| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Copyright (C) 2007-2010 Advanced Micro Devices, Inc. |
| * Author: Joerg Roedel <jroedel@suse.de> |
| * Leo Duran <leo.duran@amd.com> |
| */ |
| |
| #define pr_fmt(fmt) "AMD-Vi: " fmt |
| #define dev_fmt(fmt) pr_fmt(fmt) |
| |
| #include <linux/ratelimit.h> |
| #include <linux/pci.h> |
| #include <linux/acpi.h> |
| #include <linux/pci-ats.h> |
| #include <linux/bitmap.h> |
| #include <linux/slab.h> |
| #include <linux/debugfs.h> |
| #include <linux/scatterlist.h> |
| #include <linux/dma-map-ops.h> |
| #include <linux/dma-direct.h> |
| #include <linux/iommu-helper.h> |
| #include <linux/delay.h> |
| #include <linux/amd-iommu.h> |
| #include <linux/notifier.h> |
| #include <linux/export.h> |
| #include <linux/irq.h> |
| #include <linux/msi.h> |
| #include <linux/irqdomain.h> |
| #include <linux/percpu.h> |
| #include <linux/io-pgtable.h> |
| #include <linux/cc_platform.h> |
| #include <asm/irq_remapping.h> |
| #include <asm/io_apic.h> |
| #include <asm/apic.h> |
| #include <asm/hw_irq.h> |
| #include <asm/proto.h> |
| #include <asm/iommu.h> |
| #include <asm/gart.h> |
| #include <asm/dma.h> |
| |
| #include "amd_iommu.h" |
| #include "../dma-iommu.h" |
| #include "../irq_remapping.h" |
| |
| #define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28)) |
| |
| #define LOOP_TIMEOUT 100000 |
| |
| /* IO virtual address start page frame number */ |
| #define IOVA_START_PFN (1) |
| #define IOVA_PFN(addr) ((addr) >> PAGE_SHIFT) |
| |
| /* Reserved IOVA ranges */ |
| #define MSI_RANGE_START (0xfee00000) |
| #define MSI_RANGE_END (0xfeefffff) |
| #define HT_RANGE_START (0xfd00000000ULL) |
| #define HT_RANGE_END (0xffffffffffULL) |
| |
| #define DEFAULT_PGTABLE_LEVEL PAGE_MODE_3_LEVEL |
| |
| static DEFINE_SPINLOCK(pd_bitmap_lock); |
| |
| LIST_HEAD(ioapic_map); |
| LIST_HEAD(hpet_map); |
| LIST_HEAD(acpihid_map); |
| |
| const struct iommu_ops amd_iommu_ops; |
| |
| static ATOMIC_NOTIFIER_HEAD(ppr_notifier); |
| int amd_iommu_max_glx_val = -1; |
| |
| /* |
| * general struct to manage commands send to an IOMMU |
| */ |
| struct iommu_cmd { |
| u32 data[4]; |
| }; |
| |
| struct kmem_cache *amd_iommu_irq_cache; |
| |
| static void detach_device(struct device *dev); |
| static int domain_enable_v2(struct protection_domain *domain, int pasids); |
| |
| /**************************************************************************** |
| * |
| * Helper functions |
| * |
| ****************************************************************************/ |
| |
| static inline int get_acpihid_device_id(struct device *dev, |
| struct acpihid_map_entry **entry) |
| { |
| struct acpi_device *adev = ACPI_COMPANION(dev); |
| struct acpihid_map_entry *p; |
| |
| if (!adev) |
| return -ENODEV; |
| |
| list_for_each_entry(p, &acpihid_map, list) { |
| if (acpi_dev_hid_uid_match(adev, p->hid, |
| p->uid[0] ? p->uid : NULL)) { |
| if (entry) |
| *entry = p; |
| return p->devid; |
| } |
| } |
| return -EINVAL; |
| } |
| |
| static inline int get_device_sbdf_id(struct device *dev) |
| { |
| int sbdf; |
| |
| if (dev_is_pci(dev)) |
| sbdf = get_pci_sbdf_id(to_pci_dev(dev)); |
| else |
| sbdf = get_acpihid_device_id(dev, NULL); |
| |
| return sbdf; |
| } |
| |
| struct dev_table_entry *get_dev_table(struct amd_iommu *iommu) |
| { |
| struct dev_table_entry *dev_table; |
| struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg; |
| |
| BUG_ON(pci_seg == NULL); |
| dev_table = pci_seg->dev_table; |
| BUG_ON(dev_table == NULL); |
| |
| return dev_table; |
| } |
| |
| static inline u16 get_device_segment(struct device *dev) |
| { |
| u16 seg; |
| |
| if (dev_is_pci(dev)) { |
| struct pci_dev *pdev = to_pci_dev(dev); |
| |
| seg = pci_domain_nr(pdev->bus); |
| } else { |
| u32 devid = get_acpihid_device_id(dev, NULL); |
| |
| seg = PCI_SBDF_TO_SEGID(devid); |
| } |
| |
| return seg; |
| } |
| |
| /* Writes the specific IOMMU for a device into the PCI segment rlookup table */ |
| void amd_iommu_set_rlookup_table(struct amd_iommu *iommu, u16 devid) |
| { |
| struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg; |
| |
| pci_seg->rlookup_table[devid] = iommu; |
| } |
| |
| static struct amd_iommu *__rlookup_amd_iommu(u16 seg, u16 devid) |
| { |
| struct amd_iommu_pci_seg *pci_seg; |
| |
| for_each_pci_segment(pci_seg) { |
| if (pci_seg->id == seg) |
| return pci_seg->rlookup_table[devid]; |
| } |
| return NULL; |
| } |
| |
| static struct amd_iommu *rlookup_amd_iommu(struct device *dev) |
| { |
| u16 seg = get_device_segment(dev); |
| int devid = get_device_sbdf_id(dev); |
| |
| if (devid < 0) |
| return NULL; |
| return __rlookup_amd_iommu(seg, PCI_SBDF_TO_DEVID(devid)); |
| } |
| |
| static struct protection_domain *to_pdomain(struct iommu_domain *dom) |
| { |
| return container_of(dom, struct protection_domain, domain); |
| } |
| |
| static struct iommu_dev_data *alloc_dev_data(struct amd_iommu *iommu, u16 devid) |
| { |
| struct iommu_dev_data *dev_data; |
| struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg; |
| |
| dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL); |
| if (!dev_data) |
| return NULL; |
| |
| spin_lock_init(&dev_data->lock); |
| dev_data->devid = devid; |
| ratelimit_default_init(&dev_data->rs); |
| |
| llist_add(&dev_data->dev_data_list, &pci_seg->dev_data_list); |
| return dev_data; |
| } |
| |
| static struct iommu_dev_data *search_dev_data(struct amd_iommu *iommu, u16 devid) |
| { |
| struct iommu_dev_data *dev_data; |
| struct llist_node *node; |
| struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg; |
| |
| if (llist_empty(&pci_seg->dev_data_list)) |
| return NULL; |
| |
| node = pci_seg->dev_data_list.first; |
| llist_for_each_entry(dev_data, node, dev_data_list) { |
| if (dev_data->devid == devid) |
| return dev_data; |
| } |
| |
| return NULL; |
| } |
| |
| static int clone_alias(struct pci_dev *pdev, u16 alias, void *data) |
| { |
| struct amd_iommu *iommu; |
| struct dev_table_entry *dev_table; |
| u16 devid = pci_dev_id(pdev); |
| |
| if (devid == alias) |
| return 0; |
| |
| iommu = rlookup_amd_iommu(&pdev->dev); |
| if (!iommu) |
| return 0; |
| |
| amd_iommu_set_rlookup_table(iommu, alias); |
| dev_table = get_dev_table(iommu); |
| memcpy(dev_table[alias].data, |
| dev_table[devid].data, |
| sizeof(dev_table[alias].data)); |
| |
| return 0; |
| } |
| |
| static void clone_aliases(struct amd_iommu *iommu, struct device *dev) |
| { |
| struct pci_dev *pdev; |
| |
| if (!dev_is_pci(dev)) |
| return; |
| pdev = to_pci_dev(dev); |
| |
| /* |
| * The IVRS alias stored in the alias table may not be |
| * part of the PCI DMA aliases if it's bus differs |
| * from the original device. |
| */ |
| clone_alias(pdev, iommu->pci_seg->alias_table[pci_dev_id(pdev)], NULL); |
| |
| pci_for_each_dma_alias(pdev, clone_alias, NULL); |
| } |
| |
| static void setup_aliases(struct amd_iommu *iommu, struct device *dev) |
| { |
| struct pci_dev *pdev = to_pci_dev(dev); |
| struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg; |
| u16 ivrs_alias; |
| |
| /* For ACPI HID devices, there are no aliases */ |
| if (!dev_is_pci(dev)) |
| return; |
| |
| /* |
| * Add the IVRS alias to the pci aliases if it is on the same |
| * bus. The IVRS table may know about a quirk that we don't. |
| */ |
| ivrs_alias = pci_seg->alias_table[pci_dev_id(pdev)]; |
| if (ivrs_alias != pci_dev_id(pdev) && |
| PCI_BUS_NUM(ivrs_alias) == pdev->bus->number) |
| pci_add_dma_alias(pdev, ivrs_alias & 0xff, 1); |
| |
| clone_aliases(iommu, dev); |
| } |
| |
| static struct iommu_dev_data *find_dev_data(struct amd_iommu *iommu, u16 devid) |
| { |
| struct iommu_dev_data *dev_data; |
| |
| dev_data = search_dev_data(iommu, devid); |
| |
| if (dev_data == NULL) { |
| dev_data = alloc_dev_data(iommu, devid); |
| if (!dev_data) |
| return NULL; |
| |
| if (translation_pre_enabled(iommu)) |
| dev_data->defer_attach = true; |
| } |
| |
| return dev_data; |
| } |
| |
| /* |
| * Find or create an IOMMU group for a acpihid device. |
| */ |
| static struct iommu_group *acpihid_device_group(struct device *dev) |
| { |
| struct acpihid_map_entry *p, *entry = NULL; |
| int devid; |
| |
| devid = get_acpihid_device_id(dev, &entry); |
| if (devid < 0) |
| return ERR_PTR(devid); |
| |
| list_for_each_entry(p, &acpihid_map, list) { |
| if ((devid == p->devid) && p->group) |
| entry->group = p->group; |
| } |
| |
| if (!entry->group) |
| entry->group = generic_device_group(dev); |
| else |
| iommu_group_ref_get(entry->group); |
| |
| return entry->group; |
| } |
| |
| static bool pci_iommuv2_capable(struct pci_dev *pdev) |
| { |
| static const int caps[] = { |
| PCI_EXT_CAP_ID_PRI, |
| PCI_EXT_CAP_ID_PASID, |
| }; |
| int i, pos; |
| |
| if (!pci_ats_supported(pdev)) |
| return false; |
| |
| for (i = 0; i < 2; ++i) { |
| pos = pci_find_ext_capability(pdev, caps[i]); |
| if (pos == 0) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| /* |
| * This function checks if the driver got a valid device from the caller to |
| * avoid dereferencing invalid pointers. |
| */ |
| static bool check_device(struct device *dev) |
| { |
| struct amd_iommu_pci_seg *pci_seg; |
| struct amd_iommu *iommu; |
| int devid, sbdf; |
| |
| if (!dev) |
| return false; |
| |
| sbdf = get_device_sbdf_id(dev); |
| if (sbdf < 0) |
| return false; |
| devid = PCI_SBDF_TO_DEVID(sbdf); |
| |
| iommu = rlookup_amd_iommu(dev); |
| if (!iommu) |
| return false; |
| |
| /* Out of our scope? */ |
| pci_seg = iommu->pci_seg; |
| if (devid > pci_seg->last_bdf) |
| return false; |
| |
| return true; |
| } |
| |
| static int iommu_init_device(struct amd_iommu *iommu, struct device *dev) |
| { |
| struct iommu_dev_data *dev_data; |
| int devid, sbdf; |
| |
| if (dev_iommu_priv_get(dev)) |
| return 0; |
| |
| sbdf = get_device_sbdf_id(dev); |
| if (sbdf < 0) |
| return sbdf; |
| |
| devid = PCI_SBDF_TO_DEVID(sbdf); |
| dev_data = find_dev_data(iommu, devid); |
| if (!dev_data) |
| return -ENOMEM; |
| |
| dev_data->dev = dev; |
| setup_aliases(iommu, dev); |
| |
| /* |
| * By default we use passthrough mode for IOMMUv2 capable device. |
| * But if amd_iommu=force_isolation is set (e.g. to debug DMA to |
| * invalid address), we ignore the capability for the device so |
| * it'll be forced to go into translation mode. |
| */ |
| if ((iommu_default_passthrough() || !amd_iommu_force_isolation) && |
| dev_is_pci(dev) && pci_iommuv2_capable(to_pci_dev(dev))) { |
| dev_data->iommu_v2 = iommu->is_iommu_v2; |
| } |
| |
| dev_iommu_priv_set(dev, dev_data); |
| |
| return 0; |
| } |
| |
| static void iommu_ignore_device(struct amd_iommu *iommu, struct device *dev) |
| { |
| struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg; |
| struct dev_table_entry *dev_table = get_dev_table(iommu); |
| int devid, sbdf; |
| |
| sbdf = get_device_sbdf_id(dev); |
| if (sbdf < 0) |
| return; |
| |
| devid = PCI_SBDF_TO_DEVID(sbdf); |
| pci_seg->rlookup_table[devid] = NULL; |
| memset(&dev_table[devid], 0, sizeof(struct dev_table_entry)); |
| |
| setup_aliases(iommu, dev); |
| } |
| |
| static void amd_iommu_uninit_device(struct device *dev) |
| { |
| struct iommu_dev_data *dev_data; |
| |
| dev_data = dev_iommu_priv_get(dev); |
| if (!dev_data) |
| return; |
| |
| if (dev_data->domain) |
| detach_device(dev); |
| |
| dev_iommu_priv_set(dev, NULL); |
| |
| /* |
| * We keep dev_data around for unplugged devices and reuse it when the |
| * device is re-plugged - not doing so would introduce a ton of races. |
| */ |
| } |
| |
| /**************************************************************************** |
| * |
| * Interrupt handling functions |
| * |
| ****************************************************************************/ |
| |
| static void dump_dte_entry(struct amd_iommu *iommu, u16 devid) |
| { |
| int i; |
| struct dev_table_entry *dev_table = get_dev_table(iommu); |
| |
| for (i = 0; i < 4; ++i) |
| pr_err("DTE[%d]: %016llx\n", i, dev_table[devid].data[i]); |
| } |
| |
| static void dump_command(unsigned long phys_addr) |
| { |
| struct iommu_cmd *cmd = iommu_phys_to_virt(phys_addr); |
| int i; |
| |
| for (i = 0; i < 4; ++i) |
| pr_err("CMD[%d]: %08x\n", i, cmd->data[i]); |
| } |
| |
| static void amd_iommu_report_rmp_hw_error(struct amd_iommu *iommu, volatile u32 *event) |
| { |
| struct iommu_dev_data *dev_data = NULL; |
| int devid, vmg_tag, flags; |
| struct pci_dev *pdev; |
| u64 spa; |
| |
| devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK; |
| vmg_tag = (event[1]) & 0xFFFF; |
| flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK; |
| spa = ((u64)event[3] << 32) | (event[2] & 0xFFFFFFF8); |
| |
| pdev = pci_get_domain_bus_and_slot(iommu->pci_seg->id, PCI_BUS_NUM(devid), |
| devid & 0xff); |
| if (pdev) |
| dev_data = dev_iommu_priv_get(&pdev->dev); |
| |
| if (dev_data) { |
| if (__ratelimit(&dev_data->rs)) { |
| pci_err(pdev, "Event logged [RMP_HW_ERROR vmg_tag=0x%04x, spa=0x%llx, flags=0x%04x]\n", |
| vmg_tag, spa, flags); |
| } |
| } else { |
| pr_err_ratelimited("Event logged [RMP_HW_ERROR device=%04x:%02x:%02x.%x, vmg_tag=0x%04x, spa=0x%llx, flags=0x%04x]\n", |
| iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid), |
| vmg_tag, spa, flags); |
| } |
| |
| if (pdev) |
| pci_dev_put(pdev); |
| } |
| |
| static void amd_iommu_report_rmp_fault(struct amd_iommu *iommu, volatile u32 *event) |
| { |
| struct iommu_dev_data *dev_data = NULL; |
| int devid, flags_rmp, vmg_tag, flags; |
| struct pci_dev *pdev; |
| u64 gpa; |
| |
| devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK; |
| flags_rmp = (event[0] >> EVENT_FLAGS_SHIFT) & 0xFF; |
| vmg_tag = (event[1]) & 0xFFFF; |
| flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK; |
| gpa = ((u64)event[3] << 32) | event[2]; |
| |
| pdev = pci_get_domain_bus_and_slot(iommu->pci_seg->id, PCI_BUS_NUM(devid), |
| devid & 0xff); |
| if (pdev) |
| dev_data = dev_iommu_priv_get(&pdev->dev); |
| |
| if (dev_data) { |
| if (__ratelimit(&dev_data->rs)) { |
| pci_err(pdev, "Event logged [RMP_PAGE_FAULT vmg_tag=0x%04x, gpa=0x%llx, flags_rmp=0x%04x, flags=0x%04x]\n", |
| vmg_tag, gpa, flags_rmp, flags); |
| } |
| } else { |
| pr_err_ratelimited("Event logged [RMP_PAGE_FAULT device=%04x:%02x:%02x.%x, vmg_tag=0x%04x, gpa=0x%llx, flags_rmp=0x%04x, flags=0x%04x]\n", |
| iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid), |
| vmg_tag, gpa, flags_rmp, flags); |
| } |
| |
| if (pdev) |
| pci_dev_put(pdev); |
| } |
| |
| #define IS_IOMMU_MEM_TRANSACTION(flags) \ |
| (((flags) & EVENT_FLAG_I) == 0) |
| |
| #define IS_WRITE_REQUEST(flags) \ |
| ((flags) & EVENT_FLAG_RW) |
| |
| static void amd_iommu_report_page_fault(struct amd_iommu *iommu, |
| u16 devid, u16 domain_id, |
| u64 address, int flags) |
| { |
| struct iommu_dev_data *dev_data = NULL; |
| struct pci_dev *pdev; |
| |
| pdev = pci_get_domain_bus_and_slot(iommu->pci_seg->id, PCI_BUS_NUM(devid), |
| devid & 0xff); |
| if (pdev) |
| dev_data = dev_iommu_priv_get(&pdev->dev); |
| |
| if (dev_data) { |
| /* |
| * If this is a DMA fault (for which the I(nterrupt) |
| * bit will be unset), allow report_iommu_fault() to |
| * prevent logging it. |
| */ |
| if (IS_IOMMU_MEM_TRANSACTION(flags)) { |
| /* Device not attached to domain properly */ |
| if (dev_data->domain == NULL) { |
| pr_err_ratelimited("Event logged [Device not attached to domain properly]\n"); |
| pr_err_ratelimited(" device=%04x:%02x:%02x.%x domain=0x%04x\n", |
| iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), |
| PCI_FUNC(devid), domain_id); |
| goto out; |
| } |
| |
| if (!report_iommu_fault(&dev_data->domain->domain, |
| &pdev->dev, address, |
| IS_WRITE_REQUEST(flags) ? |
| IOMMU_FAULT_WRITE : |
| IOMMU_FAULT_READ)) |
| goto out; |
| } |
| |
| if (__ratelimit(&dev_data->rs)) { |
| pci_err(pdev, "Event logged [IO_PAGE_FAULT domain=0x%04x address=0x%llx flags=0x%04x]\n", |
| domain_id, address, flags); |
| } |
| } else { |
| pr_err_ratelimited("Event logged [IO_PAGE_FAULT device=%04x:%02x:%02x.%x domain=0x%04x address=0x%llx flags=0x%04x]\n", |
| iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid), |
| domain_id, address, flags); |
| } |
| |
| out: |
| if (pdev) |
| pci_dev_put(pdev); |
| } |
| |
| static void iommu_print_event(struct amd_iommu *iommu, void *__evt) |
| { |
| struct device *dev = iommu->iommu.dev; |
| int type, devid, flags, tag; |
| volatile u32 *event = __evt; |
| int count = 0; |
| u64 address; |
| u32 pasid; |
| |
| retry: |
| type = (event[1] >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK; |
| devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK; |
| pasid = (event[0] & EVENT_DOMID_MASK_HI) | |
| (event[1] & EVENT_DOMID_MASK_LO); |
| flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK; |
| address = (u64)(((u64)event[3]) << 32) | event[2]; |
| |
| if (type == 0) { |
| /* Did we hit the erratum? */ |
| if (++count == LOOP_TIMEOUT) { |
| pr_err("No event written to event log\n"); |
| return; |
| } |
| udelay(1); |
| goto retry; |
| } |
| |
| if (type == EVENT_TYPE_IO_FAULT) { |
| amd_iommu_report_page_fault(iommu, devid, pasid, address, flags); |
| return; |
| } |
| |
| switch (type) { |
| case EVENT_TYPE_ILL_DEV: |
| dev_err(dev, "Event logged [ILLEGAL_DEV_TABLE_ENTRY device=%04x:%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x]\n", |
| iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid), |
| pasid, address, flags); |
| dump_dte_entry(iommu, devid); |
| break; |
| case EVENT_TYPE_DEV_TAB_ERR: |
| dev_err(dev, "Event logged [DEV_TAB_HARDWARE_ERROR device=%04x:%02x:%02x.%x " |
| "address=0x%llx flags=0x%04x]\n", |
| iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid), |
| address, flags); |
| break; |
| case EVENT_TYPE_PAGE_TAB_ERR: |
| dev_err(dev, "Event logged [PAGE_TAB_HARDWARE_ERROR device=%04x:%02x:%02x.%x pasid=0x%04x address=0x%llx flags=0x%04x]\n", |
| iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid), |
| pasid, address, flags); |
| break; |
| case EVENT_TYPE_ILL_CMD: |
| dev_err(dev, "Event logged [ILLEGAL_COMMAND_ERROR address=0x%llx]\n", address); |
| dump_command(address); |
| break; |
| case EVENT_TYPE_CMD_HARD_ERR: |
| dev_err(dev, "Event logged [COMMAND_HARDWARE_ERROR address=0x%llx flags=0x%04x]\n", |
| address, flags); |
| break; |
| case EVENT_TYPE_IOTLB_INV_TO: |
| dev_err(dev, "Event logged [IOTLB_INV_TIMEOUT device=%04x:%02x:%02x.%x address=0x%llx]\n", |
| iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid), |
| address); |
| break; |
| case EVENT_TYPE_INV_DEV_REQ: |
| dev_err(dev, "Event logged [INVALID_DEVICE_REQUEST device=%04x:%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x]\n", |
| iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid), |
| pasid, address, flags); |
| break; |
| case EVENT_TYPE_RMP_FAULT: |
| amd_iommu_report_rmp_fault(iommu, event); |
| break; |
| case EVENT_TYPE_RMP_HW_ERR: |
| amd_iommu_report_rmp_hw_error(iommu, event); |
| break; |
| case EVENT_TYPE_INV_PPR_REQ: |
| pasid = PPR_PASID(*((u64 *)__evt)); |
| tag = event[1] & 0x03FF; |
| dev_err(dev, "Event logged [INVALID_PPR_REQUEST device=%04x:%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x tag=0x%03x]\n", |
| iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid), |
| pasid, address, flags, tag); |
| break; |
| default: |
| dev_err(dev, "Event logged [UNKNOWN event[0]=0x%08x event[1]=0x%08x event[2]=0x%08x event[3]=0x%08x\n", |
| event[0], event[1], event[2], event[3]); |
| } |
| |
| memset(__evt, 0, 4 * sizeof(u32)); |
| } |
| |
| static void iommu_poll_events(struct amd_iommu *iommu) |
| { |
| u32 head, tail; |
| |
| head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET); |
| tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET); |
| |
| while (head != tail) { |
| iommu_print_event(iommu, iommu->evt_buf + head); |
| head = (head + EVENT_ENTRY_SIZE) % EVT_BUFFER_SIZE; |
| } |
| |
| writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET); |
| } |
| |
| static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw) |
| { |
| struct amd_iommu_fault fault; |
| |
| if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) { |
| pr_err_ratelimited("Unknown PPR request received\n"); |
| return; |
| } |
| |
| fault.address = raw[1]; |
| fault.pasid = PPR_PASID(raw[0]); |
| fault.sbdf = PCI_SEG_DEVID_TO_SBDF(iommu->pci_seg->id, PPR_DEVID(raw[0])); |
| fault.tag = PPR_TAG(raw[0]); |
| fault.flags = PPR_FLAGS(raw[0]); |
| |
| atomic_notifier_call_chain(&ppr_notifier, 0, &fault); |
| } |
| |
| static void iommu_poll_ppr_log(struct amd_iommu *iommu) |
| { |
| u32 head, tail; |
| |
| if (iommu->ppr_log == NULL) |
| return; |
| |
| head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET); |
| tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET); |
| |
| while (head != tail) { |
| volatile u64 *raw; |
| u64 entry[2]; |
| int i; |
| |
| raw = (u64 *)(iommu->ppr_log + head); |
| |
| /* |
| * Hardware bug: Interrupt may arrive before the entry is |
| * written to memory. If this happens we need to wait for the |
| * entry to arrive. |
| */ |
| for (i = 0; i < LOOP_TIMEOUT; ++i) { |
| if (PPR_REQ_TYPE(raw[0]) != 0) |
| break; |
| udelay(1); |
| } |
| |
| /* Avoid memcpy function-call overhead */ |
| entry[0] = raw[0]; |
| entry[1] = raw[1]; |
| |
| /* |
| * To detect the hardware bug we need to clear the entry |
| * back to zero. |
| */ |
| raw[0] = raw[1] = 0UL; |
| |
| /* Update head pointer of hardware ring-buffer */ |
| head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE; |
| writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET); |
| |
| /* Handle PPR entry */ |
| iommu_handle_ppr_entry(iommu, entry); |
| |
| /* Refresh ring-buffer information */ |
| head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET); |
| tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET); |
| } |
| } |
| |
| #ifdef CONFIG_IRQ_REMAP |
| static int (*iommu_ga_log_notifier)(u32); |
| |
| int amd_iommu_register_ga_log_notifier(int (*notifier)(u32)) |
| { |
| iommu_ga_log_notifier = notifier; |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(amd_iommu_register_ga_log_notifier); |
| |
| static void iommu_poll_ga_log(struct amd_iommu *iommu) |
| { |
| u32 head, tail, cnt = 0; |
| |
| if (iommu->ga_log == NULL) |
| return; |
| |
| head = readl(iommu->mmio_base + MMIO_GA_HEAD_OFFSET); |
| tail = readl(iommu->mmio_base + MMIO_GA_TAIL_OFFSET); |
| |
| while (head != tail) { |
| volatile u64 *raw; |
| u64 log_entry; |
| |
| raw = (u64 *)(iommu->ga_log + head); |
| cnt++; |
| |
| /* Avoid memcpy function-call overhead */ |
| log_entry = *raw; |
| |
| /* Update head pointer of hardware ring-buffer */ |
| head = (head + GA_ENTRY_SIZE) % GA_LOG_SIZE; |
| writel(head, iommu->mmio_base + MMIO_GA_HEAD_OFFSET); |
| |
| /* Handle GA entry */ |
| switch (GA_REQ_TYPE(log_entry)) { |
| case GA_GUEST_NR: |
| if (!iommu_ga_log_notifier) |
| break; |
| |
| pr_debug("%s: devid=%#x, ga_tag=%#x\n", |
| __func__, GA_DEVID(log_entry), |
| GA_TAG(log_entry)); |
| |
| if (iommu_ga_log_notifier(GA_TAG(log_entry)) != 0) |
| pr_err("GA log notifier failed.\n"); |
| break; |
| default: |
| break; |
| } |
| } |
| } |
| |
| static void |
| amd_iommu_set_pci_msi_domain(struct device *dev, struct amd_iommu *iommu) |
| { |
| if (!irq_remapping_enabled || !dev_is_pci(dev) || |
| pci_dev_has_special_msi_domain(to_pci_dev(dev))) |
| return; |
| |
| dev_set_msi_domain(dev, iommu->msi_domain); |
| } |
| |
| #else /* CONFIG_IRQ_REMAP */ |
| static inline void |
| amd_iommu_set_pci_msi_domain(struct device *dev, struct amd_iommu *iommu) { } |
| #endif /* !CONFIG_IRQ_REMAP */ |
| |
| #define AMD_IOMMU_INT_MASK \ |
| (MMIO_STATUS_EVT_OVERFLOW_INT_MASK | \ |
| MMIO_STATUS_EVT_INT_MASK | \ |
| MMIO_STATUS_PPR_INT_MASK | \ |
| MMIO_STATUS_GALOG_INT_MASK) |
| |
| irqreturn_t amd_iommu_int_thread(int irq, void *data) |
| { |
| struct amd_iommu *iommu = (struct amd_iommu *) data; |
| u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET); |
| |
| while (status & AMD_IOMMU_INT_MASK) { |
| /* Enable interrupt sources again */ |
| writel(AMD_IOMMU_INT_MASK, |
| iommu->mmio_base + MMIO_STATUS_OFFSET); |
| |
| if (status & MMIO_STATUS_EVT_INT_MASK) { |
| pr_devel("Processing IOMMU Event Log\n"); |
| iommu_poll_events(iommu); |
| } |
| |
| if (status & MMIO_STATUS_PPR_INT_MASK) { |
| pr_devel("Processing IOMMU PPR Log\n"); |
| iommu_poll_ppr_log(iommu); |
| } |
| |
| #ifdef CONFIG_IRQ_REMAP |
| if (status & MMIO_STATUS_GALOG_INT_MASK) { |
| pr_devel("Processing IOMMU GA Log\n"); |
| iommu_poll_ga_log(iommu); |
| } |
| #endif |
| |
| if (status & MMIO_STATUS_EVT_OVERFLOW_INT_MASK) { |
| pr_info_ratelimited("IOMMU event log overflow\n"); |
| amd_iommu_restart_event_logging(iommu); |
| } |
| |
| /* |
| * Hardware bug: ERBT1312 |
| * When re-enabling interrupt (by writing 1 |
| * to clear the bit), the hardware might also try to set |
| * the interrupt bit in the event status register. |
| * In this scenario, the bit will be set, and disable |
| * subsequent interrupts. |
| * |
| * Workaround: The IOMMU driver should read back the |
| * status register and check if the interrupt bits are cleared. |
| * If not, driver will need to go through the interrupt handler |
| * again and re-clear the bits |
| */ |
| status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET); |
| } |
| return IRQ_HANDLED; |
| } |
| |
| irqreturn_t amd_iommu_int_handler(int irq, void *data) |
| { |
| return IRQ_WAKE_THREAD; |
| } |
| |
| /**************************************************************************** |
| * |
| * IOMMU command queuing functions |
| * |
| ****************************************************************************/ |
| |
| static int wait_on_sem(struct amd_iommu *iommu, u64 data) |
| { |
| int i = 0; |
| |
| while (*iommu->cmd_sem != data && i < LOOP_TIMEOUT) { |
| udelay(1); |
| i += 1; |
| } |
| |
| if (i == LOOP_TIMEOUT) { |
| pr_alert("Completion-Wait loop timed out\n"); |
| return -EIO; |
| } |
| |
| return 0; |
| } |
| |
| static void copy_cmd_to_buffer(struct amd_iommu *iommu, |
| struct iommu_cmd *cmd) |
| { |
| u8 *target; |
| u32 tail; |
| |
| /* Copy command to buffer */ |
| tail = iommu->cmd_buf_tail; |
| target = iommu->cmd_buf + tail; |
| memcpy(target, cmd, sizeof(*cmd)); |
| |
| tail = (tail + sizeof(*cmd)) % CMD_BUFFER_SIZE; |
| iommu->cmd_buf_tail = tail; |
| |
| /* Tell the IOMMU about it */ |
| writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET); |
| } |
| |
| static void build_completion_wait(struct iommu_cmd *cmd, |
| struct amd_iommu *iommu, |
| u64 data) |
| { |
| u64 paddr = iommu_virt_to_phys((void *)iommu->cmd_sem); |
| |
| memset(cmd, 0, sizeof(*cmd)); |
| cmd->data[0] = lower_32_bits(paddr) | CMD_COMPL_WAIT_STORE_MASK; |
| cmd->data[1] = upper_32_bits(paddr); |
| cmd->data[2] = lower_32_bits(data); |
| cmd->data[3] = upper_32_bits(data); |
| CMD_SET_TYPE(cmd, CMD_COMPL_WAIT); |
| } |
| |
| static void build_inv_dte(struct iommu_cmd *cmd, u16 devid) |
| { |
| memset(cmd, 0, sizeof(*cmd)); |
| cmd->data[0] = devid; |
| CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY); |
| } |
| |
| /* |
| * Builds an invalidation address which is suitable for one page or multiple |
| * pages. Sets the size bit (S) as needed is more than one page is flushed. |
| */ |
| static inline u64 build_inv_address(u64 address, size_t size) |
| { |
| u64 pages, end, msb_diff; |
| |
| pages = iommu_num_pages(address, size, PAGE_SIZE); |
| |
| if (pages == 1) |
| return address & PAGE_MASK; |
| |
| end = address + size - 1; |
| |
| /* |
| * msb_diff would hold the index of the most significant bit that |
| * flipped between the start and end. |
| */ |
| msb_diff = fls64(end ^ address) - 1; |
| |
| /* |
| * Bits 63:52 are sign extended. If for some reason bit 51 is different |
| * between the start and the end, invalidate everything. |
| */ |
| if (unlikely(msb_diff > 51)) { |
| address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS; |
| } else { |
| /* |
| * The msb-bit must be clear on the address. Just set all the |
| * lower bits. |
| */ |
| address |= (1ull << msb_diff) - 1; |
| } |
| |
| /* Clear bits 11:0 */ |
| address &= PAGE_MASK; |
| |
| /* Set the size bit - we flush more than one 4kb page */ |
| return address | CMD_INV_IOMMU_PAGES_SIZE_MASK; |
| } |
| |
| static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address, |
| size_t size, u16 domid, int pde) |
| { |
| u64 inv_address = build_inv_address(address, size); |
| |
| memset(cmd, 0, sizeof(*cmd)); |
| cmd->data[1] |= domid; |
| cmd->data[2] = lower_32_bits(inv_address); |
| cmd->data[3] = upper_32_bits(inv_address); |
| CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES); |
| if (pde) /* PDE bit - we want to flush everything, not only the PTEs */ |
| cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK; |
| } |
| |
| static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep, |
| u64 address, size_t size) |
| { |
| u64 inv_address = build_inv_address(address, size); |
| |
| memset(cmd, 0, sizeof(*cmd)); |
| cmd->data[0] = devid; |
| cmd->data[0] |= (qdep & 0xff) << 24; |
| cmd->data[1] = devid; |
| cmd->data[2] = lower_32_bits(inv_address); |
| cmd->data[3] = upper_32_bits(inv_address); |
| CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES); |
| } |
| |
| static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, u32 pasid, |
| u64 address, bool size) |
| { |
| memset(cmd, 0, sizeof(*cmd)); |
| |
| address &= ~(0xfffULL); |
| |
| cmd->data[0] = pasid; |
| cmd->data[1] = domid; |
| cmd->data[2] = lower_32_bits(address); |
| cmd->data[3] = upper_32_bits(address); |
| cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK; |
| cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK; |
| if (size) |
| cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK; |
| CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES); |
| } |
| |
| static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, u32 pasid, |
| int qdep, u64 address, bool size) |
| { |
| memset(cmd, 0, sizeof(*cmd)); |
| |
| address &= ~(0xfffULL); |
| |
| cmd->data[0] = devid; |
| cmd->data[0] |= ((pasid >> 8) & 0xff) << 16; |
| cmd->data[0] |= (qdep & 0xff) << 24; |
| cmd->data[1] = devid; |
| cmd->data[1] |= (pasid & 0xff) << 16; |
| cmd->data[2] = lower_32_bits(address); |
| cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK; |
| cmd->data[3] = upper_32_bits(address); |
| if (size) |
| cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK; |
| CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES); |
| } |
| |
| static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, u32 pasid, |
| int status, int tag, bool gn) |
| { |
| memset(cmd, 0, sizeof(*cmd)); |
| |
| cmd->data[0] = devid; |
| if (gn) { |
| cmd->data[1] = pasid; |
| cmd->data[2] = CMD_INV_IOMMU_PAGES_GN_MASK; |
| } |
| cmd->data[3] = tag & 0x1ff; |
| cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT; |
| |
| CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR); |
| } |
| |
| static void build_inv_all(struct iommu_cmd *cmd) |
| { |
| memset(cmd, 0, sizeof(*cmd)); |
| CMD_SET_TYPE(cmd, CMD_INV_ALL); |
| } |
| |
| static void build_inv_irt(struct iommu_cmd *cmd, u16 devid) |
| { |
| memset(cmd, 0, sizeof(*cmd)); |
| cmd->data[0] = devid; |
| CMD_SET_TYPE(cmd, CMD_INV_IRT); |
| } |
| |
| /* |
| * Writes the command to the IOMMUs command buffer and informs the |
| * hardware about the new command. |
| */ |
| static int __iommu_queue_command_sync(struct amd_iommu *iommu, |
| struct iommu_cmd *cmd, |
| bool sync) |
| { |
| unsigned int count = 0; |
| u32 left, next_tail; |
| |
| next_tail = (iommu->cmd_buf_tail + sizeof(*cmd)) % CMD_BUFFER_SIZE; |
| again: |
| left = (iommu->cmd_buf_head - next_tail) % CMD_BUFFER_SIZE; |
| |
| if (left <= 0x20) { |
| /* Skip udelay() the first time around */ |
| if (count++) { |
| if (count == LOOP_TIMEOUT) { |
| pr_err("Command buffer timeout\n"); |
| return -EIO; |
| } |
| |
| udelay(1); |
| } |
| |
| /* Update head and recheck remaining space */ |
| iommu->cmd_buf_head = readl(iommu->mmio_base + |
| MMIO_CMD_HEAD_OFFSET); |
| |
| goto again; |
| } |
| |
| copy_cmd_to_buffer(iommu, cmd); |
| |
| /* Do we need to make sure all commands are processed? */ |
| iommu->need_sync = sync; |
| |
| return 0; |
| } |
| |
| static int iommu_queue_command_sync(struct amd_iommu *iommu, |
| struct iommu_cmd *cmd, |
| bool sync) |
| { |
| unsigned long flags; |
| int ret; |
| |
| raw_spin_lock_irqsave(&iommu->lock, flags); |
| ret = __iommu_queue_command_sync(iommu, cmd, sync); |
| raw_spin_unlock_irqrestore(&iommu->lock, flags); |
| |
| return ret; |
| } |
| |
| static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd) |
| { |
| return iommu_queue_command_sync(iommu, cmd, true); |
| } |
| |
| /* |
| * This function queues a completion wait command into the command |
| * buffer of an IOMMU |
| */ |
| static int iommu_completion_wait(struct amd_iommu *iommu) |
| { |
| struct iommu_cmd cmd; |
| unsigned long flags; |
| int ret; |
| u64 data; |
| |
| if (!iommu->need_sync) |
| return 0; |
| |
| raw_spin_lock_irqsave(&iommu->lock, flags); |
| |
| data = ++iommu->cmd_sem_val; |
| build_completion_wait(&cmd, iommu, data); |
| |
| ret = __iommu_queue_command_sync(iommu, &cmd, false); |
| if (ret) |
| goto out_unlock; |
| |
| ret = wait_on_sem(iommu, data); |
| |
| out_unlock: |
| raw_spin_unlock_irqrestore(&iommu->lock, flags); |
| |
| return ret; |
| } |
| |
| static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid) |
| { |
| struct iommu_cmd cmd; |
| |
| build_inv_dte(&cmd, devid); |
| |
| return iommu_queue_command(iommu, &cmd); |
| } |
| |
| static void amd_iommu_flush_dte_all(struct amd_iommu *iommu) |
| { |
| u32 devid; |
| u16 last_bdf = iommu->pci_seg->last_bdf; |
| |
| for (devid = 0; devid <= last_bdf; ++devid) |
| iommu_flush_dte(iommu, devid); |
| |
| iommu_completion_wait(iommu); |
| } |
| |
| /* |
| * This function uses heavy locking and may disable irqs for some time. But |
| * this is no issue because it is only called during resume. |
| */ |
| static void amd_iommu_flush_tlb_all(struct amd_iommu *iommu) |
| { |
| u32 dom_id; |
| u16 last_bdf = iommu->pci_seg->last_bdf; |
| |
| for (dom_id = 0; dom_id <= last_bdf; ++dom_id) { |
| struct iommu_cmd cmd; |
| build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, |
| dom_id, 1); |
| iommu_queue_command(iommu, &cmd); |
| } |
| |
| iommu_completion_wait(iommu); |
| } |
| |
| static void amd_iommu_flush_tlb_domid(struct amd_iommu *iommu, u32 dom_id) |
| { |
| struct iommu_cmd cmd; |
| |
| build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, |
| dom_id, 1); |
| iommu_queue_command(iommu, &cmd); |
| |
| iommu_completion_wait(iommu); |
| } |
| |
| static void amd_iommu_flush_all(struct amd_iommu *iommu) |
| { |
| struct iommu_cmd cmd; |
| |
| build_inv_all(&cmd); |
| |
| iommu_queue_command(iommu, &cmd); |
| iommu_completion_wait(iommu); |
| } |
| |
| static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid) |
| { |
| struct iommu_cmd cmd; |
| |
| build_inv_irt(&cmd, devid); |
| |
| iommu_queue_command(iommu, &cmd); |
| } |
| |
| static void amd_iommu_flush_irt_all(struct amd_iommu *iommu) |
| { |
| u32 devid; |
| u16 last_bdf = iommu->pci_seg->last_bdf; |
| |
| for (devid = 0; devid <= last_bdf; devid++) |
| iommu_flush_irt(iommu, devid); |
| |
| iommu_completion_wait(iommu); |
| } |
| |
| void iommu_flush_all_caches(struct amd_iommu *iommu) |
| { |
| if (iommu_feature(iommu, FEATURE_IA)) { |
| amd_iommu_flush_all(iommu); |
| } else { |
| amd_iommu_flush_dte_all(iommu); |
| amd_iommu_flush_irt_all(iommu); |
| amd_iommu_flush_tlb_all(iommu); |
| } |
| } |
| |
| /* |
| * Command send function for flushing on-device TLB |
| */ |
| static int device_flush_iotlb(struct iommu_dev_data *dev_data, |
| u64 address, size_t size) |
| { |
| struct amd_iommu *iommu; |
| struct iommu_cmd cmd; |
| int qdep; |
| |
| qdep = dev_data->ats.qdep; |
| iommu = rlookup_amd_iommu(dev_data->dev); |
| if (!iommu) |
| return -EINVAL; |
| |
| build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size); |
| |
| return iommu_queue_command(iommu, &cmd); |
| } |
| |
| static int device_flush_dte_alias(struct pci_dev *pdev, u16 alias, void *data) |
| { |
| struct amd_iommu *iommu = data; |
| |
| return iommu_flush_dte(iommu, alias); |
| } |
| |
| /* |
| * Command send function for invalidating a device table entry |
| */ |
| static int device_flush_dte(struct iommu_dev_data *dev_data) |
| { |
| struct amd_iommu *iommu; |
| struct pci_dev *pdev = NULL; |
| struct amd_iommu_pci_seg *pci_seg; |
| u16 alias; |
| int ret; |
| |
| iommu = rlookup_amd_iommu(dev_data->dev); |
| if (!iommu) |
| return -EINVAL; |
| |
| if (dev_is_pci(dev_data->dev)) |
| pdev = to_pci_dev(dev_data->dev); |
| |
| if (pdev) |
| ret = pci_for_each_dma_alias(pdev, |
| device_flush_dte_alias, iommu); |
| else |
| ret = iommu_flush_dte(iommu, dev_data->devid); |
| if (ret) |
| return ret; |
| |
| pci_seg = iommu->pci_seg; |
| alias = pci_seg->alias_table[dev_data->devid]; |
| if (alias != dev_data->devid) { |
| ret = iommu_flush_dte(iommu, alias); |
| if (ret) |
| return ret; |
| } |
| |
| if (dev_data->ats.enabled) |
| ret = device_flush_iotlb(dev_data, 0, ~0UL); |
| |
| return ret; |
| } |
| |
| /* |
| * TLB invalidation function which is called from the mapping functions. |
| * It invalidates a single PTE if the range to flush is within a single |
| * page. Otherwise it flushes the whole TLB of the IOMMU. |
| */ |
| static void __domain_flush_pages(struct protection_domain *domain, |
| u64 address, size_t size, int pde) |
| { |
| struct iommu_dev_data *dev_data; |
| struct iommu_cmd cmd; |
| int ret = 0, i; |
| |
| build_inv_iommu_pages(&cmd, address, size, domain->id, pde); |
| |
| for (i = 0; i < amd_iommu_get_num_iommus(); ++i) { |
| if (!domain->dev_iommu[i]) |
| continue; |
| |
| /* |
| * Devices of this domain are behind this IOMMU |
| * We need a TLB flush |
| */ |
| ret |= iommu_queue_command(amd_iommus[i], &cmd); |
| } |
| |
| list_for_each_entry(dev_data, &domain->dev_list, list) { |
| |
| if (!dev_data->ats.enabled) |
| continue; |
| |
| ret |= device_flush_iotlb(dev_data, address, size); |
| } |
| |
| WARN_ON(ret); |
| } |
| |
| static void domain_flush_pages(struct protection_domain *domain, |
| u64 address, size_t size, int pde) |
| { |
| if (likely(!amd_iommu_np_cache)) { |
| __domain_flush_pages(domain, address, size, pde); |
| return; |
| } |
| |
| /* |
| * When NpCache is on, we infer that we run in a VM and use a vIOMMU. |
| * In such setups it is best to avoid flushes of ranges which are not |
| * naturally aligned, since it would lead to flushes of unmodified |
| * PTEs. Such flushes would require the hypervisor to do more work than |
| * necessary. Therefore, perform repeated flushes of aligned ranges |
| * until you cover the range. Each iteration flushes the smaller |
| * between the natural alignment of the address that we flush and the |
| * greatest naturally aligned region that fits in the range. |
| */ |
| while (size != 0) { |
| int addr_alignment = __ffs(address); |
| int size_alignment = __fls(size); |
| int min_alignment; |
| size_t flush_size; |
| |
| /* |
| * size is always non-zero, but address might be zero, causing |
| * addr_alignment to be negative. As the casting of the |
| * argument in __ffs(address) to long might trim the high bits |
| * of the address on x86-32, cast to long when doing the check. |
| */ |
| if (likely((unsigned long)address != 0)) |
| min_alignment = min(addr_alignment, size_alignment); |
| else |
| min_alignment = size_alignment; |
| |
| flush_size = 1ul << min_alignment; |
| |
| __domain_flush_pages(domain, address, flush_size, pde); |
| address += flush_size; |
| size -= flush_size; |
| } |
| } |
| |
| /* Flush the whole IO/TLB for a given protection domain - including PDE */ |
| void amd_iommu_domain_flush_tlb_pde(struct protection_domain *domain) |
| { |
| domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1); |
| } |
| |
| void amd_iommu_domain_flush_complete(struct protection_domain *domain) |
| { |
| int i; |
| |
| for (i = 0; i < amd_iommu_get_num_iommus(); ++i) { |
| if (domain && !domain->dev_iommu[i]) |
| continue; |
| |
| /* |
| * Devices of this domain are behind this IOMMU |
| * We need to wait for completion of all commands. |
| */ |
| iommu_completion_wait(amd_iommus[i]); |
| } |
| } |
| |
| /* Flush the not present cache if it exists */ |
| static void domain_flush_np_cache(struct protection_domain *domain, |
| dma_addr_t iova, size_t size) |
| { |
| if (unlikely(amd_iommu_np_cache)) { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&domain->lock, flags); |
| domain_flush_pages(domain, iova, size, 1); |
| amd_iommu_domain_flush_complete(domain); |
| spin_unlock_irqrestore(&domain->lock, flags); |
| } |
| } |
| |
| |
| /* |
| * This function flushes the DTEs for all devices in domain |
| */ |
| static void domain_flush_devices(struct protection_domain *domain) |
| { |
| struct iommu_dev_data *dev_data; |
| |
| list_for_each_entry(dev_data, &domain->dev_list, list) |
| device_flush_dte(dev_data); |
| } |
| |
| /**************************************************************************** |
| * |
| * The next functions belong to the domain allocation. A domain is |
| * allocated for every IOMMU as the default domain. If device isolation |
| * is enabled, every device get its own domain. The most important thing |
| * about domains is the page table mapping the DMA address space they |
| * contain. |
| * |
| ****************************************************************************/ |
| |
| static u16 domain_id_alloc(void) |
| { |
| int id; |
| |
| spin_lock(&pd_bitmap_lock); |
| id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID); |
| BUG_ON(id == 0); |
| if (id > 0 && id < MAX_DOMAIN_ID) |
| __set_bit(id, amd_iommu_pd_alloc_bitmap); |
| else |
| id = 0; |
| spin_unlock(&pd_bitmap_lock); |
| |
| return id; |
| } |
| |
| static void domain_id_free(int id) |
| { |
| spin_lock(&pd_bitmap_lock); |
| if (id > 0 && id < MAX_DOMAIN_ID) |
| __clear_bit(id, amd_iommu_pd_alloc_bitmap); |
| spin_unlock(&pd_bitmap_lock); |
| } |
| |
| static void free_gcr3_tbl_level1(u64 *tbl) |
| { |
| u64 *ptr; |
| int i; |
| |
| for (i = 0; i < 512; ++i) { |
| if (!(tbl[i] & GCR3_VALID)) |
| continue; |
| |
| ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK); |
| |
| free_page((unsigned long)ptr); |
| } |
| } |
| |
| static void free_gcr3_tbl_level2(u64 *tbl) |
| { |
| u64 *ptr; |
| int i; |
| |
| for (i = 0; i < 512; ++i) { |
| if (!(tbl[i] & GCR3_VALID)) |
| continue; |
| |
| ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK); |
| |
| free_gcr3_tbl_level1(ptr); |
| } |
| } |
| |
| static void free_gcr3_table(struct protection_domain *domain) |
| { |
| if (domain->glx == 2) |
| free_gcr3_tbl_level2(domain->gcr3_tbl); |
| else if (domain->glx == 1) |
| free_gcr3_tbl_level1(domain->gcr3_tbl); |
| else |
| BUG_ON(domain->glx != 0); |
| |
| free_page((unsigned long)domain->gcr3_tbl); |
| } |
| |
| static void set_dte_entry(struct amd_iommu *iommu, u16 devid, |
| struct protection_domain *domain, bool ats, bool ppr) |
| { |
| u64 pte_root = 0; |
| u64 flags = 0; |
| u32 old_domid; |
| struct dev_table_entry *dev_table = get_dev_table(iommu); |
| |
| if (domain->iop.mode != PAGE_MODE_NONE) |
| pte_root = iommu_virt_to_phys(domain->iop.root); |
| |
| pte_root |= (domain->iop.mode & DEV_ENTRY_MODE_MASK) |
| << DEV_ENTRY_MODE_SHIFT; |
| |
| pte_root |= DTE_FLAG_IR | DTE_FLAG_IW | DTE_FLAG_V; |
| |
| /* |
| * When SNP is enabled, Only set TV bit when IOMMU |
| * page translation is in use. |
| */ |
| if (!amd_iommu_snp_en || (domain->id != 0)) |
| pte_root |= DTE_FLAG_TV; |
| |
| flags = dev_table[devid].data[1]; |
| |
| if (ats) |
| flags |= DTE_FLAG_IOTLB; |
| |
| if (ppr) { |
| if (iommu_feature(iommu, FEATURE_EPHSUP)) |
| pte_root |= 1ULL << DEV_ENTRY_PPR; |
| } |
| |
| if (domain->flags & PD_IOMMUV2_MASK) { |
| u64 gcr3 = iommu_virt_to_phys(domain->gcr3_tbl); |
| u64 glx = domain->glx; |
| u64 tmp; |
| |
| pte_root |= DTE_FLAG_GV; |
| pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT; |
| |
| /* First mask out possible old values for GCR3 table */ |
| tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B; |
| flags &= ~tmp; |
| |
| tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C; |
| flags &= ~tmp; |
| |
| /* Encode GCR3 table into DTE */ |
| tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A; |
| pte_root |= tmp; |
| |
| tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B; |
| flags |= tmp; |
| |
| tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C; |
| flags |= tmp; |
| |
| if (domain->flags & PD_GIOV_MASK) |
| pte_root |= DTE_FLAG_GIOV; |
| } |
| |
| flags &= ~DEV_DOMID_MASK; |
| flags |= domain->id; |
| |
| old_domid = dev_table[devid].data[1] & DEV_DOMID_MASK; |
| dev_table[devid].data[1] = flags; |
| dev_table[devid].data[0] = pte_root; |
| |
| /* |
| * A kdump kernel might be replacing a domain ID that was copied from |
| * the previous kernel--if so, it needs to flush the translation cache |
| * entries for the old domain ID that is being overwritten |
| */ |
| if (old_domid) { |
| amd_iommu_flush_tlb_domid(iommu, old_domid); |
| } |
| } |
| |
| static void clear_dte_entry(struct amd_iommu *iommu, u16 devid) |
| { |
| struct dev_table_entry *dev_table = get_dev_table(iommu); |
| |
| /* remove entry from the device table seen by the hardware */ |
| dev_table[devid].data[0] = DTE_FLAG_V; |
| |
| if (!amd_iommu_snp_en) |
| dev_table[devid].data[0] |= DTE_FLAG_TV; |
| |
| dev_table[devid].data[1] &= DTE_FLAG_MASK; |
| |
| amd_iommu_apply_erratum_63(iommu, devid); |
| } |
| |
| static void do_attach(struct iommu_dev_data *dev_data, |
| struct protection_domain *domain) |
| { |
| struct amd_iommu *iommu; |
| bool ats; |
| |
| iommu = rlookup_amd_iommu(dev_data->dev); |
| if (!iommu) |
| return; |
| ats = dev_data->ats.enabled; |
| |
| /* Update data structures */ |
| dev_data->domain = domain; |
| list_add(&dev_data->list, &domain->dev_list); |
| |
| /* Do reference counting */ |
| domain->dev_iommu[iommu->index] += 1; |
| domain->dev_cnt += 1; |
| |
| /* Override supported page sizes */ |
| if (domain->flags & PD_GIOV_MASK) |
| domain->domain.pgsize_bitmap = AMD_IOMMU_PGSIZES_V2; |
| |
| /* Update device table */ |
| set_dte_entry(iommu, dev_data->devid, domain, |
| ats, dev_data->iommu_v2); |
| clone_aliases(iommu, dev_data->dev); |
| |
| device_flush_dte(dev_data); |
| } |
| |
| static void do_detach(struct iommu_dev_data *dev_data) |
| { |
| struct protection_domain *domain = dev_data->domain; |
| struct amd_iommu *iommu; |
| |
| iommu = rlookup_amd_iommu(dev_data->dev); |
| if (!iommu) |
| return; |
| |
| /* Update data structures */ |
| dev_data->domain = NULL; |
| list_del(&dev_data->list); |
| clear_dte_entry(iommu, dev_data->devid); |
| clone_aliases(iommu, dev_data->dev); |
| |
| /* Flush the DTE entry */ |
| device_flush_dte(dev_data); |
| |
| /* Flush IOTLB */ |
| amd_iommu_domain_flush_tlb_pde(domain); |
| |
| /* Wait for the flushes to finish */ |
| amd_iommu_domain_flush_complete(domain); |
| |
| /* decrease reference counters - needs to happen after the flushes */ |
| domain->dev_iommu[iommu->index] -= 1; |
| domain->dev_cnt -= 1; |
| } |
| |
| static void pdev_iommuv2_disable(struct pci_dev *pdev) |
| { |
| pci_disable_ats(pdev); |
| pci_disable_pri(pdev); |
| pci_disable_pasid(pdev); |
| } |
| |
| static int pdev_pri_ats_enable(struct pci_dev *pdev) |
| { |
| int ret; |
| |
| /* Only allow access to user-accessible pages */ |
| ret = pci_enable_pasid(pdev, 0); |
| if (ret) |
| return ret; |
| |
| /* First reset the PRI state of the device */ |
| ret = pci_reset_pri(pdev); |
| if (ret) |
| goto out_err_pasid; |
| |
| /* Enable PRI */ |
| /* FIXME: Hardcode number of outstanding requests for now */ |
| ret = pci_enable_pri(pdev, 32); |
| if (ret) |
| goto out_err_pasid; |
| |
| ret = pci_enable_ats(pdev, PAGE_SHIFT); |
| if (ret) |
| goto out_err_pri; |
| |
| return 0; |
| |
| out_err_pri: |
| pci_disable_pri(pdev); |
| |
| out_err_pasid: |
| pci_disable_pasid(pdev); |
| |
| return ret; |
| } |
| |
| /* |
| * If a device is not yet associated with a domain, this function makes the |
| * device visible in the domain |
| */ |
| static int attach_device(struct device *dev, |
| struct protection_domain *domain) |
| { |
| struct iommu_dev_data *dev_data; |
| struct pci_dev *pdev; |
| unsigned long flags; |
| int ret; |
| |
| spin_lock_irqsave(&domain->lock, flags); |
| |
| dev_data = dev_iommu_priv_get(dev); |
| |
| spin_lock(&dev_data->lock); |
| |
| ret = -EBUSY; |
| if (dev_data->domain != NULL) |
| goto out; |
| |
| if (!dev_is_pci(dev)) |
| goto skip_ats_check; |
| |
| pdev = to_pci_dev(dev); |
| if (domain->flags & PD_IOMMUV2_MASK) { |
| struct iommu_domain *def_domain = iommu_get_dma_domain(dev); |
| |
| ret = -EINVAL; |
| |
| /* |
| * In case of using AMD_IOMMU_V1 page table mode and the device |
| * is enabling for PPR/ATS support (using v2 table), |
| * we need to make sure that the domain type is identity map. |
| */ |
| if ((amd_iommu_pgtable == AMD_IOMMU_V1) && |
| def_domain->type != IOMMU_DOMAIN_IDENTITY) { |
| goto out; |
| } |
| |
| if (dev_data->iommu_v2) { |
| if (pdev_pri_ats_enable(pdev) != 0) |
| goto out; |
| |
| dev_data->ats.enabled = true; |
| dev_data->ats.qdep = pci_ats_queue_depth(pdev); |
| dev_data->pri_tlp = pci_prg_resp_pasid_required(pdev); |
| } |
| } else if (amd_iommu_iotlb_sup && |
| pci_enable_ats(pdev, PAGE_SHIFT) == 0) { |
| dev_data->ats.enabled = true; |
| dev_data->ats.qdep = pci_ats_queue_depth(pdev); |
| } |
| |
| skip_ats_check: |
| ret = 0; |
| |
| do_attach(dev_data, domain); |
| |
| /* |
| * We might boot into a crash-kernel here. The crashed kernel |
| * left the caches in the IOMMU dirty. So we have to flush |
| * here to evict all dirty stuff. |
| */ |
| amd_iommu_domain_flush_tlb_pde(domain); |
| |
| amd_iommu_domain_flush_complete(domain); |
| |
| out: |
| spin_unlock(&dev_data->lock); |
| |
| spin_unlock_irqrestore(&domain->lock, flags); |
| |
| return ret; |
| } |
| |
| /* |
| * Removes a device from a protection domain (with devtable_lock held) |
| */ |
| static void detach_device(struct device *dev) |
| { |
| struct protection_domain *domain; |
| struct iommu_dev_data *dev_data; |
| unsigned long flags; |
| |
| dev_data = dev_iommu_priv_get(dev); |
| domain = dev_data->domain; |
| |
| spin_lock_irqsave(&domain->lock, flags); |
| |
| spin_lock(&dev_data->lock); |
| |
| /* |
| * First check if the device is still attached. It might already |
| * be detached from its domain because the generic |
| * iommu_detach_group code detached it and we try again here in |
| * our alias handling. |
| */ |
| if (WARN_ON(!dev_data->domain)) |
| goto out; |
| |
| do_detach(dev_data); |
| |
| if (!dev_is_pci(dev)) |
| goto out; |
| |
| if (domain->flags & PD_IOMMUV2_MASK && dev_data->iommu_v2) |
| pdev_iommuv2_disable(to_pci_dev(dev)); |
| else if (dev_data->ats.enabled) |
| pci_disable_ats(to_pci_dev(dev)); |
| |
| dev_data->ats.enabled = false; |
| |
| out: |
| spin_unlock(&dev_data->lock); |
| |
| spin_unlock_irqrestore(&domain->lock, flags); |
| } |
| |
| static struct iommu_device *amd_iommu_probe_device(struct device *dev) |
| { |
| struct iommu_device *iommu_dev; |
| struct amd_iommu *iommu; |
| int ret; |
| |
| if (!check_device(dev)) |
| return ERR_PTR(-ENODEV); |
| |
| iommu = rlookup_amd_iommu(dev); |
| if (!iommu) |
| return ERR_PTR(-ENODEV); |
| |
| /* Not registered yet? */ |
| if (!iommu->iommu.ops) |
| return ERR_PTR(-ENODEV); |
| |
| if (dev_iommu_priv_get(dev)) |
| return &iommu->iommu; |
| |
| ret = iommu_init_device(iommu, dev); |
| if (ret) { |
| if (ret != -ENOTSUPP) |
| dev_err(dev, "Failed to initialize - trying to proceed anyway\n"); |
| iommu_dev = ERR_PTR(ret); |
| iommu_ignore_device(iommu, dev); |
| } else { |
| amd_iommu_set_pci_msi_domain(dev, iommu); |
| iommu_dev = &iommu->iommu; |
| } |
| |
| iommu_completion_wait(iommu); |
| |
| return iommu_dev; |
| } |
| |
| static void amd_iommu_probe_finalize(struct device *dev) |
| { |
| /* Domains are initialized for this device - have a look what we ended up with */ |
| set_dma_ops(dev, NULL); |
| iommu_setup_dma_ops(dev, 0, U64_MAX); |
| } |
| |
| static void amd_iommu_release_device(struct device *dev) |
| { |
| struct amd_iommu *iommu; |
| |
| if (!check_device(dev)) |
| return; |
| |
| iommu = rlookup_amd_iommu(dev); |
| if (!iommu) |
| return; |
| |
| amd_iommu_uninit_device(dev); |
| iommu_completion_wait(iommu); |
| } |
| |
| static struct iommu_group *amd_iommu_device_group(struct device *dev) |
| { |
| if (dev_is_pci(dev)) |
| return pci_device_group(dev); |
| |
| return acpihid_device_group(dev); |
| } |
| |
| /***************************************************************************** |
| * |
| * The next functions belong to the dma_ops mapping/unmapping code. |
| * |
| *****************************************************************************/ |
| |
| static void update_device_table(struct protection_domain *domain) |
| { |
| struct iommu_dev_data *dev_data; |
| |
| list_for_each_entry(dev_data, &domain->dev_list, list) { |
| struct amd_iommu *iommu = rlookup_amd_iommu(dev_data->dev); |
| |
| if (!iommu) |
| continue; |
| set_dte_entry(iommu, dev_data->devid, domain, |
| dev_data->ats.enabled, dev_data->iommu_v2); |
| clone_aliases(iommu, dev_data->dev); |
| } |
| } |
| |
| void amd_iommu_update_and_flush_device_table(struct protection_domain *domain) |
| { |
| update_device_table(domain); |
| domain_flush_devices(domain); |
| } |
| |
| void amd_iommu_domain_update(struct protection_domain *domain) |
| { |
| /* Update device table */ |
| amd_iommu_update_and_flush_device_table(domain); |
| |
| /* Flush domain TLB(s) and wait for completion */ |
| amd_iommu_domain_flush_tlb_pde(domain); |
| amd_iommu_domain_flush_complete(domain); |
| } |
| |
| /***************************************************************************** |
| * |
| * The following functions belong to the exported interface of AMD IOMMU |
| * |
| * This interface allows access to lower level functions of the IOMMU |
| * like protection domain handling and assignement of devices to domains |
| * which is not possible with the dma_ops interface. |
| * |
| *****************************************************************************/ |
| |
| static void cleanup_domain(struct protection_domain *domain) |
| { |
| struct iommu_dev_data *entry; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&domain->lock, flags); |
| |
| while (!list_empty(&domain->dev_list)) { |
| entry = list_first_entry(&domain->dev_list, |
| struct iommu_dev_data, list); |
| BUG_ON(!entry->domain); |
| do_detach(entry); |
| } |
| |
| spin_unlock_irqrestore(&domain->lock, flags); |
| } |
| |
| static void protection_domain_free(struct protection_domain *domain) |
| { |
| if (!domain) |
| return; |
| |
| if (domain->iop.pgtbl_cfg.tlb) |
| free_io_pgtable_ops(&domain->iop.iop.ops); |
| |
| if (domain->id) |
| domain_id_free(domain->id); |
| |
| kfree(domain); |
| } |
| |
| static int protection_domain_init_v1(struct protection_domain *domain, int mode) |
| { |
| u64 *pt_root = NULL; |
| |
| BUG_ON(mode < PAGE_MODE_NONE || mode > PAGE_MODE_6_LEVEL); |
| |
| spin_lock_init(&domain->lock); |
| domain->id = domain_id_alloc(); |
| if (!domain->id) |
| return -ENOMEM; |
| INIT_LIST_HEAD(&domain->dev_list); |
| |
| if (mode != PAGE_MODE_NONE) { |
| pt_root = (void *)get_zeroed_page(GFP_KERNEL); |
| if (!pt_root) { |
| domain_id_free(domain->id); |
| return -ENOMEM; |
| } |
| } |
| |
| amd_iommu_domain_set_pgtable(domain, pt_root, mode); |
| |
| return 0; |
| } |
| |
| static int protection_domain_init_v2(struct protection_domain *domain) |
| { |
| spin_lock_init(&domain->lock); |
| domain->id = domain_id_alloc(); |
| if (!domain->id) |
| return -ENOMEM; |
| INIT_LIST_HEAD(&domain->dev_list); |
| |
| domain->flags |= PD_GIOV_MASK; |
| |
| if (domain_enable_v2(domain, 1)) { |
| domain_id_free(domain->id); |
| return -ENOMEM; |
| } |
| |
| return 0; |
| } |
| |
| static struct protection_domain *protection_domain_alloc(unsigned int type) |
| { |
| struct io_pgtable_ops *pgtbl_ops; |
| struct protection_domain *domain; |
| int pgtable; |
| int mode = DEFAULT_PGTABLE_LEVEL; |
| int ret; |
| |
| domain = kzalloc(sizeof(*domain), GFP_KERNEL); |
| if (!domain) |
| return NULL; |
| |
| /* |
| * Force IOMMU v1 page table when iommu=pt and |
| * when allocating domain for pass-through devices. |
| */ |
| if (type == IOMMU_DOMAIN_IDENTITY) { |
| pgtable = AMD_IOMMU_V1; |
| mode = PAGE_MODE_NONE; |
| } else if (type == IOMMU_DOMAIN_UNMANAGED) { |
| pgtable = AMD_IOMMU_V1; |
| } else if (type == IOMMU_DOMAIN_DMA || type == IOMMU_DOMAIN_DMA_FQ) { |
| pgtable = amd_iommu_pgtable; |
| } else { |
| return NULL; |
| } |
| |
| switch (pgtable) { |
| case AMD_IOMMU_V1: |
| ret = protection_domain_init_v1(domain, mode); |
| break; |
| case AMD_IOMMU_V2: |
| ret = protection_domain_init_v2(domain); |
| break; |
| default: |
| ret = -EINVAL; |
| } |
| |
| if (ret) |
| goto out_err; |
| |
| pgtbl_ops = alloc_io_pgtable_ops(pgtable, &domain->iop.pgtbl_cfg, domain); |
| if (!pgtbl_ops) { |
| domain_id_free(domain->id); |
| goto out_err; |
| } |
| |
| return domain; |
| out_err: |
| kfree(domain); |
| return NULL; |
| } |
| |
| static struct iommu_domain *amd_iommu_domain_alloc(unsigned type) |
| { |
| struct protection_domain *domain; |
| |
| /* |
| * Since DTE[Mode]=0 is prohibited on SNP-enabled system, |
| * default to use IOMMU_DOMAIN_DMA[_FQ]. |
| */ |
| if (amd_iommu_snp_en && (type == IOMMU_DOMAIN_IDENTITY)) |
| return NULL; |
| |
| domain = protection_domain_alloc(type); |
| if (!domain) |
| return NULL; |
| |
| domain->domain.geometry.aperture_start = 0; |
| domain->domain.geometry.aperture_end = ~0ULL; |
| domain->domain.geometry.force_aperture = true; |
| |
| return &domain->domain; |
| } |
| |
| static void amd_iommu_domain_free(struct iommu_domain *dom) |
| { |
| struct protection_domain *domain; |
| |
| domain = to_pdomain(dom); |
| |
| if (domain->dev_cnt > 0) |
| cleanup_domain(domain); |
| |
| BUG_ON(domain->dev_cnt != 0); |
| |
| if (!dom) |
| return; |
| |
| if (domain->flags & PD_IOMMUV2_MASK) |
| free_gcr3_table(domain); |
| |
| protection_domain_free(domain); |
| } |
| |
| static void amd_iommu_detach_device(struct iommu_domain *dom, |
| struct device *dev) |
| { |
| struct iommu_dev_data *dev_data = dev_iommu_priv_get(dev); |
| struct amd_iommu *iommu; |
| |
| if (!check_device(dev)) |
| return; |
| |
| if (dev_data->domain != NULL) |
| detach_device(dev); |
| |
| iommu = rlookup_amd_iommu(dev); |
| if (!iommu) |
| return; |
| |
| #ifdef CONFIG_IRQ_REMAP |
| if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) && |
| (dom->type == IOMMU_DOMAIN_UNMANAGED)) |
| dev_data->use_vapic = 0; |
| #endif |
| |
| iommu_completion_wait(iommu); |
| } |
| |
| static int amd_iommu_attach_device(struct iommu_domain *dom, |
| struct device *dev) |
| { |
| struct protection_domain *domain = to_pdomain(dom); |
| struct iommu_dev_data *dev_data; |
| struct amd_iommu *iommu; |
| int ret; |
| |
| if (!check_device(dev)) |
| return -EINVAL; |
| |
| dev_data = dev_iommu_priv_get(dev); |
| dev_data->defer_attach = false; |
| |
| iommu = rlookup_amd_iommu(dev); |
| if (!iommu) |
| return -EINVAL; |
| |
| if (dev_data->domain) |
| detach_device(dev); |
| |
| ret = attach_device(dev, domain); |
| |
| #ifdef CONFIG_IRQ_REMAP |
| if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) { |
| if (dom->type == IOMMU_DOMAIN_UNMANAGED) |
| dev_data->use_vapic = 1; |
| else |
| dev_data->use_vapic = 0; |
| } |
| #endif |
| |
| iommu_completion_wait(iommu); |
| |
| return ret; |
| } |
| |
| static void amd_iommu_iotlb_sync_map(struct iommu_domain *dom, |
| unsigned long iova, size_t size) |
| { |
| struct protection_domain *domain = to_pdomain(dom); |
| struct io_pgtable_ops *ops = &domain->iop.iop.ops; |
| |
| if (ops->map_pages) |
| domain_flush_np_cache(domain, iova, size); |
| } |
| |
| static int amd_iommu_map_pages(struct iommu_domain *dom, unsigned long iova, |
| phys_addr_t paddr, size_t pgsize, size_t pgcount, |
| int iommu_prot, gfp_t gfp, size_t *mapped) |
| { |
| struct protection_domain *domain = to_pdomain(dom); |
| struct io_pgtable_ops *ops = &domain->iop.iop.ops; |
| int prot = 0; |
| int ret = -EINVAL; |
| |
| if ((amd_iommu_pgtable == AMD_IOMMU_V1) && |
| (domain->iop.mode == PAGE_MODE_NONE)) |
| return -EINVAL; |
| |
| if (iommu_prot & IOMMU_READ) |
| prot |= IOMMU_PROT_IR; |
| if (iommu_prot & IOMMU_WRITE) |
| prot |= IOMMU_PROT_IW; |
| |
| if (ops->map_pages) { |
| ret = ops->map_pages(ops, iova, paddr, pgsize, |
| pgcount, prot, gfp, mapped); |
| } |
| |
| return ret; |
| } |
| |
| static void amd_iommu_iotlb_gather_add_page(struct iommu_domain *domain, |
| struct iommu_iotlb_gather *gather, |
| unsigned long iova, size_t size) |
| { |
| /* |
| * AMD's IOMMU can flush as many pages as necessary in a single flush. |
| * Unless we run in a virtual machine, which can be inferred according |
| * to whether "non-present cache" is on, it is probably best to prefer |
| * (potentially) too extensive TLB flushing (i.e., more misses) over |
| * mutliple TLB flushes (i.e., more flushes). For virtual machines the |
| * hypervisor needs to synchronize the host IOMMU PTEs with those of |
| * the guest, and the trade-off is different: unnecessary TLB flushes |
| * should be avoided. |
| */ |
| if (amd_iommu_np_cache && |
| iommu_iotlb_gather_is_disjoint(gather, iova, size)) |
| iommu_iotlb_sync(domain, gather); |
| |
| iommu_iotlb_gather_add_range(gather, iova, size); |
| } |
| |
| static size_t amd_iommu_unmap_pages(struct iommu_domain *dom, unsigned long iova, |
| size_t pgsize, size_t pgcount, |
| struct iommu_iotlb_gather *gather) |
| { |
| struct protection_domain *domain = to_pdomain(dom); |
| struct io_pgtable_ops *ops = &domain->iop.iop.ops; |
| size_t r; |
| |
| if ((amd_iommu_pgtable == AMD_IOMMU_V1) && |
| (domain->iop.mode == PAGE_MODE_NONE)) |
| return 0; |
| |
| r = (ops->unmap_pages) ? ops->unmap_pages(ops, iova, pgsize, pgcount, NULL) : 0; |
| |
| if (r) |
| amd_iommu_iotlb_gather_add_page(dom, gather, iova, r); |
| |
| return r; |
| } |
| |
| static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom, |
| dma_addr_t iova) |
| { |
| struct protection_domain *domain = to_pdomain(dom); |
| struct io_pgtable_ops *ops = &domain->iop.iop.ops; |
| |
| return ops->iova_to_phys(ops, iova); |
| } |
| |
| static bool amd_iommu_capable(struct device *dev, enum iommu_cap cap) |
| { |
| switch (cap) { |
| case IOMMU_CAP_CACHE_COHERENCY: |
| return true; |
| case IOMMU_CAP_INTR_REMAP: |
| return (irq_remapping_enabled == 1); |
| case IOMMU_CAP_NOEXEC: |
| return false; |
| case IOMMU_CAP_PRE_BOOT_PROTECTION: |
| return amdr_ivrs_remap_support; |
| default: |
| break; |
| } |
| |
| return false; |
| } |
| |
| static void amd_iommu_get_resv_regions(struct device *dev, |
| struct list_head *head) |
| { |
| struct iommu_resv_region *region; |
| struct unity_map_entry *entry; |
| struct amd_iommu *iommu; |
| struct amd_iommu_pci_seg *pci_seg; |
| int devid, sbdf; |
| |
| sbdf = get_device_sbdf_id(dev); |
| if (sbdf < 0) |
| return; |
| |
| devid = PCI_SBDF_TO_DEVID(sbdf); |
| iommu = rlookup_amd_iommu(dev); |
| if (!iommu) |
| return; |
| pci_seg = iommu->pci_seg; |
| |
| list_for_each_entry(entry, &pci_seg->unity_map, list) { |
| int type, prot = 0; |
| size_t length; |
| |
| if (devid < entry->devid_start || devid > entry->devid_end) |
| continue; |
| |
| type = IOMMU_RESV_DIRECT; |
| length = entry->address_end - entry->address_start; |
| if (entry->prot & IOMMU_PROT_IR) |
| prot |= IOMMU_READ; |
| if (entry->prot & IOMMU_PROT_IW) |
| prot |= IOMMU_WRITE; |
| if (entry->prot & IOMMU_UNITY_MAP_FLAG_EXCL_RANGE) |
| /* Exclusion range */ |
| type = IOMMU_RESV_RESERVED; |
| |
| region = iommu_alloc_resv_region(entry->address_start, |
| length, prot, type, |
| GFP_KERNEL); |
| if (!region) { |
| dev_err(dev, "Out of memory allocating dm-regions\n"); |
| return; |
| } |
| list_add_tail(®ion->list, head); |
| } |
| |
| region = iommu_alloc_resv_region(MSI_RANGE_START, |
| MSI_RANGE_END - MSI_RANGE_START + 1, |
| 0, IOMMU_RESV_MSI, GFP_KERNEL); |
| if (!region) |
| return; |
| list_add_tail(®ion->list, head); |
| |
| region = iommu_alloc_resv_region(HT_RANGE_START, |
| HT_RANGE_END - HT_RANGE_START + 1, |
| 0, IOMMU_RESV_RESERVED, GFP_KERNEL); |
| if (!region) |
| return; |
| list_add_tail(®ion->list, head); |
| } |
| |
| bool amd_iommu_is_attach_deferred(struct device *dev) |
| { |
| struct iommu_dev_data *dev_data = dev_iommu_priv_get(dev); |
| |
| return dev_data->defer_attach; |
| } |
| EXPORT_SYMBOL_GPL(amd_iommu_is_attach_deferred); |
| |
| static void amd_iommu_flush_iotlb_all(struct iommu_domain *domain) |
| { |
| struct protection_domain *dom = to_pdomain(domain); |
| unsigned long flags; |
| |
| spin_lock_irqsave(&dom->lock, flags); |
| amd_iommu_domain_flush_tlb_pde(dom); |
| amd_iommu_domain_flush_complete(dom); |
| spin_unlock_irqrestore(&dom->lock, flags); |
| } |
| |
| static void amd_iommu_iotlb_sync(struct iommu_domain *domain, |
| struct iommu_iotlb_gather *gather) |
| { |
| struct protection_domain *dom = to_pdomain(domain); |
| unsigned long flags; |
| |
| spin_lock_irqsave(&dom->lock, flags); |
| domain_flush_pages(dom, gather->start, gather->end - gather->start, 1); |
| amd_iommu_domain_flush_complete(dom); |
| spin_unlock_irqrestore(&dom->lock, flags); |
| } |
| |
| static int amd_iommu_def_domain_type(struct device *dev) |
| { |
| struct iommu_dev_data *dev_data; |
| |
| dev_data = dev_iommu_priv_get(dev); |
| if (!dev_data) |
| return 0; |
| |
| /* |
| * Do not identity map IOMMUv2 capable devices when: |
| * - memory encryption is active, because some of those devices |
| * (AMD GPUs) don't have the encryption bit in their DMA-mask |
| * and require remapping. |
| * - SNP is enabled, because it prohibits DTE[Mode]=0. |
| */ |
| if (dev_data->iommu_v2 && |
| !cc_platform_has(CC_ATTR_MEM_ENCRYPT) && |
| !amd_iommu_snp_en) { |
| return IOMMU_DOMAIN_IDENTITY; |
| } |
| |
| return 0; |
| } |
| |
| static bool amd_iommu_enforce_cache_coherency(struct iommu_domain *domain) |
| { |
| /* IOMMU_PTE_FC is always set */ |
| return true; |
| } |
| |
| const struct iommu_ops amd_iommu_ops = { |
| .capable = amd_iommu_capable, |
| .domain_alloc = amd_iommu_domain_alloc, |
| .probe_device = amd_iommu_probe_device, |
| .release_device = amd_iommu_release_device, |
| .probe_finalize = amd_iommu_probe_finalize, |
| .device_group = amd_iommu_device_group, |
| .get_resv_regions = amd_iommu_get_resv_regions, |
| .is_attach_deferred = amd_iommu_is_attach_deferred, |
| .pgsize_bitmap = AMD_IOMMU_PGSIZES, |
| .def_domain_type = amd_iommu_def_domain_type, |
| .default_domain_ops = &(const struct iommu_domain_ops) { |
| .attach_dev = amd_iommu_attach_device, |
| .detach_dev = amd_iommu_detach_device, |
| .map_pages = amd_iommu_map_pages, |
| .unmap_pages = amd_iommu_unmap_pages, |
| .iotlb_sync_map = amd_iommu_iotlb_sync_map, |
| .iova_to_phys = amd_iommu_iova_to_phys, |
| .flush_iotlb_all = amd_iommu_flush_iotlb_all, |
| .iotlb_sync = amd_iommu_iotlb_sync, |
| .free = amd_iommu_domain_free, |
| .enforce_cache_coherency = amd_iommu_enforce_cache_coherency, |
| } |
| }; |
| |
| /***************************************************************************** |
| * |
| * The next functions do a basic initialization of IOMMU for pass through |
| * mode |
| * |
| * In passthrough mode the IOMMU is initialized and enabled but not used for |
| * DMA-API translation. |
| * |
| *****************************************************************************/ |
| |
| /* IOMMUv2 specific functions */ |
| int amd_iommu_register_ppr_notifier(struct notifier_block *nb) |
| { |
| return atomic_notifier_chain_register(&ppr_notifier, nb); |
| } |
| EXPORT_SYMBOL(amd_iommu_register_ppr_notifier); |
| |
| int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb) |
| { |
| return atomic_notifier_chain_unregister(&ppr_notifier, nb); |
| } |
| EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier); |
| |
| void amd_iommu_domain_direct_map(struct iommu_domain *dom) |
| { |
| struct protection_domain *domain = to_pdomain(dom); |
| unsigned long flags; |
| |
| spin_lock_irqsave(&domain->lock, flags); |
| |
| if (domain->iop.pgtbl_cfg.tlb) |
| free_io_pgtable_ops(&domain->iop.iop.ops); |
| |
| spin_unlock_irqrestore(&domain->lock, flags); |
| } |
| EXPORT_SYMBOL(amd_iommu_domain_direct_map); |
| |
| /* Note: This function expects iommu_domain->lock to be held prior calling the function. */ |
| static int domain_enable_v2(struct protection_domain *domain, int pasids) |
| { |
| int levels; |
| |
| /* Number of GCR3 table levels required */ |
| for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9) |
| levels += 1; |
| |
| if (levels > amd_iommu_max_glx_val) |
| return -EINVAL; |
| |
| domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC); |
| if (domain->gcr3_tbl == NULL) |
| return -ENOMEM; |
| |
| domain->glx = levels; |
| domain->flags |= PD_IOMMUV2_MASK; |
| |
| amd_iommu_domain_update(domain); |
| |
| return 0; |
| } |
| |
| int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids) |
| { |
| struct protection_domain *pdom = to_pdomain(dom); |
| unsigned long flags; |
| int ret; |
| |
| spin_lock_irqsave(&pdom->lock, flags); |
| |
| /* |
| * Save us all sanity checks whether devices already in the |
| * domain support IOMMUv2. Just force that the domain has no |
| * devices attached when it is switched into IOMMUv2 mode. |
| */ |
| ret = -EBUSY; |
| if (pdom->dev_cnt > 0 || pdom->flags & PD_IOMMUV2_MASK) |
| goto out; |
| |
| if (!pdom->gcr3_tbl) |
| ret = domain_enable_v2(pdom, pasids); |
| |
| out: |
| spin_unlock_irqrestore(&pdom->lock, flags); |
| return ret; |
| } |
| EXPORT_SYMBOL(amd_iommu_domain_enable_v2); |
| |
| static int __flush_pasid(struct protection_domain *domain, u32 pasid, |
| u64 address, bool size) |
| { |
| struct iommu_dev_data *dev_data; |
| struct iommu_cmd cmd; |
| int i, ret; |
| |
| if (!(domain->flags & PD_IOMMUV2_MASK)) |
| return -EINVAL; |
| |
| build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size); |
| |
| /* |
| * IOMMU TLB needs to be flushed before Device TLB to |
| * prevent device TLB refill from IOMMU TLB |
| */ |
| for (i = 0; i < amd_iommu_get_num_iommus(); ++i) { |
| if (domain->dev_iommu[i] == 0) |
| continue; |
| |
| ret = iommu_queue_command(amd_iommus[i], &cmd); |
| if (ret != 0) |
| goto out; |
| } |
| |
| /* Wait until IOMMU TLB flushes are complete */ |
| amd_iommu_domain_flush_complete(domain); |
| |
| /* Now flush device TLBs */ |
| list_for_each_entry(dev_data, &domain->dev_list, list) { |
| struct amd_iommu *iommu; |
| int qdep; |
| |
| /* |
| There might be non-IOMMUv2 capable devices in an IOMMUv2 |
| * domain. |
| */ |
| if (!dev_data->ats.enabled) |
| continue; |
| |
| qdep = dev_data->ats.qdep; |
| iommu = rlookup_amd_iommu(dev_data->dev); |
| if (!iommu) |
| continue; |
| build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid, |
| qdep, address, size); |
| |
| ret = iommu_queue_command(iommu, &cmd); |
| if (ret != 0) |
| goto out; |
| } |
| |
| /* Wait until all device TLBs are flushed */ |
| amd_iommu_domain_flush_complete(domain); |
| |
| ret = 0; |
| |
| out: |
| |
| return ret; |
| } |
| |
| static int __amd_iommu_flush_page(struct protection_domain *domain, u32 pasid, |
| u64 address) |
| { |
| return __flush_pasid(domain, pasid, address, false); |
| } |
| |
| int amd_iommu_flush_page(struct iommu_domain *dom, u32 pasid, |
| u64 address) |
| { |
| struct protection_domain *domain = to_pdomain(dom); |
| unsigned long flags; |
| int ret; |
| |
| spin_lock_irqsave(&domain->lock, flags); |
| ret = __amd_iommu_flush_page(domain, pasid, address); |
| spin_unlock_irqrestore(&domain->lock, flags); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL(amd_iommu_flush_page); |
| |
| static int __amd_iommu_flush_tlb(struct protection_domain *domain, u32 pasid) |
| { |
| return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, |
| true); |
| } |
| |
| int amd_iommu_flush_tlb(struct iommu_domain *dom, u32 pasid) |
| { |
| struct protection_domain *domain = to_pdomain(dom); |
| unsigned long flags; |
| int ret; |
| |
| spin_lock_irqsave(&domain->lock, flags); |
| ret = __amd_iommu_flush_tlb(domain, pasid); |
| spin_unlock_irqrestore(&domain->lock, flags); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL(amd_iommu_flush_tlb); |
| |
| static u64 *__get_gcr3_pte(u64 *root, int level, u32 pasid, bool alloc) |
| { |
| int index; |
| u64 *pte; |
| |
| while (true) { |
| |
| index = (pasid >> (9 * level)) & 0x1ff; |
| pte = &root[index]; |
| |
| if (level == 0) |
| break; |
| |
| if (!(*pte & GCR3_VALID)) { |
| if (!alloc) |
| return NULL; |
| |
| root = (void *)get_zeroed_page(GFP_ATOMIC); |
| if (root == NULL) |
| return NULL; |
| |
| *pte = iommu_virt_to_phys(root) | GCR3_VALID; |
| } |
| |
| root = iommu_phys_to_virt(*pte & PAGE_MASK); |
| |
| level -= 1; |
| } |
| |
| return pte; |
| } |
| |
| static int __set_gcr3(struct protection_domain *domain, u32 pasid, |
| unsigned long cr3) |
| { |
| u64 *pte; |
| |
| if (domain->iop.mode != PAGE_MODE_NONE) |
| return -EINVAL; |
| |
| pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true); |
| if (pte == NULL) |
| return -ENOMEM; |
| |
| *pte = (cr3 & PAGE_MASK) | GCR3_VALID; |
| |
| return __amd_iommu_flush_tlb(domain, pasid); |
| } |
| |
| static int __clear_gcr3(struct protection_domain *domain, u32 pasid) |
| { |
| u64 *pte; |
| |
| if (domain->iop.mode != PAGE_MODE_NONE) |
| return -EINVAL; |
| |
| pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false); |
| if (pte == NULL) |
| return 0; |
| |
| *pte = 0; |
| |
| return __amd_iommu_flush_tlb(domain, pasid); |
| } |
| |
| int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, u32 pasid, |
| unsigned long cr3) |
| { |
| struct protection_domain *domain = to_pdomain(dom); |
| unsigned long flags; |
| int ret; |
| |
| spin_lock_irqsave(&domain->lock, flags); |
| ret = __set_gcr3(domain, pasid, cr3); |
| spin_unlock_irqrestore(&domain->lock, flags); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL(amd_iommu_domain_set_gcr3); |
| |
| int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, u32 pasid) |
| { |
| struct protection_domain *domain = to_pdomain(dom); |
| unsigned long flags; |
| int ret; |
| |
| spin_lock_irqsave(&domain->lock, flags); |
| ret = __clear_gcr3(domain, pasid); |
| spin_unlock_irqrestore(&domain->lock, flags); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3); |
| |
| int amd_iommu_complete_ppr(struct pci_dev *pdev, u32 pasid, |
| int status, int tag) |
| { |
| struct iommu_dev_data *dev_data; |
| struct amd_iommu *iommu; |
| struct iommu_cmd cmd; |
| |
| dev_data = dev_iommu_priv_get(&pdev->dev); |
| iommu = rlookup_amd_iommu(&pdev->dev); |
| if (!iommu) |
| return -ENODEV; |
| |
| build_complete_ppr(&cmd, dev_data->devid, pasid, status, |
| tag, dev_data->pri_tlp); |
| |
| return iommu_queue_command(iommu, &cmd); |
| } |
| EXPORT_SYMBOL(amd_iommu_complete_ppr); |
| |
| int amd_iommu_device_info(struct pci_dev *pdev, |
| struct amd_iommu_device_info *info) |
| { |
| int max_pasids; |
| int pos; |
| |
| if (pdev == NULL || info == NULL) |
| return -EINVAL; |
| |
| if (!amd_iommu_v2_supported()) |
| return -EINVAL; |
| |
| memset(info, 0, sizeof(*info)); |
| |
| if (pci_ats_supported(pdev)) |
| info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP; |
| |
| pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI); |
| if (pos) |
| info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP; |
| |
| pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID); |
| if (pos) { |
| int features; |
| |
| max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1)); |
| max_pasids = min(max_pasids, (1 << 20)); |
| |
| info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP; |
| info->max_pasids = min(pci_max_pasids(pdev), max_pasids); |
| |
| features = pci_pasid_features(pdev); |
| if (features & PCI_PASID_CAP_EXEC) |
| info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP; |
| if (features & PCI_PASID_CAP_PRIV) |
| info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP; |
| } |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(amd_iommu_device_info); |
| |
| #ifdef CONFIG_IRQ_REMAP |
| |
| /***************************************************************************** |
| * |
| * Interrupt Remapping Implementation |
| * |
| *****************************************************************************/ |
| |
| static struct irq_chip amd_ir_chip; |
| static DEFINE_SPINLOCK(iommu_table_lock); |
| |
| static void set_dte_irq_entry(struct amd_iommu *iommu, u16 devid, |
| struct irq_remap_table *table) |
| { |
| u64 dte; |
| struct dev_table_entry *dev_table = get_dev_table(iommu); |
| |
| dte = dev_table[devid].data[2]; |
| dte &= ~DTE_IRQ_PHYS_ADDR_MASK; |
| dte |= iommu_virt_to_phys(table->table); |
| dte |= DTE_IRQ_REMAP_INTCTL; |
| dte |= DTE_INTTABLEN; |
| dte |= DTE_IRQ_REMAP_ENABLE; |
| |
| dev_table[devid].data[2] = dte; |
| } |
| |
| static struct irq_remap_table *get_irq_table(struct amd_iommu *iommu, u16 devid) |
| { |
| struct irq_remap_table *table; |
| struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg; |
| |
| if (WARN_ONCE(!pci_seg->rlookup_table[devid], |
| "%s: no iommu for devid %x:%x\n", |
| __func__, pci_seg->id, devid)) |
| return NULL; |
| |
| table = pci_seg->irq_lookup_table[devid]; |
| if (WARN_ONCE(!table, "%s: no table for devid %x:%x\n", |
| __func__, pci_seg->id, devid)) |
| return NULL; |
| |
| return table; |
| } |
| |
| static struct irq_remap_table *__alloc_irq_table(void) |
| { |
| struct irq_remap_table *table; |
| |
| table = kzalloc(sizeof(*table), GFP_KERNEL); |
| if (!table) |
| return NULL; |
| |
| table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_KERNEL); |
| if (!table->table) { |
| kfree(table); |
| return NULL; |
| } |
| raw_spin_lock_init(&table->lock); |
| |
| if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir)) |
| memset(table->table, 0, |
| MAX_IRQS_PER_TABLE * sizeof(u32)); |
| else |
| memset(table->table, 0, |
| (MAX_IRQS_PER_TABLE * (sizeof(u64) * 2))); |
| return table; |
| } |
| |
| static void set_remap_table_entry(struct amd_iommu *iommu, u16 devid, |
| struct irq_remap_table *table) |
| { |
| struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg; |
| |
| pci_seg->irq_lookup_table[devid] = table; |
| set_dte_irq_entry(iommu, devid, table); |
| iommu_flush_dte(iommu, devid); |
| } |
| |
| static int set_remap_table_entry_alias(struct pci_dev *pdev, u16 alias, |
| void *data) |
| { |
| struct irq_remap_table *table = data; |
| struct amd_iommu_pci_seg *pci_seg; |
| struct amd_iommu *iommu = rlookup_amd_iommu(&pdev->dev); |
| |
| if (!iommu) |
| return -EINVAL; |
| |
| pci_seg = iommu->pci_seg; |
| pci_seg->irq_lookup_table[alias] = table; |
| set_dte_irq_entry(iommu, alias, table); |
| iommu_flush_dte(pci_seg->rlookup_table[alias], alias); |
| |
| return 0; |
| } |
| |
| static struct irq_remap_table *alloc_irq_table(struct amd_iommu *iommu, |
| u16 devid, struct pci_dev *pdev) |
| { |
| struct irq_remap_table *table = NULL; |
| struct irq_remap_table *new_table = NULL; |
| struct amd_iommu_pci_seg *pci_seg; |
| unsigned long flags; |
| u16 alias; |
| |
| spin_lock_irqsave(&iommu_table_lock, flags); |
| |
| pci_seg = iommu->pci_seg; |
| table = pci_seg->irq_lookup_table[devid]; |
| if (table) |
| goto out_unlock; |
| |
| alias = pci_seg->alias_table[devid]; |
| table = pci_seg->irq_lookup_table[alias]; |
| if (table) { |
| set_remap_table_entry(iommu, devid, table); |
| goto out_wait; |
| } |
| spin_unlock_irqrestore(&iommu_table_lock, flags); |
| |
| /* Nothing there yet, allocate new irq remapping table */ |
| new_table = __alloc_irq_table(); |
| if (!new_table) |
| return NULL; |
| |
| spin_lock_irqsave(&iommu_table_lock, flags); |
| |
| table = pci_seg->irq_lookup_table[devid]; |
| if (table) |
| goto out_unlock; |
| |
| table = pci_seg->irq_lookup_table[alias]; |
| if (table) { |
| set_remap_table_entry(iommu, devid, table); |
| goto out_wait; |
| } |
| |
| table = new_table; |
| new_table = NULL; |
| |
| if (pdev) |
| pci_for_each_dma_alias(pdev, set_remap_table_entry_alias, |
| table); |
| else |
| set_remap_table_entry(iommu, devid, table); |
| |
| if (devid != alias) |
| set_remap_table_entry(iommu, alias, table); |
| |
| out_wait: |
| iommu_completion_wait(iommu); |
| |
| out_unlock: |
| spin_unlock_irqrestore(&iommu_table_lock, flags); |
| |
| if (new_table) { |
| kmem_cache_free(amd_iommu_irq_cache, new_table->table); |
| kfree(new_table); |
| } |
| return table; |
| } |
| |
| static int alloc_irq_index(struct amd_iommu *iommu, u16 devid, int count, |
| bool align, struct pci_dev *pdev) |
| { |
| struct irq_remap_table *table; |
| int index, c, alignment = 1; |
| unsigned long flags; |
| |
| table = alloc_irq_table(iommu, devid, pdev); |
| if (!table) |
| return -ENODEV; |
| |
| if (align) |
| alignment = roundup_pow_of_two(count); |
| |
| raw_spin_lock_irqsave(&table->lock, flags); |
| |
| /* Scan table for free entries */ |
| for (index = ALIGN(table->min_index, alignment), c = 0; |
| index < MAX_IRQS_PER_TABLE;) { |
| if (!iommu->irte_ops->is_allocated(table, index)) { |
| c += 1; |
| } else { |
| c = 0; |
| index = ALIGN(index + 1, alignment); |
| continue; |
| } |
| |
| if (c == count) { |
| for (; c != 0; --c) |
| iommu->irte_ops->set_allocated(table, index - c + 1); |
| |
| index -= count - 1; |
| goto out; |
| } |
| |
| index++; |
| } |
| |
| index = -ENOSPC; |
| |
| out: |
| raw_spin_unlock_irqrestore(&table->lock, flags); |
| |
| return index; |
| } |
| |
| static int modify_irte_ga(struct amd_iommu *iommu, u16 devid, int index, |
| struct irte_ga *irte, struct amd_ir_data *data) |
| { |
| bool ret; |
| struct irq_remap_table *table; |
| unsigned long flags; |
| struct irte_ga *entry; |
| |
| table = get_irq_table(iommu, devid); |
| if (!table) |
| return -ENOMEM; |
| |
| raw_spin_lock_irqsave(&table->lock, flags); |
| |
| entry = (struct irte_ga *)table->table; |
| entry = &entry[index]; |
| |
| ret = cmpxchg_double(&entry->lo.val, &entry->hi.val, |
| entry->lo.val, entry->hi.val, |
| irte->lo.val, irte->hi.val); |
| /* |
| * We use cmpxchg16 to atomically update the 128-bit IRTE, |
| * and it cannot be updated by the hardware or other processors |
| * behind us, so the return value of cmpxchg16 should be the |
| * same as the old value. |
| */ |
| WARN_ON(!ret); |
| |
| if (data) |
| data->ref = entry; |
| |
| raw_spin_unlock_irqrestore(&table->lock, flags); |
| |
| iommu_flush_irt(iommu, devid); |
| iommu_completion_wait(iommu); |
| |
| return 0; |
| } |
| |
| static int modify_irte(struct amd_iommu *iommu, |
| u16 devid, int index, union irte *irte) |
| { |
| struct irq_remap_table *table; |
| unsigned long flags; |
| |
| table = get_irq_table(iommu, devid); |
| if (!table) |
| return -ENOMEM; |
| |
| raw_spin_lock_irqsave(&table->lock, flags); |
| table->table[index] = irte->val; |
| raw_spin_unlock_irqrestore(&table->lock, flags); |
| |
| iommu_flush_irt(iommu, devid); |
| iommu_completion_wait(iommu); |
| |
| return 0; |
| } |
| |
| static void free_irte(struct amd_iommu *iommu, u16 devid, int index) |
| { |
| struct irq_remap_table *table; |
| unsigned long flags; |
| |
| table = get_irq_table(iommu, devid); |
| if (!table) |
| return; |
| |
| raw_spin_lock_irqsave(&table->lock, flags); |
| iommu->irte_ops->clear_allocated(table, index); |
| raw_spin_unlock_irqrestore(&table->lock, flags); |
| |
| iommu_flush_irt(iommu, devid); |
| iommu_completion_wait(iommu); |
| } |
| |
| static void irte_prepare(void *entry, |
| u32 delivery_mode, bool dest_mode, |
| u8 vector, u32 dest_apicid, int devid) |
| { |
| union irte *irte = (union irte *) entry; |
| |
| irte->val = 0; |
| irte->fields.vector = vector; |
| irte->fields.int_type = delivery_mode; |
| irte->fields.destination = dest_apicid; |
| irte->fields.dm = dest_mode; |
| irte->fields.valid = 1; |
| } |
| |
| static void irte_ga_prepare(void *entry, |
| u32 delivery_mode, bool dest_mode, |
| u8 vector, u32 dest_apicid, int devid) |
| { |
| struct irte_ga *irte = (struct irte_ga *) entry; |
| |
| irte->lo.val = 0; |
| irte->hi.val = 0; |
| irte->lo.fields_remap.int_type = delivery_mode; |
| irte->lo.fields_remap.dm = dest_mode; |
| irte->hi.fields.vector = vector; |
| irte->lo.fields_remap.destination = APICID_TO_IRTE_DEST_LO(dest_apicid); |
| irte->hi.fields.destination = APICID_TO_IRTE_DEST_HI(dest_apicid); |
| irte->lo.fields_remap.valid = 1; |
| } |
| |
| static void irte_activate(struct amd_iommu *iommu, void *entry, u16 devid, u16 index) |
| { |
| union irte *irte = (union irte *) entry; |
| |
| irte->fields.valid = 1; |
| modify_irte(iommu, devid, index, irte); |
| } |
| |
| static void irte_ga_activate(struct amd_iommu *iommu, void *entry, u16 devid, u16 index) |
| { |
| struct irte_ga *irte = (struct irte_ga *) entry; |
| |
| irte->lo.fields_remap.valid = 1; |
| modify_irte_ga(iommu, devid, index, irte, NULL); |
| } |
| |
| static void irte_deactivate(struct amd_iommu *iommu, void *entry, u16 devid, u16 index) |
| { |
| union irte *irte = (union irte *) entry; |
| |
| irte->fields.valid = 0; |
| modify_irte(iommu, devid, index, irte); |
| } |
| |
| static void irte_ga_deactivate(struct amd_iommu *iommu, void *entry, u16 devid, u16 index) |
| { |
| struct irte_ga *irte = (struct irte_ga *) entry; |
| |
| irte->lo.fields_remap.valid = 0; |
| modify_irte_ga(iommu, devid, index, irte, NULL); |
| } |
| |
| static void irte_set_affinity(struct amd_iommu *iommu, void *entry, u16 devid, u16 index, |
| u8 vector, u32 dest_apicid) |
| { |
| union irte *irte = (union irte *) entry; |
| |
| irte->fields.vector = vector; |
| irte->fields.destination = dest_apicid; |
| modify_irte(iommu, devid, index, irte); |
| } |
| |
| static void irte_ga_set_affinity(struct amd_iommu *iommu, void *entry, u16 devid, u16 index, |
| u8 vector, u32 dest_apicid) |
| { |
| struct irte_ga *irte = (struct irte_ga *) entry; |
| |
| if (!irte->lo.fields_remap.guest_mode) { |
| irte->hi.fields.vector = vector; |
| irte->lo.fields_remap.destination = |
| APICID_TO_IRTE_DEST_LO(dest_apicid); |
| irte->hi.fields.destination = |
| APICID_TO_IRTE_DEST_HI(dest_apicid); |
| modify_irte_ga(iommu, devid, index, irte, NULL); |
| } |
| } |
| |
| #define IRTE_ALLOCATED (~1U) |
| static void irte_set_allocated(struct irq_remap_table *table, int index) |
| { |
| table->table[index] = IRTE_ALLOCATED; |
| } |
| |
| static void irte_ga_set_allocated(struct irq_remap_table *table, int index) |
| { |
| struct irte_ga *ptr = (struct irte_ga *)table->table; |
| struct irte_ga *irte = &ptr[index]; |
| |
| memset(&irte->lo.val, 0, sizeof(u64)); |
| memset(&irte->hi.val, 0, sizeof(u64)); |
| irte->hi.fields.vector = 0xff; |
| } |
| |
| static bool irte_is_allocated(struct irq_remap_table *table, int index) |
| { |
| union irte *ptr = (union irte *)table->table; |
| union irte *irte = &ptr[index]; |
| |
| return irte->val != 0; |
| } |
| |
| static bool irte_ga_is_allocated(struct irq_remap_table *table, int index) |
| { |
| struct irte_ga *ptr = (struct irte_ga *)table->table; |
| struct irte_ga *irte = &ptr[index]; |
| |
| return irte->hi.fields.vector != 0; |
| } |
| |
| static void irte_clear_allocated(struct irq_remap_table *table, int index) |
| { |
| table->table[index] = 0; |
| } |
| |
| static void irte_ga_clear_allocated(struct irq_remap_table *table, int index) |
| { |
| struct irte_ga *ptr = (struct irte_ga *)table->table; |
| struct irte_ga *irte = &ptr[index]; |
| |
| memset(&irte->lo.val, 0, sizeof(u64)); |
| memset(&irte->hi.val, 0, sizeof(u64)); |
| } |
| |
| static int get_devid(struct irq_alloc_info *info) |
| { |
| switch (info->type) { |
| case X86_IRQ_ALLOC_TYPE_IOAPIC: |
| return get_ioapic_devid(info->devid); |
| case X86_IRQ_ALLOC_TYPE_HPET: |
| return get_hpet_devid(info->devid); |
| case X86_IRQ_ALLOC_TYPE_PCI_MSI: |
| case X86_IRQ_ALLOC_TYPE_PCI_MSIX: |
| return get_device_sbdf_id(msi_desc_to_dev(info->desc)); |
| default: |
| WARN_ON_ONCE(1); |
| return -1; |
| } |
| } |
| |
| struct irq_remap_ops amd_iommu_irq_ops = { |
| .prepare = amd_iommu_prepare, |
| .enable = amd_iommu_enable, |
| .disable = amd_iommu_disable, |
| .reenable = amd_iommu_reenable, |
| .enable_faulting = amd_iommu_enable_faulting, |
| }; |
| |
| static void fill_msi_msg(struct msi_msg *msg, u32 index) |
| { |
| msg->data = index; |
| msg->address_lo = 0; |
| msg->arch_addr_lo.base_address = X86_MSI_BASE_ADDRESS_LOW; |
| msg->address_hi = X86_MSI_BASE_ADDRESS_HIGH; |
| } |
| |
| static void irq_remapping_prepare_irte(struct amd_ir_data *data, |
| struct irq_cfg *irq_cfg, |
| struct irq_alloc_info *info, |
| int devid, int index, int sub_handle) |
| { |
| struct irq_2_irte *irte_info = &data->irq_2_irte; |
| struct amd_iommu *iommu = data->iommu; |
| |
| if (!iommu) |
| return; |
| |
| data->irq_2_irte.devid = devid; |
| data->irq_2_irte.index = index + sub_handle; |
| iommu->irte_ops->prepare(data->entry, apic->delivery_mode, |
| apic->dest_mode_logical, irq_cfg->vector, |
| irq_cfg->dest_apicid, devid); |
| |
| switch (info->type) { |
| case X86_IRQ_ALLOC_TYPE_IOAPIC: |
| case X86_IRQ_ALLOC_TYPE_HPET: |
| case X86_IRQ_ALLOC_TYPE_PCI_MSI: |
| case X86_IRQ_ALLOC_TYPE_PCI_MSIX: |
| fill_msi_msg(&data->msi_entry, irte_info->index); |
| break; |
| |
| default: |
| BUG_ON(1); |
| break; |
| } |
| } |
| |
| struct amd_irte_ops irte_32_ops = { |
| .prepare = irte_prepare, |
| .activate = irte_activate, |
| .deactivate = irte_deactivate, |
| .set_affinity = irte_set_affinity, |
| .set_allocated = irte_set_allocated, |
| .is_allocated = irte_is_allocated, |
| .clear_allocated = irte_clear_allocated, |
| }; |
| |
| struct amd_irte_ops irte_128_ops = { |
| .prepare = irte_ga_prepare, |
| .activate = irte_ga_activate, |
| .deactivate = irte_ga_deactivate, |
| .set_affinity = irte_ga_set_affinity, |
| .set_allocated = irte_ga_set_allocated, |
| .is_allocated = irte_ga_is_allocated, |
| .clear_allocated = irte_ga_clear_allocated, |
| }; |
| |
| static int irq_remapping_alloc(struct irq_domain *domain, unsigned int virq, |
| unsigned int nr_irqs, void *arg) |
| { |
| struct irq_alloc_info *info = arg; |
| struct irq_data *irq_data; |
| struct amd_ir_data *data = NULL; |
| struct amd_iommu *iommu; |
| struct irq_cfg *cfg; |
| int i, ret, devid, seg, sbdf; |
| int index; |
| |
| if (!info) |
| return -EINVAL; |
| if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_PCI_MSI && |
| info->type != X86_IRQ_ALLOC_TYPE_PCI_MSIX) |
| return -EINVAL; |
| |
| /* |
| * With IRQ remapping enabled, don't need contiguous CPU vectors |
| * to support multiple MSI interrupts. |
| */ |
| if (info->type == X86_IRQ_ALLOC_TYPE_PCI_MSI) |
| info->flags &= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS; |
| |
| sbdf = get_devid(info); |
| if (sbdf < 0) |
| return -EINVAL; |
| |
| seg = PCI_SBDF_TO_SEGID(sbdf); |
| devid = PCI_SBDF_TO_DEVID(sbdf); |
| iommu = __rlookup_amd_iommu(seg, devid); |
| if (!iommu) |
| return -EINVAL; |
| |
| ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg); |
| if (ret < 0) |
| return ret; |
| |
| if (info->type == X86_IRQ_ALLOC_TYPE_IOAPIC) { |
| struct irq_remap_table *table; |
| |
| table = alloc_irq_table(iommu, devid, NULL); |
| if (table) { |
| if (!table->min_index) { |
| /* |
| * Keep the first 32 indexes free for IOAPIC |
| * interrupts. |
| */ |
| table->min_index = 32; |
| for (i = 0; i < 32; ++i) |
| iommu->irte_ops->set_allocated(table, i); |
| } |
| WARN_ON(table->min_index != 32); |
| index = info->ioapic.pin; |
| } else { |
| index = -ENOMEM; |
| } |
| } else if (info->type == X86_IRQ_ALLOC_TYPE_PCI_MSI || |
| info->type == X86_IRQ_ALLOC_TYPE_PCI_MSIX) { |
| bool align = (info->type == X86_IRQ_ALLOC_TYPE_PCI_MSI); |
| |
| index = alloc_irq_index(iommu, devid, nr_irqs, align, |
| msi_desc_to_pci_dev(info->desc)); |
| } else { |
| index = alloc_irq_index(iommu, devid, nr_irqs, false, NULL); |
| } |
| |
| if (index < 0) { |
| pr_warn("Failed to allocate IRTE\n"); |
| ret = index; |
| goto out_free_parent; |
| } |
| |
| for (i = 0; i < nr_irqs; i++) { |
| irq_data = irq_domain_get_irq_data(domain, virq + i); |
| cfg = irq_data ? irqd_cfg(irq_data) : NULL; |
| if (!cfg) { |
| ret = -EINVAL; |
| goto out_free_data; |
| } |
| |
| ret = -ENOMEM; |
| data = kzalloc(sizeof(*data), GFP_KERNEL); |
| if (!data) |
| goto out_free_data; |
| |
| if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir)) |
| data->entry = kzalloc(sizeof(union irte), GFP_KERNEL); |
| else |
| data->entry = kzalloc(sizeof(struct irte_ga), |
| GFP_KERNEL); |
| if (!data->entry) { |
| kfree(data); |
| goto out_free_data; |
| } |
| |
| data->iommu = iommu; |
| irq_data->hwirq = (devid << 16) + i; |
| irq_data->chip_data = data; |
| irq_data->chip = &amd_ir_chip; |
| irq_remapping_prepare_irte(data, cfg, info, devid, index, i); |
| irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT); |
| } |
| |
| return 0; |
| |
| out_free_data: |
| for (i--; i >= 0; i--) { |
| irq_data = irq_domain_get_irq_data(domain, virq + i); |
| if (irq_data) |
| kfree(irq_data->chip_data); |
| } |
| for (i = 0; i < nr_irqs; i++) |
| free_irte(iommu, devid, index + i); |
| out_free_parent: |
| irq_domain_free_irqs_common(domain, virq, nr_irqs); |
| return ret; |
| } |
| |
| static void irq_remapping_free(struct irq_domain *domain, unsigned int virq, |
| unsigned int nr_irqs) |
| { |
| struct irq_2_irte *irte_info; |
| struct irq_data *irq_data; |
| struct amd_ir_data *data; |
| int i; |
| |
| for (i = 0; i < nr_irqs; i++) { |
| irq_data = irq_domain_get_irq_data(domain, virq + i); |
| if (irq_data && irq_data->chip_data) { |
| data = irq_data->chip_data; |
| irte_info = &data->irq_2_irte; |
| free_irte(data->iommu, irte_info->devid, irte_info->index); |
| kfree(data->entry); |
| kfree(data); |
| } |
| } |
| irq_domain_free_irqs_common(domain, virq, nr_irqs); |
| } |
| |
| static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu, |
| struct amd_ir_data *ir_data, |
| struct irq_2_irte *irte_info, |
| struct irq_cfg *cfg); |
| |
| static int irq_remapping_activate(struct irq_domain *domain, |
| struct irq_data *irq_data, bool reserve) |
| { |
| struct amd_ir_data *data = irq_data->chip_data; |
| struct irq_2_irte *irte_info = &data->irq_2_irte; |
| struct amd_iommu *iommu = data->iommu; |
| struct irq_cfg *cfg = irqd_cfg(irq_data); |
| |
| if (!iommu) |
| return 0; |
| |
| iommu->irte_ops->activate(iommu, data->entry, irte_info->devid, |
| irte_info->index); |
| amd_ir_update_irte(irq_data, iommu, data, irte_info, cfg); |
| return 0; |
| } |
| |
| static void irq_remapping_deactivate(struct irq_domain *domain, |
| struct irq_data *irq_data) |
| { |
| struct amd_ir_data *data = irq_data->chip_data; |
| struct irq_2_irte *irte_info = &data->irq_2_irte; |
| struct amd_iommu *iommu = data->iommu; |
| |
| if (iommu) |
| iommu->irte_ops->deactivate(iommu, data->entry, irte_info->devid, |
| irte_info->index); |
| } |
| |
| static int irq_remapping_select(struct irq_domain *d, struct irq_fwspec *fwspec, |
| enum irq_domain_bus_token bus_token) |
| { |
| struct amd_iommu *iommu; |
| int devid = -1; |
| |
| if (!amd_iommu_irq_remap) |
| return 0; |
| |
| if (x86_fwspec_is_ioapic(fwspec)) |
| devid = get_ioapic_devid(fwspec->param[0]); |
| else if (x86_fwspec_is_hpet(fwspec)) |
| devid = get_hpet_devid(fwspec->param[0]); |
| |
| if (devid < 0) |
| return 0; |
| iommu = __rlookup_amd_iommu((devid >> 16), (devid & 0xffff)); |
| |
| return iommu && iommu->ir_domain == d; |
| } |
| |
| static const struct irq_domain_ops amd_ir_domain_ops = { |
| .select = irq_remapping_select, |
| .alloc = irq_remapping_alloc, |
| .free = irq_remapping_free, |
| .activate = irq_remapping_activate, |
| .deactivate = irq_remapping_deactivate, |
| }; |
| |
| int amd_iommu_activate_guest_mode(void *data) |
| { |
| struct amd_ir_data *ir_data = (struct amd_ir_data *)data; |
| struct irte_ga *entry = (struct irte_ga *) ir_data->entry; |
| u64 valid; |
| |
| if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) || |
| !entry || entry->lo.fields_vapic.guest_mode) |
| return 0; |
| |
| valid = entry->lo.fields_vapic.valid; |
| |
| entry->lo.val = 0; |
| entry->hi.val = 0; |
| |
| entry->lo.fields_vapic.valid = valid; |
| entry->lo.fields_vapic.guest_mode = 1; |
| entry->lo.fields_vapic.ga_log_intr = 1; |
| entry->hi.fields.ga_root_ptr = ir_data->ga_root_ptr; |
| entry->hi.fields.vector = ir_data->ga_vector; |
| entry->lo.fields_vapic.ga_tag = ir_data->ga_tag; |
| |
| return modify_irte_ga(ir_data->iommu, ir_data->irq_2_irte.devid, |
| ir_data->irq_2_irte.index, entry, ir_data); |
| } |
| EXPORT_SYMBOL(amd_iommu_activate_guest_mode); |
| |
| int amd_iommu_deactivate_guest_mode(void *data) |
| { |
| struct amd_ir_data *ir_data = (struct amd_ir_data *)data; |
| struct irte_ga *entry = (struct irte_ga *) ir_data->entry; |
| struct irq_cfg *cfg = ir_data->cfg; |
| u64 valid; |
| |
| if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) || |
| !entry || !entry->lo.fields_vapic.guest_mode) |
| return 0; |
| |
| valid = entry->lo.fields_remap.valid; |
| |
| entry->lo.val = 0; |
| entry->hi.val = 0; |
| |
| entry->lo.fields_remap.valid = valid; |
| entry->lo.fields_remap.dm = apic->dest_mode_logical; |
| entry->lo.fields_remap.int_type = apic->delivery_mode; |
| entry->hi.fields.vector = cfg->vector; |
| entry->lo.fields_remap.destination = |
| APICID_TO_IRTE_DEST_LO(cfg->dest_apicid); |
| entry->hi.fields.destination = |
| APICID_TO_IRTE_DEST_HI(cfg->dest_apicid); |
| |
| return modify_irte_ga(ir_data->iommu, ir_data->irq_2_irte.devid, |
| ir_data->irq_2_irte.index, entry, ir_data); |
| } |
| EXPORT_SYMBOL(amd_iommu_deactivate_guest_mode); |
| |
| static int amd_ir_set_vcpu_affinity(struct irq_data *data, void *vcpu_info) |
| { |
| int ret; |
| struct amd_iommu_pi_data *pi_data = vcpu_info; |
| struct vcpu_data *vcpu_pi_info = pi_data->vcpu_data; |
| struct amd_ir_data *ir_data = data->chip_data; |
| struct irq_2_irte *irte_info = &ir_data->irq_2_irte; |
| struct iommu_dev_data *dev_data; |
| |
| if (ir_data->iommu == NULL) |
| return -EINVAL; |
| |
| dev_data = search_dev_data(ir_data->iommu, irte_info->devid); |
| |
| /* Note: |
| * This device has never been set up for guest mode. |
| * we should not modify the IRTE |
| */ |
| if (!dev_data || !dev_data->use_vapic) |
| return 0; |
| |
| ir_data->cfg = irqd_cfg(data); |
| pi_data->ir_data = ir_data; |
| |
| /* Note: |
| * SVM tries to set up for VAPIC mode, but we are in |
| * legacy mode. So, we force legacy mode instead. |
| */ |
| if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) { |
| pr_debug("%s: Fall back to using intr legacy remap\n", |
| __func__); |
| pi_data->is_guest_mode = false; |
| } |
| |
| pi_data->prev_ga_tag = ir_data->cached_ga_tag; |
| if (pi_data->is_guest_mode) { |
| ir_data->ga_root_ptr = (pi_data->base >> 12); |
| ir_data->ga_vector = vcpu_pi_info->vector; |
| ir_data->ga_tag = pi_data->ga_tag; |
| ret = amd_iommu_activate_guest_mode(ir_data); |
| if (!ret) |
| ir_data->cached_ga_tag = pi_data->ga_tag; |
| } else { |
| ret = amd_iommu_deactivate_guest_mode(ir_data); |
| |
| /* |
| * This communicates the ga_tag back to the caller |
| * so that it can do all the necessary clean up. |
| */ |
| if (!ret) |
| ir_data->cached_ga_tag = 0; |
| } |
| |
| return ret; |
| } |
| |
| |
| static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu, |
| struct amd_ir_data *ir_data, |
| struct irq_2_irte *irte_info, |
| struct irq_cfg *cfg) |
| { |
| |
| /* |
| * Atomically updates the IRTE with the new destination, vector |
| * and flushes the interrupt entry cache. |
| */ |
| iommu->irte_ops->set_affinity(iommu, ir_data->entry, irte_info->devid, |
| irte_info->index, cfg->vector, |
| cfg->dest_apicid); |
| } |
| |
| static int amd_ir_set_affinity(struct irq_data *data, |
| const struct cpumask *mask, bool force) |
| { |
| struct amd_ir_data *ir_data = data->chip_data; |
| struct irq_2_irte *irte_info = &ir_data->irq_2_irte; |
| struct irq_cfg *cfg = irqd_cfg(data); |
| struct irq_data *parent = data->parent_data; |
| struct amd_iommu *iommu = ir_data->iommu; |
| int ret; |
| |
| if (!iommu) |
| return -ENODEV; |
| |
| ret = parent->chip->irq_set_affinity(parent, mask, force); |
| if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE) |
| return ret; |
| |
| amd_ir_update_irte(data, iommu, ir_data, irte_info, cfg); |
| /* |
| * After this point, all the interrupts will start arriving |
| * at the new destination. So, time to cleanup the previous |
| * vector allocation. |
| */ |
| send_cleanup_vector(cfg); |
| |
| return IRQ_SET_MASK_OK_DONE; |
| } |
| |
| static void ir_compose_msi_msg(struct irq_data *irq_data, struct msi_msg *msg) |
| { |
| struct amd_ir_data *ir_data = irq_data->chip_data; |
| |
| *msg = ir_data->msi_entry; |
| } |
| |
| static struct irq_chip amd_ir_chip = { |
| .name = "AMD-IR", |
| .irq_ack = apic_ack_irq, |
| .irq_set_affinity = amd_ir_set_affinity, |
| .irq_set_vcpu_affinity = amd_ir_set_vcpu_affinity, |
| .irq_compose_msi_msg = ir_compose_msi_msg, |
| }; |
| |
| int amd_iommu_create_irq_domain(struct amd_iommu *iommu) |
| { |
| struct fwnode_handle *fn; |
| |
| fn = irq_domain_alloc_named_id_fwnode("AMD-IR", iommu->index); |
| if (!fn) |
| return -ENOMEM; |
| iommu->ir_domain = irq_domain_create_tree(fn, &amd_ir_domain_ops, iommu); |
| if (!iommu->ir_domain) { |
| irq_domain_free_fwnode(fn); |
| return -ENOMEM; |
| } |
| |
| iommu->ir_domain->parent = arch_get_ir_parent_domain(); |
| iommu->msi_domain = arch_create_remap_msi_irq_domain(iommu->ir_domain, |
| "AMD-IR-MSI", |
| iommu->index); |
| return 0; |
| } |
| |
| int amd_iommu_update_ga(int cpu, bool is_run, void *data) |
| { |
| unsigned long flags; |
| struct amd_iommu *iommu; |
| struct irq_remap_table *table; |
| struct amd_ir_data *ir_data = (struct amd_ir_data *)data; |
| int devid = ir_data->irq_2_irte.devid; |
| struct irte_ga *entry = (struct irte_ga *) ir_data->entry; |
| struct irte_ga *ref = (struct irte_ga *) ir_data->ref; |
| |
| if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) || |
| !ref || !entry || !entry->lo.fields_vapic.guest_mode) |
| return 0; |
| |
| iommu = ir_data->iommu; |
| if (!iommu) |
| return -ENODEV; |
| |
| table = get_irq_table(iommu, devid); |
| if (!table) |
| return -ENODEV; |
| |
| raw_spin_lock_irqsave(&table->lock, flags); |
| |
| if (ref->lo.fields_vapic.guest_mode) { |
| if (cpu >= 0) { |
| ref->lo.fields_vapic.destination = |
| APICID_TO_IRTE_DEST_LO(cpu); |
| ref->hi.fields.destination = |
| APICID_TO_IRTE_DEST_HI(cpu); |
| } |
| ref->lo.fields_vapic.is_run = is_run; |
| barrier(); |
| } |
| |
| raw_spin_unlock_irqrestore(&table->lock, flags); |
| |
| iommu_flush_irt(iommu, devid); |
| iommu_completion_wait(iommu); |
| return 0; |
| } |
| EXPORT_SYMBOL(amd_iommu_update_ga); |
| #endif |