| // SPDX-License-Identifier: GPL-2.0-only |
| /**************************************************************************** |
| * Driver for Solarflare network controllers and boards |
| * Copyright 2011-2013 Solarflare Communications Inc. |
| */ |
| |
| /* Theory of operation: |
| * |
| * PTP support is assisted by firmware running on the MC, which provides |
| * the hardware timestamping capabilities. Both transmitted and received |
| * PTP event packets are queued onto internal queues for subsequent processing; |
| * this is because the MC operations are relatively long and would block |
| * block NAPI/interrupt operation. |
| * |
| * Receive event processing: |
| * The event contains the packet's UUID and sequence number, together |
| * with the hardware timestamp. The PTP receive packet queue is searched |
| * for this UUID/sequence number and, if found, put on a pending queue. |
| * Packets not matching are delivered without timestamps (MCDI events will |
| * always arrive after the actual packet). |
| * It is important for the operation of the PTP protocol that the ordering |
| * of packets between the event and general port is maintained. |
| * |
| * Work queue processing: |
| * If work waiting, synchronise host/hardware time |
| * |
| * Transmit: send packet through MC, which returns the transmission time |
| * that is converted to an appropriate timestamp. |
| * |
| * Receive: the packet's reception time is converted to an appropriate |
| * timestamp. |
| */ |
| #include <linux/ip.h> |
| #include <linux/udp.h> |
| #include <linux/time.h> |
| #include <linux/errno.h> |
| #include <linux/ktime.h> |
| #include <linux/module.h> |
| #include <linux/pps_kernel.h> |
| #include <linux/ptp_clock_kernel.h> |
| #include "net_driver.h" |
| #include "efx.h" |
| #include "mcdi.h" |
| #include "mcdi_pcol.h" |
| #include "io.h" |
| #include "tx.h" |
| #include "nic.h" /* indirectly includes ptp.h */ |
| #include "efx_channels.h" |
| |
| /* Maximum number of events expected to make up a PTP event */ |
| #define MAX_EVENT_FRAGS 3 |
| |
| /* Maximum delay, ms, to begin synchronisation */ |
| #define MAX_SYNCHRONISE_WAIT_MS 2 |
| |
| /* How long, at most, to spend synchronising */ |
| #define SYNCHRONISE_PERIOD_NS 250000 |
| |
| /* How often to update the shared memory time */ |
| #define SYNCHRONISATION_GRANULARITY_NS 200 |
| |
| /* Minimum permitted length of a (corrected) synchronisation time */ |
| #define DEFAULT_MIN_SYNCHRONISATION_NS 120 |
| |
| /* Maximum permitted length of a (corrected) synchronisation time */ |
| #define MAX_SYNCHRONISATION_NS 1000 |
| |
| /* How many (MC) receive events that can be queued */ |
| #define MAX_RECEIVE_EVENTS 8 |
| |
| /* Length of (modified) moving average. */ |
| #define AVERAGE_LENGTH 16 |
| |
| /* How long an unmatched event or packet can be held */ |
| #define PKT_EVENT_LIFETIME_MS 10 |
| |
| /* How long unused unicast filters can be held */ |
| #define UCAST_FILTER_EXPIRY_JIFFIES msecs_to_jiffies(30000) |
| |
| /* Offsets into PTP packet for identification. These offsets are from the |
| * start of the IP header, not the MAC header. Note that neither PTP V1 nor |
| * PTP V2 permit the use of IPV4 options. |
| */ |
| #define PTP_DPORT_OFFSET 22 |
| |
| #define PTP_V1_VERSION_LENGTH 2 |
| #define PTP_V1_VERSION_OFFSET 28 |
| |
| #define PTP_V1_SEQUENCE_LENGTH 2 |
| #define PTP_V1_SEQUENCE_OFFSET 58 |
| |
| /* The minimum length of a PTP V1 packet for offsets, etc. to be valid: |
| * includes IP header. |
| */ |
| #define PTP_V1_MIN_LENGTH 64 |
| |
| #define PTP_V2_VERSION_LENGTH 1 |
| #define PTP_V2_VERSION_OFFSET 29 |
| |
| #define PTP_V2_SEQUENCE_LENGTH 2 |
| #define PTP_V2_SEQUENCE_OFFSET 58 |
| |
| /* The minimum length of a PTP V2 packet for offsets, etc. to be valid: |
| * includes IP header. |
| */ |
| #define PTP_V2_MIN_LENGTH 63 |
| |
| #define PTP_MIN_LENGTH 63 |
| |
| #define PTP_ADDR_IPV4 0xe0000181 /* 224.0.1.129 */ |
| |
| /* ff0e::181 */ |
| static const struct in6_addr ptp_addr_ipv6 = { { { |
| 0xff, 0x0e, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x01, 0x81 } } }; |
| |
| /* 01-1B-19-00-00-00 */ |
| static const u8 ptp_addr_ether[ETH_ALEN] __aligned(2) = { |
| 0x01, 0x1b, 0x19, 0x00, 0x00, 0x00 }; |
| |
| #define PTP_EVENT_PORT 319 |
| #define PTP_GENERAL_PORT 320 |
| |
| /* Annoyingly the format of the version numbers are different between |
| * versions 1 and 2 so it isn't possible to simply look for 1 or 2. |
| */ |
| #define PTP_VERSION_V1 1 |
| |
| #define PTP_VERSION_V2 2 |
| #define PTP_VERSION_V2_MASK 0x0f |
| |
| enum ptp_packet_state { |
| PTP_PACKET_STATE_UNMATCHED = 0, |
| PTP_PACKET_STATE_MATCHED, |
| PTP_PACKET_STATE_TIMED_OUT, |
| PTP_PACKET_STATE_MATCH_UNWANTED |
| }; |
| |
| /* NIC synchronised with single word of time only comprising |
| * partial seconds and full nanoseconds: 10^9 ~ 2^30 so 2 bits for seconds. |
| */ |
| #define MC_NANOSECOND_BITS 30 |
| #define MC_NANOSECOND_MASK ((1 << MC_NANOSECOND_BITS) - 1) |
| #define MC_SECOND_MASK ((1 << (32 - MC_NANOSECOND_BITS)) - 1) |
| |
| /* Maximum parts-per-billion adjustment that is acceptable */ |
| #define MAX_PPB 1000000 |
| |
| /* Precalculate scale word to avoid long long division at runtime */ |
| /* This is equivalent to 2^66 / 10^9. */ |
| #define PPB_SCALE_WORD ((1LL << (57)) / 1953125LL) |
| |
| /* How much to shift down after scaling to convert to FP40 */ |
| #define PPB_SHIFT_FP40 26 |
| /* ... and FP44. */ |
| #define PPB_SHIFT_FP44 22 |
| |
| #define PTP_SYNC_ATTEMPTS 4 |
| |
| /** |
| * struct efx_ptp_match - Matching structure, stored in sk_buff's cb area. |
| * @expiry: Time after which the packet should be delivered irrespective of |
| * event arrival. |
| * @state: The state of the packet - whether it is ready for processing or |
| * whether that is of no interest. |
| */ |
| struct efx_ptp_match { |
| unsigned long expiry; |
| enum ptp_packet_state state; |
| }; |
| |
| /** |
| * struct efx_ptp_event_rx - A PTP receive event (from MC) |
| * @link: list of events |
| * @seq0: First part of (PTP) UUID |
| * @seq1: Second part of (PTP) UUID and sequence number |
| * @hwtimestamp: Event timestamp |
| * @expiry: Time which the packet arrived |
| */ |
| struct efx_ptp_event_rx { |
| struct list_head link; |
| u32 seq0; |
| u32 seq1; |
| ktime_t hwtimestamp; |
| unsigned long expiry; |
| }; |
| |
| /** |
| * struct efx_ptp_timeset - Synchronisation between host and MC |
| * @host_start: Host time immediately before hardware timestamp taken |
| * @major: Hardware timestamp, major |
| * @minor: Hardware timestamp, minor |
| * @host_end: Host time immediately after hardware timestamp taken |
| * @wait: Number of NIC clock ticks between hardware timestamp being read and |
| * host end time being seen |
| * @window: Difference of host_end and host_start |
| * @valid: Whether this timeset is valid |
| */ |
| struct efx_ptp_timeset { |
| u32 host_start; |
| u32 major; |
| u32 minor; |
| u32 host_end; |
| u32 wait; |
| u32 window; /* Derived: end - start, allowing for wrap */ |
| }; |
| |
| /** |
| * struct efx_ptp_rxfilter - Filter for PTP packets |
| * @list: Node of the list where the filter is added |
| * @ether_type: Network protocol of the filter (ETHER_P_IP / ETHER_P_IPV6) |
| * @loc_port: UDP port of the filter (PTP_EVENT_PORT / PTP_GENERAL_PORT) |
| * @loc_host: IPv4/v6 address of the filter |
| * @expiry: time when the filter expires, in jiffies |
| * @handle: Handle ID for the MCDI filters table |
| */ |
| struct efx_ptp_rxfilter { |
| struct list_head list; |
| __be16 ether_type; |
| __be16 loc_port; |
| __be32 loc_host[4]; |
| unsigned long expiry; |
| int handle; |
| }; |
| |
| /** |
| * struct efx_ptp_data - Precision Time Protocol (PTP) state |
| * @efx: The NIC context |
| * @channel: The PTP channel (for Medford and Medford2) |
| * @rxq: Receive SKB queue (awaiting timestamps) |
| * @txq: Transmit SKB queue |
| * @workwq: Work queue for processing pending PTP operations |
| * @work: Work task |
| * @cleanup_work: Work task for periodic cleanup |
| * @reset_required: A serious error has occurred and the PTP task needs to be |
| * reset (disable, enable). |
| * @rxfilters_mcast: Receive filters for multicast PTP packets |
| * @rxfilters_ucast: Receive filters for unicast PTP packets |
| * @config: Current timestamp configuration |
| * @enabled: PTP operation enabled |
| * @mode: Mode in which PTP operating (PTP version) |
| * @ns_to_nic_time: Function to convert from scalar nanoseconds to NIC time |
| * @nic_to_kernel_time: Function to convert from NIC to kernel time |
| * @nic_time: contains time details |
| * @nic_time.minor_max: Wrap point for NIC minor times |
| * @nic_time.sync_event_diff_min: Minimum acceptable difference between time |
| * in packet prefix and last MCDI time sync event i.e. how much earlier than |
| * the last sync event time a packet timestamp can be. |
| * @nic_time.sync_event_diff_max: Maximum acceptable difference between time |
| * in packet prefix and last MCDI time sync event i.e. how much later than |
| * the last sync event time a packet timestamp can be. |
| * @nic_time.sync_event_minor_shift: Shift required to make minor time from |
| * field in MCDI time sync event. |
| * @min_synchronisation_ns: Minimum acceptable corrected sync window |
| * @capabilities: Capabilities flags from the NIC |
| * @ts_corrections: contains corrections details |
| * @ts_corrections.ptp_tx: Required driver correction of PTP packet transmit |
| * timestamps |
| * @ts_corrections.ptp_rx: Required driver correction of PTP packet receive |
| * timestamps |
| * @ts_corrections.pps_out: PPS output error (information only) |
| * @ts_corrections.pps_in: Required driver correction of PPS input timestamps |
| * @ts_corrections.general_tx: Required driver correction of general packet |
| * transmit timestamps |
| * @ts_corrections.general_rx: Required driver correction of general packet |
| * receive timestamps |
| * @evt_frags: Partly assembled PTP events |
| * @evt_frag_idx: Current fragment number |
| * @evt_code: Last event code |
| * @start: Address at which MC indicates ready for synchronisation |
| * @host_time_pps: Host time at last PPS |
| * @adjfreq_ppb_shift: Shift required to convert scaled parts-per-billion |
| * frequency adjustment into a fixed point fractional nanosecond format. |
| * @current_adjfreq: Current ppb adjustment. |
| * @phc_clock: Pointer to registered phc device (if primary function) |
| * @phc_clock_info: Registration structure for phc device |
| * @pps_work: pps work task for handling pps events |
| * @pps_workwq: pps work queue |
| * @nic_ts_enabled: Flag indicating if NIC generated TS events are handled |
| * @txbuf: Buffer for use when transmitting (PTP) packets to MC (avoids |
| * allocations in main data path). |
| * @good_syncs: Number of successful synchronisations. |
| * @fast_syncs: Number of synchronisations requiring short delay |
| * @bad_syncs: Number of failed synchronisations. |
| * @sync_timeouts: Number of synchronisation timeouts |
| * @no_time_syncs: Number of synchronisations with no good times. |
| * @invalid_sync_windows: Number of sync windows with bad durations. |
| * @undersize_sync_windows: Number of corrected sync windows that are too small |
| * @oversize_sync_windows: Number of corrected sync windows that are too large |
| * @rx_no_timestamp: Number of packets received without a timestamp. |
| * @timeset: Last set of synchronisation statistics. |
| * @xmit_skb: Transmit SKB function. |
| */ |
| struct efx_ptp_data { |
| struct efx_nic *efx; |
| struct efx_channel *channel; |
| struct sk_buff_head rxq; |
| struct sk_buff_head txq; |
| struct workqueue_struct *workwq; |
| struct work_struct work; |
| struct delayed_work cleanup_work; |
| bool reset_required; |
| struct list_head rxfilters_mcast; |
| struct list_head rxfilters_ucast; |
| struct kernel_hwtstamp_config config; |
| bool enabled; |
| unsigned int mode; |
| void (*ns_to_nic_time)(s64 ns, u32 *nic_major, u32 *nic_minor); |
| ktime_t (*nic_to_kernel_time)(u32 nic_major, u32 nic_minor, |
| s32 correction); |
| struct { |
| u32 minor_max; |
| u32 sync_event_diff_min; |
| u32 sync_event_diff_max; |
| unsigned int sync_event_minor_shift; |
| } nic_time; |
| unsigned int min_synchronisation_ns; |
| unsigned int capabilities; |
| struct { |
| s32 ptp_tx; |
| s32 ptp_rx; |
| s32 pps_out; |
| s32 pps_in; |
| s32 general_tx; |
| s32 general_rx; |
| } ts_corrections; |
| efx_qword_t evt_frags[MAX_EVENT_FRAGS]; |
| int evt_frag_idx; |
| int evt_code; |
| struct efx_buffer start; |
| struct pps_event_time host_time_pps; |
| unsigned int adjfreq_ppb_shift; |
| s64 current_adjfreq; |
| struct ptp_clock *phc_clock; |
| struct ptp_clock_info phc_clock_info; |
| struct work_struct pps_work; |
| struct workqueue_struct *pps_workwq; |
| bool nic_ts_enabled; |
| efx_dword_t txbuf[MCDI_TX_BUF_LEN(MC_CMD_PTP_IN_TRANSMIT_LENMAX)]; |
| |
| unsigned int good_syncs; |
| unsigned int fast_syncs; |
| unsigned int bad_syncs; |
| unsigned int sync_timeouts; |
| unsigned int no_time_syncs; |
| unsigned int invalid_sync_windows; |
| unsigned int undersize_sync_windows; |
| unsigned int oversize_sync_windows; |
| unsigned int rx_no_timestamp; |
| struct efx_ptp_timeset |
| timeset[MC_CMD_PTP_OUT_SYNCHRONIZE_TIMESET_MAXNUM]; |
| void (*xmit_skb)(struct efx_nic *efx, struct sk_buff *skb); |
| }; |
| |
| static int efx_phc_adjfine(struct ptp_clock_info *ptp, long scaled_ppm); |
| static int efx_phc_adjtime(struct ptp_clock_info *ptp, s64 delta); |
| static int efx_phc_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts); |
| static int efx_phc_settime(struct ptp_clock_info *ptp, |
| const struct timespec64 *e_ts); |
| static int efx_phc_enable(struct ptp_clock_info *ptp, |
| struct ptp_clock_request *request, int on); |
| static int efx_ptp_insert_unicast_filter(struct efx_nic *efx, |
| struct sk_buff *skb); |
| |
| bool efx_ptp_use_mac_tx_timestamps(struct efx_nic *efx) |
| { |
| return efx_has_cap(efx, TX_MAC_TIMESTAMPING); |
| } |
| |
| /* PTP 'extra' channel is still a traffic channel, but we only create TX queues |
| * if PTP uses MAC TX timestamps, not if PTP uses the MC directly to transmit. |
| */ |
| static bool efx_ptp_want_txqs(struct efx_channel *channel) |
| { |
| return efx_ptp_use_mac_tx_timestamps(channel->efx); |
| } |
| |
| #define PTP_SW_STAT(ext_name, field_name) \ |
| { #ext_name, 0, offsetof(struct efx_ptp_data, field_name) } |
| #define PTP_MC_STAT(ext_name, mcdi_name) \ |
| { #ext_name, 32, MC_CMD_PTP_OUT_STATUS_STATS_ ## mcdi_name ## _OFST } |
| static const struct efx_hw_stat_desc efx_ptp_stat_desc[] = { |
| PTP_SW_STAT(ptp_good_syncs, good_syncs), |
| PTP_SW_STAT(ptp_fast_syncs, fast_syncs), |
| PTP_SW_STAT(ptp_bad_syncs, bad_syncs), |
| PTP_SW_STAT(ptp_sync_timeouts, sync_timeouts), |
| PTP_SW_STAT(ptp_no_time_syncs, no_time_syncs), |
| PTP_SW_STAT(ptp_invalid_sync_windows, invalid_sync_windows), |
| PTP_SW_STAT(ptp_undersize_sync_windows, undersize_sync_windows), |
| PTP_SW_STAT(ptp_oversize_sync_windows, oversize_sync_windows), |
| PTP_SW_STAT(ptp_rx_no_timestamp, rx_no_timestamp), |
| PTP_MC_STAT(ptp_tx_timestamp_packets, TX), |
| PTP_MC_STAT(ptp_rx_timestamp_packets, RX), |
| PTP_MC_STAT(ptp_timestamp_packets, TS), |
| PTP_MC_STAT(ptp_filter_matches, FM), |
| PTP_MC_STAT(ptp_non_filter_matches, NFM), |
| }; |
| #define PTP_STAT_COUNT ARRAY_SIZE(efx_ptp_stat_desc) |
| static const unsigned long efx_ptp_stat_mask[] = { |
| [0 ... BITS_TO_LONGS(PTP_STAT_COUNT) - 1] = ~0UL, |
| }; |
| |
| size_t efx_ptp_describe_stats(struct efx_nic *efx, u8 *strings) |
| { |
| if (!efx->ptp_data) |
| return 0; |
| |
| return efx_nic_describe_stats(efx_ptp_stat_desc, PTP_STAT_COUNT, |
| efx_ptp_stat_mask, strings); |
| } |
| |
| size_t efx_ptp_update_stats(struct efx_nic *efx, u64 *stats) |
| { |
| MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_STATUS_LEN); |
| MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_STATUS_LEN); |
| size_t i; |
| int rc; |
| |
| if (!efx->ptp_data) |
| return 0; |
| |
| /* Copy software statistics */ |
| for (i = 0; i < PTP_STAT_COUNT; i++) { |
| if (efx_ptp_stat_desc[i].dma_width) |
| continue; |
| stats[i] = *(unsigned int *)((char *)efx->ptp_data + |
| efx_ptp_stat_desc[i].offset); |
| } |
| |
| /* Fetch MC statistics. We *must* fill in all statistics or |
| * risk leaking kernel memory to userland, so if the MCDI |
| * request fails we pretend we got zeroes. |
| */ |
| MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_STATUS); |
| MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0); |
| rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf), |
| outbuf, sizeof(outbuf), NULL); |
| if (rc) |
| memset(outbuf, 0, sizeof(outbuf)); |
| efx_nic_update_stats(efx_ptp_stat_desc, PTP_STAT_COUNT, |
| efx_ptp_stat_mask, |
| stats, _MCDI_PTR(outbuf, 0), false); |
| |
| return PTP_STAT_COUNT; |
| } |
| |
| /* To convert from s27 format to ns we multiply then divide by a power of 2. |
| * For the conversion from ns to s27, the operation is also converted to a |
| * multiply and shift. |
| */ |
| #define S27_TO_NS_SHIFT (27) |
| #define NS_TO_S27_MULT (((1ULL << 63) + NSEC_PER_SEC / 2) / NSEC_PER_SEC) |
| #define NS_TO_S27_SHIFT (63 - S27_TO_NS_SHIFT) |
| #define S27_MINOR_MAX (1 << S27_TO_NS_SHIFT) |
| |
| /* For Huntington platforms NIC time is in seconds and fractions of a second |
| * where the minor register only uses 27 bits in units of 2^-27s. |
| */ |
| static void efx_ptp_ns_to_s27(s64 ns, u32 *nic_major, u32 *nic_minor) |
| { |
| struct timespec64 ts = ns_to_timespec64(ns); |
| u32 maj = (u32)ts.tv_sec; |
| u32 min = (u32)(((u64)ts.tv_nsec * NS_TO_S27_MULT + |
| (1ULL << (NS_TO_S27_SHIFT - 1))) >> NS_TO_S27_SHIFT); |
| |
| /* The conversion can result in the minor value exceeding the maximum. |
| * In this case, round up to the next second. |
| */ |
| if (min >= S27_MINOR_MAX) { |
| min -= S27_MINOR_MAX; |
| maj++; |
| } |
| |
| *nic_major = maj; |
| *nic_minor = min; |
| } |
| |
| static inline ktime_t efx_ptp_s27_to_ktime(u32 nic_major, u32 nic_minor) |
| { |
| u32 ns = (u32)(((u64)nic_minor * NSEC_PER_SEC + |
| (1ULL << (S27_TO_NS_SHIFT - 1))) >> S27_TO_NS_SHIFT); |
| return ktime_set(nic_major, ns); |
| } |
| |
| static ktime_t efx_ptp_s27_to_ktime_correction(u32 nic_major, u32 nic_minor, |
| s32 correction) |
| { |
| /* Apply the correction and deal with carry */ |
| nic_minor += correction; |
| if ((s32)nic_minor < 0) { |
| nic_minor += S27_MINOR_MAX; |
| nic_major--; |
| } else if (nic_minor >= S27_MINOR_MAX) { |
| nic_minor -= S27_MINOR_MAX; |
| nic_major++; |
| } |
| |
| return efx_ptp_s27_to_ktime(nic_major, nic_minor); |
| } |
| |
| /* For Medford2 platforms the time is in seconds and quarter nanoseconds. */ |
| static void efx_ptp_ns_to_s_qns(s64 ns, u32 *nic_major, u32 *nic_minor) |
| { |
| struct timespec64 ts = ns_to_timespec64(ns); |
| |
| *nic_major = (u32)ts.tv_sec; |
| *nic_minor = ts.tv_nsec * 4; |
| } |
| |
| static ktime_t efx_ptp_s_qns_to_ktime_correction(u32 nic_major, u32 nic_minor, |
| s32 correction) |
| { |
| ktime_t kt; |
| |
| nic_minor = DIV_ROUND_CLOSEST(nic_minor, 4); |
| correction = DIV_ROUND_CLOSEST(correction, 4); |
| |
| kt = ktime_set(nic_major, nic_minor); |
| |
| if (correction >= 0) |
| kt = ktime_add_ns(kt, (u64)correction); |
| else |
| kt = ktime_sub_ns(kt, (u64)-correction); |
| return kt; |
| } |
| |
| struct efx_channel *efx_ptp_channel(struct efx_nic *efx) |
| { |
| return efx->ptp_data ? efx->ptp_data->channel : NULL; |
| } |
| |
| void efx_ptp_update_channel(struct efx_nic *efx, struct efx_channel *channel) |
| { |
| if (efx->ptp_data) |
| efx->ptp_data->channel = channel; |
| } |
| |
| static u32 last_sync_timestamp_major(struct efx_nic *efx) |
| { |
| struct efx_channel *channel = efx_ptp_channel(efx); |
| u32 major = 0; |
| |
| if (channel) |
| major = channel->sync_timestamp_major; |
| return major; |
| } |
| |
| /* The 8000 series and later can provide the time from the MAC, which is only |
| * 48 bits long and provides meta-information in the top 2 bits. |
| */ |
| static ktime_t |
| efx_ptp_mac_nic_to_ktime_correction(struct efx_nic *efx, |
| struct efx_ptp_data *ptp, |
| u32 nic_major, u32 nic_minor, |
| s32 correction) |
| { |
| u32 sync_timestamp; |
| ktime_t kt = { 0 }; |
| s16 delta; |
| |
| if (!(nic_major & 0x80000000)) { |
| WARN_ON_ONCE(nic_major >> 16); |
| |
| /* Medford provides 48 bits of timestamp, so we must get the top |
| * 16 bits from the timesync event state. |
| * |
| * We only have the lower 16 bits of the time now, but we do |
| * have a full resolution timestamp at some point in past. As |
| * long as the difference between the (real) now and the sync |
| * is less than 2^15, then we can reconstruct the difference |
| * between those two numbers using only the lower 16 bits of |
| * each. |
| * |
| * Put another way |
| * |
| * a - b = ((a mod k) - b) mod k |
| * |
| * when -k/2 < (a-b) < k/2. In our case k is 2^16. We know |
| * (a mod k) and b, so can calculate the delta, a - b. |
| * |
| */ |
| sync_timestamp = last_sync_timestamp_major(efx); |
| |
| /* Because delta is s16 this does an implicit mask down to |
| * 16 bits which is what we need, assuming |
| * MEDFORD_TX_SECS_EVENT_BITS is 16. delta is signed so that |
| * we can deal with the (unlikely) case of sync timestamps |
| * arriving from the future. |
| */ |
| delta = nic_major - sync_timestamp; |
| |
| /* Recover the fully specified time now, by applying the offset |
| * to the (fully specified) sync time. |
| */ |
| nic_major = sync_timestamp + delta; |
| |
| kt = ptp->nic_to_kernel_time(nic_major, nic_minor, |
| correction); |
| } |
| return kt; |
| } |
| |
| ktime_t efx_ptp_nic_to_kernel_time(struct efx_tx_queue *tx_queue) |
| { |
| struct efx_nic *efx = tx_queue->efx; |
| struct efx_ptp_data *ptp = efx->ptp_data; |
| ktime_t kt; |
| |
| if (efx_ptp_use_mac_tx_timestamps(efx)) |
| kt = efx_ptp_mac_nic_to_ktime_correction(efx, ptp, |
| tx_queue->completed_timestamp_major, |
| tx_queue->completed_timestamp_minor, |
| ptp->ts_corrections.general_tx); |
| else |
| kt = ptp->nic_to_kernel_time( |
| tx_queue->completed_timestamp_major, |
| tx_queue->completed_timestamp_minor, |
| ptp->ts_corrections.general_tx); |
| return kt; |
| } |
| |
| /* Get PTP attributes and set up time conversions */ |
| static int efx_ptp_get_attributes(struct efx_nic *efx) |
| { |
| MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_GET_ATTRIBUTES_LEN); |
| MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_GET_ATTRIBUTES_LEN); |
| struct efx_ptp_data *ptp = efx->ptp_data; |
| int rc; |
| u32 fmt; |
| size_t out_len; |
| |
| /* Get the PTP attributes. If the NIC doesn't support the operation we |
| * use the default format for compatibility with older NICs i.e. |
| * seconds and nanoseconds. |
| */ |
| MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_GET_ATTRIBUTES); |
| MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0); |
| rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf), |
| outbuf, sizeof(outbuf), &out_len); |
| if (rc == 0) { |
| fmt = MCDI_DWORD(outbuf, PTP_OUT_GET_ATTRIBUTES_TIME_FORMAT); |
| } else if (rc == -EINVAL) { |
| fmt = MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_NANOSECONDS; |
| } else if (rc == -EPERM) { |
| pci_info(efx->pci_dev, "no PTP support\n"); |
| return rc; |
| } else { |
| efx_mcdi_display_error(efx, MC_CMD_PTP, sizeof(inbuf), |
| outbuf, sizeof(outbuf), rc); |
| return rc; |
| } |
| |
| switch (fmt) { |
| case MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_27FRACTION: |
| ptp->ns_to_nic_time = efx_ptp_ns_to_s27; |
| ptp->nic_to_kernel_time = efx_ptp_s27_to_ktime_correction; |
| ptp->nic_time.minor_max = 1 << 27; |
| ptp->nic_time.sync_event_minor_shift = 19; |
| break; |
| case MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_QTR_NANOSECONDS: |
| ptp->ns_to_nic_time = efx_ptp_ns_to_s_qns; |
| ptp->nic_to_kernel_time = efx_ptp_s_qns_to_ktime_correction; |
| ptp->nic_time.minor_max = 4000000000UL; |
| ptp->nic_time.sync_event_minor_shift = 24; |
| break; |
| default: |
| return -ERANGE; |
| } |
| |
| /* Precalculate acceptable difference between the minor time in the |
| * packet prefix and the last MCDI time sync event. We expect the |
| * packet prefix timestamp to be after of sync event by up to one |
| * sync event interval (0.25s) but we allow it to exceed this by a |
| * fuzz factor of (0.1s) |
| */ |
| ptp->nic_time.sync_event_diff_min = ptp->nic_time.minor_max |
| - (ptp->nic_time.minor_max / 10); |
| ptp->nic_time.sync_event_diff_max = (ptp->nic_time.minor_max / 4) |
| + (ptp->nic_time.minor_max / 10); |
| |
| /* MC_CMD_PTP_OP_GET_ATTRIBUTES has been extended twice from an older |
| * operation MC_CMD_PTP_OP_GET_TIME_FORMAT. The function now may return |
| * a value to use for the minimum acceptable corrected synchronization |
| * window and may return further capabilities. |
| * If we have the extra information store it. For older firmware that |
| * does not implement the extended command use the default value. |
| */ |
| if (rc == 0 && |
| out_len >= MC_CMD_PTP_OUT_GET_ATTRIBUTES_CAPABILITIES_OFST) |
| ptp->min_synchronisation_ns = |
| MCDI_DWORD(outbuf, |
| PTP_OUT_GET_ATTRIBUTES_SYNC_WINDOW_MIN); |
| else |
| ptp->min_synchronisation_ns = DEFAULT_MIN_SYNCHRONISATION_NS; |
| |
| if (rc == 0 && |
| out_len >= MC_CMD_PTP_OUT_GET_ATTRIBUTES_LEN) |
| ptp->capabilities = MCDI_DWORD(outbuf, |
| PTP_OUT_GET_ATTRIBUTES_CAPABILITIES); |
| else |
| ptp->capabilities = 0; |
| |
| /* Set up the shift for conversion between frequency |
| * adjustments in parts-per-billion and the fixed-point |
| * fractional ns format that the adapter uses. |
| */ |
| if (ptp->capabilities & (1 << MC_CMD_PTP_OUT_GET_ATTRIBUTES_FP44_FREQ_ADJ_LBN)) |
| ptp->adjfreq_ppb_shift = PPB_SHIFT_FP44; |
| else |
| ptp->adjfreq_ppb_shift = PPB_SHIFT_FP40; |
| |
| return 0; |
| } |
| |
| /* Get PTP timestamp corrections */ |
| static int efx_ptp_get_timestamp_corrections(struct efx_nic *efx) |
| { |
| MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_GET_TIMESTAMP_CORRECTIONS_LEN); |
| MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_LEN); |
| int rc; |
| size_t out_len; |
| |
| /* Get the timestamp corrections from the NIC. If this operation is |
| * not supported (older NICs) then no correction is required. |
| */ |
| MCDI_SET_DWORD(inbuf, PTP_IN_OP, |
| MC_CMD_PTP_OP_GET_TIMESTAMP_CORRECTIONS); |
| MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0); |
| |
| rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf), |
| outbuf, sizeof(outbuf), &out_len); |
| if (rc == 0) { |
| efx->ptp_data->ts_corrections.ptp_tx = MCDI_DWORD(outbuf, |
| PTP_OUT_GET_TIMESTAMP_CORRECTIONS_TRANSMIT); |
| efx->ptp_data->ts_corrections.ptp_rx = MCDI_DWORD(outbuf, |
| PTP_OUT_GET_TIMESTAMP_CORRECTIONS_RECEIVE); |
| efx->ptp_data->ts_corrections.pps_out = MCDI_DWORD(outbuf, |
| PTP_OUT_GET_TIMESTAMP_CORRECTIONS_PPS_OUT); |
| efx->ptp_data->ts_corrections.pps_in = MCDI_DWORD(outbuf, |
| PTP_OUT_GET_TIMESTAMP_CORRECTIONS_PPS_IN); |
| |
| if (out_len >= MC_CMD_PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_LEN) { |
| efx->ptp_data->ts_corrections.general_tx = MCDI_DWORD( |
| outbuf, |
| PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_GENERAL_TX); |
| efx->ptp_data->ts_corrections.general_rx = MCDI_DWORD( |
| outbuf, |
| PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_GENERAL_RX); |
| } else { |
| efx->ptp_data->ts_corrections.general_tx = |
| efx->ptp_data->ts_corrections.ptp_tx; |
| efx->ptp_data->ts_corrections.general_rx = |
| efx->ptp_data->ts_corrections.ptp_rx; |
| } |
| } else if (rc == -EINVAL) { |
| efx->ptp_data->ts_corrections.ptp_tx = 0; |
| efx->ptp_data->ts_corrections.ptp_rx = 0; |
| efx->ptp_data->ts_corrections.pps_out = 0; |
| efx->ptp_data->ts_corrections.pps_in = 0; |
| efx->ptp_data->ts_corrections.general_tx = 0; |
| efx->ptp_data->ts_corrections.general_rx = 0; |
| } else { |
| efx_mcdi_display_error(efx, MC_CMD_PTP, sizeof(inbuf), outbuf, |
| sizeof(outbuf), rc); |
| return rc; |
| } |
| |
| return 0; |
| } |
| |
| /* Enable MCDI PTP support. */ |
| static int efx_ptp_enable(struct efx_nic *efx) |
| { |
| MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_ENABLE_LEN); |
| MCDI_DECLARE_BUF_ERR(outbuf); |
| int rc; |
| |
| MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_ENABLE); |
| MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0); |
| MCDI_SET_DWORD(inbuf, PTP_IN_ENABLE_QUEUE, |
| efx->ptp_data->channel ? |
| efx->ptp_data->channel->channel : 0); |
| MCDI_SET_DWORD(inbuf, PTP_IN_ENABLE_MODE, efx->ptp_data->mode); |
| |
| rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf), |
| outbuf, sizeof(outbuf), NULL); |
| rc = (rc == -EALREADY) ? 0 : rc; |
| if (rc) |
| efx_mcdi_display_error(efx, MC_CMD_PTP, |
| MC_CMD_PTP_IN_ENABLE_LEN, |
| outbuf, sizeof(outbuf), rc); |
| return rc; |
| } |
| |
| /* Disable MCDI PTP support. |
| * |
| * Note that this function should never rely on the presence of ptp_data - |
| * may be called before that exists. |
| */ |
| static int efx_ptp_disable(struct efx_nic *efx) |
| { |
| MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_DISABLE_LEN); |
| MCDI_DECLARE_BUF_ERR(outbuf); |
| int rc; |
| |
| MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_DISABLE); |
| MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0); |
| rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf), |
| outbuf, sizeof(outbuf), NULL); |
| rc = (rc == -EALREADY) ? 0 : rc; |
| /* If we get ENOSYS, the NIC doesn't support PTP, and thus this function |
| * should only have been called during probe. |
| */ |
| if (rc == -ENOSYS || rc == -EPERM) |
| pci_info(efx->pci_dev, "no PTP support\n"); |
| else if (rc) |
| efx_mcdi_display_error(efx, MC_CMD_PTP, |
| MC_CMD_PTP_IN_DISABLE_LEN, |
| outbuf, sizeof(outbuf), rc); |
| return rc; |
| } |
| |
| static void efx_ptp_deliver_rx_queue(struct sk_buff_head *q) |
| { |
| struct sk_buff *skb; |
| |
| while ((skb = skb_dequeue(q))) { |
| local_bh_disable(); |
| netif_receive_skb(skb); |
| local_bh_enable(); |
| } |
| } |
| |
| static void efx_ptp_handle_no_channel(struct efx_nic *efx) |
| { |
| netif_err(efx, drv, efx->net_dev, |
| "ERROR: PTP requires MSI-X and 1 additional interrupt" |
| "vector. PTP disabled\n"); |
| } |
| |
| /* Repeatedly send the host time to the MC which will capture the hardware |
| * time. |
| */ |
| static void efx_ptp_send_times(struct efx_nic *efx, |
| struct pps_event_time *last_time) |
| { |
| struct pps_event_time now; |
| struct timespec64 limit; |
| struct efx_ptp_data *ptp = efx->ptp_data; |
| int *mc_running = ptp->start.addr; |
| |
| pps_get_ts(&now); |
| limit = now.ts_real; |
| timespec64_add_ns(&limit, SYNCHRONISE_PERIOD_NS); |
| |
| /* Write host time for specified period or until MC is done */ |
| while ((timespec64_compare(&now.ts_real, &limit) < 0) && |
| READ_ONCE(*mc_running)) { |
| struct timespec64 update_time; |
| unsigned int host_time; |
| |
| /* Don't update continuously to avoid saturating the PCIe bus */ |
| update_time = now.ts_real; |
| timespec64_add_ns(&update_time, SYNCHRONISATION_GRANULARITY_NS); |
| do { |
| pps_get_ts(&now); |
| } while ((timespec64_compare(&now.ts_real, &update_time) < 0) && |
| READ_ONCE(*mc_running)); |
| |
| /* Synchronise NIC with single word of time only */ |
| host_time = (now.ts_real.tv_sec << MC_NANOSECOND_BITS | |
| now.ts_real.tv_nsec); |
| /* Update host time in NIC memory */ |
| efx->type->ptp_write_host_time(efx, host_time); |
| } |
| *last_time = now; |
| } |
| |
| /* Read a timeset from the MC's results and partial process. */ |
| static void efx_ptp_read_timeset(MCDI_DECLARE_STRUCT_PTR(data), |
| struct efx_ptp_timeset *timeset) |
| { |
| unsigned start_ns, end_ns; |
| |
| timeset->host_start = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_HOSTSTART); |
| timeset->major = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_MAJOR); |
| timeset->minor = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_MINOR); |
| timeset->host_end = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_HOSTEND), |
| timeset->wait = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_WAITNS); |
| |
| /* Ignore seconds */ |
| start_ns = timeset->host_start & MC_NANOSECOND_MASK; |
| end_ns = timeset->host_end & MC_NANOSECOND_MASK; |
| /* Allow for rollover */ |
| if (end_ns < start_ns) |
| end_ns += NSEC_PER_SEC; |
| /* Determine duration of operation */ |
| timeset->window = end_ns - start_ns; |
| } |
| |
| /* Process times received from MC. |
| * |
| * Extract times from returned results, and establish the minimum value |
| * seen. The minimum value represents the "best" possible time and events |
| * too much greater than this are rejected - the machine is, perhaps, too |
| * busy. A number of readings are taken so that, hopefully, at least one good |
| * synchronisation will be seen in the results. |
| */ |
| static int |
| efx_ptp_process_times(struct efx_nic *efx, MCDI_DECLARE_STRUCT_PTR(synch_buf), |
| size_t response_length, |
| const struct pps_event_time *last_time) |
| { |
| unsigned number_readings = |
| MCDI_VAR_ARRAY_LEN(response_length, |
| PTP_OUT_SYNCHRONIZE_TIMESET); |
| unsigned i; |
| unsigned ngood = 0; |
| unsigned last_good = 0; |
| struct efx_ptp_data *ptp = efx->ptp_data; |
| u32 last_sec; |
| u32 start_sec; |
| struct timespec64 delta; |
| ktime_t mc_time; |
| |
| if (number_readings == 0) |
| return -EAGAIN; |
| |
| /* Read the set of results and find the last good host-MC |
| * synchronization result. The MC times when it finishes reading the |
| * host time so the corrected window time should be fairly constant |
| * for a given platform. Increment stats for any results that appear |
| * to be erroneous. |
| */ |
| for (i = 0; i < number_readings; i++) { |
| s32 window, corrected; |
| struct timespec64 wait; |
| |
| efx_ptp_read_timeset( |
| MCDI_ARRAY_STRUCT_PTR(synch_buf, |
| PTP_OUT_SYNCHRONIZE_TIMESET, i), |
| &ptp->timeset[i]); |
| |
| wait = ktime_to_timespec64( |
| ptp->nic_to_kernel_time(0, ptp->timeset[i].wait, 0)); |
| window = ptp->timeset[i].window; |
| corrected = window - wait.tv_nsec; |
| |
| /* We expect the uncorrected synchronization window to be at |
| * least as large as the interval between host start and end |
| * times. If it is smaller than this then this is mostly likely |
| * to be a consequence of the host's time being adjusted. |
| * Check that the corrected sync window is in a reasonable |
| * range. If it is out of range it is likely to be because an |
| * interrupt or other delay occurred between reading the system |
| * time and writing it to MC memory. |
| */ |
| if (window < SYNCHRONISATION_GRANULARITY_NS) { |
| ++ptp->invalid_sync_windows; |
| } else if (corrected >= MAX_SYNCHRONISATION_NS) { |
| ++ptp->oversize_sync_windows; |
| } else if (corrected < ptp->min_synchronisation_ns) { |
| ++ptp->undersize_sync_windows; |
| } else { |
| ngood++; |
| last_good = i; |
| } |
| } |
| |
| if (ngood == 0) { |
| netif_warn(efx, drv, efx->net_dev, |
| "PTP no suitable synchronisations\n"); |
| return -EAGAIN; |
| } |
| |
| /* Calculate delay from last good sync (host time) to last_time. |
| * It is possible that the seconds rolled over between taking |
| * the start reading and the last value written by the host. The |
| * timescales are such that a gap of more than one second is never |
| * expected. delta is *not* normalised. |
| */ |
| start_sec = ptp->timeset[last_good].host_start >> MC_NANOSECOND_BITS; |
| last_sec = last_time->ts_real.tv_sec & MC_SECOND_MASK; |
| if (start_sec != last_sec && |
| ((start_sec + 1) & MC_SECOND_MASK) != last_sec) { |
| netif_warn(efx, hw, efx->net_dev, |
| "PTP bad synchronisation seconds\n"); |
| return -EAGAIN; |
| } |
| delta.tv_sec = (last_sec - start_sec) & 1; |
| delta.tv_nsec = |
| last_time->ts_real.tv_nsec - |
| (ptp->timeset[last_good].host_start & MC_NANOSECOND_MASK); |
| |
| /* Convert the NIC time at last good sync into kernel time. |
| * No correction is required - this time is the output of a |
| * firmware process. |
| */ |
| mc_time = ptp->nic_to_kernel_time(ptp->timeset[last_good].major, |
| ptp->timeset[last_good].minor, 0); |
| |
| /* Calculate delay from NIC top of second to last_time */ |
| delta.tv_nsec += ktime_to_timespec64(mc_time).tv_nsec; |
| |
| /* Set PPS timestamp to match NIC top of second */ |
| ptp->host_time_pps = *last_time; |
| pps_sub_ts(&ptp->host_time_pps, delta); |
| |
| return 0; |
| } |
| |
| /* Synchronize times between the host and the MC */ |
| static int efx_ptp_synchronize(struct efx_nic *efx, unsigned int num_readings) |
| { |
| struct efx_ptp_data *ptp = efx->ptp_data; |
| MCDI_DECLARE_BUF(synch_buf, MC_CMD_PTP_OUT_SYNCHRONIZE_LENMAX); |
| size_t response_length; |
| int rc; |
| unsigned long timeout; |
| struct pps_event_time last_time = {}; |
| unsigned int loops = 0; |
| int *start = ptp->start.addr; |
| |
| MCDI_SET_DWORD(synch_buf, PTP_IN_OP, MC_CMD_PTP_OP_SYNCHRONIZE); |
| MCDI_SET_DWORD(synch_buf, PTP_IN_PERIPH_ID, 0); |
| MCDI_SET_DWORD(synch_buf, PTP_IN_SYNCHRONIZE_NUMTIMESETS, |
| num_readings); |
| MCDI_SET_QWORD(synch_buf, PTP_IN_SYNCHRONIZE_START_ADDR, |
| ptp->start.dma_addr); |
| |
| /* Clear flag that signals MC ready */ |
| WRITE_ONCE(*start, 0); |
| rc = efx_mcdi_rpc_start(efx, MC_CMD_PTP, synch_buf, |
| MC_CMD_PTP_IN_SYNCHRONIZE_LEN); |
| EFX_WARN_ON_ONCE_PARANOID(rc); |
| |
| /* Wait for start from MCDI (or timeout) */ |
| timeout = jiffies + msecs_to_jiffies(MAX_SYNCHRONISE_WAIT_MS); |
| while (!READ_ONCE(*start) && (time_before(jiffies, timeout))) { |
| udelay(20); /* Usually start MCDI execution quickly */ |
| loops++; |
| } |
| |
| if (loops <= 1) |
| ++ptp->fast_syncs; |
| if (!time_before(jiffies, timeout)) |
| ++ptp->sync_timeouts; |
| |
| if (READ_ONCE(*start)) |
| efx_ptp_send_times(efx, &last_time); |
| |
| /* Collect results */ |
| rc = efx_mcdi_rpc_finish(efx, MC_CMD_PTP, |
| MC_CMD_PTP_IN_SYNCHRONIZE_LEN, |
| synch_buf, sizeof(synch_buf), |
| &response_length); |
| if (rc == 0) { |
| rc = efx_ptp_process_times(efx, synch_buf, response_length, |
| &last_time); |
| if (rc == 0) |
| ++ptp->good_syncs; |
| else |
| ++ptp->no_time_syncs; |
| } |
| |
| /* Increment the bad syncs counter if the synchronize fails, whatever |
| * the reason. |
| */ |
| if (rc != 0) |
| ++ptp->bad_syncs; |
| |
| return rc; |
| } |
| |
| /* Transmit a PTP packet via the dedicated hardware timestamped queue. */ |
| static void efx_ptp_xmit_skb_queue(struct efx_nic *efx, struct sk_buff *skb) |
| { |
| struct efx_ptp_data *ptp_data = efx->ptp_data; |
| u8 type = efx_tx_csum_type_skb(skb); |
| struct efx_tx_queue *tx_queue; |
| |
| tx_queue = efx_channel_get_tx_queue(ptp_data->channel, type); |
| if (tx_queue && tx_queue->timestamping) { |
| skb_get(skb); |
| |
| /* This code invokes normal driver TX code which is always |
| * protected from softirqs when called from generic TX code, |
| * which in turn disables preemption. Look at __dev_queue_xmit |
| * which uses rcu_read_lock_bh disabling preemption for RCU |
| * plus disabling softirqs. We do not need RCU reader |
| * protection here. |
| * |
| * Although it is theoretically safe for current PTP TX/RX code |
| * running without disabling softirqs, there are three good |
| * reasond for doing so: |
| * |
| * 1) The code invoked is mainly implemented for non-PTP |
| * packets and it is always executed with softirqs |
| * disabled. |
| * 2) This being a single PTP packet, better to not |
| * interrupt its processing by softirqs which can lead |
| * to high latencies. |
| * 3) netdev_xmit_more checks preemption is disabled and |
| * triggers a BUG_ON if not. |
| */ |
| local_bh_disable(); |
| efx_enqueue_skb(tx_queue, skb); |
| local_bh_enable(); |
| |
| /* We need to add the filters after enqueuing the packet. |
| * Otherwise, there's high latency in sending back the |
| * timestamp, causing ptp4l timeouts |
| */ |
| efx_ptp_insert_unicast_filter(efx, skb); |
| dev_consume_skb_any(skb); |
| } else { |
| WARN_ONCE(1, "PTP channel has no timestamped tx queue\n"); |
| dev_kfree_skb_any(skb); |
| } |
| } |
| |
| /* Transmit a PTP packet, via the MCDI interface, to the wire. */ |
| static void efx_ptp_xmit_skb_mc(struct efx_nic *efx, struct sk_buff *skb) |
| { |
| MCDI_DECLARE_BUF(txtime, MC_CMD_PTP_OUT_TRANSMIT_LEN); |
| struct efx_ptp_data *ptp_data = efx->ptp_data; |
| struct skb_shared_hwtstamps timestamps; |
| size_t len; |
| int rc; |
| |
| MCDI_SET_DWORD(ptp_data->txbuf, PTP_IN_OP, MC_CMD_PTP_OP_TRANSMIT); |
| MCDI_SET_DWORD(ptp_data->txbuf, PTP_IN_PERIPH_ID, 0); |
| MCDI_SET_DWORD(ptp_data->txbuf, PTP_IN_TRANSMIT_LENGTH, skb->len); |
| if (skb_shinfo(skb)->nr_frags != 0) { |
| rc = skb_linearize(skb); |
| if (rc != 0) |
| goto fail; |
| } |
| |
| if (skb->ip_summed == CHECKSUM_PARTIAL) { |
| rc = skb_checksum_help(skb); |
| if (rc != 0) |
| goto fail; |
| } |
| skb_copy_from_linear_data(skb, |
| MCDI_PTR(ptp_data->txbuf, |
| PTP_IN_TRANSMIT_PACKET), |
| skb->len); |
| rc = efx_mcdi_rpc(efx, MC_CMD_PTP, |
| ptp_data->txbuf, MC_CMD_PTP_IN_TRANSMIT_LEN(skb->len), |
| txtime, sizeof(txtime), &len); |
| if (rc != 0) |
| goto fail; |
| |
| memset(×tamps, 0, sizeof(timestamps)); |
| timestamps.hwtstamp = ptp_data->nic_to_kernel_time( |
| MCDI_DWORD(txtime, PTP_OUT_TRANSMIT_MAJOR), |
| MCDI_DWORD(txtime, PTP_OUT_TRANSMIT_MINOR), |
| ptp_data->ts_corrections.ptp_tx); |
| |
| skb_tstamp_tx(skb, ×tamps); |
| |
| /* Add the filters after sending back the timestamp to avoid delaying it |
| * or ptp4l may timeout. |
| */ |
| efx_ptp_insert_unicast_filter(efx, skb); |
| |
| fail: |
| dev_kfree_skb_any(skb); |
| |
| return; |
| } |
| |
| /* Process any queued receive events and corresponding packets |
| * |
| * q is returned with all the packets that are ready for delivery. |
| */ |
| static void efx_ptp_process_events(struct efx_nic *efx, struct sk_buff_head *q) |
| { |
| struct efx_ptp_data *ptp = efx->ptp_data; |
| struct sk_buff *skb; |
| |
| while ((skb = skb_dequeue(&ptp->rxq))) { |
| struct efx_ptp_match *match; |
| |
| match = (struct efx_ptp_match *)skb->cb; |
| if (match->state == PTP_PACKET_STATE_MATCH_UNWANTED) { |
| __skb_queue_tail(q, skb); |
| } else if (time_after(jiffies, match->expiry)) { |
| match->state = PTP_PACKET_STATE_TIMED_OUT; |
| ++ptp->rx_no_timestamp; |
| __skb_queue_tail(q, skb); |
| } else { |
| /* Replace unprocessed entry and stop */ |
| skb_queue_head(&ptp->rxq, skb); |
| break; |
| } |
| } |
| } |
| |
| /* Complete processing of a received packet */ |
| static inline void efx_ptp_process_rx(struct efx_nic *efx, struct sk_buff *skb) |
| { |
| local_bh_disable(); |
| netif_receive_skb(skb); |
| local_bh_enable(); |
| } |
| |
| static struct efx_ptp_rxfilter * |
| efx_ptp_find_filter(struct list_head *filter_list, struct efx_filter_spec *spec) |
| { |
| struct efx_ptp_rxfilter *rxfilter; |
| |
| list_for_each_entry(rxfilter, filter_list, list) { |
| if (rxfilter->ether_type == spec->ether_type && |
| rxfilter->loc_port == spec->loc_port && |
| !memcmp(rxfilter->loc_host, spec->loc_host, sizeof(spec->loc_host))) |
| return rxfilter; |
| } |
| |
| return NULL; |
| } |
| |
| static void efx_ptp_remove_one_filter(struct efx_nic *efx, |
| struct efx_ptp_rxfilter *rxfilter) |
| { |
| efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED, |
| rxfilter->handle); |
| list_del(&rxfilter->list); |
| kfree(rxfilter); |
| } |
| |
| static void efx_ptp_remove_filters(struct efx_nic *efx, |
| struct list_head *filter_list) |
| { |
| struct efx_ptp_rxfilter *rxfilter, *tmp; |
| |
| list_for_each_entry_safe(rxfilter, tmp, filter_list, list) |
| efx_ptp_remove_one_filter(efx, rxfilter); |
| } |
| |
| static void efx_ptp_init_filter(struct efx_nic *efx, |
| struct efx_filter_spec *rxfilter) |
| { |
| struct efx_channel *channel = efx->ptp_data->channel; |
| struct efx_rx_queue *queue = efx_channel_get_rx_queue(channel); |
| |
| efx_filter_init_rx(rxfilter, EFX_FILTER_PRI_REQUIRED, 0, |
| efx_rx_queue_index(queue)); |
| } |
| |
| static int efx_ptp_insert_filter(struct efx_nic *efx, |
| struct list_head *filter_list, |
| struct efx_filter_spec *spec, |
| unsigned long expiry) |
| { |
| struct efx_ptp_data *ptp = efx->ptp_data; |
| struct efx_ptp_rxfilter *rxfilter; |
| int rc; |
| |
| rxfilter = efx_ptp_find_filter(filter_list, spec); |
| if (rxfilter) { |
| rxfilter->expiry = expiry; |
| return 0; |
| } |
| |
| rxfilter = kzalloc(sizeof(*rxfilter), GFP_KERNEL); |
| if (!rxfilter) |
| return -ENOMEM; |
| |
| rc = efx_filter_insert_filter(efx, spec, true); |
| if (rc < 0) |
| goto fail; |
| |
| rxfilter->handle = rc; |
| rxfilter->ether_type = spec->ether_type; |
| rxfilter->loc_port = spec->loc_port; |
| memcpy(rxfilter->loc_host, spec->loc_host, sizeof(spec->loc_host)); |
| rxfilter->expiry = expiry; |
| list_add(&rxfilter->list, filter_list); |
| |
| queue_delayed_work(ptp->workwq, &ptp->cleanup_work, |
| UCAST_FILTER_EXPIRY_JIFFIES + 1); |
| |
| return 0; |
| |
| fail: |
| kfree(rxfilter); |
| return rc; |
| } |
| |
| static int efx_ptp_insert_ipv4_filter(struct efx_nic *efx, |
| struct list_head *filter_list, |
| __be32 addr, u16 port, |
| unsigned long expiry) |
| { |
| struct efx_filter_spec spec; |
| |
| efx_ptp_init_filter(efx, &spec); |
| efx_filter_set_ipv4_local(&spec, IPPROTO_UDP, addr, htons(port)); |
| return efx_ptp_insert_filter(efx, filter_list, &spec, expiry); |
| } |
| |
| static int efx_ptp_insert_ipv6_filter(struct efx_nic *efx, |
| struct list_head *filter_list, |
| const struct in6_addr *addr, u16 port, |
| unsigned long expiry) |
| { |
| struct efx_filter_spec spec; |
| |
| efx_ptp_init_filter(efx, &spec); |
| efx_filter_set_ipv6_local(&spec, IPPROTO_UDP, addr, htons(port)); |
| return efx_ptp_insert_filter(efx, filter_list, &spec, expiry); |
| } |
| |
| static int efx_ptp_insert_eth_multicast_filter(struct efx_nic *efx) |
| { |
| struct efx_ptp_data *ptp = efx->ptp_data; |
| struct efx_filter_spec spec; |
| |
| efx_ptp_init_filter(efx, &spec); |
| efx_filter_set_eth_local(&spec, EFX_FILTER_VID_UNSPEC, ptp_addr_ether); |
| spec.match_flags |= EFX_FILTER_MATCH_ETHER_TYPE; |
| spec.ether_type = htons(ETH_P_1588); |
| return efx_ptp_insert_filter(efx, &ptp->rxfilters_mcast, &spec, 0); |
| } |
| |
| static int efx_ptp_insert_multicast_filters(struct efx_nic *efx) |
| { |
| struct efx_ptp_data *ptp = efx->ptp_data; |
| int rc; |
| |
| if (!ptp->channel || !list_empty(&ptp->rxfilters_mcast)) |
| return 0; |
| |
| /* Must filter on both event and general ports to ensure |
| * that there is no packet re-ordering. |
| */ |
| rc = efx_ptp_insert_ipv4_filter(efx, &ptp->rxfilters_mcast, |
| htonl(PTP_ADDR_IPV4), PTP_EVENT_PORT, |
| 0); |
| if (rc < 0) |
| goto fail; |
| |
| rc = efx_ptp_insert_ipv4_filter(efx, &ptp->rxfilters_mcast, |
| htonl(PTP_ADDR_IPV4), PTP_GENERAL_PORT, |
| 0); |
| if (rc < 0) |
| goto fail; |
| |
| /* if the NIC supports hw timestamps by the MAC, we can support |
| * PTP over IPv6 and Ethernet |
| */ |
| if (efx_ptp_use_mac_tx_timestamps(efx)) { |
| rc = efx_ptp_insert_ipv6_filter(efx, &ptp->rxfilters_mcast, |
| &ptp_addr_ipv6, PTP_EVENT_PORT, 0); |
| if (rc < 0) |
| goto fail; |
| |
| rc = efx_ptp_insert_ipv6_filter(efx, &ptp->rxfilters_mcast, |
| &ptp_addr_ipv6, PTP_GENERAL_PORT, 0); |
| if (rc < 0) |
| goto fail; |
| |
| rc = efx_ptp_insert_eth_multicast_filter(efx); |
| |
| /* Not all firmware variants support this filter */ |
| if (rc < 0 && rc != -EPROTONOSUPPORT) |
| goto fail; |
| } |
| |
| return 0; |
| |
| fail: |
| efx_ptp_remove_filters(efx, &ptp->rxfilters_mcast); |
| return rc; |
| } |
| |
| static bool efx_ptp_valid_unicast_event_pkt(struct sk_buff *skb) |
| { |
| if (skb->protocol == htons(ETH_P_IP)) { |
| return ip_hdr(skb)->daddr != htonl(PTP_ADDR_IPV4) && |
| ip_hdr(skb)->protocol == IPPROTO_UDP && |
| udp_hdr(skb)->source == htons(PTP_EVENT_PORT); |
| } else if (skb->protocol == htons(ETH_P_IPV6)) { |
| return !ipv6_addr_equal(&ipv6_hdr(skb)->daddr, &ptp_addr_ipv6) && |
| ipv6_hdr(skb)->nexthdr == IPPROTO_UDP && |
| udp_hdr(skb)->source == htons(PTP_EVENT_PORT); |
| } |
| return false; |
| } |
| |
| static int efx_ptp_insert_unicast_filter(struct efx_nic *efx, |
| struct sk_buff *skb) |
| { |
| struct efx_ptp_data *ptp = efx->ptp_data; |
| unsigned long expiry; |
| int rc; |
| |
| if (!efx_ptp_valid_unicast_event_pkt(skb)) |
| return -EINVAL; |
| |
| expiry = jiffies + UCAST_FILTER_EXPIRY_JIFFIES; |
| |
| if (skb->protocol == htons(ETH_P_IP)) { |
| __be32 addr = ip_hdr(skb)->saddr; |
| |
| rc = efx_ptp_insert_ipv4_filter(efx, &ptp->rxfilters_ucast, |
| addr, PTP_EVENT_PORT, expiry); |
| if (rc < 0) |
| goto out; |
| |
| rc = efx_ptp_insert_ipv4_filter(efx, &ptp->rxfilters_ucast, |
| addr, PTP_GENERAL_PORT, expiry); |
| } else if (efx_ptp_use_mac_tx_timestamps(efx)) { |
| /* IPv6 PTP only supported by devices with MAC hw timestamp */ |
| struct in6_addr *addr = &ipv6_hdr(skb)->saddr; |
| |
| rc = efx_ptp_insert_ipv6_filter(efx, &ptp->rxfilters_ucast, |
| addr, PTP_EVENT_PORT, expiry); |
| if (rc < 0) |
| goto out; |
| |
| rc = efx_ptp_insert_ipv6_filter(efx, &ptp->rxfilters_ucast, |
| addr, PTP_GENERAL_PORT, expiry); |
| } else { |
| return -EOPNOTSUPP; |
| } |
| |
| out: |
| return rc; |
| } |
| |
| static int efx_ptp_start(struct efx_nic *efx) |
| { |
| struct efx_ptp_data *ptp = efx->ptp_data; |
| int rc; |
| |
| ptp->reset_required = false; |
| |
| rc = efx_ptp_insert_multicast_filters(efx); |
| if (rc) |
| return rc; |
| |
| rc = efx_ptp_enable(efx); |
| if (rc != 0) |
| goto fail; |
| |
| ptp->evt_frag_idx = 0; |
| ptp->current_adjfreq = 0; |
| |
| return 0; |
| |
| fail: |
| efx_ptp_remove_filters(efx, &ptp->rxfilters_mcast); |
| return rc; |
| } |
| |
| static int efx_ptp_stop(struct efx_nic *efx) |
| { |
| struct efx_ptp_data *ptp = efx->ptp_data; |
| int rc; |
| |
| if (ptp == NULL) |
| return 0; |
| |
| rc = efx_ptp_disable(efx); |
| |
| efx_ptp_remove_filters(efx, &ptp->rxfilters_mcast); |
| efx_ptp_remove_filters(efx, &ptp->rxfilters_ucast); |
| |
| /* Make sure RX packets are really delivered */ |
| efx_ptp_deliver_rx_queue(&efx->ptp_data->rxq); |
| skb_queue_purge(&efx->ptp_data->txq); |
| |
| return rc; |
| } |
| |
| static int efx_ptp_restart(struct efx_nic *efx) |
| { |
| if (efx->ptp_data && efx->ptp_data->enabled) |
| return efx_ptp_start(efx); |
| return 0; |
| } |
| |
| static void efx_ptp_pps_worker(struct work_struct *work) |
| { |
| struct efx_ptp_data *ptp = |
| container_of(work, struct efx_ptp_data, pps_work); |
| struct efx_nic *efx = ptp->efx; |
| struct ptp_clock_event ptp_evt; |
| |
| if (efx_ptp_synchronize(efx, PTP_SYNC_ATTEMPTS)) |
| return; |
| |
| ptp_evt.type = PTP_CLOCK_PPSUSR; |
| ptp_evt.pps_times = ptp->host_time_pps; |
| ptp_clock_event(ptp->phc_clock, &ptp_evt); |
| } |
| |
| static void efx_ptp_worker(struct work_struct *work) |
| { |
| struct efx_ptp_data *ptp_data = |
| container_of(work, struct efx_ptp_data, work); |
| struct efx_nic *efx = ptp_data->efx; |
| struct sk_buff *skb; |
| struct sk_buff_head tempq; |
| |
| if (ptp_data->reset_required) { |
| efx_ptp_stop(efx); |
| efx_ptp_start(efx); |
| return; |
| } |
| |
| __skb_queue_head_init(&tempq); |
| efx_ptp_process_events(efx, &tempq); |
| |
| while ((skb = skb_dequeue(&ptp_data->txq))) |
| ptp_data->xmit_skb(efx, skb); |
| |
| while ((skb = __skb_dequeue(&tempq))) |
| efx_ptp_process_rx(efx, skb); |
| } |
| |
| static void efx_ptp_cleanup_worker(struct work_struct *work) |
| { |
| struct efx_ptp_data *ptp = |
| container_of(work, struct efx_ptp_data, cleanup_work.work); |
| struct efx_ptp_rxfilter *rxfilter, *tmp; |
| |
| list_for_each_entry_safe(rxfilter, tmp, &ptp->rxfilters_ucast, list) { |
| if (time_is_before_jiffies(rxfilter->expiry)) |
| efx_ptp_remove_one_filter(ptp->efx, rxfilter); |
| } |
| |
| if (!list_empty(&ptp->rxfilters_ucast)) { |
| queue_delayed_work(ptp->workwq, &ptp->cleanup_work, |
| UCAST_FILTER_EXPIRY_JIFFIES + 1); |
| } |
| } |
| |
| static const struct ptp_clock_info efx_phc_clock_info = { |
| .owner = THIS_MODULE, |
| .name = "sfc", |
| .max_adj = MAX_PPB, |
| .n_alarm = 0, |
| .n_ext_ts = 0, |
| .n_per_out = 0, |
| .n_pins = 0, |
| .pps = 1, |
| .adjfine = efx_phc_adjfine, |
| .adjtime = efx_phc_adjtime, |
| .gettime64 = efx_phc_gettime, |
| .settime64 = efx_phc_settime, |
| .enable = efx_phc_enable, |
| }; |
| |
| /* Initialise PTP state. */ |
| int efx_ptp_probe(struct efx_nic *efx, struct efx_channel *channel) |
| { |
| struct efx_ptp_data *ptp; |
| int rc = 0; |
| |
| if (efx->ptp_data) { |
| efx->ptp_data->channel = channel; |
| return 0; |
| } |
| |
| ptp = kzalloc(sizeof(struct efx_ptp_data), GFP_KERNEL); |
| efx->ptp_data = ptp; |
| if (!efx->ptp_data) |
| return -ENOMEM; |
| |
| ptp->efx = efx; |
| ptp->channel = channel; |
| |
| rc = efx_nic_alloc_buffer(efx, &ptp->start, sizeof(int), GFP_KERNEL); |
| if (rc != 0) |
| goto fail1; |
| |
| skb_queue_head_init(&ptp->rxq); |
| skb_queue_head_init(&ptp->txq); |
| ptp->workwq = create_singlethread_workqueue("sfc_ptp"); |
| if (!ptp->workwq) { |
| rc = -ENOMEM; |
| goto fail2; |
| } |
| |
| if (efx_ptp_use_mac_tx_timestamps(efx)) { |
| ptp->xmit_skb = efx_ptp_xmit_skb_queue; |
| /* Request sync events on this channel. */ |
| channel->sync_events_state = SYNC_EVENTS_QUIESCENT; |
| } else { |
| ptp->xmit_skb = efx_ptp_xmit_skb_mc; |
| } |
| |
| INIT_WORK(&ptp->work, efx_ptp_worker); |
| INIT_DELAYED_WORK(&ptp->cleanup_work, efx_ptp_cleanup_worker); |
| ptp->config.flags = 0; |
| ptp->config.tx_type = HWTSTAMP_TX_OFF; |
| ptp->config.rx_filter = HWTSTAMP_FILTER_NONE; |
| INIT_LIST_HEAD(&ptp->rxfilters_mcast); |
| INIT_LIST_HEAD(&ptp->rxfilters_ucast); |
| |
| /* Get the NIC PTP attributes and set up time conversions */ |
| rc = efx_ptp_get_attributes(efx); |
| if (rc < 0) |
| goto fail3; |
| |
| /* Get the timestamp corrections */ |
| rc = efx_ptp_get_timestamp_corrections(efx); |
| if (rc < 0) |
| goto fail3; |
| |
| if (efx->mcdi->fn_flags & |
| (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY)) { |
| ptp->phc_clock_info = efx_phc_clock_info; |
| ptp->phc_clock = ptp_clock_register(&ptp->phc_clock_info, |
| &efx->pci_dev->dev); |
| if (IS_ERR(ptp->phc_clock)) { |
| rc = PTR_ERR(ptp->phc_clock); |
| goto fail3; |
| } else if (ptp->phc_clock) { |
| INIT_WORK(&ptp->pps_work, efx_ptp_pps_worker); |
| ptp->pps_workwq = create_singlethread_workqueue("sfc_pps"); |
| if (!ptp->pps_workwq) { |
| rc = -ENOMEM; |
| goto fail4; |
| } |
| } |
| } |
| ptp->nic_ts_enabled = false; |
| |
| return 0; |
| fail4: |
| ptp_clock_unregister(efx->ptp_data->phc_clock); |
| |
| fail3: |
| destroy_workqueue(efx->ptp_data->workwq); |
| |
| fail2: |
| efx_nic_free_buffer(efx, &ptp->start); |
| |
| fail1: |
| kfree(efx->ptp_data); |
| efx->ptp_data = NULL; |
| |
| return rc; |
| } |
| |
| /* Initialise PTP channel. |
| * |
| * Setting core_index to zero causes the queue to be initialised and doesn't |
| * overlap with 'rxq0' because ptp.c doesn't use skb_record_rx_queue. |
| */ |
| static int efx_ptp_probe_channel(struct efx_channel *channel) |
| { |
| struct efx_nic *efx = channel->efx; |
| int rc; |
| |
| channel->irq_moderation_us = 0; |
| channel->rx_queue.core_index = 0; |
| |
| rc = efx_ptp_probe(efx, channel); |
| /* Failure to probe PTP is not fatal; this channel will just not be |
| * used for anything. |
| * In the case of EPERM, efx_ptp_probe will print its own message (in |
| * efx_ptp_get_attributes()), so we don't need to. |
| */ |
| if (rc && rc != -EPERM) |
| netif_warn(efx, drv, efx->net_dev, |
| "Failed to probe PTP, rc=%d\n", rc); |
| return 0; |
| } |
| |
| void efx_ptp_remove(struct efx_nic *efx) |
| { |
| if (!efx->ptp_data) |
| return; |
| |
| (void)efx_ptp_disable(efx); |
| |
| cancel_work_sync(&efx->ptp_data->work); |
| cancel_delayed_work_sync(&efx->ptp_data->cleanup_work); |
| if (efx->ptp_data->pps_workwq) |
| cancel_work_sync(&efx->ptp_data->pps_work); |
| |
| skb_queue_purge(&efx->ptp_data->rxq); |
| skb_queue_purge(&efx->ptp_data->txq); |
| |
| if (efx->ptp_data->phc_clock) { |
| destroy_workqueue(efx->ptp_data->pps_workwq); |
| ptp_clock_unregister(efx->ptp_data->phc_clock); |
| } |
| |
| destroy_workqueue(efx->ptp_data->workwq); |
| |
| efx_nic_free_buffer(efx, &efx->ptp_data->start); |
| kfree(efx->ptp_data); |
| efx->ptp_data = NULL; |
| } |
| |
| static void efx_ptp_remove_channel(struct efx_channel *channel) |
| { |
| efx_ptp_remove(channel->efx); |
| } |
| |
| static void efx_ptp_get_channel_name(struct efx_channel *channel, |
| char *buf, size_t len) |
| { |
| snprintf(buf, len, "%s-ptp", channel->efx->name); |
| } |
| |
| /* Determine whether this packet should be processed by the PTP module |
| * or transmitted conventionally. |
| */ |
| bool efx_ptp_is_ptp_tx(struct efx_nic *efx, struct sk_buff *skb) |
| { |
| return efx->ptp_data && |
| efx->ptp_data->enabled && |
| skb->len >= PTP_MIN_LENGTH && |
| skb->len <= MC_CMD_PTP_IN_TRANSMIT_PACKET_MAXNUM && |
| likely(skb->protocol == htons(ETH_P_IP)) && |
| skb_transport_header_was_set(skb) && |
| skb_network_header_len(skb) >= sizeof(struct iphdr) && |
| ip_hdr(skb)->protocol == IPPROTO_UDP && |
| skb_headlen(skb) >= |
| skb_transport_offset(skb) + sizeof(struct udphdr) && |
| udp_hdr(skb)->dest == htons(PTP_EVENT_PORT); |
| } |
| |
| /* Receive a PTP packet. Packets are queued until the arrival of |
| * the receive timestamp from the MC - this will probably occur after the |
| * packet arrival because of the processing in the MC. |
| */ |
| static bool efx_ptp_rx(struct efx_channel *channel, struct sk_buff *skb) |
| { |
| struct efx_nic *efx = channel->efx; |
| struct efx_ptp_data *ptp = efx->ptp_data; |
| struct efx_ptp_match *match = (struct efx_ptp_match *)skb->cb; |
| unsigned int version; |
| u8 *data; |
| |
| match->expiry = jiffies + msecs_to_jiffies(PKT_EVENT_LIFETIME_MS); |
| |
| /* Correct version? */ |
| if (ptp->mode == MC_CMD_PTP_MODE_V1) { |
| if (!pskb_may_pull(skb, PTP_V1_MIN_LENGTH)) { |
| return false; |
| } |
| data = skb->data; |
| version = ntohs(*(__be16 *)&data[PTP_V1_VERSION_OFFSET]); |
| if (version != PTP_VERSION_V1) { |
| return false; |
| } |
| } else { |
| if (!pskb_may_pull(skb, PTP_V2_MIN_LENGTH)) { |
| return false; |
| } |
| data = skb->data; |
| version = data[PTP_V2_VERSION_OFFSET]; |
| if ((version & PTP_VERSION_V2_MASK) != PTP_VERSION_V2) { |
| return false; |
| } |
| } |
| |
| /* Does this packet require timestamping? */ |
| if (ntohs(*(__be16 *)&data[PTP_DPORT_OFFSET]) == PTP_EVENT_PORT) { |
| match->state = PTP_PACKET_STATE_UNMATCHED; |
| |
| /* We expect the sequence number to be in the same position in |
| * the packet for PTP V1 and V2 |
| */ |
| BUILD_BUG_ON(PTP_V1_SEQUENCE_OFFSET != PTP_V2_SEQUENCE_OFFSET); |
| BUILD_BUG_ON(PTP_V1_SEQUENCE_LENGTH != PTP_V2_SEQUENCE_LENGTH); |
| } else { |
| match->state = PTP_PACKET_STATE_MATCH_UNWANTED; |
| } |
| |
| skb_queue_tail(&ptp->rxq, skb); |
| queue_work(ptp->workwq, &ptp->work); |
| |
| return true; |
| } |
| |
| /* Transmit a PTP packet. This has to be transmitted by the MC |
| * itself, through an MCDI call. MCDI calls aren't permitted |
| * in the transmit path so defer the actual transmission to a suitable worker. |
| */ |
| int efx_ptp_tx(struct efx_nic *efx, struct sk_buff *skb) |
| { |
| struct efx_ptp_data *ptp = efx->ptp_data; |
| |
| skb_queue_tail(&ptp->txq, skb); |
| |
| if ((udp_hdr(skb)->dest == htons(PTP_EVENT_PORT)) && |
| (skb->len <= MC_CMD_PTP_IN_TRANSMIT_PACKET_MAXNUM)) |
| efx_xmit_hwtstamp_pending(skb); |
| queue_work(ptp->workwq, &ptp->work); |
| |
| return NETDEV_TX_OK; |
| } |
| |
| int efx_ptp_get_mode(struct efx_nic *efx) |
| { |
| return efx->ptp_data->mode; |
| } |
| |
| int efx_ptp_change_mode(struct efx_nic *efx, bool enable_wanted, |
| unsigned int new_mode) |
| { |
| if ((enable_wanted != efx->ptp_data->enabled) || |
| (enable_wanted && (efx->ptp_data->mode != new_mode))) { |
| int rc = 0; |
| |
| if (enable_wanted) { |
| /* Change of mode requires disable */ |
| if (efx->ptp_data->enabled && |
| (efx->ptp_data->mode != new_mode)) { |
| efx->ptp_data->enabled = false; |
| rc = efx_ptp_stop(efx); |
| if (rc != 0) |
| return rc; |
| } |
| |
| /* Set new operating mode and establish |
| * baseline synchronisation, which must |
| * succeed. |
| */ |
| efx->ptp_data->mode = new_mode; |
| if (netif_running(efx->net_dev)) |
| rc = efx_ptp_start(efx); |
| if (rc == 0) { |
| rc = efx_ptp_synchronize(efx, |
| PTP_SYNC_ATTEMPTS * 2); |
| if (rc != 0) |
| efx_ptp_stop(efx); |
| } |
| } else { |
| rc = efx_ptp_stop(efx); |
| } |
| |
| if (rc != 0) |
| return rc; |
| |
| efx->ptp_data->enabled = enable_wanted; |
| } |
| |
| return 0; |
| } |
| |
| static int efx_ptp_ts_init(struct efx_nic *efx, struct kernel_hwtstamp_config *init) |
| { |
| int rc; |
| |
| if ((init->tx_type != HWTSTAMP_TX_OFF) && |
| (init->tx_type != HWTSTAMP_TX_ON)) |
| return -ERANGE; |
| |
| rc = efx->type->ptp_set_ts_config(efx, init); |
| if (rc) |
| return rc; |
| |
| efx->ptp_data->config = *init; |
| return 0; |
| } |
| |
| void efx_ptp_get_ts_info(struct efx_nic *efx, struct ethtool_ts_info *ts_info) |
| { |
| struct efx_ptp_data *ptp = efx->ptp_data; |
| struct efx_nic *primary = efx->primary; |
| |
| ASSERT_RTNL(); |
| |
| if (!ptp) |
| return; |
| |
| ts_info->so_timestamping |= (SOF_TIMESTAMPING_TX_HARDWARE | |
| SOF_TIMESTAMPING_RX_HARDWARE | |
| SOF_TIMESTAMPING_RAW_HARDWARE); |
| /* Check licensed features. If we don't have the license for TX |
| * timestamps, the NIC will not support them. |
| */ |
| if (efx_ptp_use_mac_tx_timestamps(efx)) { |
| struct efx_ef10_nic_data *nic_data = efx->nic_data; |
| |
| if (!(nic_data->licensed_features & |
| (1 << LICENSED_V3_FEATURES_TX_TIMESTAMPS_LBN))) |
| ts_info->so_timestamping &= |
| ~SOF_TIMESTAMPING_TX_HARDWARE; |
| } |
| if (primary && primary->ptp_data && primary->ptp_data->phc_clock) |
| ts_info->phc_index = |
| ptp_clock_index(primary->ptp_data->phc_clock); |
| ts_info->tx_types = 1 << HWTSTAMP_TX_OFF | 1 << HWTSTAMP_TX_ON; |
| ts_info->rx_filters = ptp->efx->type->hwtstamp_filters; |
| } |
| |
| int efx_ptp_set_ts_config(struct efx_nic *efx, |
| struct kernel_hwtstamp_config *config, |
| struct netlink_ext_ack __always_unused *extack) |
| { |
| /* Not a PTP enabled port */ |
| if (!efx->ptp_data) |
| return -EOPNOTSUPP; |
| |
| return efx_ptp_ts_init(efx, config); |
| } |
| |
| int efx_ptp_get_ts_config(struct efx_nic *efx, |
| struct kernel_hwtstamp_config *config) |
| { |
| /* Not a PTP enabled port */ |
| if (!efx->ptp_data) |
| return -EOPNOTSUPP; |
| *config = efx->ptp_data->config; |
| return 0; |
| } |
| |
| static void ptp_event_failure(struct efx_nic *efx, int expected_frag_len) |
| { |
| struct efx_ptp_data *ptp = efx->ptp_data; |
| |
| netif_err(efx, hw, efx->net_dev, |
| "PTP unexpected event length: got %d expected %d\n", |
| ptp->evt_frag_idx, expected_frag_len); |
| ptp->reset_required = true; |
| queue_work(ptp->workwq, &ptp->work); |
| } |
| |
| static void ptp_event_fault(struct efx_nic *efx, struct efx_ptp_data *ptp) |
| { |
| int code = EFX_QWORD_FIELD(ptp->evt_frags[0], MCDI_EVENT_DATA); |
| if (ptp->evt_frag_idx != 1) { |
| ptp_event_failure(efx, 1); |
| return; |
| } |
| |
| netif_err(efx, hw, efx->net_dev, "PTP error %d\n", code); |
| } |
| |
| static void ptp_event_pps(struct efx_nic *efx, struct efx_ptp_data *ptp) |
| { |
| if (ptp->nic_ts_enabled) |
| queue_work(ptp->pps_workwq, &ptp->pps_work); |
| } |
| |
| void efx_ptp_event(struct efx_nic *efx, efx_qword_t *ev) |
| { |
| struct efx_ptp_data *ptp = efx->ptp_data; |
| int code = EFX_QWORD_FIELD(*ev, MCDI_EVENT_CODE); |
| |
| if (!ptp) { |
| if (!efx->ptp_warned) { |
| netif_warn(efx, drv, efx->net_dev, |
| "Received PTP event but PTP not set up\n"); |
| efx->ptp_warned = true; |
| } |
| return; |
| } |
| |
| if (!ptp->enabled) |
| return; |
| |
| if (ptp->evt_frag_idx == 0) { |
| ptp->evt_code = code; |
| } else if (ptp->evt_code != code) { |
| netif_err(efx, hw, efx->net_dev, |
| "PTP out of sequence event %d\n", code); |
| ptp->evt_frag_idx = 0; |
| } |
| |
| ptp->evt_frags[ptp->evt_frag_idx++] = *ev; |
| if (!MCDI_EVENT_FIELD(*ev, CONT)) { |
| /* Process resulting event */ |
| switch (code) { |
| case MCDI_EVENT_CODE_PTP_FAULT: |
| ptp_event_fault(efx, ptp); |
| break; |
| case MCDI_EVENT_CODE_PTP_PPS: |
| ptp_event_pps(efx, ptp); |
| break; |
| default: |
| netif_err(efx, hw, efx->net_dev, |
| "PTP unknown event %d\n", code); |
| break; |
| } |
| ptp->evt_frag_idx = 0; |
| } else if (MAX_EVENT_FRAGS == ptp->evt_frag_idx) { |
| netif_err(efx, hw, efx->net_dev, |
| "PTP too many event fragments\n"); |
| ptp->evt_frag_idx = 0; |
| } |
| } |
| |
| void efx_time_sync_event(struct efx_channel *channel, efx_qword_t *ev) |
| { |
| struct efx_nic *efx = channel->efx; |
| struct efx_ptp_data *ptp = efx->ptp_data; |
| |
| /* When extracting the sync timestamp minor value, we should discard |
| * the least significant two bits. These are not required in order |
| * to reconstruct full-range timestamps and they are optionally used |
| * to report status depending on the options supplied when subscribing |
| * for sync events. |
| */ |
| channel->sync_timestamp_major = MCDI_EVENT_FIELD(*ev, PTP_TIME_MAJOR); |
| channel->sync_timestamp_minor = |
| (MCDI_EVENT_FIELD(*ev, PTP_TIME_MINOR_MS_8BITS) & 0xFC) |
| << ptp->nic_time.sync_event_minor_shift; |
| |
| /* if sync events have been disabled then we want to silently ignore |
| * this event, so throw away result. |
| */ |
| (void) cmpxchg(&channel->sync_events_state, SYNC_EVENTS_REQUESTED, |
| SYNC_EVENTS_VALID); |
| } |
| |
| static inline u32 efx_rx_buf_timestamp_minor(struct efx_nic *efx, const u8 *eh) |
| { |
| #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) |
| return __le32_to_cpup((const __le32 *)(eh + efx->rx_packet_ts_offset)); |
| #else |
| const u8 *data = eh + efx->rx_packet_ts_offset; |
| return (u32)data[0] | |
| (u32)data[1] << 8 | |
| (u32)data[2] << 16 | |
| (u32)data[3] << 24; |
| #endif |
| } |
| |
| void __efx_rx_skb_attach_timestamp(struct efx_channel *channel, |
| struct sk_buff *skb) |
| { |
| struct efx_nic *efx = channel->efx; |
| struct efx_ptp_data *ptp = efx->ptp_data; |
| u32 pkt_timestamp_major, pkt_timestamp_minor; |
| u32 diff, carry; |
| struct skb_shared_hwtstamps *timestamps; |
| |
| if (channel->sync_events_state != SYNC_EVENTS_VALID) |
| return; |
| |
| pkt_timestamp_minor = efx_rx_buf_timestamp_minor(efx, skb_mac_header(skb)); |
| |
| /* get the difference between the packet and sync timestamps, |
| * modulo one second |
| */ |
| diff = pkt_timestamp_minor - channel->sync_timestamp_minor; |
| if (pkt_timestamp_minor < channel->sync_timestamp_minor) |
| diff += ptp->nic_time.minor_max; |
| |
| /* do we roll over a second boundary and need to carry the one? */ |
| carry = (channel->sync_timestamp_minor >= ptp->nic_time.minor_max - diff) ? |
| 1 : 0; |
| |
| if (diff <= ptp->nic_time.sync_event_diff_max) { |
| /* packet is ahead of the sync event by a quarter of a second or |
| * less (allowing for fuzz) |
| */ |
| pkt_timestamp_major = channel->sync_timestamp_major + carry; |
| } else if (diff >= ptp->nic_time.sync_event_diff_min) { |
| /* packet is behind the sync event but within the fuzz factor. |
| * This means the RX packet and sync event crossed as they were |
| * placed on the event queue, which can sometimes happen. |
| */ |
| pkt_timestamp_major = channel->sync_timestamp_major - 1 + carry; |
| } else { |
| /* it's outside tolerance in both directions. this might be |
| * indicative of us missing sync events for some reason, so |
| * we'll call it an error rather than risk giving a bogus |
| * timestamp. |
| */ |
| netif_vdbg(efx, drv, efx->net_dev, |
| "packet timestamp %x too far from sync event %x:%x\n", |
| pkt_timestamp_minor, channel->sync_timestamp_major, |
| channel->sync_timestamp_minor); |
| return; |
| } |
| |
| /* attach the timestamps to the skb */ |
| timestamps = skb_hwtstamps(skb); |
| timestamps->hwtstamp = |
| ptp->nic_to_kernel_time(pkt_timestamp_major, |
| pkt_timestamp_minor, |
| ptp->ts_corrections.general_rx); |
| } |
| |
| static int efx_phc_adjfine(struct ptp_clock_info *ptp, long scaled_ppm) |
| { |
| struct efx_ptp_data *ptp_data = container_of(ptp, |
| struct efx_ptp_data, |
| phc_clock_info); |
| s32 delta = scaled_ppm_to_ppb(scaled_ppm); |
| struct efx_nic *efx = ptp_data->efx; |
| MCDI_DECLARE_BUF(inadj, MC_CMD_PTP_IN_ADJUST_LEN); |
| s64 adjustment_ns; |
| int rc; |
| |
| if (delta > MAX_PPB) |
| delta = MAX_PPB; |
| else if (delta < -MAX_PPB) |
| delta = -MAX_PPB; |
| |
| /* Convert ppb to fixed point ns taking care to round correctly. */ |
| adjustment_ns = ((s64)delta * PPB_SCALE_WORD + |
| (1 << (ptp_data->adjfreq_ppb_shift - 1))) >> |
| ptp_data->adjfreq_ppb_shift; |
| |
| MCDI_SET_DWORD(inadj, PTP_IN_OP, MC_CMD_PTP_OP_ADJUST); |
| MCDI_SET_DWORD(inadj, PTP_IN_PERIPH_ID, 0); |
| MCDI_SET_QWORD(inadj, PTP_IN_ADJUST_FREQ, adjustment_ns); |
| MCDI_SET_DWORD(inadj, PTP_IN_ADJUST_SECONDS, 0); |
| MCDI_SET_DWORD(inadj, PTP_IN_ADJUST_NANOSECONDS, 0); |
| rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inadj, sizeof(inadj), |
| NULL, 0, NULL); |
| if (rc != 0) |
| return rc; |
| |
| ptp_data->current_adjfreq = adjustment_ns; |
| return 0; |
| } |
| |
| static int efx_phc_adjtime(struct ptp_clock_info *ptp, s64 delta) |
| { |
| u32 nic_major, nic_minor; |
| struct efx_ptp_data *ptp_data = container_of(ptp, |
| struct efx_ptp_data, |
| phc_clock_info); |
| struct efx_nic *efx = ptp_data->efx; |
| MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_ADJUST_LEN); |
| |
| efx->ptp_data->ns_to_nic_time(delta, &nic_major, &nic_minor); |
| |
| MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_ADJUST); |
| MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0); |
| MCDI_SET_QWORD(inbuf, PTP_IN_ADJUST_FREQ, ptp_data->current_adjfreq); |
| MCDI_SET_DWORD(inbuf, PTP_IN_ADJUST_MAJOR, nic_major); |
| MCDI_SET_DWORD(inbuf, PTP_IN_ADJUST_MINOR, nic_minor); |
| return efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf), |
| NULL, 0, NULL); |
| } |
| |
| static int efx_phc_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts) |
| { |
| struct efx_ptp_data *ptp_data = container_of(ptp, |
| struct efx_ptp_data, |
| phc_clock_info); |
| struct efx_nic *efx = ptp_data->efx; |
| MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_READ_NIC_TIME_LEN); |
| MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_READ_NIC_TIME_LEN); |
| int rc; |
| ktime_t kt; |
| |
| MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_READ_NIC_TIME); |
| MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0); |
| |
| rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf), |
| outbuf, sizeof(outbuf), NULL); |
| if (rc != 0) |
| return rc; |
| |
| kt = ptp_data->nic_to_kernel_time( |
| MCDI_DWORD(outbuf, PTP_OUT_READ_NIC_TIME_MAJOR), |
| MCDI_DWORD(outbuf, PTP_OUT_READ_NIC_TIME_MINOR), 0); |
| *ts = ktime_to_timespec64(kt); |
| return 0; |
| } |
| |
| static int efx_phc_settime(struct ptp_clock_info *ptp, |
| const struct timespec64 *e_ts) |
| { |
| /* Get the current NIC time, efx_phc_gettime. |
| * Subtract from the desired time to get the offset |
| * call efx_phc_adjtime with the offset |
| */ |
| int rc; |
| struct timespec64 time_now; |
| struct timespec64 delta; |
| |
| rc = efx_phc_gettime(ptp, &time_now); |
| if (rc != 0) |
| return rc; |
| |
| delta = timespec64_sub(*e_ts, time_now); |
| |
| rc = efx_phc_adjtime(ptp, timespec64_to_ns(&delta)); |
| if (rc != 0) |
| return rc; |
| |
| return 0; |
| } |
| |
| static int efx_phc_enable(struct ptp_clock_info *ptp, |
| struct ptp_clock_request *request, |
| int enable) |
| { |
| struct efx_ptp_data *ptp_data = container_of(ptp, |
| struct efx_ptp_data, |
| phc_clock_info); |
| if (request->type != PTP_CLK_REQ_PPS) |
| return -EOPNOTSUPP; |
| |
| ptp_data->nic_ts_enabled = !!enable; |
| return 0; |
| } |
| |
| static const struct efx_channel_type efx_ptp_channel_type = { |
| .handle_no_channel = efx_ptp_handle_no_channel, |
| .pre_probe = efx_ptp_probe_channel, |
| .post_remove = efx_ptp_remove_channel, |
| .get_name = efx_ptp_get_channel_name, |
| .copy = efx_copy_channel, |
| .receive_skb = efx_ptp_rx, |
| .want_txqs = efx_ptp_want_txqs, |
| .keep_eventq = false, |
| }; |
| |
| void efx_ptp_defer_probe_with_channel(struct efx_nic *efx) |
| { |
| /* Check whether PTP is implemented on this NIC. The DISABLE |
| * operation will succeed if and only if it is implemented. |
| */ |
| if (efx_ptp_disable(efx) == 0) |
| efx->extra_channel_type[EFX_EXTRA_CHANNEL_PTP] = |
| &efx_ptp_channel_type; |
| } |
| |
| void efx_ptp_start_datapath(struct efx_nic *efx) |
| { |
| if (efx_ptp_restart(efx)) |
| netif_err(efx, drv, efx->net_dev, "Failed to restart PTP.\n"); |
| /* re-enable timestamping if it was previously enabled */ |
| if (efx->type->ptp_set_ts_sync_events) |
| efx->type->ptp_set_ts_sync_events(efx, true, true); |
| } |
| |
| void efx_ptp_stop_datapath(struct efx_nic *efx) |
| { |
| /* temporarily disable timestamping */ |
| if (efx->type->ptp_set_ts_sync_events) |
| efx->type->ptp_set_ts_sync_events(efx, false, true); |
| efx_ptp_stop(efx); |
| } |