| // SPDX-License-Identifier: GPL-2.0 |
| |
| /* Copyright (c) 2012-2018, The Linux Foundation. All rights reserved. |
| * Copyright (C) 2018-2021 Linaro Ltd. |
| */ |
| |
| #include <linux/types.h> |
| #include <linux/atomic.h> |
| #include <linux/bitfield.h> |
| #include <linux/device.h> |
| #include <linux/bug.h> |
| #include <linux/io.h> |
| #include <linux/firmware.h> |
| #include <linux/module.h> |
| #include <linux/of.h> |
| #include <linux/of_device.h> |
| #include <linux/of_address.h> |
| #include <linux/qcom_scm.h> |
| #include <linux/soc/qcom/mdt_loader.h> |
| |
| #include "ipa.h" |
| #include "ipa_clock.h" |
| #include "ipa_data.h" |
| #include "ipa_endpoint.h" |
| #include "ipa_resource.h" |
| #include "ipa_cmd.h" |
| #include "ipa_reg.h" |
| #include "ipa_mem.h" |
| #include "ipa_table.h" |
| #include "ipa_modem.h" |
| #include "ipa_uc.h" |
| #include "ipa_interrupt.h" |
| #include "gsi_trans.h" |
| |
| /** |
| * DOC: The IP Accelerator |
| * |
| * This driver supports the Qualcomm IP Accelerator (IPA), which is a |
| * networking component found in many Qualcomm SoCs. The IPA is connected |
| * to the application processor (AP), but is also connected (and partially |
| * controlled by) other "execution environments" (EEs), such as a modem. |
| * |
| * The IPA is the conduit between the AP and the modem that carries network |
| * traffic. This driver presents a network interface representing the |
| * connection of the modem to external (e.g. LTE) networks. |
| * |
| * The IPA provides protocol checksum calculation, offloading this work |
| * from the AP. The IPA offers additional functionality, including routing, |
| * filtering, and NAT support, but that more advanced functionality is not |
| * currently supported. Despite that, some resources--including routing |
| * tables and filter tables--are defined in this driver because they must |
| * be initialized even when the advanced hardware features are not used. |
| * |
| * There are two distinct layers that implement the IPA hardware, and this |
| * is reflected in the organization of the driver. The generic software |
| * interface (GSI) is an integral component of the IPA, providing a |
| * well-defined communication layer between the AP subsystem and the IPA |
| * core. The GSI implements a set of "channels" used for communication |
| * between the AP and the IPA. |
| * |
| * The IPA layer uses GSI channels to implement its "endpoints". And while |
| * a GSI channel carries data between the AP and the IPA, a pair of IPA |
| * endpoints is used to carry traffic between two EEs. Specifically, the main |
| * modem network interface is implemented by two pairs of endpoints: a TX |
| * endpoint on the AP coupled with an RX endpoint on the modem; and another |
| * RX endpoint on the AP receiving data from a TX endpoint on the modem. |
| */ |
| |
| /* The name of the GSI firmware file relative to /lib/firmware */ |
| #define IPA_FW_PATH_DEFAULT "ipa_fws.mdt" |
| #define IPA_PAS_ID 15 |
| |
| /* Shift of 19.2 MHz timestamp to achieve lower resolution timestamps */ |
| #define DPL_TIMESTAMP_SHIFT 14 /* ~1.172 kHz, ~853 usec per tick */ |
| #define TAG_TIMESTAMP_SHIFT 14 |
| #define NAT_TIMESTAMP_SHIFT 24 /* ~1.144 Hz, ~874 msec per tick */ |
| |
| /* Divider for 19.2 MHz crystal oscillator clock to get common timer clock */ |
| #define IPA_XO_CLOCK_DIVIDER 192 /* 1 is subtracted where used */ |
| |
| /** |
| * ipa_suspend_handler() - Handle the suspend IPA interrupt |
| * @ipa: IPA pointer |
| * @irq_id: IPA interrupt type (unused) |
| * |
| * If an RX endpoint is in suspend state, and the IPA has a packet |
| * destined for that endpoint, the IPA generates a SUSPEND interrupt |
| * to inform the AP that it should resume the endpoint. If we get |
| * one of these interrupts we just resume everything. |
| */ |
| static void ipa_suspend_handler(struct ipa *ipa, enum ipa_irq_id irq_id) |
| { |
| /* Just report the event, and let system resume handle the rest. |
| * More than one endpoint could signal this; if so, ignore |
| * all but the first. |
| */ |
| if (!test_and_set_bit(IPA_FLAG_RESUMED, ipa->flags)) |
| pm_wakeup_dev_event(&ipa->pdev->dev, 0, true); |
| |
| /* Acknowledge/clear the suspend interrupt on all endpoints */ |
| ipa_interrupt_suspend_clear_all(ipa->interrupt); |
| } |
| |
| /** |
| * ipa_setup() - Set up IPA hardware |
| * @ipa: IPA pointer |
| * |
| * Perform initialization that requires issuing immediate commands on |
| * the command TX endpoint. If the modem is doing GSI firmware load |
| * and initialization, this function will be called when an SMP2P |
| * interrupt has been signaled by the modem. Otherwise it will be |
| * called from ipa_probe() after GSI firmware has been successfully |
| * loaded, authenticated, and started by Trust Zone. |
| */ |
| int ipa_setup(struct ipa *ipa) |
| { |
| struct ipa_endpoint *exception_endpoint; |
| struct ipa_endpoint *command_endpoint; |
| struct device *dev = &ipa->pdev->dev; |
| int ret; |
| |
| ret = gsi_setup(&ipa->gsi); |
| if (ret) |
| return ret; |
| |
| ipa->interrupt = ipa_interrupt_setup(ipa); |
| if (IS_ERR(ipa->interrupt)) { |
| ret = PTR_ERR(ipa->interrupt); |
| goto err_gsi_teardown; |
| } |
| ipa_interrupt_add(ipa->interrupt, IPA_IRQ_TX_SUSPEND, |
| ipa_suspend_handler); |
| |
| ipa_uc_setup(ipa); |
| |
| ret = device_init_wakeup(dev, true); |
| if (ret) |
| goto err_uc_teardown; |
| |
| ipa_endpoint_setup(ipa); |
| |
| /* We need to use the AP command TX endpoint to perform other |
| * initialization, so we enable first. |
| */ |
| command_endpoint = ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]; |
| ret = ipa_endpoint_enable_one(command_endpoint); |
| if (ret) |
| goto err_endpoint_teardown; |
| |
| ret = ipa_mem_setup(ipa); /* No matching teardown required */ |
| if (ret) |
| goto err_command_disable; |
| |
| ret = ipa_table_setup(ipa); /* No matching teardown required */ |
| if (ret) |
| goto err_command_disable; |
| |
| /* Enable the exception handling endpoint, and tell the hardware |
| * to use it by default. |
| */ |
| exception_endpoint = ipa->name_map[IPA_ENDPOINT_AP_LAN_RX]; |
| ret = ipa_endpoint_enable_one(exception_endpoint); |
| if (ret) |
| goto err_command_disable; |
| |
| ipa_endpoint_default_route_set(ipa, exception_endpoint->endpoint_id); |
| |
| /* We're all set. Now prepare for communication with the modem */ |
| ret = ipa_modem_setup(ipa); |
| if (ret) |
| goto err_default_route_clear; |
| |
| ipa->setup_complete = true; |
| |
| dev_info(dev, "IPA driver setup completed successfully\n"); |
| |
| return 0; |
| |
| err_default_route_clear: |
| ipa_endpoint_default_route_clear(ipa); |
| ipa_endpoint_disable_one(exception_endpoint); |
| err_command_disable: |
| ipa_endpoint_disable_one(command_endpoint); |
| err_endpoint_teardown: |
| ipa_endpoint_teardown(ipa); |
| (void)device_init_wakeup(dev, false); |
| err_uc_teardown: |
| ipa_uc_teardown(ipa); |
| ipa_interrupt_remove(ipa->interrupt, IPA_IRQ_TX_SUSPEND); |
| ipa_interrupt_teardown(ipa->interrupt); |
| err_gsi_teardown: |
| gsi_teardown(&ipa->gsi); |
| |
| return ret; |
| } |
| |
| /** |
| * ipa_teardown() - Inverse of ipa_setup() |
| * @ipa: IPA pointer |
| */ |
| static void ipa_teardown(struct ipa *ipa) |
| { |
| struct ipa_endpoint *exception_endpoint; |
| struct ipa_endpoint *command_endpoint; |
| |
| ipa_modem_teardown(ipa); |
| ipa_endpoint_default_route_clear(ipa); |
| exception_endpoint = ipa->name_map[IPA_ENDPOINT_AP_LAN_RX]; |
| ipa_endpoint_disable_one(exception_endpoint); |
| command_endpoint = ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]; |
| ipa_endpoint_disable_one(command_endpoint); |
| ipa_endpoint_teardown(ipa); |
| (void)device_init_wakeup(&ipa->pdev->dev, false); |
| ipa_uc_teardown(ipa); |
| ipa_interrupt_remove(ipa->interrupt, IPA_IRQ_TX_SUSPEND); |
| ipa_interrupt_teardown(ipa->interrupt); |
| gsi_teardown(&ipa->gsi); |
| } |
| |
| /* Configure bus access behavior for IPA components */ |
| static void ipa_hardware_config_comp(struct ipa *ipa) |
| { |
| u32 val; |
| |
| /* Nothing to configure prior to IPA v4.0 */ |
| if (ipa->version < IPA_VERSION_4_0) |
| return; |
| |
| val = ioread32(ipa->reg_virt + IPA_REG_COMP_CFG_OFFSET); |
| |
| if (ipa->version == IPA_VERSION_4_0) { |
| val &= ~IPA_QMB_SELECT_CONS_EN_FMASK; |
| val &= ~IPA_QMB_SELECT_PROD_EN_FMASK; |
| val &= ~IPA_QMB_SELECT_GLOBAL_EN_FMASK; |
| } else if (ipa->version < IPA_VERSION_4_5) { |
| val |= GSI_MULTI_AXI_MASTERS_DIS_FMASK; |
| } else { |
| /* For IPA v4.5 IPA_FULL_FLUSH_WAIT_RSC_CLOSE_EN is 0 */ |
| } |
| |
| val |= GSI_MULTI_INORDER_RD_DIS_FMASK; |
| val |= GSI_MULTI_INORDER_WR_DIS_FMASK; |
| |
| iowrite32(val, ipa->reg_virt + IPA_REG_COMP_CFG_OFFSET); |
| } |
| |
| /* Configure DDR and (possibly) PCIe max read/write QSB values */ |
| static void |
| ipa_hardware_config_qsb(struct ipa *ipa, const struct ipa_data *data) |
| { |
| const struct ipa_qsb_data *data0; |
| const struct ipa_qsb_data *data1; |
| u32 val; |
| |
| /* assert(data->qsb_count > 0); */ |
| /* assert(data->qsb_count < 3); */ |
| |
| /* QMB 0 represents DDR; QMB 1 (if present) represents PCIe */ |
| data0 = &data->qsb_data[IPA_QSB_MASTER_DDR]; |
| if (data->qsb_count > 1) |
| data1 = &data->qsb_data[IPA_QSB_MASTER_PCIE]; |
| |
| /* Max outstanding write accesses for QSB masters */ |
| val = u32_encode_bits(data0->max_writes, GEN_QMB_0_MAX_WRITES_FMASK); |
| if (data->qsb_count > 1) |
| val |= u32_encode_bits(data1->max_writes, |
| GEN_QMB_1_MAX_WRITES_FMASK); |
| iowrite32(val, ipa->reg_virt + IPA_REG_QSB_MAX_WRITES_OFFSET); |
| |
| /* Max outstanding read accesses for QSB masters */ |
| val = u32_encode_bits(data0->max_reads, GEN_QMB_0_MAX_READS_FMASK); |
| if (ipa->version >= IPA_VERSION_4_0) |
| val |= u32_encode_bits(data0->max_reads_beats, |
| GEN_QMB_0_MAX_READS_BEATS_FMASK); |
| if (data->qsb_count > 1) { |
| val |= u32_encode_bits(data1->max_reads, |
| GEN_QMB_1_MAX_READS_FMASK); |
| if (ipa->version >= IPA_VERSION_4_0) |
| val |= u32_encode_bits(data1->max_reads_beats, |
| GEN_QMB_1_MAX_READS_BEATS_FMASK); |
| } |
| iowrite32(val, ipa->reg_virt + IPA_REG_QSB_MAX_READS_OFFSET); |
| } |
| |
| /* The internal inactivity timer clock is used for the aggregation timer */ |
| #define TIMER_FREQUENCY 32000 /* 32 KHz inactivity timer clock */ |
| |
| /* Compute the value to use in the COUNTER_CFG register AGGR_GRANULARITY |
| * field to represent the given number of microseconds. The value is one |
| * less than the number of timer ticks in the requested period. 0 is not |
| * a valid granularity value. |
| */ |
| static u32 ipa_aggr_granularity_val(u32 usec) |
| { |
| /* assert(usec != 0); */ |
| |
| return DIV_ROUND_CLOSEST(usec * TIMER_FREQUENCY, USEC_PER_SEC) - 1; |
| } |
| |
| /* IPA uses unified Qtime starting at IPA v4.5, implementing various |
| * timestamps and timers independent of the IPA core clock rate. The |
| * Qtimer is based on a 56-bit timestamp incremented at each tick of |
| * a 19.2 MHz SoC crystal oscillator (XO clock). |
| * |
| * For IPA timestamps (tag, NAT, data path logging) a lower resolution |
| * timestamp is achieved by shifting the Qtimer timestamp value right |
| * some number of bits to produce the low-order bits of the coarser |
| * granularity timestamp. |
| * |
| * For timers, a common timer clock is derived from the XO clock using |
| * a divider (we use 192, to produce a 100kHz timer clock). From |
| * this common clock, three "pulse generators" are used to produce |
| * timer ticks at a configurable frequency. IPA timers (such as |
| * those used for aggregation or head-of-line block handling) now |
| * define their period based on one of these pulse generators. |
| */ |
| static void ipa_qtime_config(struct ipa *ipa) |
| { |
| u32 val; |
| |
| /* Timer clock divider must be disabled when we change the rate */ |
| iowrite32(0, ipa->reg_virt + IPA_REG_TIMERS_XO_CLK_DIV_CFG_OFFSET); |
| |
| /* Set DPL time stamp resolution to use Qtime (instead of 1 msec) */ |
| val = u32_encode_bits(DPL_TIMESTAMP_SHIFT, DPL_TIMESTAMP_LSB_FMASK); |
| val |= u32_encode_bits(1, DPL_TIMESTAMP_SEL_FMASK); |
| /* Configure tag and NAT Qtime timestamp resolution as well */ |
| val |= u32_encode_bits(TAG_TIMESTAMP_SHIFT, TAG_TIMESTAMP_LSB_FMASK); |
| val |= u32_encode_bits(NAT_TIMESTAMP_SHIFT, NAT_TIMESTAMP_LSB_FMASK); |
| iowrite32(val, ipa->reg_virt + IPA_REG_QTIME_TIMESTAMP_CFG_OFFSET); |
| |
| /* Set granularity of pulse generators used for other timers */ |
| val = u32_encode_bits(IPA_GRAN_100_US, GRAN_0_FMASK); |
| val |= u32_encode_bits(IPA_GRAN_1_MS, GRAN_1_FMASK); |
| val |= u32_encode_bits(IPA_GRAN_1_MS, GRAN_2_FMASK); |
| iowrite32(val, ipa->reg_virt + IPA_REG_TIMERS_PULSE_GRAN_CFG_OFFSET); |
| |
| /* Actual divider is 1 more than value supplied here */ |
| val = u32_encode_bits(IPA_XO_CLOCK_DIVIDER - 1, DIV_VALUE_FMASK); |
| iowrite32(val, ipa->reg_virt + IPA_REG_TIMERS_XO_CLK_DIV_CFG_OFFSET); |
| |
| /* Divider value is set; re-enable the common timer clock divider */ |
| val |= u32_encode_bits(1, DIV_ENABLE_FMASK); |
| iowrite32(val, ipa->reg_virt + IPA_REG_TIMERS_XO_CLK_DIV_CFG_OFFSET); |
| } |
| |
| static void ipa_idle_indication_cfg(struct ipa *ipa, |
| u32 enter_idle_debounce_thresh, |
| bool const_non_idle_enable) |
| { |
| u32 offset; |
| u32 val; |
| |
| val = u32_encode_bits(enter_idle_debounce_thresh, |
| ENTER_IDLE_DEBOUNCE_THRESH_FMASK); |
| if (const_non_idle_enable) |
| val |= CONST_NON_IDLE_ENABLE_FMASK; |
| |
| offset = ipa_reg_idle_indication_cfg_offset(ipa->version); |
| iowrite32(val, ipa->reg_virt + offset); |
| } |
| |
| /** |
| * ipa_hardware_dcd_config() - Enable dynamic clock division on IPA |
| * @ipa: IPA pointer |
| * |
| * Configures when the IPA signals it is idle to the global clock |
| * controller, which can respond by scalling down the clock to |
| * save power. |
| */ |
| static void ipa_hardware_dcd_config(struct ipa *ipa) |
| { |
| /* Recommended values for IPA 3.5 and later according to IPA HPG */ |
| ipa_idle_indication_cfg(ipa, 256, false); |
| } |
| |
| static void ipa_hardware_dcd_deconfig(struct ipa *ipa) |
| { |
| /* Power-on reset values */ |
| ipa_idle_indication_cfg(ipa, 0, true); |
| } |
| |
| /** |
| * ipa_hardware_config() - Primitive hardware initialization |
| * @ipa: IPA pointer |
| * @data: IPA configuration data |
| */ |
| static void ipa_hardware_config(struct ipa *ipa, const struct ipa_data *data) |
| { |
| enum ipa_version version = ipa->version; |
| u32 granularity; |
| u32 val; |
| |
| /* IPA v4.5+ has no backward compatibility register */ |
| if (version < IPA_VERSION_4_5) { |
| val = data->backward_compat; |
| iowrite32(val, ipa->reg_virt + IPA_REG_BCR_OFFSET); |
| } |
| |
| /* Implement some hardware workarounds */ |
| if (version >= IPA_VERSION_4_0 && version < IPA_VERSION_4_5) { |
| /* Enable open global clocks (not needed for IPA v4.5) */ |
| val = GLOBAL_FMASK; |
| val |= GLOBAL_2X_CLK_FMASK; |
| iowrite32(val, ipa->reg_virt + IPA_REG_CLKON_CFG_OFFSET); |
| |
| /* Disable PA mask to allow HOLB drop */ |
| val = ioread32(ipa->reg_virt + IPA_REG_TX_CFG_OFFSET); |
| val &= ~PA_MASK_EN_FMASK; |
| iowrite32(val, ipa->reg_virt + IPA_REG_TX_CFG_OFFSET); |
| } |
| |
| ipa_hardware_config_comp(ipa); |
| |
| /* Configure system bus limits */ |
| ipa_hardware_config_qsb(ipa, data); |
| |
| if (version < IPA_VERSION_4_5) { |
| /* Configure aggregation timer granularity */ |
| granularity = ipa_aggr_granularity_val(IPA_AGGR_GRANULARITY); |
| val = u32_encode_bits(granularity, AGGR_GRANULARITY_FMASK); |
| iowrite32(val, ipa->reg_virt + IPA_REG_COUNTER_CFG_OFFSET); |
| } else { |
| ipa_qtime_config(ipa); |
| } |
| |
| /* IPA v4.2 does not support hashed tables, so disable them */ |
| if (version == IPA_VERSION_4_2) { |
| u32 offset = ipa_reg_filt_rout_hash_en_offset(version); |
| |
| iowrite32(0, ipa->reg_virt + offset); |
| } |
| |
| /* Enable dynamic clock division */ |
| ipa_hardware_dcd_config(ipa); |
| } |
| |
| /** |
| * ipa_hardware_deconfig() - Inverse of ipa_hardware_config() |
| * @ipa: IPA pointer |
| * |
| * This restores the power-on reset values (even if they aren't different) |
| */ |
| static void ipa_hardware_deconfig(struct ipa *ipa) |
| { |
| /* Mostly we just leave things as we set them. */ |
| ipa_hardware_dcd_deconfig(ipa); |
| } |
| |
| /** |
| * ipa_config() - Configure IPA hardware |
| * @ipa: IPA pointer |
| * @data: IPA configuration data |
| * |
| * Perform initialization requiring IPA clock to be enabled. |
| */ |
| static int ipa_config(struct ipa *ipa, const struct ipa_data *data) |
| { |
| int ret; |
| |
| /* Get a clock reference to allow initialization. This reference |
| * is held after initialization completes, and won't get dropped |
| * unless/until a system suspend request arrives. |
| */ |
| ipa_clock_get(ipa); |
| |
| ipa_hardware_config(ipa, data); |
| |
| ret = ipa_endpoint_config(ipa); |
| if (ret) |
| goto err_hardware_deconfig; |
| |
| ret = ipa_mem_config(ipa); |
| if (ret) |
| goto err_endpoint_deconfig; |
| |
| ipa_table_config(ipa); /* No deconfig required */ |
| |
| /* Assign resource limitation to each group; no deconfig required */ |
| ret = ipa_resource_config(ipa, data->resource_data); |
| if (ret) |
| goto err_mem_deconfig; |
| |
| ret = ipa_modem_config(ipa); |
| if (ret) |
| goto err_mem_deconfig; |
| |
| return 0; |
| |
| err_mem_deconfig: |
| ipa_mem_deconfig(ipa); |
| err_endpoint_deconfig: |
| ipa_endpoint_deconfig(ipa); |
| err_hardware_deconfig: |
| ipa_hardware_deconfig(ipa); |
| ipa_clock_put(ipa); |
| |
| return ret; |
| } |
| |
| /** |
| * ipa_deconfig() - Inverse of ipa_config() |
| * @ipa: IPA pointer |
| */ |
| static void ipa_deconfig(struct ipa *ipa) |
| { |
| ipa_modem_deconfig(ipa); |
| ipa_mem_deconfig(ipa); |
| ipa_endpoint_deconfig(ipa); |
| ipa_hardware_deconfig(ipa); |
| ipa_clock_put(ipa); |
| } |
| |
| static int ipa_firmware_load(struct device *dev) |
| { |
| const struct firmware *fw; |
| struct device_node *node; |
| struct resource res; |
| phys_addr_t phys; |
| const char *path; |
| ssize_t size; |
| void *virt; |
| int ret; |
| |
| node = of_parse_phandle(dev->of_node, "memory-region", 0); |
| if (!node) { |
| dev_err(dev, "DT error getting \"memory-region\" property\n"); |
| return -EINVAL; |
| } |
| |
| ret = of_address_to_resource(node, 0, &res); |
| if (ret) { |
| dev_err(dev, "error %d getting \"memory-region\" resource\n", |
| ret); |
| return ret; |
| } |
| |
| /* Use name from DTB if specified; use default for *any* error */ |
| ret = of_property_read_string(dev->of_node, "firmware-name", &path); |
| if (ret) { |
| dev_dbg(dev, "error %d getting \"firmware-name\" resource\n", |
| ret); |
| path = IPA_FW_PATH_DEFAULT; |
| } |
| |
| ret = request_firmware(&fw, path, dev); |
| if (ret) { |
| dev_err(dev, "error %d requesting \"%s\"\n", ret, path); |
| return ret; |
| } |
| |
| phys = res.start; |
| size = (size_t)resource_size(&res); |
| virt = memremap(phys, size, MEMREMAP_WC); |
| if (!virt) { |
| dev_err(dev, "unable to remap firmware memory\n"); |
| ret = -ENOMEM; |
| goto out_release_firmware; |
| } |
| |
| ret = qcom_mdt_load(dev, fw, path, IPA_PAS_ID, virt, phys, size, NULL); |
| if (ret) |
| dev_err(dev, "error %d loading \"%s\"\n", ret, path); |
| else if ((ret = qcom_scm_pas_auth_and_reset(IPA_PAS_ID))) |
| dev_err(dev, "error %d authenticating \"%s\"\n", ret, path); |
| |
| memunmap(virt); |
| out_release_firmware: |
| release_firmware(fw); |
| |
| return ret; |
| } |
| |
| static const struct of_device_id ipa_match[] = { |
| { |
| .compatible = "qcom,sdm845-ipa", |
| .data = &ipa_data_v3_5_1, |
| }, |
| { |
| .compatible = "qcom,sc7180-ipa", |
| .data = &ipa_data_v4_2, |
| }, |
| { |
| .compatible = "qcom,sdx55-ipa", |
| .data = &ipa_data_v4_5, |
| }, |
| { |
| .compatible = "qcom,sm8350-ipa", |
| .data = &ipa_data_v4_9, |
| }, |
| { |
| .compatible = "qcom,sc7280-ipa", |
| .data = &ipa_data_v4_11, |
| }, |
| { }, |
| }; |
| MODULE_DEVICE_TABLE(of, ipa_match); |
| |
| /* Check things that can be validated at build time. This just |
| * groups these things BUILD_BUG_ON() calls don't clutter the rest |
| * of the code. |
| * */ |
| static void ipa_validate_build(void) |
| { |
| #ifdef IPA_VALIDATE |
| /* At one time we assumed a 64-bit build, allowing some do_div() |
| * calls to be replaced by simple division or modulo operations. |
| * We currently only perform divide and modulo operations on u32, |
| * u16, or size_t objects, and of those only size_t has any chance |
| * of being a 64-bit value. (It should be guaranteed 32 bits wide |
| * on a 32-bit build, but there is no harm in verifying that.) |
| */ |
| BUILD_BUG_ON(!IS_ENABLED(CONFIG_64BIT) && sizeof(size_t) != 4); |
| |
| /* Code assumes the EE ID for the AP is 0 (zeroed structure field) */ |
| BUILD_BUG_ON(GSI_EE_AP != 0); |
| |
| /* There's no point if we have no channels or event rings */ |
| BUILD_BUG_ON(!GSI_CHANNEL_COUNT_MAX); |
| BUILD_BUG_ON(!GSI_EVT_RING_COUNT_MAX); |
| |
| /* GSI hardware design limits */ |
| BUILD_BUG_ON(GSI_CHANNEL_COUNT_MAX > 32); |
| BUILD_BUG_ON(GSI_EVT_RING_COUNT_MAX > 31); |
| |
| /* The number of TREs in a transaction is limited by the channel's |
| * TLV FIFO size. A transaction structure uses 8-bit fields |
| * to represents the number of TREs it has allocated and used. |
| */ |
| BUILD_BUG_ON(GSI_TLV_MAX > U8_MAX); |
| |
| /* This is used as a divisor */ |
| BUILD_BUG_ON(!IPA_AGGR_GRANULARITY); |
| |
| /* Aggregation granularity value can't be 0, and must fit */ |
| BUILD_BUG_ON(!ipa_aggr_granularity_val(IPA_AGGR_GRANULARITY)); |
| BUILD_BUG_ON(ipa_aggr_granularity_val(IPA_AGGR_GRANULARITY) > |
| field_max(AGGR_GRANULARITY_FMASK)); |
| #endif /* IPA_VALIDATE */ |
| } |
| |
| /** |
| * ipa_probe() - IPA platform driver probe function |
| * @pdev: Platform device pointer |
| * |
| * Return: 0 if successful, or a negative error code (possibly |
| * EPROBE_DEFER) |
| * |
| * This is the main entry point for the IPA driver. Initialization proceeds |
| * in several stages: |
| * - The "init" stage involves activities that can be initialized without |
| * access to the IPA hardware. |
| * - The "config" stage requires the IPA clock to be active so IPA registers |
| * can be accessed, but does not require the use of IPA immediate commands. |
| * - The "setup" stage uses IPA immediate commands, and so requires the GSI |
| * layer to be initialized. |
| * |
| * A Boolean Device Tree "modem-init" property determines whether GSI |
| * initialization will be performed by the AP (Trust Zone) or the modem. |
| * If the AP does GSI initialization, the setup phase is entered after |
| * this has completed successfully. Otherwise the modem initializes |
| * the GSI layer and signals it has finished by sending an SMP2P interrupt |
| * to the AP; this triggers the start if IPA setup. |
| */ |
| static int ipa_probe(struct platform_device *pdev) |
| { |
| struct device *dev = &pdev->dev; |
| const struct ipa_data *data; |
| struct ipa_clock *clock; |
| bool modem_init; |
| struct ipa *ipa; |
| int ret; |
| |
| ipa_validate_build(); |
| |
| /* Get configuration data early; needed for clock initialization */ |
| data = of_device_get_match_data(dev); |
| if (!data) { |
| /* This is really IPA_VALIDATE (should never happen) */ |
| dev_err(dev, "matched hardware not supported\n"); |
| return -ENODEV; |
| } |
| |
| /* If we need Trust Zone, make sure it's available */ |
| modem_init = of_property_read_bool(dev->of_node, "modem-init"); |
| if (!modem_init) |
| if (!qcom_scm_is_available()) |
| return -EPROBE_DEFER; |
| |
| /* The clock and interconnects might not be ready when we're |
| * probed, so might return -EPROBE_DEFER. |
| */ |
| clock = ipa_clock_init(dev, data->clock_data); |
| if (IS_ERR(clock)) |
| return PTR_ERR(clock); |
| |
| /* No more EPROBE_DEFER. Allocate and initialize the IPA structure */ |
| ipa = kzalloc(sizeof(*ipa), GFP_KERNEL); |
| if (!ipa) { |
| ret = -ENOMEM; |
| goto err_clock_exit; |
| } |
| |
| ipa->pdev = pdev; |
| dev_set_drvdata(dev, ipa); |
| ipa->clock = clock; |
| ipa->version = data->version; |
| init_completion(&ipa->completion); |
| |
| ret = ipa_reg_init(ipa); |
| if (ret) |
| goto err_kfree_ipa; |
| |
| ret = ipa_mem_init(ipa, data->mem_data); |
| if (ret) |
| goto err_reg_exit; |
| |
| ret = gsi_init(&ipa->gsi, pdev, ipa->version, data->endpoint_count, |
| data->endpoint_data); |
| if (ret) |
| goto err_mem_exit; |
| |
| /* Result is a non-zero mask of endpoints that support filtering */ |
| ipa->filter_map = ipa_endpoint_init(ipa, data->endpoint_count, |
| data->endpoint_data); |
| if (!ipa->filter_map) { |
| ret = -EINVAL; |
| goto err_gsi_exit; |
| } |
| |
| ret = ipa_table_init(ipa); |
| if (ret) |
| goto err_endpoint_exit; |
| |
| ret = ipa_modem_init(ipa, modem_init); |
| if (ret) |
| goto err_table_exit; |
| |
| ret = ipa_config(ipa, data); |
| if (ret) |
| goto err_modem_exit; |
| |
| dev_info(dev, "IPA driver initialized"); |
| |
| /* If the modem is doing early initialization, it will trigger a |
| * call to ipa_setup() call when it has finished. In that case |
| * we're done here. |
| */ |
| if (modem_init) |
| return 0; |
| |
| /* Otherwise we need to load the firmware and have Trust Zone validate |
| * and install it. If that succeeds we can proceed with setup. |
| */ |
| ret = ipa_firmware_load(dev); |
| if (ret) |
| goto err_deconfig; |
| |
| ret = ipa_setup(ipa); |
| if (ret) |
| goto err_deconfig; |
| |
| return 0; |
| |
| err_deconfig: |
| ipa_deconfig(ipa); |
| err_modem_exit: |
| ipa_modem_exit(ipa); |
| err_table_exit: |
| ipa_table_exit(ipa); |
| err_endpoint_exit: |
| ipa_endpoint_exit(ipa); |
| err_gsi_exit: |
| gsi_exit(&ipa->gsi); |
| err_mem_exit: |
| ipa_mem_exit(ipa); |
| err_reg_exit: |
| ipa_reg_exit(ipa); |
| err_kfree_ipa: |
| kfree(ipa); |
| err_clock_exit: |
| ipa_clock_exit(clock); |
| |
| return ret; |
| } |
| |
| static int ipa_remove(struct platform_device *pdev) |
| { |
| struct ipa *ipa = dev_get_drvdata(&pdev->dev); |
| struct ipa_clock *clock = ipa->clock; |
| int ret; |
| |
| if (ipa->setup_complete) { |
| ret = ipa_modem_stop(ipa); |
| /* If starting or stopping is in progress, try once more */ |
| if (ret == -EBUSY) { |
| usleep_range(USEC_PER_MSEC, 2 * USEC_PER_MSEC); |
| ret = ipa_modem_stop(ipa); |
| } |
| if (ret) |
| return ret; |
| |
| ipa_teardown(ipa); |
| } |
| |
| ipa_deconfig(ipa); |
| ipa_modem_exit(ipa); |
| ipa_table_exit(ipa); |
| ipa_endpoint_exit(ipa); |
| gsi_exit(&ipa->gsi); |
| ipa_mem_exit(ipa); |
| ipa_reg_exit(ipa); |
| kfree(ipa); |
| ipa_clock_exit(clock); |
| |
| return 0; |
| } |
| |
| static void ipa_shutdown(struct platform_device *pdev) |
| { |
| int ret; |
| |
| ret = ipa_remove(pdev); |
| if (ret) |
| dev_err(&pdev->dev, "shutdown: remove returned %d\n", ret); |
| } |
| |
| /** |
| * ipa_suspend() - Power management system suspend callback |
| * @dev: IPA device structure |
| * |
| * Return: Always returns zero |
| * |
| * Called by the PM framework when a system suspend operation is invoked. |
| * Suspends endpoints and releases the clock reference held to keep |
| * the IPA clock running until this point. |
| */ |
| static int ipa_suspend(struct device *dev) |
| { |
| struct ipa *ipa = dev_get_drvdata(dev); |
| |
| /* When a suspended RX endpoint has a packet ready to receive, we |
| * get an IPA SUSPEND interrupt. We trigger a system resume in |
| * that case, but only on the first such interrupt since suspend. |
| */ |
| __clear_bit(IPA_FLAG_RESUMED, ipa->flags); |
| |
| ipa_endpoint_suspend(ipa); |
| |
| ipa_clock_put(ipa); |
| |
| return 0; |
| } |
| |
| /** |
| * ipa_resume() - Power management system resume callback |
| * @dev: IPA device structure |
| * |
| * Return: Always returns 0 |
| * |
| * Called by the PM framework when a system resume operation is invoked. |
| * Takes an IPA clock reference to keep the clock running until suspend, |
| * and resumes endpoints. |
| */ |
| static int ipa_resume(struct device *dev) |
| { |
| struct ipa *ipa = dev_get_drvdata(dev); |
| |
| /* This clock reference will keep the IPA out of suspend |
| * until we get a power management suspend request. |
| */ |
| ipa_clock_get(ipa); |
| |
| ipa_endpoint_resume(ipa); |
| |
| return 0; |
| } |
| |
| static const struct dev_pm_ops ipa_pm_ops = { |
| .suspend = ipa_suspend, |
| .resume = ipa_resume, |
| }; |
| |
| static struct platform_driver ipa_driver = { |
| .probe = ipa_probe, |
| .remove = ipa_remove, |
| .shutdown = ipa_shutdown, |
| .driver = { |
| .name = "ipa", |
| .pm = &ipa_pm_ops, |
| .of_match_table = ipa_match, |
| }, |
| }; |
| |
| module_platform_driver(ipa_driver); |
| |
| MODULE_LICENSE("GPL v2"); |
| MODULE_DESCRIPTION("Qualcomm IP Accelerator device driver"); |