| /* SPDX-License-Identifier: GPL-2.0-or-later */ |
| /* |
| * OpenRISC Linux |
| * |
| * Linux architectural port borrowing liberally from similar works of |
| * others. All original copyrights apply as per the original source |
| * declaration. |
| * |
| * OpenRISC implementation: |
| * Copyright (C) 2003 Matjaz Breskvar <phoenix@bsemi.com> |
| * Copyright (C) 2010-2011 Jonas Bonn <jonas@southpole.se> |
| * et al. |
| */ |
| |
| /* or1k pgtable.h - macros and functions to manipulate page tables |
| * |
| * Based on: |
| * include/asm-cris/pgtable.h |
| */ |
| |
| #ifndef __ASM_OPENRISC_PGTABLE_H |
| #define __ASM_OPENRISC_PGTABLE_H |
| |
| #include <asm-generic/pgtable-nopmd.h> |
| |
| #ifndef __ASSEMBLY__ |
| #include <asm/mmu.h> |
| #include <asm/fixmap.h> |
| |
| /* |
| * The Linux memory management assumes a three-level page table setup. On |
| * or1k, we use that, but "fold" the mid level into the top-level page |
| * table. Since the MMU TLB is software loaded through an interrupt, it |
| * supports any page table structure, so we could have used a three-level |
| * setup, but for the amounts of memory we normally use, a two-level is |
| * probably more efficient. |
| * |
| * This file contains the functions and defines necessary to modify and use |
| * the or1k page table tree. |
| */ |
| |
| extern void paging_init(void); |
| |
| /* Certain architectures need to do special things when pte's |
| * within a page table are directly modified. Thus, the following |
| * hook is made available. |
| */ |
| #define set_pte(pteptr, pteval) ((*(pteptr)) = (pteval)) |
| |
| /* |
| * (pmds are folded into pgds so this doesn't get actually called, |
| * but the define is needed for a generic inline function.) |
| */ |
| #define set_pmd(pmdptr, pmdval) (*(pmdptr) = pmdval) |
| |
| #define PGDIR_SHIFT (PAGE_SHIFT + (PAGE_SHIFT-2)) |
| #define PGDIR_SIZE (1UL << PGDIR_SHIFT) |
| #define PGDIR_MASK (~(PGDIR_SIZE-1)) |
| |
| /* |
| * entries per page directory level: we use a two-level, so |
| * we don't really have any PMD directory physically. |
| * pointers are 4 bytes so we can use the page size and |
| * divide it by 4 (shift by 2). |
| */ |
| #define PTRS_PER_PTE (1UL << (PAGE_SHIFT-2)) |
| |
| #define PTRS_PER_PGD (1UL << (32-PGDIR_SHIFT)) |
| |
| /* calculate how many PGD entries a user-level program can use |
| * the first mappable virtual address is 0 |
| * (TASK_SIZE is the maximum virtual address space) |
| */ |
| |
| #define USER_PTRS_PER_PGD (TASK_SIZE/PGDIR_SIZE) |
| |
| /* |
| * Kernels own virtual memory area. |
| */ |
| |
| /* |
| * The size and location of the vmalloc area are chosen so that modules |
| * placed in this area aren't more than a 28-bit signed offset from any |
| * kernel functions that they may need. This greatly simplifies handling |
| * of the relocations for l.j and l.jal instructions as we don't need to |
| * introduce any trampolines for reaching "distant" code. |
| * |
| * 64 MB of vmalloc area is comparable to what's available on other arches. |
| */ |
| |
| #define VMALLOC_START (PAGE_OFFSET-0x04000000UL) |
| #define VMALLOC_END (PAGE_OFFSET) |
| #define VMALLOC_VMADDR(x) ((unsigned long)(x)) |
| |
| /* Define some higher level generic page attributes. |
| * |
| * If you change _PAGE_CI definition be sure to change it in |
| * io.h for ioremap() too. |
| */ |
| |
| /* |
| * An OR32 PTE looks like this: |
| * |
| * | 31 ... 10 | 9 | 8 ... 6 | 5 | 4 | 3 | 2 | 1 | 0 | |
| * Phys pg.num L PP Index D A WOM WBC CI CC |
| * |
| * L : link |
| * PPI: Page protection index |
| * D : Dirty |
| * A : Accessed |
| * WOM: Weakly ordered memory |
| * WBC: Write-back cache |
| * CI : Cache inhibit |
| * CC : Cache coherent |
| * |
| * The protection bits below should correspond to the layout of the actual |
| * PTE as per above |
| */ |
| |
| #define _PAGE_CC 0x001 /* software: pte contains a translation */ |
| #define _PAGE_CI 0x002 /* cache inhibit */ |
| #define _PAGE_WBC 0x004 /* write back cache */ |
| #define _PAGE_WOM 0x008 /* weakly ordered memory */ |
| |
| #define _PAGE_A 0x010 /* accessed */ |
| #define _PAGE_D 0x020 /* dirty */ |
| #define _PAGE_URE 0x040 /* user read enable */ |
| #define _PAGE_UWE 0x080 /* user write enable */ |
| |
| #define _PAGE_SRE 0x100 /* superuser read enable */ |
| #define _PAGE_SWE 0x200 /* superuser write enable */ |
| #define _PAGE_EXEC 0x400 /* software: page is executable */ |
| #define _PAGE_U_SHARED 0x800 /* software: page is shared in user space */ |
| |
| /* 0x001 is cache coherency bit, which should always be set to |
| * 1 - for SMP (when we support it) |
| * 0 - otherwise |
| * |
| * we just reuse this bit in software for _PAGE_PRESENT and |
| * force it to 0 when loading it into TLB. |
| */ |
| #define _PAGE_PRESENT _PAGE_CC |
| #define _PAGE_USER _PAGE_URE |
| #define _PAGE_WRITE (_PAGE_UWE | _PAGE_SWE) |
| #define _PAGE_DIRTY _PAGE_D |
| #define _PAGE_ACCESSED _PAGE_A |
| #define _PAGE_NO_CACHE _PAGE_CI |
| #define _PAGE_SHARED _PAGE_U_SHARED |
| #define _PAGE_READ (_PAGE_URE | _PAGE_SRE) |
| |
| #define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY) |
| #define _PAGE_BASE (_PAGE_PRESENT | _PAGE_ACCESSED) |
| #define _PAGE_ALL (_PAGE_PRESENT | _PAGE_ACCESSED) |
| #define _KERNPG_TABLE \ |
| (_PAGE_BASE | _PAGE_SRE | _PAGE_SWE | _PAGE_ACCESSED | _PAGE_DIRTY) |
| |
| /* We borrow bit 11 to store the exclusive marker in swap PTEs. */ |
| #define _PAGE_SWP_EXCLUSIVE _PAGE_U_SHARED |
| |
| #define PAGE_NONE __pgprot(_PAGE_ALL) |
| #define PAGE_READONLY __pgprot(_PAGE_ALL | _PAGE_URE | _PAGE_SRE) |
| #define PAGE_READONLY_X __pgprot(_PAGE_ALL | _PAGE_URE | _PAGE_SRE | _PAGE_EXEC) |
| #define PAGE_SHARED \ |
| __pgprot(_PAGE_ALL | _PAGE_URE | _PAGE_SRE | _PAGE_UWE | _PAGE_SWE \ |
| | _PAGE_SHARED) |
| #define PAGE_SHARED_X \ |
| __pgprot(_PAGE_ALL | _PAGE_URE | _PAGE_SRE | _PAGE_UWE | _PAGE_SWE \ |
| | _PAGE_SHARED | _PAGE_EXEC) |
| #define PAGE_COPY __pgprot(_PAGE_ALL | _PAGE_URE | _PAGE_SRE) |
| #define PAGE_COPY_X __pgprot(_PAGE_ALL | _PAGE_URE | _PAGE_SRE | _PAGE_EXEC) |
| |
| #define PAGE_KERNEL \ |
| __pgprot(_PAGE_ALL | _PAGE_SRE | _PAGE_SWE \ |
| | _PAGE_SHARED | _PAGE_DIRTY | _PAGE_EXEC) |
| #define PAGE_KERNEL_RO \ |
| __pgprot(_PAGE_ALL | _PAGE_SRE \ |
| | _PAGE_SHARED | _PAGE_DIRTY | _PAGE_EXEC) |
| #define PAGE_KERNEL_NOCACHE \ |
| __pgprot(_PAGE_ALL | _PAGE_SRE | _PAGE_SWE \ |
| | _PAGE_SHARED | _PAGE_DIRTY | _PAGE_EXEC | _PAGE_CI) |
| |
| /* zero page used for uninitialized stuff */ |
| extern unsigned long empty_zero_page[2048]; |
| #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page)) |
| |
| /* number of bits that fit into a memory pointer */ |
| #define BITS_PER_PTR (8*sizeof(unsigned long)) |
| |
| /* to align the pointer to a pointer address */ |
| #define PTR_MASK (~(sizeof(void *)-1)) |
| |
| /* sizeof(void*)==1<<SIZEOF_PTR_LOG2 */ |
| /* 64-bit machines, beware! SRB. */ |
| #define SIZEOF_PTR_LOG2 2 |
| |
| /* to find an entry in a page-table */ |
| #define PAGE_PTR(address) \ |
| ((unsigned long)(address)>>(PAGE_SHIFT-SIZEOF_PTR_LOG2)&PTR_MASK&~PAGE_MASK) |
| |
| /* to set the page-dir */ |
| #define SET_PAGE_DIR(tsk, pgdir) |
| |
| #define pte_none(x) (!pte_val(x)) |
| #define pte_present(x) (pte_val(x) & _PAGE_PRESENT) |
| #define pte_clear(mm, addr, xp) do { pte_val(*(xp)) = 0; } while (0) |
| |
| #define pmd_none(x) (!pmd_val(x)) |
| #define pmd_bad(x) ((pmd_val(x) & (~PAGE_MASK)) != _KERNPG_TABLE) |
| #define pmd_present(x) (pmd_val(x) & _PAGE_PRESENT) |
| #define pmd_clear(xp) do { pmd_val(*(xp)) = 0; } while (0) |
| |
| /* |
| * The following only work if pte_present() is true. |
| * Undefined behaviour if not.. |
| */ |
| |
| static inline int pte_read(pte_t pte) { return pte_val(pte) & _PAGE_READ; } |
| static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_WRITE; } |
| static inline int pte_exec(pte_t pte) { return pte_val(pte) & _PAGE_EXEC; } |
| static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; } |
| static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; } |
| |
| static inline pte_t pte_wrprotect(pte_t pte) |
| { |
| pte_val(pte) &= ~(_PAGE_WRITE); |
| return pte; |
| } |
| |
| static inline pte_t pte_rdprotect(pte_t pte) |
| { |
| pte_val(pte) &= ~(_PAGE_READ); |
| return pte; |
| } |
| |
| static inline pte_t pte_exprotect(pte_t pte) |
| { |
| pte_val(pte) &= ~(_PAGE_EXEC); |
| return pte; |
| } |
| |
| static inline pte_t pte_mkclean(pte_t pte) |
| { |
| pte_val(pte) &= ~(_PAGE_DIRTY); |
| return pte; |
| } |
| |
| static inline pte_t pte_mkold(pte_t pte) |
| { |
| pte_val(pte) &= ~(_PAGE_ACCESSED); |
| return pte; |
| } |
| |
| static inline pte_t pte_mkwrite_novma(pte_t pte) |
| { |
| pte_val(pte) |= _PAGE_WRITE; |
| return pte; |
| } |
| |
| static inline pte_t pte_mkread(pte_t pte) |
| { |
| pte_val(pte) |= _PAGE_READ; |
| return pte; |
| } |
| |
| static inline pte_t pte_mkexec(pte_t pte) |
| { |
| pte_val(pte) |= _PAGE_EXEC; |
| return pte; |
| } |
| |
| static inline pte_t pte_mkdirty(pte_t pte) |
| { |
| pte_val(pte) |= _PAGE_DIRTY; |
| return pte; |
| } |
| |
| static inline pte_t pte_mkyoung(pte_t pte) |
| { |
| pte_val(pte) |= _PAGE_ACCESSED; |
| return pte; |
| } |
| |
| /* |
| * Conversion functions: convert a page and protection to a page entry, |
| * and a page entry and page directory to the page they refer to. |
| */ |
| |
| /* What actually goes as arguments to the various functions is less than |
| * obvious, but a rule of thumb is that struct page's goes as struct page *, |
| * really physical DRAM addresses are unsigned long's, and DRAM "virtual" |
| * addresses (the 0xc0xxxxxx's) goes as void *'s. |
| */ |
| |
| static inline pte_t __mk_pte(void *page, pgprot_t pgprot) |
| { |
| pte_t pte; |
| /* the PTE needs a physical address */ |
| pte_val(pte) = __pa(page) | pgprot_val(pgprot); |
| return pte; |
| } |
| |
| #define mk_pte(page, pgprot) __mk_pte(page_address(page), (pgprot)) |
| |
| #define mk_pte_phys(physpage, pgprot) \ |
| ({ \ |
| pte_t __pte; \ |
| \ |
| pte_val(__pte) = (physpage) + pgprot_val(pgprot); \ |
| __pte; \ |
| }) |
| |
| static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) |
| { |
| pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot); |
| return pte; |
| } |
| |
| |
| /* |
| * pte_val refers to a page in the 0x0xxxxxxx physical DRAM interval |
| * __pte_page(pte_val) refers to the "virtual" DRAM interval |
| * pte_pagenr refers to the page-number counted starting from the virtual |
| * DRAM start |
| */ |
| |
| static inline unsigned long __pte_page(pte_t pte) |
| { |
| /* the PTE contains a physical address */ |
| return (unsigned long)__va(pte_val(pte) & PAGE_MASK); |
| } |
| |
| #define pte_pagenr(pte) ((__pte_page(pte) - PAGE_OFFSET) >> PAGE_SHIFT) |
| |
| /* permanent address of a page */ |
| |
| #define __page_address(page) (PAGE_OFFSET + (((page) - mem_map) << PAGE_SHIFT)) |
| #define pte_page(pte) (mem_map+pte_pagenr(pte)) |
| |
| /* |
| * only the pte's themselves need to point to physical DRAM (see above) |
| * the pagetable links are purely handled within the kernel SW and thus |
| * don't need the __pa and __va transformations. |
| */ |
| static inline void pmd_set(pmd_t *pmdp, pte_t *ptep) |
| { |
| pmd_val(*pmdp) = _KERNPG_TABLE | (unsigned long) ptep; |
| } |
| |
| #define pmd_pfn(pmd) (pmd_val(pmd) >> PAGE_SHIFT) |
| #define pmd_page(pmd) (pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT)) |
| |
| static inline unsigned long pmd_page_vaddr(pmd_t pmd) |
| { |
| return ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK)); |
| } |
| |
| #define __pmd_offset(address) \ |
| (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1)) |
| |
| #define PFN_PTE_SHIFT PAGE_SHIFT |
| #define pte_pfn(x) ((unsigned long)(((x).pte)) >> PAGE_SHIFT) |
| #define pfn_pte(pfn, prot) __pte((((pfn) << PAGE_SHIFT)) | pgprot_val(prot)) |
| |
| #define pte_ERROR(e) \ |
| printk(KERN_ERR "%s:%d: bad pte %p(%08lx).\n", \ |
| __FILE__, __LINE__, &(e), pte_val(e)) |
| #define pgd_ERROR(e) \ |
| printk(KERN_ERR "%s:%d: bad pgd %p(%08lx).\n", \ |
| __FILE__, __LINE__, &(e), pgd_val(e)) |
| |
| extern pgd_t swapper_pg_dir[PTRS_PER_PGD]; /* defined in head.S */ |
| |
| struct vm_area_struct; |
| |
| static inline void update_tlb(struct vm_area_struct *vma, |
| unsigned long address, pte_t *pte) |
| { |
| } |
| |
| extern void update_cache(struct vm_area_struct *vma, |
| unsigned long address, pte_t *pte); |
| |
| static inline void update_mmu_cache_range(struct vm_fault *vmf, |
| struct vm_area_struct *vma, unsigned long address, |
| pte_t *ptep, unsigned int nr) |
| { |
| update_tlb(vma, address, ptep); |
| update_cache(vma, address, ptep); |
| } |
| |
| #define update_mmu_cache(vma, addr, ptep) \ |
| update_mmu_cache_range(NULL, vma, addr, ptep, 1) |
| |
| /* __PHX__ FIXME, SWAP, this probably doesn't work */ |
| |
| /* |
| * Encode/decode swap entries and swap PTEs. Swap PTEs are all PTEs that |
| * are !pte_none() && !pte_present(). |
| * |
| * Format of swap PTEs: |
| * |
| * 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 |
| * 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 |
| * <-------------- offset ---------------> E <- type --> 0 0 0 0 0 |
| * |
| * E is the exclusive marker that is not stored in swap entries. |
| * The zero'ed bits include _PAGE_PRESENT. |
| */ |
| #define __swp_type(x) (((x).val >> 5) & 0x3f) |
| #define __swp_offset(x) ((x).val >> 12) |
| #define __swp_entry(type, offset) \ |
| ((swp_entry_t) { (((type) & 0x3f) << 5) | ((offset) << 12) }) |
| #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) |
| #define __swp_entry_to_pte(x) ((pte_t) { (x).val }) |
| |
| static inline int pte_swp_exclusive(pte_t pte) |
| { |
| return pte_val(pte) & _PAGE_SWP_EXCLUSIVE; |
| } |
| |
| static inline pte_t pte_swp_mkexclusive(pte_t pte) |
| { |
| pte_val(pte) |= _PAGE_SWP_EXCLUSIVE; |
| return pte; |
| } |
| |
| static inline pte_t pte_swp_clear_exclusive(pte_t pte) |
| { |
| pte_val(pte) &= ~_PAGE_SWP_EXCLUSIVE; |
| return pte; |
| } |
| |
| typedef pte_t *pte_addr_t; |
| |
| #endif /* __ASSEMBLY__ */ |
| #endif /* __ASM_OPENRISC_PGTABLE_H */ |