD_ASYNC, true); |
| } |