| // SPDX-License-Identifier: GPL-2.0-only |
| #define pr_fmt(fmt) "SMP alternatives: " fmt |
| |
| #include <linux/module.h> |
| #include <linux/sched.h> |
| #include <linux/perf_event.h> |
| #include <linux/mutex.h> |
| #include <linux/list.h> |
| #include <linux/stringify.h> |
| #include <linux/highmem.h> |
| #include <linux/mm.h> |
| #include <linux/vmalloc.h> |
| #include <linux/memory.h> |
| #include <linux/stop_machine.h> |
| #include <linux/slab.h> |
| #include <linux/kdebug.h> |
| #include <linux/kprobes.h> |
| #include <linux/mmu_context.h> |
| #include <linux/bsearch.h> |
| #include <linux/sync_core.h> |
| #include <asm/text-patching.h> |
| #include <asm/alternative.h> |
| #include <asm/sections.h> |
| #include <asm/mce.h> |
| #include <asm/nmi.h> |
| #include <asm/cacheflush.h> |
| #include <asm/tlbflush.h> |
| #include <asm/insn.h> |
| #include <asm/io.h> |
| #include <asm/fixmap.h> |
| #include <asm/paravirt.h> |
| #include <asm/asm-prototypes.h> |
| |
| int __read_mostly alternatives_patched; |
| |
| EXPORT_SYMBOL_GPL(alternatives_patched); |
| |
| #define MAX_PATCH_LEN (255-1) |
| |
| static int __initdata_or_module debug_alternative; |
| |
| static int __init debug_alt(char *str) |
| { |
| debug_alternative = 1; |
| return 1; |
| } |
| __setup("debug-alternative", debug_alt); |
| |
| static int noreplace_smp; |
| |
| static int __init setup_noreplace_smp(char *str) |
| { |
| noreplace_smp = 1; |
| return 1; |
| } |
| __setup("noreplace-smp", setup_noreplace_smp); |
| |
| #define DPRINTK(fmt, args...) \ |
| do { \ |
| if (debug_alternative) \ |
| printk(KERN_DEBUG pr_fmt(fmt) "\n", ##args); \ |
| } while (0) |
| |
| #define DUMP_BYTES(buf, len, fmt, args...) \ |
| do { \ |
| if (unlikely(debug_alternative)) { \ |
| int j; \ |
| \ |
| if (!(len)) \ |
| break; \ |
| \ |
| printk(KERN_DEBUG pr_fmt(fmt), ##args); \ |
| for (j = 0; j < (len) - 1; j++) \ |
| printk(KERN_CONT "%02hhx ", buf[j]); \ |
| printk(KERN_CONT "%02hhx\n", buf[j]); \ |
| } \ |
| } while (0) |
| |
| static const unsigned char x86nops[] = |
| { |
| BYTES_NOP1, |
| BYTES_NOP2, |
| BYTES_NOP3, |
| BYTES_NOP4, |
| BYTES_NOP5, |
| BYTES_NOP6, |
| BYTES_NOP7, |
| BYTES_NOP8, |
| }; |
| |
| const unsigned char * const x86_nops[ASM_NOP_MAX+1] = |
| { |
| NULL, |
| x86nops, |
| x86nops + 1, |
| x86nops + 1 + 2, |
| x86nops + 1 + 2 + 3, |
| x86nops + 1 + 2 + 3 + 4, |
| x86nops + 1 + 2 + 3 + 4 + 5, |
| x86nops + 1 + 2 + 3 + 4 + 5 + 6, |
| x86nops + 1 + 2 + 3 + 4 + 5 + 6 + 7, |
| }; |
| |
| /* Use this to add nops to a buffer, then text_poke the whole buffer. */ |
| static void __init_or_module add_nops(void *insns, unsigned int len) |
| { |
| while (len > 0) { |
| unsigned int noplen = len; |
| if (noplen > ASM_NOP_MAX) |
| noplen = ASM_NOP_MAX; |
| memcpy(insns, x86_nops[noplen], noplen); |
| insns += noplen; |
| len -= noplen; |
| } |
| } |
| |
| extern s32 __retpoline_sites[], __retpoline_sites_end[]; |
| extern struct alt_instr __alt_instructions[], __alt_instructions_end[]; |
| extern s32 __smp_locks[], __smp_locks_end[]; |
| void text_poke_early(void *addr, const void *opcode, size_t len); |
| |
| /* |
| * Are we looking at a near JMP with a 1 or 4-byte displacement. |
| */ |
| static inline bool is_jmp(const u8 opcode) |
| { |
| return opcode == 0xeb || opcode == 0xe9; |
| } |
| |
| static void __init_or_module |
| recompute_jump(struct alt_instr *a, u8 *orig_insn, u8 *repl_insn, u8 *insn_buff) |
| { |
| u8 *next_rip, *tgt_rip; |
| s32 n_dspl, o_dspl; |
| int repl_len; |
| |
| if (a->replacementlen != 5) |
| return; |
| |
| o_dspl = *(s32 *)(insn_buff + 1); |
| |
| /* next_rip of the replacement JMP */ |
| next_rip = repl_insn + a->replacementlen; |
| /* target rip of the replacement JMP */ |
| tgt_rip = next_rip + o_dspl; |
| n_dspl = tgt_rip - orig_insn; |
| |
| DPRINTK("target RIP: %px, new_displ: 0x%x", tgt_rip, n_dspl); |
| |
| if (tgt_rip - orig_insn >= 0) { |
| if (n_dspl - 2 <= 127) |
| goto two_byte_jmp; |
| else |
| goto five_byte_jmp; |
| /* negative offset */ |
| } else { |
| if (((n_dspl - 2) & 0xff) == (n_dspl - 2)) |
| goto two_byte_jmp; |
| else |
| goto five_byte_jmp; |
| } |
| |
| two_byte_jmp: |
| n_dspl -= 2; |
| |
| insn_buff[0] = 0xeb; |
| insn_buff[1] = (s8)n_dspl; |
| add_nops(insn_buff + 2, 3); |
| |
| repl_len = 2; |
| goto done; |
| |
| five_byte_jmp: |
| n_dspl -= 5; |
| |
| insn_buff[0] = 0xe9; |
| *(s32 *)&insn_buff[1] = n_dspl; |
| |
| repl_len = 5; |
| |
| done: |
| |
| DPRINTK("final displ: 0x%08x, JMP 0x%lx", |
| n_dspl, (unsigned long)orig_insn + n_dspl + repl_len); |
| } |
| |
| /* |
| * optimize_nops_range() - Optimize a sequence of single byte NOPs (0x90) |
| * |
| * @instr: instruction byte stream |
| * @instrlen: length of the above |
| * @off: offset within @instr where the first NOP has been detected |
| * |
| * Return: number of NOPs found (and replaced). |
| */ |
| static __always_inline int optimize_nops_range(u8 *instr, u8 instrlen, int off) |
| { |
| unsigned long flags; |
| int i = off, nnops; |
| |
| while (i < instrlen) { |
| if (instr[i] != 0x90) |
| break; |
| |
| i++; |
| } |
| |
| nnops = i - off; |
| |
| if (nnops <= 1) |
| return nnops; |
| |
| local_irq_save(flags); |
| add_nops(instr + off, nnops); |
| local_irq_restore(flags); |
| |
| DUMP_BYTES(instr, instrlen, "%px: [%d:%d) optimized NOPs: ", instr, off, i); |
| |
| return nnops; |
| } |
| |
| /* |
| * "noinline" to cause control flow change and thus invalidate I$ and |
| * cause refetch after modification. |
| */ |
| static void __init_or_module noinline optimize_nops(u8 *instr, size_t len) |
| { |
| struct insn insn; |
| int i = 0; |
| |
| /* |
| * Jump over the non-NOP insns and optimize single-byte NOPs into bigger |
| * ones. |
| */ |
| for (;;) { |
| if (insn_decode_kernel(&insn, &instr[i])) |
| return; |
| |
| /* |
| * See if this and any potentially following NOPs can be |
| * optimized. |
| */ |
| if (insn.length == 1 && insn.opcode.bytes[0] == 0x90) |
| i += optimize_nops_range(instr, len, i); |
| else |
| i += insn.length; |
| |
| if (i >= len) |
| return; |
| } |
| } |
| |
| /* |
| * Replace instructions with better alternatives for this CPU type. This runs |
| * before SMP is initialized to avoid SMP problems with self modifying code. |
| * This implies that asymmetric systems where APs have less capabilities than |
| * the boot processor are not handled. Tough. Make sure you disable such |
| * features by hand. |
| * |
| * Marked "noinline" to cause control flow change and thus insn cache |
| * to refetch changed I$ lines. |
| */ |
| void __init_or_module noinline apply_alternatives(struct alt_instr *start, |
| struct alt_instr *end) |
| { |
| struct alt_instr *a; |
| u8 *instr, *replacement; |
| u8 insn_buff[MAX_PATCH_LEN]; |
| |
| DPRINTK("alt table %px, -> %px", start, end); |
| /* |
| * The scan order should be from start to end. A later scanned |
| * alternative code can overwrite previously scanned alternative code. |
| * Some kernel functions (e.g. memcpy, memset, etc) use this order to |
| * patch code. |
| * |
| * So be careful if you want to change the scan order to any other |
| * order. |
| */ |
| for (a = start; a < end; a++) { |
| int insn_buff_sz = 0; |
| /* Mask away "NOT" flag bit for feature to test. */ |
| u16 feature = a->cpuid & ~ALTINSTR_FLAG_INV; |
| |
| instr = (u8 *)&a->instr_offset + a->instr_offset; |
| replacement = (u8 *)&a->repl_offset + a->repl_offset; |
| BUG_ON(a->instrlen > sizeof(insn_buff)); |
| BUG_ON(feature >= (NCAPINTS + NBUGINTS) * 32); |
| |
| /* |
| * Patch if either: |
| * - feature is present |
| * - feature not present but ALTINSTR_FLAG_INV is set to mean, |
| * patch if feature is *NOT* present. |
| */ |
| if (!boot_cpu_has(feature) == !(a->cpuid & ALTINSTR_FLAG_INV)) |
| goto next; |
| |
| DPRINTK("feat: %s%d*32+%d, old: (%pS (%px) len: %d), repl: (%px, len: %d)", |
| (a->cpuid & ALTINSTR_FLAG_INV) ? "!" : "", |
| feature >> 5, |
| feature & 0x1f, |
| instr, instr, a->instrlen, |
| replacement, a->replacementlen); |
| |
| DUMP_BYTES(instr, a->instrlen, "%px: old_insn: ", instr); |
| DUMP_BYTES(replacement, a->replacementlen, "%px: rpl_insn: ", replacement); |
| |
| memcpy(insn_buff, replacement, a->replacementlen); |
| insn_buff_sz = a->replacementlen; |
| |
| /* |
| * 0xe8 is a relative jump; fix the offset. |
| * |
| * Instruction length is checked before the opcode to avoid |
| * accessing uninitialized bytes for zero-length replacements. |
| */ |
| if (a->replacementlen == 5 && *insn_buff == 0xe8) { |
| *(s32 *)(insn_buff + 1) += replacement - instr; |
| DPRINTK("Fix CALL offset: 0x%x, CALL 0x%lx", |
| *(s32 *)(insn_buff + 1), |
| (unsigned long)instr + *(s32 *)(insn_buff + 1) + 5); |
| } |
| |
| if (a->replacementlen && is_jmp(replacement[0])) |
| recompute_jump(a, instr, replacement, insn_buff); |
| |
| for (; insn_buff_sz < a->instrlen; insn_buff_sz++) |
| insn_buff[insn_buff_sz] = 0x90; |
| |
| DUMP_BYTES(insn_buff, insn_buff_sz, "%px: final_insn: ", instr); |
| |
| text_poke_early(instr, insn_buff, insn_buff_sz); |
| |
| next: |
| optimize_nops(instr, a->instrlen); |
| } |
| } |
| |
| #if defined(CONFIG_RETPOLINE) && defined(CONFIG_STACK_VALIDATION) |
| |
| /* |
| * CALL/JMP *%\reg |
| */ |
| static int emit_indirect(int op, int reg, u8 *bytes) |
| { |
| int i = 0; |
| u8 modrm; |
| |
| switch (op) { |
| case CALL_INSN_OPCODE: |
| modrm = 0x10; /* Reg = 2; CALL r/m */ |
| break; |
| |
| case JMP32_INSN_OPCODE: |
| modrm = 0x20; /* Reg = 4; JMP r/m */ |
| break; |
| |
| default: |
| WARN_ON_ONCE(1); |
| return -1; |
| } |
| |
| if (reg >= 8) { |
| bytes[i++] = 0x41; /* REX.B prefix */ |
| reg -= 8; |
| } |
| |
| modrm |= 0xc0; /* Mod = 3 */ |
| modrm += reg; |
| |
| bytes[i++] = 0xff; /* opcode */ |
| bytes[i++] = modrm; |
| |
| return i; |
| } |
| |
| /* |
| * Rewrite the compiler generated retpoline thunk calls. |
| * |
| * For spectre_v2=off (!X86_FEATURE_RETPOLINE), rewrite them into immediate |
| * indirect instructions, avoiding the extra indirection. |
| * |
| * For example, convert: |
| * |
| * CALL __x86_indirect_thunk_\reg |
| * |
| * into: |
| * |
| * CALL *%\reg |
| * |
| * It also tries to inline spectre_v2=retpoline,lfence when size permits. |
| */ |
| static int patch_retpoline(void *addr, struct insn *insn, u8 *bytes) |
| { |
| retpoline_thunk_t *target; |
| int reg, ret, i = 0; |
| u8 op, cc; |
| |
| target = addr + insn->length + insn->immediate.value; |
| reg = target - __x86_indirect_thunk_array; |
| |
| if (WARN_ON_ONCE(reg & ~0xf)) |
| return -1; |
| |
| /* If anyone ever does: CALL/JMP *%rsp, we're in deep trouble. */ |
| BUG_ON(reg == 4); |
| |
| if (cpu_feature_enabled(X86_FEATURE_RETPOLINE) && |
| !cpu_feature_enabled(X86_FEATURE_RETPOLINE_LFENCE)) |
| return -1; |
| |
| op = insn->opcode.bytes[0]; |
| |
| /* |
| * Convert: |
| * |
| * Jcc.d32 __x86_indirect_thunk_\reg |
| * |
| * into: |
| * |
| * Jncc.d8 1f |
| * [ LFENCE ] |
| * JMP *%\reg |
| * [ NOP ] |
| * 1: |
| */ |
| /* Jcc.d32 second opcode byte is in the range: 0x80-0x8f */ |
| if (op == 0x0f && (insn->opcode.bytes[1] & 0xf0) == 0x80) { |
| cc = insn->opcode.bytes[1] & 0xf; |
| cc ^= 1; /* invert condition */ |
| |
| bytes[i++] = 0x70 + cc; /* Jcc.d8 */ |
| bytes[i++] = insn->length - 2; /* sizeof(Jcc.d8) == 2 */ |
| |
| /* Continue as if: JMP.d32 __x86_indirect_thunk_\reg */ |
| op = JMP32_INSN_OPCODE; |
| } |
| |
| /* |
| * For RETPOLINE_LFENCE: prepend the indirect CALL/JMP with an LFENCE. |
| */ |
| if (cpu_feature_enabled(X86_FEATURE_RETPOLINE_LFENCE)) { |
| bytes[i++] = 0x0f; |
| bytes[i++] = 0xae; |
| bytes[i++] = 0xe8; /* LFENCE */ |
| } |
| |
| ret = emit_indirect(op, reg, bytes + i); |
| if (ret < 0) |
| return ret; |
| i += ret; |
| |
| for (; i < insn->length;) |
| bytes[i++] = BYTES_NOP1; |
| |
| return i; |
| } |
| |
| /* |
| * Generated by 'objtool --retpoline'. |
| */ |
| void __init_or_module noinline apply_retpolines(s32 *start, s32 *end) |
| { |
| s32 *s; |
| |
| for (s = start; s < end; s++) { |
| void *addr = (void *)s + *s; |
| struct insn insn; |
| int len, ret; |
| u8 bytes[16]; |
| u8 op1, op2; |
| |
| ret = insn_decode_kernel(&insn, addr); |
| if (WARN_ON_ONCE(ret < 0)) |
| continue; |
| |
| op1 = insn.opcode.bytes[0]; |
| op2 = insn.opcode.bytes[1]; |
| |
| switch (op1) { |
| case CALL_INSN_OPCODE: |
| case JMP32_INSN_OPCODE: |
| break; |
| |
| case 0x0f: /* escape */ |
| if (op2 >= 0x80 && op2 <= 0x8f) |
| break; |
| fallthrough; |
| default: |
| WARN_ON_ONCE(1); |
| continue; |
| } |
| |
| DPRINTK("retpoline at: %pS (%px) len: %d to: %pS", |
| addr, addr, insn.length, |
| addr + insn.length + insn.immediate.value); |
| |
| len = patch_retpoline(addr, &insn, bytes); |
| if (len == insn.length) { |
| optimize_nops(bytes, len); |
| DUMP_BYTES(((u8*)addr), len, "%px: orig: ", addr); |
| DUMP_BYTES(((u8*)bytes), len, "%px: repl: ", addr); |
| text_poke_early(addr, bytes, len); |
| } |
| } |
| } |
| |
| #else /* !RETPOLINES || !CONFIG_STACK_VALIDATION */ |
| |
| void __init_or_module noinline apply_retpolines(s32 *start, s32 *end) { } |
| |
| #endif /* CONFIG_RETPOLINE && CONFIG_STACK_VALIDATION */ |
| |
| #ifdef CONFIG_SMP |
| static void alternatives_smp_lock(const s32 *start, const s32 *end, |
| u8 *text, u8 *text_end) |
| { |
| const s32 *poff; |
| |
| for (poff = start; poff < end; poff++) { |
| u8 *ptr = (u8 *)poff + *poff; |
| |
| if (!*poff || ptr < text || ptr >= text_end) |
| continue; |
| /* turn DS segment override prefix into lock prefix */ |
| if (*ptr == 0x3e) |
| text_poke(ptr, ((unsigned char []){0xf0}), 1); |
| } |
| } |
| |
| static void alternatives_smp_unlock(const s32 *start, const s32 *end, |
| u8 *text, u8 *text_end) |
| { |
| const s32 *poff; |
| |
| for (poff = start; poff < end; poff++) { |
| u8 *ptr = (u8 *)poff + *poff; |
| |
| if (!*poff || ptr < text || ptr >= text_end) |
| continue; |
| /* turn lock prefix into DS segment override prefix */ |
| if (*ptr == 0xf0) |
| text_poke(ptr, ((unsigned char []){0x3E}), 1); |
| } |
| } |
| |
| struct smp_alt_module { |
| /* what is this ??? */ |
| struct module *mod; |
| char *name; |
| |
| /* ptrs to lock prefixes */ |
| const s32 *locks; |
| const s32 *locks_end; |
| |
| /* .text segment, needed to avoid patching init code ;) */ |
| u8 *text; |
| u8 *text_end; |
| |
| struct list_head next; |
| }; |
| static LIST_HEAD(smp_alt_modules); |
| static bool uniproc_patched = false; /* protected by text_mutex */ |
| |
| void __init_or_module alternatives_smp_module_add(struct module *mod, |
| char *name, |
| void *locks, void *locks_end, |
| void *text, void *text_end) |
| { |
| struct smp_alt_module *smp; |
| |
| mutex_lock(&text_mutex); |
| if (!uniproc_patched) |
| goto unlock; |
| |
| if (num_possible_cpus() == 1) |
| /* Don't bother remembering, we'll never have to undo it. */ |
| goto smp_unlock; |
| |
| smp = kzalloc(sizeof(*smp), GFP_KERNEL); |
| if (NULL == smp) |
| /* we'll run the (safe but slow) SMP code then ... */ |
| goto unlock; |
| |
| smp->mod = mod; |
| smp->name = name; |
| smp->locks = locks; |
| smp->locks_end = locks_end; |
| smp->text = text; |
| smp->text_end = text_end; |
| DPRINTK("locks %p -> %p, text %p -> %p, name %s\n", |
| smp->locks, smp->locks_end, |
| smp->text, smp->text_end, smp->name); |
| |
| list_add_tail(&smp->next, &smp_alt_modules); |
| smp_unlock: |
| alternatives_smp_unlock(locks, locks_end, text, text_end); |
| unlock: |
| mutex_unlock(&text_mutex); |
| } |
| |
| void __init_or_module alternatives_smp_module_del(struct module *mod) |
| { |
| struct smp_alt_module *item; |
| |
| mutex_lock(&text_mutex); |
| list_for_each_entry(item, &smp_alt_modules, next) { |
| if (mod != item->mod) |
| continue; |
| list_del(&item->next); |
| kfree(item); |
| break; |
| } |
| mutex_unlock(&text_mutex); |
| } |
| |
| void alternatives_enable_smp(void) |
| { |
| struct smp_alt_module *mod; |
| |
| /* Why bother if there are no other CPUs? */ |
| BUG_ON(num_possible_cpus() == 1); |
| |
| mutex_lock(&text_mutex); |
| |
| if (uniproc_patched) { |
| pr_info("switching to SMP code\n"); |
| BUG_ON(num_online_cpus() != 1); |
| clear_cpu_cap(&boot_cpu_data, X86_FEATURE_UP); |
| clear_cpu_cap(&cpu_data(0), X86_FEATURE_UP); |
| list_for_each_entry(mod, &smp_alt_modules, next) |
| alternatives_smp_lock(mod->locks, mod->locks_end, |
| mod->text, mod->text_end); |
| uniproc_patched = false; |
| } |
| mutex_unlock(&text_mutex); |
| } |
| |
| /* |
| * Return 1 if the address range is reserved for SMP-alternatives. |
| * Must hold text_mutex. |
| */ |
| int alternatives_text_reserved(void *start, void *end) |
| { |
| struct smp_alt_module *mod; |
| const s32 *poff; |
| u8 *text_start = start; |
| u8 *text_end = end; |
| |
| lockdep_assert_held(&text_mutex); |
| |
| list_for_each_entry(mod, &smp_alt_modules, next) { |
| if (mod->text > text_end || mod->text_end < text_start) |
| continue; |
| for (poff = mod->locks; poff < mod->locks_end; poff++) { |
| const u8 *ptr = (const u8 *)poff + *poff; |
| |
| if (text_start <= ptr && text_end > ptr) |
| return 1; |
| } |
| } |
| |
| return 0; |
| } |
| #endif /* CONFIG_SMP */ |
| |
| #ifdef CONFIG_PARAVIRT |
| void __init_or_module apply_paravirt(struct paravirt_patch_site *start, |
| struct paravirt_patch_site *end) |
| { |
| struct paravirt_patch_site *p; |
| char insn_buff[MAX_PATCH_LEN]; |
| |
| for (p = start; p < end; p++) { |
| unsigned int used; |
| |
| BUG_ON(p->len > MAX_PATCH_LEN); |
| /* prep the buffer with the original instructions */ |
| memcpy(insn_buff, p->instr, p->len); |
| used = paravirt_patch(p->type, insn_buff, (unsigned long)p->instr, p->len); |
| |
| BUG_ON(used > p->len); |
| |
| /* Pad the rest with nops */ |
| add_nops(insn_buff + used, p->len - used); |
| text_poke_early(p->instr, insn_buff, p->len); |
| } |
| } |
| extern struct paravirt_patch_site __start_parainstructions[], |
| __stop_parainstructions[]; |
| #endif /* CONFIG_PARAVIRT */ |
| |
| /* |
| * Self-test for the INT3 based CALL emulation code. |
| * |
| * This exercises int3_emulate_call() to make sure INT3 pt_regs are set up |
| * properly and that there is a stack gap between the INT3 frame and the |
| * previous context. Without this gap doing a virtual PUSH on the interrupted |
| * stack would corrupt the INT3 IRET frame. |
| * |
| * See entry_{32,64}.S for more details. |
| */ |
| |
| /* |
| * We define the int3_magic() function in assembly to control the calling |
| * convention such that we can 'call' it from assembly. |
| */ |
| |
| extern void int3_magic(unsigned int *ptr); /* defined in asm */ |
| |
| asm ( |
| " .pushsection .init.text, \"ax\", @progbits\n" |
| " .type int3_magic, @function\n" |
| "int3_magic:\n" |
| " movl $1, (%" _ASM_ARG1 ")\n" |
| ASM_RET |
| " .size int3_magic, .-int3_magic\n" |
| " .popsection\n" |
| ); |
| |
| extern __initdata unsigned long int3_selftest_ip; /* defined in asm below */ |
| |
| static int __init |
| int3_exception_notify(struct notifier_block *self, unsigned long val, void *data) |
| { |
| struct die_args *args = data; |
| struct pt_regs *regs = args->regs; |
| |
| if (!regs || user_mode(regs)) |
| return NOTIFY_DONE; |
| |
| if (val != DIE_INT3) |
| return NOTIFY_DONE; |
| |
| if (regs->ip - INT3_INSN_SIZE != int3_selftest_ip) |
| return NOTIFY_DONE; |
| |
| int3_emulate_call(regs, (unsigned long)&int3_magic); |
| return NOTIFY_STOP; |
| } |
| |
| static void __init int3_selftest(void) |
| { |
| static __initdata struct notifier_block int3_exception_nb = { |
| .notifier_call = int3_exception_notify, |
| .priority = INT_MAX-1, /* last */ |
| }; |
| unsigned int val = 0; |
| |
| BUG_ON(register_die_notifier(&int3_exception_nb)); |
| |
| /* |
| * Basically: int3_magic(&val); but really complicated :-) |
| * |
| * Stick the address of the INT3 instruction into int3_selftest_ip, |
| * then trigger the INT3, padded with NOPs to match a CALL instruction |
| * length. |
| */ |
| asm volatile ("1: int3; nop; nop; nop; nop\n\t" |
| ".pushsection .init.data,\"aw\"\n\t" |
| ".align " __ASM_SEL(4, 8) "\n\t" |
| ".type int3_selftest_ip, @object\n\t" |
| ".size int3_selftest_ip, " __ASM_SEL(4, 8) "\n\t" |
| "int3_selftest_ip:\n\t" |
| __ASM_SEL(.long, .quad) " 1b\n\t" |
| ".popsection\n\t" |
| : ASM_CALL_CONSTRAINT |
| : __ASM_SEL_RAW(a, D) (&val) |
| : "memory"); |
| |
| BUG_ON(val != 1); |
| |
| unregister_die_notifier(&int3_exception_nb); |
| } |
| |
| void __init alternative_instructions(void) |
| { |
| int3_selftest(); |
| |
| /* |
| * The patching is not fully atomic, so try to avoid local |
| * interruptions that might execute the to be patched code. |
| * Other CPUs are not running. |
| */ |
| stop_nmi(); |
| |
| /* |
| * Don't stop machine check exceptions while patching. |
| * MCEs only happen when something got corrupted and in this |
| * case we must do something about the corruption. |
| * Ignoring it is worse than an unlikely patching race. |
| * Also machine checks tend to be broadcast and if one CPU |
| * goes into machine check the others follow quickly, so we don't |
| * expect a machine check to cause undue problems during to code |
| * patching. |
| */ |
| |
| /* |
| * Paravirt patching and alternative patching can be combined to |
| * replace a function call with a short direct code sequence (e.g. |
| * by setting a constant return value instead of doing that in an |
| * external function). |
| * In order to make this work the following sequence is required: |
| * 1. set (artificial) features depending on used paravirt |
| * functions which can later influence alternative patching |
| * 2. apply paravirt patching (generally replacing an indirect |
| * function call with a direct one) |
| * 3. apply alternative patching (e.g. replacing a direct function |
| * call with a custom code sequence) |
| * Doing paravirt patching after alternative patching would clobber |
| * the optimization of the custom code with a function call again. |
| */ |
| paravirt_set_cap(); |
| |
| /* |
| * First patch paravirt functions, such that we overwrite the indirect |
| * call with the direct call. |
| */ |
| apply_paravirt(__parainstructions, __parainstructions_end); |
| |
| /* |
| * Rewrite the retpolines, must be done before alternatives since |
| * those can rewrite the retpoline thunks. |
| */ |
| apply_retpolines(__retpoline_sites, __retpoline_sites_end); |
| |
| /* |
| * Then patch alternatives, such that those paravirt calls that are in |
| * alternatives can be overwritten by their immediate fragments. |
| */ |
| apply_alternatives(__alt_instructions, __alt_instructions_end); |
| |
| #ifdef CONFIG_SMP |
| /* Patch to UP if other cpus not imminent. */ |
| if (!noreplace_smp && (num_present_cpus() == 1 || setup_max_cpus <= 1)) { |
| uniproc_patched = true; |
| alternatives_smp_module_add(NULL, "core kernel", |
| __smp_locks, __smp_locks_end, |
| _text, _etext); |
| } |
| |
| if (!uniproc_patched || num_possible_cpus() == 1) { |
| free_init_pages("SMP alternatives", |
| (unsigned long)__smp_locks, |
| (unsigned long)__smp_locks_end); |
| } |
| #endif |
| |
| restart_nmi(); |
| alternatives_patched = 1; |
| } |
| |
| /** |
| * text_poke_early - Update instructions on a live kernel at boot time |
| * @addr: address to modify |
| * @opcode: source of the copy |
| * @len: length to copy |
| * |
| * When you use this code to patch more than one byte of an instruction |
| * you need to make sure that other CPUs cannot execute this code in parallel. |
| * Also no thread must be currently preempted in the middle of these |
| * instructions. And on the local CPU you need to be protected against NMI or |
| * MCE handlers seeing an inconsistent instruction while you patch. |
| */ |
| void __init_or_module text_poke_early(void *addr, const void *opcode, |
| size_t len) |
| { |
| unsigned long flags; |
| |
| if (boot_cpu_has(X86_FEATURE_NX) && |
| is_module_text_address((unsigned long)addr)) { |
| /* |
| * Modules text is marked initially as non-executable, so the |
| * code cannot be running and speculative code-fetches are |
| * prevented. Just change the code. |
| */ |
| memcpy(addr, opcode, len); |
| } else { |
| local_irq_save(flags); |
| memcpy(addr, opcode, len); |
| local_irq_restore(flags); |
| sync_core(); |
| |
| /* |
| * Could also do a CLFLUSH here to speed up CPU recovery; but |
| * that causes hangs on some VIA CPUs. |
| */ |
| } |
| } |
| |
| typedef struct { |
| struct mm_struct *mm; |
| } temp_mm_state_t; |
| |
| /* |
| * Using a temporary mm allows to set temporary mappings that are not accessible |
| * by other CPUs. Such mappings are needed to perform sensitive memory writes |
| * that override the kernel memory protections (e.g., W^X), without exposing the |
| * temporary page-table mappings that are required for these write operations to |
| * other CPUs. Using a temporary mm also allows to avoid TLB shootdowns when the |
| * mapping is torn down. |
| * |
| * Context: The temporary mm needs to be used exclusively by a single core. To |
| * harden security IRQs must be disabled while the temporary mm is |
| * loaded, thereby preventing interrupt handler bugs from overriding |
| * the kernel memory protection. |
| */ |
| static inline temp_mm_state_t use_temporary_mm(struct mm_struct *mm) |
| { |
| temp_mm_state_t temp_state; |
| |
| lockdep_assert_irqs_disabled(); |
| |
| /* |
| * Make sure not to be in TLB lazy mode, as otherwise we'll end up |
| * with a stale address space WITHOUT being in lazy mode after |
| * restoring the previous mm. |
| */ |
| if (this_cpu_read(cpu_tlbstate_shared.is_lazy)) |
| leave_mm(smp_processor_id()); |
| |
| temp_state.mm = this_cpu_read(cpu_tlbstate.loaded_mm); |
| switch_mm_irqs_off(NULL, mm, current); |
| |
| /* |
| * If breakpoints are enabled, disable them while the temporary mm is |
| * used. Userspace might set up watchpoints on addresses that are used |
| * in the temporary mm, which would lead to wrong signals being sent or |
| * crashes. |
| * |
| * Note that breakpoints are not disabled selectively, which also causes |
| * kernel breakpoints (e.g., perf's) to be disabled. This might be |
| * undesirable, but still seems reasonable as the code that runs in the |
| * temporary mm should be short. |
| */ |
| if (hw_breakpoint_active()) |
| hw_breakpoint_disable(); |
| |
| return temp_state; |
| } |
| |
| static inline void unuse_temporary_mm(temp_mm_state_t prev_state) |
| { |
| lockdep_assert_irqs_disabled(); |
| switch_mm_irqs_off(NULL, prev_state.mm, current); |
| |
| /* |
| * Restore the breakpoints if they were disabled before the temporary mm |
| * was loaded. |
| */ |
| if (hw_breakpoint_active()) |
| hw_breakpoint_restore(); |
| } |
| |
| __ro_after_init struct mm_struct *poking_mm; |
| __ro_after_init unsigned long poking_addr; |
| |
| static void *__text_poke(void *addr, const void *opcode, size_t len) |
| { |
| bool cross_page_boundary = offset_in_page(addr) + len > PAGE_SIZE; |
| struct page *pages[2] = {NULL}; |
| temp_mm_state_t prev; |
| unsigned long flags; |
| pte_t pte, *ptep; |
| spinlock_t *ptl; |
| pgprot_t pgprot; |
| |
| /* |
| * While boot memory allocator is running we cannot use struct pages as |
| * they are not yet initialized. There is no way to recover. |
| */ |
| BUG_ON(!after_bootmem); |
| |
| if (!core_kernel_text((unsigned long)addr)) { |
| pages[0] = vmalloc_to_page(addr); |
| if (cross_page_boundary) |
| pages[1] = vmalloc_to_page(addr + PAGE_SIZE); |
| } else { |
| pages[0] = virt_to_page(addr); |
| WARN_ON(!PageReserved(pages[0])); |
| if (cross_page_boundary) |
| pages[1] = virt_to_page(addr + PAGE_SIZE); |
| } |
| /* |
| * If something went wrong, crash and burn since recovery paths are not |
| * implemented. |
| */ |
| BUG_ON(!pages[0] || (cross_page_boundary && !pages[1])); |
| |
| /* |
| * Map the page without the global bit, as TLB flushing is done with |
| * flush_tlb_mm_range(), which is intended for non-global PTEs. |
| */ |
| pgprot = __pgprot(pgprot_val(PAGE_KERNEL) & ~_PAGE_GLOBAL); |
| |
| /* |
| * The lock is not really needed, but this allows to avoid open-coding. |
| */ |
| ptep = get_locked_pte(poking_mm, poking_addr, &ptl); |
| |
| /* |
| * This must not fail; preallocated in poking_init(). |
| */ |
| VM_BUG_ON(!ptep); |
| |
| local_irq_save(flags); |
| |
| pte = mk_pte(pages[0], pgprot); |
| set_pte_at(poking_mm, poking_addr, ptep, pte); |
| |
| if (cross_page_boundary) { |
| pte = mk_pte(pages[1], pgprot); |
| set_pte_at(poking_mm, poking_addr + PAGE_SIZE, ptep + 1, pte); |
| } |
| |
| /* |
| * Loading the temporary mm behaves as a compiler barrier, which |
| * guarantees that the PTE will be set at the time memcpy() is done. |
| */ |
| prev = use_temporary_mm(poking_mm); |
| |
| kasan_disable_current(); |
| memcpy((u8 *)poking_addr + offset_in_page(addr), opcode, len); |
| kasan_enable_current(); |
| |
| /* |
| * Ensure that the PTE is only cleared after the instructions of memcpy |
| * were issued by using a compiler barrier. |
| */ |
| barrier(); |
| |
| pte_clear(poking_mm, poking_addr, ptep); |
| if (cross_page_boundary) |
| pte_clear(poking_mm, poking_addr + PAGE_SIZE, ptep + 1); |
| |
| /* |
| * Loading the previous page-table hierarchy requires a serializing |
| * instruction that already allows the core to see the updated version. |
| * Xen-PV is assumed to serialize execution in a similar manner. |
| */ |
| unuse_temporary_mm(prev); |
| |
| /* |
| * Flushing the TLB might involve IPIs, which would require enabled |
| * IRQs, but not if the mm is not used, as it is in this point. |
| */ |
| flush_tlb_mm_range(poking_mm, poking_addr, poking_addr + |
| (cross_page_boundary ? 2 : 1) * PAGE_SIZE, |
| PAGE_SHIFT, false); |
| |
| /* |
| * If the text does not match what we just wrote then something is |
| * fundamentally screwy; there's nothing we can really do about that. |
| */ |
| BUG_ON(memcmp(addr, opcode, len)); |
| |
| local_irq_restore(flags); |
| pte_unmap_unlock(ptep, ptl); |
| return addr; |
| } |
| |
| /** |
| * text_poke - Update instructions on a live kernel |
| * @addr: address to modify |
| * @opcode: source of the copy |
| * @len: length to copy |
| * |
| * Only atomic text poke/set should be allowed when not doing early patching. |
| * It means the size must be writable atomically and the address must be aligned |
| * in a way that permits an atomic write. It also makes sure we fit on a single |
| * page. |
| * |
| * Note that the caller must ensure that if the modified code is part of a |
| * module, the module would not be removed during poking. This can be achieved |
| * by registering a module notifier, and ordering module removal and patching |
| * trough a mutex. |
| */ |
| void *text_poke(void *addr, const void *opcode, size_t len) |
| { |
| lockdep_assert_held(&text_mutex); |
| |
| return __text_poke(addr, opcode, len); |
| } |
| |
| /** |
| * text_poke_kgdb - Update instructions on a live kernel by kgdb |
| * @addr: address to modify |
| * @opcode: source of the copy |
| * @len: length to copy |
| * |
| * Only atomic text poke/set should be allowed when not doing early patching. |
| * It means the size must be writable atomically and the address must be aligned |
| * in a way that permits an atomic write. It also makes sure we fit on a single |
| * page. |
| * |
| * Context: should only be used by kgdb, which ensures no other core is running, |
| * despite the fact it does not hold the text_mutex. |
| */ |
| void *text_poke_kgdb(void *addr, const void *opcode, size_t len) |
| { |
| return __text_poke(addr, opcode, len); |
| } |
| |
| static void do_sync_core(void *info) |
| { |
| sync_core(); |
| } |
| |
| void text_poke_sync(void) |
| { |
| on_each_cpu(do_sync_core, NULL, 1); |
| } |
| |
| struct text_poke_loc { |
| /* addr := _stext + rel_addr */ |
| s32 rel_addr; |
| s32 disp; |
| u8 len; |
| u8 opcode; |
| const u8 text[POKE_MAX_OPCODE_SIZE]; |
| /* see text_poke_bp_batch() */ |
| u8 old; |
| }; |
| |
| struct bp_patching_desc { |
| struct text_poke_loc *vec; |
| int nr_entries; |
| atomic_t refs; |
| }; |
| |
| static struct bp_patching_desc *bp_desc; |
| |
| static __always_inline |
| struct bp_patching_desc *try_get_desc(struct bp_patching_desc **descp) |
| { |
| /* rcu_dereference */ |
| struct bp_patching_desc *desc = __READ_ONCE(*descp); |
| |
| if (!desc || !arch_atomic_inc_not_zero(&desc->refs)) |
| return NULL; |
| |
| return desc; |
| } |
| |
| static __always_inline void put_desc(struct bp_patching_desc *desc) |
| { |
| smp_mb__before_atomic(); |
| arch_atomic_dec(&desc->refs); |
| } |
| |
| static __always_inline void *text_poke_addr(struct text_poke_loc *tp) |
| { |
| return _stext + tp->rel_addr; |
| } |
| |
| static __always_inline int patch_cmp(const void *key, const void *elt) |
| { |
| struct text_poke_loc *tp = (struct text_poke_loc *) elt; |
| |
| if (key < text_poke_addr(tp)) |
| return -1; |
| if (key > text_poke_addr(tp)) |
| return 1; |
| return 0; |
| } |
| |
| noinstr int poke_int3_handler(struct pt_regs *regs) |
| { |
| struct bp_patching_desc *desc; |
| struct text_poke_loc *tp; |
| int ret = 0; |
| void *ip; |
| |
| if (user_mode(regs)) |
| return 0; |
| |
| /* |
| * Having observed our INT3 instruction, we now must observe |
| * bp_desc: |
| * |
| * bp_desc = desc INT3 |
| * WMB RMB |
| * write INT3 if (desc) |
| */ |
| smp_rmb(); |
| |
| desc = try_get_desc(&bp_desc); |
| if (!desc) |
| return 0; |
| |
| /* |
| * Discount the INT3. See text_poke_bp_batch(). |
| */ |
| ip = (void *) regs->ip - INT3_INSN_SIZE; |
| |
| /* |
| * Skip the binary search if there is a single member in the vector. |
| */ |
| if (unlikely(desc->nr_entries > 1)) { |
| tp = __inline_bsearch(ip, desc->vec, desc->nr_entries, |
| sizeof(struct text_poke_loc), |
| patch_cmp); |
| if (!tp) |
| goto out_put; |
| } else { |
| tp = desc->vec; |
| if (text_poke_addr(tp) != ip) |
| goto out_put; |
| } |
| |
| ip += tp->len; |
| |
| switch (tp->opcode) { |
| case INT3_INSN_OPCODE: |
| /* |
| * Someone poked an explicit INT3, they'll want to handle it, |
| * do not consume. |
| */ |
| goto out_put; |
| |
| case RET_INSN_OPCODE: |
| int3_emulate_ret(regs); |
| break; |
| |
| case CALL_INSN_OPCODE: |
| int3_emulate_call(regs, (long)ip + tp->disp); |
| break; |
| |
| case JMP32_INSN_OPCODE: |
| case JMP8_INSN_OPCODE: |
| int3_emulate_jmp(regs, (long)ip + tp->disp); |
| break; |
| |
| default: |
| BUG(); |
| } |
| |
| ret = 1; |
| |
| out_put: |
| put_desc(desc); |
| return ret; |
| } |
| |
| #define TP_VEC_MAX (PAGE_SIZE / sizeof(struct text_poke_loc)) |
| static struct text_poke_loc tp_vec[TP_VEC_MAX]; |
| static int tp_vec_nr; |
| |
| /** |
| * text_poke_bp_batch() -- update instructions on live kernel on SMP |
| * @tp: vector of instructions to patch |
| * @nr_entries: number of entries in the vector |
| * |
| * Modify multi-byte instruction by using int3 breakpoint on SMP. |
| * We completely avoid stop_machine() here, and achieve the |
| * synchronization using int3 breakpoint. |
| * |
| * The way it is done: |
| * - For each entry in the vector: |
| * - add a int3 trap to the address that will be patched |
| * - sync cores |
| * - For each entry in the vector: |
| * - update all but the first byte of the patched range |
| * - sync cores |
| * - For each entry in the vector: |
| * - replace the first byte (int3) by the first byte of |
| * replacing opcode |
| * - sync cores |
| */ |
| static void text_poke_bp_batch(struct text_poke_loc *tp, unsigned int nr_entries) |
| { |
| struct bp_patching_desc desc = { |
| .vec = tp, |
| .nr_entries = nr_entries, |
| .refs = ATOMIC_INIT(1), |
| }; |
| unsigned char int3 = INT3_INSN_OPCODE; |
| unsigned int i; |
| int do_sync; |
| |
| lockdep_assert_held(&text_mutex); |
| |
| smp_store_release(&bp_desc, &desc); /* rcu_assign_pointer */ |
| |
| /* |
| * Corresponding read barrier in int3 notifier for making sure the |
| * nr_entries and handler are correctly ordered wrt. patching. |
| */ |
| smp_wmb(); |
| |
| /* |
| * First step: add a int3 trap to the address that will be patched. |
| */ |
| for (i = 0; i < nr_entries; i++) { |
| tp[i].old = *(u8 *)text_poke_addr(&tp[i]); |
| text_poke(text_poke_addr(&tp[i]), &int3, INT3_INSN_SIZE); |
| } |
| |
| text_poke_sync(); |
| |
| /* |
| * Second step: update all but the first byte of the patched range. |
| */ |
| for (do_sync = 0, i = 0; i < nr_entries; i++) { |
| u8 old[POKE_MAX_OPCODE_SIZE] = { tp[i].old, }; |
| int len = tp[i].len; |
| |
| if (len - INT3_INSN_SIZE > 0) { |
| memcpy(old + INT3_INSN_SIZE, |
| text_poke_addr(&tp[i]) + INT3_INSN_SIZE, |
| len - INT3_INSN_SIZE); |
| text_poke(text_poke_addr(&tp[i]) + INT3_INSN_SIZE, |
| (const char *)tp[i].text + INT3_INSN_SIZE, |
| len - INT3_INSN_SIZE); |
| do_sync++; |
| } |
| |
| /* |
| * Emit a perf event to record the text poke, primarily to |
| * support Intel PT decoding which must walk the executable code |
| * to reconstruct the trace. The flow up to here is: |
| * - write INT3 byte |
| * - IPI-SYNC |
| * - write instruction tail |
| * At this point the actual control flow will be through the |
| * INT3 and handler and not hit the old or new instruction. |
| * Intel PT outputs FUP/TIP packets for the INT3, so the flow |
| * can still be decoded. Subsequently: |
| * - emit RECORD_TEXT_POKE with the new instruction |
| * - IPI-SYNC |
| * - write first byte |
| * - IPI-SYNC |
| * So before the text poke event timestamp, the decoder will see |
| * either the old instruction flow or FUP/TIP of INT3. After the |
| * text poke event timestamp, the decoder will see either the |
| * new instruction flow or FUP/TIP of INT3. Thus decoders can |
| * use the timestamp as the point at which to modify the |
| * executable code. |
| * The old instruction is recorded so that the event can be |
| * processed forwards or backwards. |
| */ |
| perf_event_text_poke(text_poke_addr(&tp[i]), old, len, |
| tp[i].text, len); |
| } |
| |
| if (do_sync) { |
| /* |
| * According to Intel, this core syncing is very likely |
| * not necessary and we'd be safe even without it. But |
| * better safe than sorry (plus there's not only Intel). |
| */ |
| text_poke_sync(); |
| } |
| |
| /* |
| * Third step: replace the first byte (int3) by the first byte of |
| * replacing opcode. |
| */ |
| for (do_sync = 0, i = 0; i < nr_entries; i++) { |
| if (tp[i].text[0] == INT3_INSN_OPCODE) |
| continue; |
| |
| text_poke(text_poke_addr(&tp[i]), tp[i].text, INT3_INSN_SIZE); |
| do_sync++; |
| } |
| |
| if (do_sync) |
| text_poke_sync(); |
| |
| /* |
| * Remove and synchronize_rcu(), except we have a very primitive |
| * refcount based completion. |
| */ |
| WRITE_ONCE(bp_desc, NULL); /* RCU_INIT_POINTER */ |
| if (!atomic_dec_and_test(&desc.refs)) |
| atomic_cond_read_acquire(&desc.refs, !VAL); |
| } |
| |
| static void text_poke_loc_init(struct text_poke_loc *tp, void *addr, |
| const void *opcode, size_t len, const void *emulate) |
| { |
| struct insn insn; |
| int ret, i; |
| |
| memcpy((void *)tp->text, opcode, len); |
| if (!emulate) |
| emulate = opcode; |
| |
| ret = insn_decode_kernel(&insn, emulate); |
| BUG_ON(ret < 0); |
| |
| tp->rel_addr = addr - (void *)_stext; |
| tp->len = len; |
| tp->opcode = insn.opcode.bytes[0]; |
| |
| switch (tp->opcode) { |
| case RET_INSN_OPCODE: |
| case JMP32_INSN_OPCODE: |
| case JMP8_INSN_OPCODE: |
| /* |
| * Control flow instructions without implied execution of the |
| * next instruction can be padded with INT3. |
| */ |
| for (i = insn.length; i < len; i++) |
| BUG_ON(tp->text[i] != INT3_INSN_OPCODE); |
| break; |
| |
| default: |
| BUG_ON(len != insn.length); |
| }; |
| |
| |
| switch (tp->opcode) { |
| case INT3_INSN_OPCODE: |
| case RET_INSN_OPCODE: |
| break; |
| |
| case CALL_INSN_OPCODE: |
| case JMP32_INSN_OPCODE: |
| case JMP8_INSN_OPCODE: |
| tp->disp = insn.immediate.value; |
| break; |
| |
| default: /* assume NOP */ |
| switch (len) { |
| case 2: /* NOP2 -- emulate as JMP8+0 */ |
| BUG_ON(memcmp(emulate, x86_nops[len], len)); |
| tp->opcode = JMP8_INSN_OPCODE; |
| tp->disp = 0; |
| break; |
| |
| case 5: /* NOP5 -- emulate as JMP32+0 */ |
| BUG_ON(memcmp(emulate, x86_nops[len], len)); |
| tp->opcode = JMP32_INSN_OPCODE; |
| tp->disp = 0; |
| break; |
| |
| default: /* unknown instruction */ |
| BUG(); |
| } |
| break; |
| } |
| } |
| |
| /* |
| * We hard rely on the tp_vec being ordered; ensure this is so by flushing |
| * early if needed. |
| */ |
| static bool tp_order_fail(void *addr) |
| { |
| struct text_poke_loc *tp; |
| |
| if (!tp_vec_nr) |
| return false; |
| |
| if (!addr) /* force */ |
| return true; |
| |
| tp = &tp_vec[tp_vec_nr - 1]; |
| if ((unsigned long)text_poke_addr(tp) > (unsigned long)addr) |
| return true; |
| |
| return false; |
| } |
| |
| static void text_poke_flush(void *addr) |
| { |
| if (tp_vec_nr == TP_VEC_MAX || tp_order_fail(addr)) { |
| text_poke_bp_batch(tp_vec, tp_vec_nr); |
| tp_vec_nr = 0; |
| } |
| } |
| |
| void text_poke_finish(void) |
| { |
| text_poke_flush(NULL); |
| } |
| |
| void __ref text_poke_queue(void *addr, const void *opcode, size_t len, const void *emulate) |
| { |
| struct text_poke_loc *tp; |
| |
| if (unlikely(system_state == SYSTEM_BOOTING)) { |
| text_poke_early(addr, opcode, len); |
| return; |
| } |
| |
| text_poke_flush(addr); |
| |
| tp = &tp_vec[tp_vec_nr++]; |
| text_poke_loc_init(tp, addr, opcode, len, emulate); |
| } |
| |
| /** |
| * text_poke_bp() -- update instructions on live kernel on SMP |
| * @addr: address to patch |
| * @opcode: opcode of new instruction |
| * @len: length to copy |
| * @emulate: instruction to be emulated |
| * |
| * Update a single instruction with the vector in the stack, avoiding |
| * dynamically allocated memory. This function should be used when it is |
| * not possible to allocate memory. |
| */ |
| void __ref text_poke_bp(void *addr, const void *opcode, size_t len, const void *emulate) |
| { |
| struct text_poke_loc tp; |
| |
| if (unlikely(system_state == SYSTEM_BOOTING)) { |
| text_poke_early(addr, opcode, len); |
| return; |
| } |
| |
| text_poke_loc_init(&tp, addr, opcode, len, emulate); |
| text_poke_bp_batch(&tp, 1); |
| } |