| /* |
| * Driver for the IDT RC32434 (Korina) on-chip ethernet controller. |
| * |
| * Copyright 2004 IDT Inc. (rischelp@idt.com) |
| * Copyright 2006 Felix Fietkau <nbd@openwrt.org> |
| * Copyright 2008 Florian Fainelli <florian@openwrt.org> |
| * Copyright 2017 Roman Yeryomin <roman@advem.lv> |
| * |
| * This program is free software; you can redistribute it and/or modify it |
| * under the terms of the GNU General Public License as published by the |
| * Free Software Foundation; either version 2 of the License, or (at your |
| * option) any later version. |
| * |
| * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED |
| * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF |
| * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN |
| * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, |
| * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
| * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF |
| * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON |
| * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF |
| * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| * |
| * You should have received a copy of the GNU General Public License along |
| * with this program; if not, write to the Free Software Foundation, Inc., |
| * 675 Mass Ave, Cambridge, MA 02139, USA. |
| * |
| * Writing to a DMA status register: |
| * |
| * When writing to the status register, you should mask the bit you have |
| * been testing the status register with. Both Tx and Rx DMA registers |
| * should stick to this procedure. |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/kernel.h> |
| #include <linux/moduleparam.h> |
| #include <linux/sched.h> |
| #include <linux/ctype.h> |
| #include <linux/types.h> |
| #include <linux/interrupt.h> |
| #include <linux/ioport.h> |
| #include <linux/iopoll.h> |
| #include <linux/in.h> |
| #include <linux/of_device.h> |
| #include <linux/of_net.h> |
| #include <linux/slab.h> |
| #include <linux/string.h> |
| #include <linux/delay.h> |
| #include <linux/netdevice.h> |
| #include <linux/etherdevice.h> |
| #include <linux/skbuff.h> |
| #include <linux/errno.h> |
| #include <linux/platform_device.h> |
| #include <linux/mii.h> |
| #include <linux/ethtool.h> |
| #include <linux/crc32.h> |
| #include <linux/pgtable.h> |
| #include <linux/clk.h> |
| |
| #define DRV_NAME "korina" |
| #define DRV_VERSION "0.20" |
| #define DRV_RELDATE "15Sep2017" |
| |
| struct eth_regs { |
| u32 ethintfc; |
| u32 ethfifott; |
| u32 etharc; |
| u32 ethhash0; |
| u32 ethhash1; |
| u32 ethu0[4]; /* Reserved. */ |
| u32 ethpfs; |
| u32 ethmcp; |
| u32 eth_u1[10]; /* Reserved. */ |
| u32 ethspare; |
| u32 eth_u2[42]; /* Reserved. */ |
| u32 ethsal0; |
| u32 ethsah0; |
| u32 ethsal1; |
| u32 ethsah1; |
| u32 ethsal2; |
| u32 ethsah2; |
| u32 ethsal3; |
| u32 ethsah3; |
| u32 ethrbc; |
| u32 ethrpc; |
| u32 ethrupc; |
| u32 ethrfc; |
| u32 ethtbc; |
| u32 ethgpf; |
| u32 eth_u9[50]; /* Reserved. */ |
| u32 ethmac1; |
| u32 ethmac2; |
| u32 ethipgt; |
| u32 ethipgr; |
| u32 ethclrt; |
| u32 ethmaxf; |
| u32 eth_u10; /* Reserved. */ |
| u32 ethmtest; |
| u32 miimcfg; |
| u32 miimcmd; |
| u32 miimaddr; |
| u32 miimwtd; |
| u32 miimrdd; |
| u32 miimind; |
| u32 eth_u11; /* Reserved. */ |
| u32 eth_u12; /* Reserved. */ |
| u32 ethcfsa0; |
| u32 ethcfsa1; |
| u32 ethcfsa2; |
| }; |
| |
| /* Ethernet interrupt registers */ |
| #define ETH_INT_FC_EN BIT(0) |
| #define ETH_INT_FC_ITS BIT(1) |
| #define ETH_INT_FC_RIP BIT(2) |
| #define ETH_INT_FC_JAM BIT(3) |
| #define ETH_INT_FC_OVR BIT(4) |
| #define ETH_INT_FC_UND BIT(5) |
| #define ETH_INT_FC_IOC 0x000000c0 |
| |
| /* Ethernet FIFO registers */ |
| #define ETH_FIFI_TT_TTH_BIT 0 |
| #define ETH_FIFO_TT_TTH 0x0000007f |
| |
| /* Ethernet ARC/multicast registers */ |
| #define ETH_ARC_PRO BIT(0) |
| #define ETH_ARC_AM BIT(1) |
| #define ETH_ARC_AFM BIT(2) |
| #define ETH_ARC_AB BIT(3) |
| |
| /* Ethernet SAL registers */ |
| #define ETH_SAL_BYTE_5 0x000000ff |
| #define ETH_SAL_BYTE_4 0x0000ff00 |
| #define ETH_SAL_BYTE_3 0x00ff0000 |
| #define ETH_SAL_BYTE_2 0xff000000 |
| |
| /* Ethernet SAH registers */ |
| #define ETH_SAH_BYTE1 0x000000ff |
| #define ETH_SAH_BYTE0 0x0000ff00 |
| |
| /* Ethernet GPF register */ |
| #define ETH_GPF_PTV 0x0000ffff |
| |
| /* Ethernet PFG register */ |
| #define ETH_PFS_PFD BIT(0) |
| |
| /* Ethernet CFSA[0-3] registers */ |
| #define ETH_CFSA0_CFSA4 0x000000ff |
| #define ETH_CFSA0_CFSA5 0x0000ff00 |
| #define ETH_CFSA1_CFSA2 0x000000ff |
| #define ETH_CFSA1_CFSA3 0x0000ff00 |
| #define ETH_CFSA1_CFSA0 0x000000ff |
| #define ETH_CFSA1_CFSA1 0x0000ff00 |
| |
| /* Ethernet MAC1 registers */ |
| #define ETH_MAC1_RE BIT(0) |
| #define ETH_MAC1_PAF BIT(1) |
| #define ETH_MAC1_RFC BIT(2) |
| #define ETH_MAC1_TFC BIT(3) |
| #define ETH_MAC1_LB BIT(4) |
| #define ETH_MAC1_MR BIT(31) |
| |
| /* Ethernet MAC2 registers */ |
| #define ETH_MAC2_FD BIT(0) |
| #define ETH_MAC2_FLC BIT(1) |
| #define ETH_MAC2_HFE BIT(2) |
| #define ETH_MAC2_DC BIT(3) |
| #define ETH_MAC2_CEN BIT(4) |
| #define ETH_MAC2_PE BIT(5) |
| #define ETH_MAC2_VPE BIT(6) |
| #define ETH_MAC2_APE BIT(7) |
| #define ETH_MAC2_PPE BIT(8) |
| #define ETH_MAC2_LPE BIT(9) |
| #define ETH_MAC2_NB BIT(12) |
| #define ETH_MAC2_BP BIT(13) |
| #define ETH_MAC2_ED BIT(14) |
| |
| /* Ethernet IPGT register */ |
| #define ETH_IPGT 0x0000007f |
| |
| /* Ethernet IPGR registers */ |
| #define ETH_IPGR_IPGR2 0x0000007f |
| #define ETH_IPGR_IPGR1 0x00007f00 |
| |
| /* Ethernet CLRT registers */ |
| #define ETH_CLRT_MAX_RET 0x0000000f |
| #define ETH_CLRT_COL_WIN 0x00003f00 |
| |
| /* Ethernet MAXF register */ |
| #define ETH_MAXF 0x0000ffff |
| |
| /* Ethernet test registers */ |
| #define ETH_TEST_REG BIT(2) |
| #define ETH_MCP_DIV 0x000000ff |
| |
| /* MII registers */ |
| #define ETH_MII_CFG_RSVD 0x0000000c |
| #define ETH_MII_CMD_RD BIT(0) |
| #define ETH_MII_CMD_SCN BIT(1) |
| #define ETH_MII_REG_ADDR 0x0000001f |
| #define ETH_MII_PHY_ADDR 0x00001f00 |
| #define ETH_MII_WTD_DATA 0x0000ffff |
| #define ETH_MII_RDD_DATA 0x0000ffff |
| #define ETH_MII_IND_BSY BIT(0) |
| #define ETH_MII_IND_SCN BIT(1) |
| #define ETH_MII_IND_NV BIT(2) |
| |
| /* Values for the DEVCS field of the Ethernet DMA Rx and Tx descriptors. */ |
| #define ETH_RX_FD BIT(0) |
| #define ETH_RX_LD BIT(1) |
| #define ETH_RX_ROK BIT(2) |
| #define ETH_RX_FM BIT(3) |
| #define ETH_RX_MP BIT(4) |
| #define ETH_RX_BP BIT(5) |
| #define ETH_RX_VLT BIT(6) |
| #define ETH_RX_CF BIT(7) |
| #define ETH_RX_OVR BIT(8) |
| #define ETH_RX_CRC BIT(9) |
| #define ETH_RX_CV BIT(10) |
| #define ETH_RX_DB BIT(11) |
| #define ETH_RX_LE BIT(12) |
| #define ETH_RX_LOR BIT(13) |
| #define ETH_RX_CES BIT(14) |
| #define ETH_RX_LEN_BIT 16 |
| #define ETH_RX_LEN 0xffff0000 |
| |
| #define ETH_TX_FD BIT(0) |
| #define ETH_TX_LD BIT(1) |
| #define ETH_TX_OEN BIT(2) |
| #define ETH_TX_PEN BIT(3) |
| #define ETH_TX_CEN BIT(4) |
| #define ETH_TX_HEN BIT(5) |
| #define ETH_TX_TOK BIT(6) |
| #define ETH_TX_MP BIT(7) |
| #define ETH_TX_BP BIT(8) |
| #define ETH_TX_UND BIT(9) |
| #define ETH_TX_OF BIT(10) |
| #define ETH_TX_ED BIT(11) |
| #define ETH_TX_EC BIT(12) |
| #define ETH_TX_LC BIT(13) |
| #define ETH_TX_TD BIT(14) |
| #define ETH_TX_CRC BIT(15) |
| #define ETH_TX_LE BIT(16) |
| #define ETH_TX_CC 0x001E0000 |
| |
| /* DMA descriptor (in physical memory). */ |
| struct dma_desc { |
| u32 control; /* Control. use DMAD_* */ |
| u32 ca; /* Current Address. */ |
| u32 devcs; /* Device control and status. */ |
| u32 link; /* Next descriptor in chain. */ |
| }; |
| |
| #define DMA_DESC_COUNT_BIT 0 |
| #define DMA_DESC_COUNT_MSK 0x0003ffff |
| #define DMA_DESC_DS_BIT 20 |
| #define DMA_DESC_DS_MSK 0x00300000 |
| |
| #define DMA_DESC_DEV_CMD_BIT 22 |
| #define DMA_DESC_DEV_CMD_MSK 0x01c00000 |
| |
| /* DMA descriptors interrupts */ |
| #define DMA_DESC_COF BIT(25) /* Chain on finished */ |
| #define DMA_DESC_COD BIT(26) /* Chain on done */ |
| #define DMA_DESC_IOF BIT(27) /* Interrupt on finished */ |
| #define DMA_DESC_IOD BIT(28) /* Interrupt on done */ |
| #define DMA_DESC_TERM BIT(29) /* Terminated */ |
| #define DMA_DESC_DONE BIT(30) /* Done */ |
| #define DMA_DESC_FINI BIT(31) /* Finished */ |
| |
| /* DMA register (within Internal Register Map). */ |
| struct dma_reg { |
| u32 dmac; /* Control. */ |
| u32 dmas; /* Status. */ |
| u32 dmasm; /* Mask. */ |
| u32 dmadptr; /* Descriptor pointer. */ |
| u32 dmandptr; /* Next descriptor pointer. */ |
| }; |
| |
| /* DMA channels specific registers */ |
| #define DMA_CHAN_RUN_BIT BIT(0) |
| #define DMA_CHAN_DONE_BIT BIT(1) |
| #define DMA_CHAN_MODE_BIT BIT(2) |
| #define DMA_CHAN_MODE_MSK 0x0000000c |
| #define DMA_CHAN_MODE_AUTO 0 |
| #define DMA_CHAN_MODE_BURST 1 |
| #define DMA_CHAN_MODE_XFRT 2 |
| #define DMA_CHAN_MODE_RSVD 3 |
| #define DMA_CHAN_ACT_BIT BIT(4) |
| |
| /* DMA status registers */ |
| #define DMA_STAT_FINI BIT(0) |
| #define DMA_STAT_DONE BIT(1) |
| #define DMA_STAT_CHAIN BIT(2) |
| #define DMA_STAT_ERR BIT(3) |
| #define DMA_STAT_HALT BIT(4) |
| |
| #define STATION_ADDRESS_HIGH(dev) (((dev)->dev_addr[0] << 8) | \ |
| ((dev)->dev_addr[1])) |
| #define STATION_ADDRESS_LOW(dev) (((dev)->dev_addr[2] << 24) | \ |
| ((dev)->dev_addr[3] << 16) | \ |
| ((dev)->dev_addr[4] << 8) | \ |
| ((dev)->dev_addr[5])) |
| |
| #define MII_CLOCK 1250000 /* no more than 2.5MHz */ |
| |
| /* the following must be powers of two */ |
| #define KORINA_NUM_RDS 64 /* number of receive descriptors */ |
| #define KORINA_NUM_TDS 64 /* number of transmit descriptors */ |
| |
| /* KORINA_RBSIZE is the hardware's default maximum receive |
| * frame size in bytes. Having this hardcoded means that there |
| * is no support for MTU sizes greater than 1500. */ |
| #define KORINA_RBSIZE 1536 /* size of one resource buffer = Ether MTU */ |
| #define KORINA_RDS_MASK (KORINA_NUM_RDS - 1) |
| #define KORINA_TDS_MASK (KORINA_NUM_TDS - 1) |
| #define RD_RING_SIZE (KORINA_NUM_RDS * sizeof(struct dma_desc)) |
| #define TD_RING_SIZE (KORINA_NUM_TDS * sizeof(struct dma_desc)) |
| |
| #define TX_TIMEOUT (6000 * HZ / 1000) |
| |
| enum chain_status { |
| desc_filled, |
| desc_is_empty |
| }; |
| |
| #define DMA_COUNT(count) ((count) & DMA_DESC_COUNT_MSK) |
| #define IS_DMA_FINISHED(X) (((X) & (DMA_DESC_FINI)) != 0) |
| #define IS_DMA_DONE(X) (((X) & (DMA_DESC_DONE)) != 0) |
| #define RCVPKT_LENGTH(X) (((X) & ETH_RX_LEN) >> ETH_RX_LEN_BIT) |
| |
| /* Information that need to be kept for each board. */ |
| struct korina_private { |
| struct eth_regs __iomem *eth_regs; |
| struct dma_reg __iomem *rx_dma_regs; |
| struct dma_reg __iomem *tx_dma_regs; |
| struct dma_desc *td_ring; /* transmit descriptor ring */ |
| struct dma_desc *rd_ring; /* receive descriptor ring */ |
| dma_addr_t td_dma; |
| dma_addr_t rd_dma; |
| |
| struct sk_buff *tx_skb[KORINA_NUM_TDS]; |
| struct sk_buff *rx_skb[KORINA_NUM_RDS]; |
| |
| dma_addr_t rx_skb_dma[KORINA_NUM_RDS]; |
| dma_addr_t tx_skb_dma[KORINA_NUM_TDS]; |
| |
| int rx_next_done; |
| int rx_chain_head; |
| int rx_chain_tail; |
| enum chain_status rx_chain_status; |
| |
| int tx_next_done; |
| int tx_chain_head; |
| int tx_chain_tail; |
| enum chain_status tx_chain_status; |
| int tx_count; |
| int tx_full; |
| |
| int rx_irq; |
| int tx_irq; |
| |
| spinlock_t lock; /* NIC xmit lock */ |
| |
| int dma_halt_cnt; |
| int dma_run_cnt; |
| struct napi_struct napi; |
| struct timer_list media_check_timer; |
| struct mii_if_info mii_if; |
| struct work_struct restart_task; |
| struct net_device *dev; |
| struct device *dmadev; |
| int mii_clock_freq; |
| }; |
| |
| static dma_addr_t korina_tx_dma(struct korina_private *lp, int idx) |
| { |
| return lp->td_dma + (idx * sizeof(struct dma_desc)); |
| } |
| |
| static dma_addr_t korina_rx_dma(struct korina_private *lp, int idx) |
| { |
| return lp->rd_dma + (idx * sizeof(struct dma_desc)); |
| } |
| |
| static inline void korina_abort_dma(struct net_device *dev, |
| struct dma_reg *ch) |
| { |
| if (readl(&ch->dmac) & DMA_CHAN_RUN_BIT) { |
| writel(0x10, &ch->dmac); |
| |
| while (!(readl(&ch->dmas) & DMA_STAT_HALT)) |
| netif_trans_update(dev); |
| |
| writel(0, &ch->dmas); |
| } |
| |
| writel(0, &ch->dmadptr); |
| writel(0, &ch->dmandptr); |
| } |
| |
| static void korina_abort_tx(struct net_device *dev) |
| { |
| struct korina_private *lp = netdev_priv(dev); |
| |
| korina_abort_dma(dev, lp->tx_dma_regs); |
| } |
| |
| static void korina_abort_rx(struct net_device *dev) |
| { |
| struct korina_private *lp = netdev_priv(dev); |
| |
| korina_abort_dma(dev, lp->rx_dma_regs); |
| } |
| |
| /* transmit packet */ |
| static int korina_send_packet(struct sk_buff *skb, struct net_device *dev) |
| { |
| struct korina_private *lp = netdev_priv(dev); |
| u32 chain_prev, chain_next; |
| unsigned long flags; |
| struct dma_desc *td; |
| dma_addr_t ca; |
| u32 length; |
| int idx; |
| |
| spin_lock_irqsave(&lp->lock, flags); |
| |
| idx = lp->tx_chain_tail; |
| td = &lp->td_ring[idx]; |
| |
| /* stop queue when full, drop pkts if queue already full */ |
| if (lp->tx_count >= (KORINA_NUM_TDS - 2)) { |
| lp->tx_full = 1; |
| |
| if (lp->tx_count == (KORINA_NUM_TDS - 2)) |
| netif_stop_queue(dev); |
| else |
| goto drop_packet; |
| } |
| |
| lp->tx_count++; |
| |
| lp->tx_skb[idx] = skb; |
| |
| length = skb->len; |
| |
| /* Setup the transmit descriptor. */ |
| ca = dma_map_single(lp->dmadev, skb->data, length, DMA_TO_DEVICE); |
| if (dma_mapping_error(lp->dmadev, ca)) |
| goto drop_packet; |
| |
| lp->tx_skb_dma[idx] = ca; |
| td->ca = ca; |
| |
| chain_prev = (idx - 1) & KORINA_TDS_MASK; |
| chain_next = (idx + 1) & KORINA_TDS_MASK; |
| |
| if (readl(&(lp->tx_dma_regs->dmandptr)) == 0) { |
| if (lp->tx_chain_status == desc_is_empty) { |
| /* Update tail */ |
| td->control = DMA_COUNT(length) | |
| DMA_DESC_COF | DMA_DESC_IOF; |
| /* Move tail */ |
| lp->tx_chain_tail = chain_next; |
| /* Write to NDPTR */ |
| writel(korina_tx_dma(lp, lp->tx_chain_head), |
| &lp->tx_dma_regs->dmandptr); |
| /* Move head to tail */ |
| lp->tx_chain_head = lp->tx_chain_tail; |
| } else { |
| /* Update tail */ |
| td->control = DMA_COUNT(length) | |
| DMA_DESC_COF | DMA_DESC_IOF; |
| /* Link to prev */ |
| lp->td_ring[chain_prev].control &= |
| ~DMA_DESC_COF; |
| /* Link to prev */ |
| lp->td_ring[chain_prev].link = korina_tx_dma(lp, idx); |
| /* Move tail */ |
| lp->tx_chain_tail = chain_next; |
| /* Write to NDPTR */ |
| writel(korina_tx_dma(lp, lp->tx_chain_head), |
| &lp->tx_dma_regs->dmandptr); |
| /* Move head to tail */ |
| lp->tx_chain_head = lp->tx_chain_tail; |
| lp->tx_chain_status = desc_is_empty; |
| } |
| } else { |
| if (lp->tx_chain_status == desc_is_empty) { |
| /* Update tail */ |
| td->control = DMA_COUNT(length) | |
| DMA_DESC_COF | DMA_DESC_IOF; |
| /* Move tail */ |
| lp->tx_chain_tail = chain_next; |
| lp->tx_chain_status = desc_filled; |
| } else { |
| /* Update tail */ |
| td->control = DMA_COUNT(length) | |
| DMA_DESC_COF | DMA_DESC_IOF; |
| lp->td_ring[chain_prev].control &= |
| ~DMA_DESC_COF; |
| lp->td_ring[chain_prev].link = korina_tx_dma(lp, idx); |
| lp->tx_chain_tail = chain_next; |
| } |
| } |
| |
| netif_trans_update(dev); |
| spin_unlock_irqrestore(&lp->lock, flags); |
| |
| return NETDEV_TX_OK; |
| |
| drop_packet: |
| dev->stats.tx_dropped++; |
| dev_kfree_skb_any(skb); |
| spin_unlock_irqrestore(&lp->lock, flags); |
| |
| return NETDEV_TX_OK; |
| } |
| |
| static int korina_mdio_wait(struct korina_private *lp) |
| { |
| u32 value; |
| |
| return readl_poll_timeout_atomic(&lp->eth_regs->miimind, |
| value, value & ETH_MII_IND_BSY, |
| 1, 1000); |
| } |
| |
| static int korina_mdio_read(struct net_device *dev, int phy, int reg) |
| { |
| struct korina_private *lp = netdev_priv(dev); |
| int ret; |
| |
| ret = korina_mdio_wait(lp); |
| if (ret < 0) |
| return ret; |
| |
| writel(phy << 8 | reg, &lp->eth_regs->miimaddr); |
| writel(1, &lp->eth_regs->miimcmd); |
| |
| ret = korina_mdio_wait(lp); |
| if (ret < 0) |
| return ret; |
| |
| if (readl(&lp->eth_regs->miimind) & ETH_MII_IND_NV) |
| return -EINVAL; |
| |
| ret = readl(&lp->eth_regs->miimrdd); |
| writel(0, &lp->eth_regs->miimcmd); |
| return ret; |
| } |
| |
| static void korina_mdio_write(struct net_device *dev, int phy, int reg, int val) |
| { |
| struct korina_private *lp = netdev_priv(dev); |
| |
| if (korina_mdio_wait(lp)) |
| return; |
| |
| writel(0, &lp->eth_regs->miimcmd); |
| writel(phy << 8 | reg, &lp->eth_regs->miimaddr); |
| writel(val, &lp->eth_regs->miimwtd); |
| } |
| |
| /* Ethernet Rx DMA interrupt */ |
| static irqreturn_t korina_rx_dma_interrupt(int irq, void *dev_id) |
| { |
| struct net_device *dev = dev_id; |
| struct korina_private *lp = netdev_priv(dev); |
| u32 dmas, dmasm; |
| irqreturn_t retval; |
| |
| dmas = readl(&lp->rx_dma_regs->dmas); |
| if (dmas & (DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR)) { |
| dmasm = readl(&lp->rx_dma_regs->dmasm); |
| writel(dmasm | (DMA_STAT_DONE | |
| DMA_STAT_HALT | DMA_STAT_ERR), |
| &lp->rx_dma_regs->dmasm); |
| |
| napi_schedule(&lp->napi); |
| |
| if (dmas & DMA_STAT_ERR) |
| printk(KERN_ERR "%s: DMA error\n", dev->name); |
| |
| retval = IRQ_HANDLED; |
| } else |
| retval = IRQ_NONE; |
| |
| return retval; |
| } |
| |
| static int korina_rx(struct net_device *dev, int limit) |
| { |
| struct korina_private *lp = netdev_priv(dev); |
| struct dma_desc *rd = &lp->rd_ring[lp->rx_next_done]; |
| struct sk_buff *skb, *skb_new; |
| u32 devcs, pkt_len, dmas; |
| dma_addr_t ca; |
| int count; |
| |
| for (count = 0; count < limit; count++) { |
| skb = lp->rx_skb[lp->rx_next_done]; |
| skb_new = NULL; |
| |
| devcs = rd->devcs; |
| |
| if ((KORINA_RBSIZE - (u32)DMA_COUNT(rd->control)) == 0) |
| break; |
| |
| /* check that this is a whole packet |
| * WARNING: DMA_FD bit incorrectly set |
| * in Rc32434 (errata ref #077) */ |
| if (!(devcs & ETH_RX_LD)) |
| goto next; |
| |
| if (!(devcs & ETH_RX_ROK)) { |
| /* Update statistics counters */ |
| dev->stats.rx_errors++; |
| dev->stats.rx_dropped++; |
| if (devcs & ETH_RX_CRC) |
| dev->stats.rx_crc_errors++; |
| if (devcs & ETH_RX_LE) |
| dev->stats.rx_length_errors++; |
| if (devcs & ETH_RX_OVR) |
| dev->stats.rx_fifo_errors++; |
| if (devcs & ETH_RX_CV) |
| dev->stats.rx_frame_errors++; |
| if (devcs & ETH_RX_CES) |
| dev->stats.rx_frame_errors++; |
| |
| goto next; |
| } |
| |
| /* Malloc up new buffer. */ |
| skb_new = netdev_alloc_skb_ip_align(dev, KORINA_RBSIZE); |
| if (!skb_new) |
| break; |
| |
| ca = dma_map_single(lp->dmadev, skb_new->data, KORINA_RBSIZE, |
| DMA_FROM_DEVICE); |
| if (dma_mapping_error(lp->dmadev, ca)) { |
| dev_kfree_skb_any(skb_new); |
| break; |
| } |
| |
| pkt_len = RCVPKT_LENGTH(devcs); |
| dma_unmap_single(lp->dmadev, lp->rx_skb_dma[lp->rx_next_done], |
| pkt_len, DMA_FROM_DEVICE); |
| |
| /* Do not count the CRC */ |
| skb_put(skb, pkt_len - 4); |
| skb->protocol = eth_type_trans(skb, dev); |
| |
| /* Pass the packet to upper layers */ |
| napi_gro_receive(&lp->napi, skb); |
| dev->stats.rx_packets++; |
| dev->stats.rx_bytes += pkt_len; |
| |
| /* Update the mcast stats */ |
| if (devcs & ETH_RX_MP) |
| dev->stats.multicast++; |
| |
| lp->rx_skb[lp->rx_next_done] = skb_new; |
| lp->rx_skb_dma[lp->rx_next_done] = ca; |
| |
| next: |
| rd->devcs = 0; |
| |
| /* Restore descriptor's curr_addr */ |
| rd->ca = lp->rx_skb_dma[lp->rx_next_done]; |
| |
| rd->control = DMA_COUNT(KORINA_RBSIZE) | |
| DMA_DESC_COD | DMA_DESC_IOD; |
| lp->rd_ring[(lp->rx_next_done - 1) & |
| KORINA_RDS_MASK].control &= |
| ~DMA_DESC_COD; |
| |
| lp->rx_next_done = (lp->rx_next_done + 1) & KORINA_RDS_MASK; |
| rd = &lp->rd_ring[lp->rx_next_done]; |
| writel((u32)~DMA_STAT_DONE, &lp->rx_dma_regs->dmas); |
| } |
| |
| dmas = readl(&lp->rx_dma_regs->dmas); |
| |
| if (dmas & DMA_STAT_HALT) { |
| writel((u32)~(DMA_STAT_HALT | DMA_STAT_ERR), |
| &lp->rx_dma_regs->dmas); |
| |
| lp->dma_halt_cnt++; |
| rd->devcs = 0; |
| rd->ca = lp->rx_skb_dma[lp->rx_next_done]; |
| writel(korina_rx_dma(lp, rd - lp->rd_ring), |
| &lp->rx_dma_regs->dmandptr); |
| } |
| |
| return count; |
| } |
| |
| static int korina_poll(struct napi_struct *napi, int budget) |
| { |
| struct korina_private *lp = |
| container_of(napi, struct korina_private, napi); |
| struct net_device *dev = lp->dev; |
| int work_done; |
| |
| work_done = korina_rx(dev, budget); |
| if (work_done < budget) { |
| napi_complete_done(napi, work_done); |
| |
| writel(readl(&lp->rx_dma_regs->dmasm) & |
| ~(DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR), |
| &lp->rx_dma_regs->dmasm); |
| } |
| return work_done; |
| } |
| |
| /* |
| * Set or clear the multicast filter for this adaptor. |
| */ |
| static void korina_multicast_list(struct net_device *dev) |
| { |
| struct korina_private *lp = netdev_priv(dev); |
| unsigned long flags; |
| struct netdev_hw_addr *ha; |
| u32 recognise = ETH_ARC_AB; /* always accept broadcasts */ |
| |
| /* Set promiscuous mode */ |
| if (dev->flags & IFF_PROMISC) |
| recognise |= ETH_ARC_PRO; |
| |
| else if ((dev->flags & IFF_ALLMULTI) || (netdev_mc_count(dev) > 4)) |
| /* All multicast and broadcast */ |
| recognise |= ETH_ARC_AM; |
| |
| /* Build the hash table */ |
| if (netdev_mc_count(dev) > 4) { |
| u16 hash_table[4] = { 0 }; |
| u32 crc; |
| |
| netdev_for_each_mc_addr(ha, dev) { |
| crc = ether_crc_le(6, ha->addr); |
| crc >>= 26; |
| hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf)); |
| } |
| /* Accept filtered multicast */ |
| recognise |= ETH_ARC_AFM; |
| |
| /* Fill the MAC hash tables with their values */ |
| writel((u32)(hash_table[1] << 16 | hash_table[0]), |
| &lp->eth_regs->ethhash0); |
| writel((u32)(hash_table[3] << 16 | hash_table[2]), |
| &lp->eth_regs->ethhash1); |
| } |
| |
| spin_lock_irqsave(&lp->lock, flags); |
| writel(recognise, &lp->eth_regs->etharc); |
| spin_unlock_irqrestore(&lp->lock, flags); |
| } |
| |
| static void korina_tx(struct net_device *dev) |
| { |
| struct korina_private *lp = netdev_priv(dev); |
| struct dma_desc *td = &lp->td_ring[lp->tx_next_done]; |
| u32 devcs; |
| u32 dmas; |
| |
| spin_lock(&lp->lock); |
| |
| /* Process all desc that are done */ |
| while (IS_DMA_FINISHED(td->control)) { |
| if (lp->tx_full == 1) { |
| netif_wake_queue(dev); |
| lp->tx_full = 0; |
| } |
| |
| devcs = lp->td_ring[lp->tx_next_done].devcs; |
| if ((devcs & (ETH_TX_FD | ETH_TX_LD)) != |
| (ETH_TX_FD | ETH_TX_LD)) { |
| dev->stats.tx_errors++; |
| dev->stats.tx_dropped++; |
| |
| /* Should never happen */ |
| printk(KERN_ERR "%s: split tx ignored\n", |
| dev->name); |
| } else if (devcs & ETH_TX_TOK) { |
| dev->stats.tx_packets++; |
| dev->stats.tx_bytes += |
| lp->tx_skb[lp->tx_next_done]->len; |
| } else { |
| dev->stats.tx_errors++; |
| dev->stats.tx_dropped++; |
| |
| /* Underflow */ |
| if (devcs & ETH_TX_UND) |
| dev->stats.tx_fifo_errors++; |
| |
| /* Oversized frame */ |
| if (devcs & ETH_TX_OF) |
| dev->stats.tx_aborted_errors++; |
| |
| /* Excessive deferrals */ |
| if (devcs & ETH_TX_ED) |
| dev->stats.tx_carrier_errors++; |
| |
| /* Collisions: medium busy */ |
| if (devcs & ETH_TX_EC) |
| dev->stats.collisions++; |
| |
| /* Late collision */ |
| if (devcs & ETH_TX_LC) |
| dev->stats.tx_window_errors++; |
| } |
| |
| /* We must always free the original skb */ |
| if (lp->tx_skb[lp->tx_next_done]) { |
| dma_unmap_single(lp->dmadev, |
| lp->tx_skb_dma[lp->tx_next_done], |
| lp->tx_skb[lp->tx_next_done]->len, |
| DMA_TO_DEVICE); |
| dev_kfree_skb_any(lp->tx_skb[lp->tx_next_done]); |
| lp->tx_skb[lp->tx_next_done] = NULL; |
| } |
| |
| lp->td_ring[lp->tx_next_done].control = DMA_DESC_IOF; |
| lp->td_ring[lp->tx_next_done].devcs = ETH_TX_FD | ETH_TX_LD; |
| lp->td_ring[lp->tx_next_done].link = 0; |
| lp->td_ring[lp->tx_next_done].ca = 0; |
| lp->tx_count--; |
| |
| /* Go on to next transmission */ |
| lp->tx_next_done = (lp->tx_next_done + 1) & KORINA_TDS_MASK; |
| td = &lp->td_ring[lp->tx_next_done]; |
| |
| } |
| |
| /* Clear the DMA status register */ |
| dmas = readl(&lp->tx_dma_regs->dmas); |
| writel(~dmas, &lp->tx_dma_regs->dmas); |
| |
| writel(readl(&lp->tx_dma_regs->dmasm) & |
| ~(DMA_STAT_FINI | DMA_STAT_ERR), |
| &lp->tx_dma_regs->dmasm); |
| |
| spin_unlock(&lp->lock); |
| } |
| |
| static irqreturn_t |
| korina_tx_dma_interrupt(int irq, void *dev_id) |
| { |
| struct net_device *dev = dev_id; |
| struct korina_private *lp = netdev_priv(dev); |
| u32 dmas, dmasm; |
| irqreturn_t retval; |
| |
| dmas = readl(&lp->tx_dma_regs->dmas); |
| |
| if (dmas & (DMA_STAT_FINI | DMA_STAT_ERR)) { |
| dmasm = readl(&lp->tx_dma_regs->dmasm); |
| writel(dmasm | (DMA_STAT_FINI | DMA_STAT_ERR), |
| &lp->tx_dma_regs->dmasm); |
| |
| korina_tx(dev); |
| |
| if (lp->tx_chain_status == desc_filled && |
| (readl(&(lp->tx_dma_regs->dmandptr)) == 0)) { |
| writel(korina_tx_dma(lp, lp->tx_chain_head), |
| &lp->tx_dma_regs->dmandptr); |
| lp->tx_chain_status = desc_is_empty; |
| lp->tx_chain_head = lp->tx_chain_tail; |
| netif_trans_update(dev); |
| } |
| if (dmas & DMA_STAT_ERR) |
| printk(KERN_ERR "%s: DMA error\n", dev->name); |
| |
| retval = IRQ_HANDLED; |
| } else |
| retval = IRQ_NONE; |
| |
| return retval; |
| } |
| |
| |
| static void korina_check_media(struct net_device *dev, unsigned int init_media) |
| { |
| struct korina_private *lp = netdev_priv(dev); |
| |
| mii_check_media(&lp->mii_if, 1, init_media); |
| |
| if (lp->mii_if.full_duplex) |
| writel(readl(&lp->eth_regs->ethmac2) | ETH_MAC2_FD, |
| &lp->eth_regs->ethmac2); |
| else |
| writel(readl(&lp->eth_regs->ethmac2) & ~ETH_MAC2_FD, |
| &lp->eth_regs->ethmac2); |
| } |
| |
| static void korina_poll_media(struct timer_list *t) |
| { |
| struct korina_private *lp = from_timer(lp, t, media_check_timer); |
| struct net_device *dev = lp->dev; |
| |
| korina_check_media(dev, 0); |
| mod_timer(&lp->media_check_timer, jiffies + HZ); |
| } |
| |
| static void korina_set_carrier(struct mii_if_info *mii) |
| { |
| if (mii->force_media) { |
| /* autoneg is off: Link is always assumed to be up */ |
| if (!netif_carrier_ok(mii->dev)) |
| netif_carrier_on(mii->dev); |
| } else /* Let MMI library update carrier status */ |
| korina_check_media(mii->dev, 0); |
| } |
| |
| static int korina_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) |
| { |
| struct korina_private *lp = netdev_priv(dev); |
| struct mii_ioctl_data *data = if_mii(rq); |
| int rc; |
| |
| if (!netif_running(dev)) |
| return -EINVAL; |
| spin_lock_irq(&lp->lock); |
| rc = generic_mii_ioctl(&lp->mii_if, data, cmd, NULL); |
| spin_unlock_irq(&lp->lock); |
| korina_set_carrier(&lp->mii_if); |
| |
| return rc; |
| } |
| |
| /* ethtool helpers */ |
| static void netdev_get_drvinfo(struct net_device *dev, |
| struct ethtool_drvinfo *info) |
| { |
| struct korina_private *lp = netdev_priv(dev); |
| |
| strlcpy(info->driver, DRV_NAME, sizeof(info->driver)); |
| strlcpy(info->version, DRV_VERSION, sizeof(info->version)); |
| strlcpy(info->bus_info, lp->dev->name, sizeof(info->bus_info)); |
| } |
| |
| static int netdev_get_link_ksettings(struct net_device *dev, |
| struct ethtool_link_ksettings *cmd) |
| { |
| struct korina_private *lp = netdev_priv(dev); |
| |
| spin_lock_irq(&lp->lock); |
| mii_ethtool_get_link_ksettings(&lp->mii_if, cmd); |
| spin_unlock_irq(&lp->lock); |
| |
| return 0; |
| } |
| |
| static int netdev_set_link_ksettings(struct net_device *dev, |
| const struct ethtool_link_ksettings *cmd) |
| { |
| struct korina_private *lp = netdev_priv(dev); |
| int rc; |
| |
| spin_lock_irq(&lp->lock); |
| rc = mii_ethtool_set_link_ksettings(&lp->mii_if, cmd); |
| spin_unlock_irq(&lp->lock); |
| korina_set_carrier(&lp->mii_if); |
| |
| return rc; |
| } |
| |
| static u32 netdev_get_link(struct net_device *dev) |
| { |
| struct korina_private *lp = netdev_priv(dev); |
| |
| return mii_link_ok(&lp->mii_if); |
| } |
| |
| static const struct ethtool_ops netdev_ethtool_ops = { |
| .get_drvinfo = netdev_get_drvinfo, |
| .get_link = netdev_get_link, |
| .get_link_ksettings = netdev_get_link_ksettings, |
| .set_link_ksettings = netdev_set_link_ksettings, |
| }; |
| |
| static int korina_alloc_ring(struct net_device *dev) |
| { |
| struct korina_private *lp = netdev_priv(dev); |
| struct sk_buff *skb; |
| dma_addr_t ca; |
| int i; |
| |
| /* Initialize the transmit descriptors */ |
| for (i = 0; i < KORINA_NUM_TDS; i++) { |
| lp->td_ring[i].control = DMA_DESC_IOF; |
| lp->td_ring[i].devcs = ETH_TX_FD | ETH_TX_LD; |
| lp->td_ring[i].ca = 0; |
| lp->td_ring[i].link = 0; |
| } |
| lp->tx_next_done = lp->tx_chain_head = lp->tx_chain_tail = |
| lp->tx_full = lp->tx_count = 0; |
| lp->tx_chain_status = desc_is_empty; |
| |
| /* Initialize the receive descriptors */ |
| for (i = 0; i < KORINA_NUM_RDS; i++) { |
| skb = netdev_alloc_skb_ip_align(dev, KORINA_RBSIZE); |
| if (!skb) |
| return -ENOMEM; |
| lp->rx_skb[i] = skb; |
| lp->rd_ring[i].control = DMA_DESC_IOD | |
| DMA_COUNT(KORINA_RBSIZE); |
| lp->rd_ring[i].devcs = 0; |
| ca = dma_map_single(lp->dmadev, skb->data, KORINA_RBSIZE, |
| DMA_FROM_DEVICE); |
| if (dma_mapping_error(lp->dmadev, ca)) |
| return -ENOMEM; |
| lp->rd_ring[i].ca = ca; |
| lp->rx_skb_dma[i] = ca; |
| lp->rd_ring[i].link = korina_rx_dma(lp, i + 1); |
| } |
| |
| /* loop back receive descriptors, so the last |
| * descriptor points to the first one */ |
| lp->rd_ring[i - 1].link = lp->rd_dma; |
| lp->rd_ring[i - 1].control |= DMA_DESC_COD; |
| |
| lp->rx_next_done = 0; |
| lp->rx_chain_head = 0; |
| lp->rx_chain_tail = 0; |
| lp->rx_chain_status = desc_is_empty; |
| |
| return 0; |
| } |
| |
| static void korina_free_ring(struct net_device *dev) |
| { |
| struct korina_private *lp = netdev_priv(dev); |
| int i; |
| |
| for (i = 0; i < KORINA_NUM_RDS; i++) { |
| lp->rd_ring[i].control = 0; |
| if (lp->rx_skb[i]) { |
| dma_unmap_single(lp->dmadev, lp->rx_skb_dma[i], |
| KORINA_RBSIZE, DMA_FROM_DEVICE); |
| dev_kfree_skb_any(lp->rx_skb[i]); |
| lp->rx_skb[i] = NULL; |
| } |
| } |
| |
| for (i = 0; i < KORINA_NUM_TDS; i++) { |
| lp->td_ring[i].control = 0; |
| if (lp->tx_skb[i]) { |
| dma_unmap_single(lp->dmadev, lp->tx_skb_dma[i], |
| lp->tx_skb[i]->len, DMA_TO_DEVICE); |
| dev_kfree_skb_any(lp->tx_skb[i]); |
| lp->tx_skb[i] = NULL; |
| } |
| } |
| } |
| |
| /* |
| * Initialize the RC32434 ethernet controller. |
| */ |
| static int korina_init(struct net_device *dev) |
| { |
| struct korina_private *lp = netdev_priv(dev); |
| |
| /* Disable DMA */ |
| korina_abort_tx(dev); |
| korina_abort_rx(dev); |
| |
| /* reset ethernet logic */ |
| writel(0, &lp->eth_regs->ethintfc); |
| while ((readl(&lp->eth_regs->ethintfc) & ETH_INT_FC_RIP)) |
| netif_trans_update(dev); |
| |
| /* Enable Ethernet Interface */ |
| writel(ETH_INT_FC_EN, &lp->eth_regs->ethintfc); |
| |
| /* Allocate rings */ |
| if (korina_alloc_ring(dev)) { |
| printk(KERN_ERR "%s: descriptor allocation failed\n", dev->name); |
| korina_free_ring(dev); |
| return -ENOMEM; |
| } |
| |
| writel(0, &lp->rx_dma_regs->dmas); |
| /* Start Rx DMA */ |
| writel(0, &lp->rx_dma_regs->dmandptr); |
| writel(korina_rx_dma(lp, 0), &lp->rx_dma_regs->dmadptr); |
| |
| writel(readl(&lp->tx_dma_regs->dmasm) & |
| ~(DMA_STAT_FINI | DMA_STAT_ERR), |
| &lp->tx_dma_regs->dmasm); |
| writel(readl(&lp->rx_dma_regs->dmasm) & |
| ~(DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR), |
| &lp->rx_dma_regs->dmasm); |
| |
| /* Accept only packets destined for this Ethernet device address */ |
| writel(ETH_ARC_AB, &lp->eth_regs->etharc); |
| |
| /* Set all Ether station address registers to their initial values */ |
| writel(STATION_ADDRESS_LOW(dev), &lp->eth_regs->ethsal0); |
| writel(STATION_ADDRESS_HIGH(dev), &lp->eth_regs->ethsah0); |
| |
| writel(STATION_ADDRESS_LOW(dev), &lp->eth_regs->ethsal1); |
| writel(STATION_ADDRESS_HIGH(dev), &lp->eth_regs->ethsah1); |
| |
| writel(STATION_ADDRESS_LOW(dev), &lp->eth_regs->ethsal2); |
| writel(STATION_ADDRESS_HIGH(dev), &lp->eth_regs->ethsah2); |
| |
| writel(STATION_ADDRESS_LOW(dev), &lp->eth_regs->ethsal3); |
| writel(STATION_ADDRESS_HIGH(dev), &lp->eth_regs->ethsah3); |
| |
| |
| /* Frame Length Checking, Pad Enable, CRC Enable, Full Duplex set */ |
| writel(ETH_MAC2_PE | ETH_MAC2_CEN | ETH_MAC2_FD, |
| &lp->eth_regs->ethmac2); |
| |
| /* Back to back inter-packet-gap */ |
| writel(0x15, &lp->eth_regs->ethipgt); |
| /* Non - Back to back inter-packet-gap */ |
| writel(0x12, &lp->eth_regs->ethipgr); |
| |
| /* Management Clock Prescaler Divisor |
| * Clock independent setting */ |
| writel(((lp->mii_clock_freq) / MII_CLOCK + 1) & ~1, |
| &lp->eth_regs->ethmcp); |
| writel(0, &lp->eth_regs->miimcfg); |
| |
| /* don't transmit until fifo contains 48b */ |
| writel(48, &lp->eth_regs->ethfifott); |
| |
| writel(ETH_MAC1_RE, &lp->eth_regs->ethmac1); |
| |
| korina_check_media(dev, 1); |
| |
| napi_enable(&lp->napi); |
| netif_start_queue(dev); |
| |
| return 0; |
| } |
| |
| /* |
| * Restart the RC32434 ethernet controller. |
| */ |
| static void korina_restart_task(struct work_struct *work) |
| { |
| struct korina_private *lp = container_of(work, |
| struct korina_private, restart_task); |
| struct net_device *dev = lp->dev; |
| |
| /* |
| * Disable interrupts |
| */ |
| disable_irq(lp->rx_irq); |
| disable_irq(lp->tx_irq); |
| |
| writel(readl(&lp->tx_dma_regs->dmasm) | |
| DMA_STAT_FINI | DMA_STAT_ERR, |
| &lp->tx_dma_regs->dmasm); |
| writel(readl(&lp->rx_dma_regs->dmasm) | |
| DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR, |
| &lp->rx_dma_regs->dmasm); |
| |
| napi_disable(&lp->napi); |
| |
| korina_free_ring(dev); |
| |
| if (korina_init(dev) < 0) { |
| printk(KERN_ERR "%s: cannot restart device\n", dev->name); |
| return; |
| } |
| korina_multicast_list(dev); |
| |
| enable_irq(lp->tx_irq); |
| enable_irq(lp->rx_irq); |
| } |
| |
| static void korina_tx_timeout(struct net_device *dev, unsigned int txqueue) |
| { |
| struct korina_private *lp = netdev_priv(dev); |
| |
| schedule_work(&lp->restart_task); |
| } |
| |
| #ifdef CONFIG_NET_POLL_CONTROLLER |
| static void korina_poll_controller(struct net_device *dev) |
| { |
| disable_irq(dev->irq); |
| korina_tx_dma_interrupt(dev->irq, dev); |
| enable_irq(dev->irq); |
| } |
| #endif |
| |
| static int korina_open(struct net_device *dev) |
| { |
| struct korina_private *lp = netdev_priv(dev); |
| int ret; |
| |
| /* Initialize */ |
| ret = korina_init(dev); |
| if (ret < 0) { |
| printk(KERN_ERR "%s: cannot open device\n", dev->name); |
| goto out; |
| } |
| |
| /* Install the interrupt handler |
| * that handles the Done Finished */ |
| ret = request_irq(lp->rx_irq, korina_rx_dma_interrupt, |
| 0, "Korina ethernet Rx", dev); |
| if (ret < 0) { |
| printk(KERN_ERR "%s: unable to get Rx DMA IRQ %d\n", |
| dev->name, lp->rx_irq); |
| goto err_release; |
| } |
| ret = request_irq(lp->tx_irq, korina_tx_dma_interrupt, |
| 0, "Korina ethernet Tx", dev); |
| if (ret < 0) { |
| printk(KERN_ERR "%s: unable to get Tx DMA IRQ %d\n", |
| dev->name, lp->tx_irq); |
| goto err_free_rx_irq; |
| } |
| |
| mod_timer(&lp->media_check_timer, jiffies + 1); |
| out: |
| return ret; |
| |
| err_free_rx_irq: |
| free_irq(lp->rx_irq, dev); |
| err_release: |
| korina_free_ring(dev); |
| goto out; |
| } |
| |
| static int korina_close(struct net_device *dev) |
| { |
| struct korina_private *lp = netdev_priv(dev); |
| u32 tmp; |
| |
| del_timer(&lp->media_check_timer); |
| |
| /* Disable interrupts */ |
| disable_irq(lp->rx_irq); |
| disable_irq(lp->tx_irq); |
| |
| korina_abort_tx(dev); |
| tmp = readl(&lp->tx_dma_regs->dmasm); |
| tmp = tmp | DMA_STAT_FINI | DMA_STAT_ERR; |
| writel(tmp, &lp->tx_dma_regs->dmasm); |
| |
| korina_abort_rx(dev); |
| tmp = readl(&lp->rx_dma_regs->dmasm); |
| tmp = tmp | DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR; |
| writel(tmp, &lp->rx_dma_regs->dmasm); |
| |
| napi_disable(&lp->napi); |
| |
| cancel_work_sync(&lp->restart_task); |
| |
| korina_free_ring(dev); |
| |
| free_irq(lp->rx_irq, dev); |
| free_irq(lp->tx_irq, dev); |
| |
| return 0; |
| } |
| |
| static const struct net_device_ops korina_netdev_ops = { |
| .ndo_open = korina_open, |
| .ndo_stop = korina_close, |
| .ndo_start_xmit = korina_send_packet, |
| .ndo_set_rx_mode = korina_multicast_list, |
| .ndo_tx_timeout = korina_tx_timeout, |
| .ndo_do_ioctl = korina_ioctl, |
| .ndo_validate_addr = eth_validate_addr, |
| .ndo_set_mac_address = eth_mac_addr, |
| #ifdef CONFIG_NET_POLL_CONTROLLER |
| .ndo_poll_controller = korina_poll_controller, |
| #endif |
| }; |
| |
| static int korina_probe(struct platform_device *pdev) |
| { |
| u8 *mac_addr = dev_get_platdata(&pdev->dev); |
| struct korina_private *lp; |
| struct net_device *dev; |
| struct clk *clk; |
| void __iomem *p; |
| int rc; |
| |
| dev = devm_alloc_etherdev(&pdev->dev, sizeof(struct korina_private)); |
| if (!dev) |
| return -ENOMEM; |
| |
| SET_NETDEV_DEV(dev, &pdev->dev); |
| lp = netdev_priv(dev); |
| |
| if (mac_addr) |
| ether_addr_copy(dev->dev_addr, mac_addr); |
| else if (of_get_mac_address(pdev->dev.of_node, dev->dev_addr) < 0) |
| eth_hw_addr_random(dev); |
| |
| clk = devm_clk_get_optional(&pdev->dev, "mdioclk"); |
| if (IS_ERR(clk)) |
| return PTR_ERR(clk); |
| if (clk) { |
| clk_prepare_enable(clk); |
| lp->mii_clock_freq = clk_get_rate(clk); |
| } else { |
| lp->mii_clock_freq = 200000000; /* max possible input clk */ |
| } |
| |
| lp->rx_irq = platform_get_irq_byname(pdev, "rx"); |
| lp->tx_irq = platform_get_irq_byname(pdev, "tx"); |
| |
| p = devm_platform_ioremap_resource_byname(pdev, "emac"); |
| if (IS_ERR(p)) { |
| printk(KERN_ERR DRV_NAME ": cannot remap registers\n"); |
| return PTR_ERR(p); |
| } |
| lp->eth_regs = p; |
| |
| p = devm_platform_ioremap_resource_byname(pdev, "dma_rx"); |
| if (IS_ERR(p)) { |
| printk(KERN_ERR DRV_NAME ": cannot remap Rx DMA registers\n"); |
| return PTR_ERR(p); |
| } |
| lp->rx_dma_regs = p; |
| |
| p = devm_platform_ioremap_resource_byname(pdev, "dma_tx"); |
| if (IS_ERR(p)) { |
| printk(KERN_ERR DRV_NAME ": cannot remap Tx DMA registers\n"); |
| return PTR_ERR(p); |
| } |
| lp->tx_dma_regs = p; |
| |
| lp->td_ring = dmam_alloc_coherent(&pdev->dev, TD_RING_SIZE, |
| &lp->td_dma, GFP_KERNEL); |
| if (!lp->td_ring) |
| return -ENOMEM; |
| |
| lp->rd_ring = dmam_alloc_coherent(&pdev->dev, RD_RING_SIZE, |
| &lp->rd_dma, GFP_KERNEL); |
| if (!lp->rd_ring) |
| return -ENOMEM; |
| |
| spin_lock_init(&lp->lock); |
| /* just use the rx dma irq */ |
| dev->irq = lp->rx_irq; |
| lp->dev = dev; |
| lp->dmadev = &pdev->dev; |
| |
| dev->netdev_ops = &korina_netdev_ops; |
| dev->ethtool_ops = &netdev_ethtool_ops; |
| dev->watchdog_timeo = TX_TIMEOUT; |
| netif_napi_add(dev, &lp->napi, korina_poll, NAPI_POLL_WEIGHT); |
| |
| lp->mii_if.dev = dev; |
| lp->mii_if.mdio_read = korina_mdio_read; |
| lp->mii_if.mdio_write = korina_mdio_write; |
| lp->mii_if.phy_id = 1; |
| lp->mii_if.phy_id_mask = 0x1f; |
| lp->mii_if.reg_num_mask = 0x1f; |
| |
| platform_set_drvdata(pdev, dev); |
| |
| rc = register_netdev(dev); |
| if (rc < 0) { |
| printk(KERN_ERR DRV_NAME |
| ": cannot register net device: %d\n", rc); |
| return rc; |
| } |
| timer_setup(&lp->media_check_timer, korina_poll_media, 0); |
| |
| INIT_WORK(&lp->restart_task, korina_restart_task); |
| |
| printk(KERN_INFO "%s: " DRV_NAME "-" DRV_VERSION " " DRV_RELDATE "\n", |
| dev->name); |
| return rc; |
| } |
| |
| static int korina_remove(struct platform_device *pdev) |
| { |
| struct net_device *dev = platform_get_drvdata(pdev); |
| |
| unregister_netdev(dev); |
| |
| return 0; |
| } |
| |
| #ifdef CONFIG_OF |
| static const struct of_device_id korina_match[] = { |
| { |
| .compatible = "idt,3243x-emac", |
| }, |
| { } |
| }; |
| MODULE_DEVICE_TABLE(of, korina_match); |
| #endif |
| |
| static struct platform_driver korina_driver = { |
| .driver = { |
| .name = "korina", |
| .of_match_table = of_match_ptr(korina_match), |
| }, |
| .probe = korina_probe, |
| .remove = korina_remove, |
| }; |
| |
| module_platform_driver(korina_driver); |
| |
| MODULE_AUTHOR("Philip Rischel <rischelp@idt.com>"); |
| MODULE_AUTHOR("Felix Fietkau <nbd@openwrt.org>"); |
| MODULE_AUTHOR("Florian Fainelli <florian@openwrt.org>"); |
| MODULE_AUTHOR("Roman Yeryomin <roman@advem.lv>"); |
| MODULE_DESCRIPTION("IDT RC32434 (Korina) Ethernet driver"); |
| MODULE_LICENSE("GPL"); |