blob: 71f9b5ec5ae4657d38c7457ac397421ec5cccced [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/****************************************************************************
* Driver for Solarflare network controllers and boards
* Copyright 2018 Solarflare Communications Inc.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation, incorporated herein by reference.
*/
#include "net_driver.h"
#include "efx.h"
#include "nic_common.h"
#include "tx_common.h"
#include <net/gso.h>
static unsigned int efx_tx_cb_page_count(struct efx_tx_queue *tx_queue)
{
return DIV_ROUND_UP(tx_queue->ptr_mask + 1,
PAGE_SIZE >> EFX_TX_CB_ORDER);
}
int efx_siena_probe_tx_queue(struct efx_tx_queue *tx_queue)
{
struct efx_nic *efx = tx_queue->efx;
unsigned int entries;
int rc;
/* Create the smallest power-of-two aligned ring */
entries = max(roundup_pow_of_two(efx->txq_entries), EFX_MIN_DMAQ_SIZE);
EFX_WARN_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE);
tx_queue->ptr_mask = entries - 1;
netif_dbg(efx, probe, efx->net_dev,
"creating TX queue %d size %#x mask %#x\n",
tx_queue->queue, efx->txq_entries, tx_queue->ptr_mask);
/* Allocate software ring */
tx_queue->buffer = kcalloc(entries, sizeof(*tx_queue->buffer),
GFP_KERNEL);
if (!tx_queue->buffer)
return -ENOMEM;
tx_queue->cb_page = kcalloc(efx_tx_cb_page_count(tx_queue),
sizeof(tx_queue->cb_page[0]), GFP_KERNEL);
if (!tx_queue->cb_page) {
rc = -ENOMEM;
goto fail1;
}
/* Allocate hardware ring, determine TXQ type */
rc = efx_nic_probe_tx(tx_queue);
if (rc)
goto fail2;
tx_queue->channel->tx_queue_by_type[tx_queue->type] = tx_queue;
return 0;
fail2:
kfree(tx_queue->cb_page);
tx_queue->cb_page = NULL;
fail1:
kfree(tx_queue->buffer);
tx_queue->buffer = NULL;
return rc;
}
void efx_siena_init_tx_queue(struct efx_tx_queue *tx_queue)
{
struct efx_nic *efx = tx_queue->efx;
netif_dbg(efx, drv, efx->net_dev,
"initialising TX queue %d\n", tx_queue->queue);
tx_queue->insert_count = 0;
tx_queue->notify_count = 0;
tx_queue->write_count = 0;
tx_queue->packet_write_count = 0;
tx_queue->old_write_count = 0;
tx_queue->read_count = 0;
tx_queue->old_read_count = 0;
tx_queue->empty_read_count = 0 | EFX_EMPTY_COUNT_VALID;
tx_queue->xmit_pending = false;
tx_queue->timestamping = (efx_siena_ptp_use_mac_tx_timestamps(efx) &&
tx_queue->channel == efx_siena_ptp_channel(efx));
tx_queue->completed_timestamp_major = 0;
tx_queue->completed_timestamp_minor = 0;
tx_queue->xdp_tx = efx_channel_is_xdp_tx(tx_queue->channel);
tx_queue->tso_version = 0;
/* Set up TX descriptor ring */
efx_nic_init_tx(tx_queue);
tx_queue->initialised = true;
}
void efx_siena_remove_tx_queue(struct efx_tx_queue *tx_queue)
{
int i;
if (!tx_queue->buffer)
return;
netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
"destroying TX queue %d\n", tx_queue->queue);
efx_nic_remove_tx(tx_queue);
if (tx_queue->cb_page) {
for (i = 0; i < efx_tx_cb_page_count(tx_queue); i++)
efx_siena_free_buffer(tx_queue->efx,
&tx_queue->cb_page[i]);
kfree(tx_queue->cb_page);
tx_queue->cb_page = NULL;
}
kfree(tx_queue->buffer);
tx_queue->buffer = NULL;
tx_queue->channel->tx_queue_by_type[tx_queue->type] = NULL;
}
static void efx_dequeue_buffer(struct efx_tx_queue *tx_queue,
struct efx_tx_buffer *buffer,
unsigned int *pkts_compl,
unsigned int *bytes_compl)
{
if (buffer->unmap_len) {
struct device *dma_dev = &tx_queue->efx->pci_dev->dev;
dma_addr_t unmap_addr = buffer->dma_addr - buffer->dma_offset;
if (buffer->flags & EFX_TX_BUF_MAP_SINGLE)
dma_unmap_single(dma_dev, unmap_addr, buffer->unmap_len,
DMA_TO_DEVICE);
else
dma_unmap_page(dma_dev, unmap_addr, buffer->unmap_len,
DMA_TO_DEVICE);
buffer->unmap_len = 0;
}
if (buffer->flags & EFX_TX_BUF_SKB) {
struct sk_buff *skb = (struct sk_buff *)buffer->skb;
EFX_WARN_ON_PARANOID(!pkts_compl || !bytes_compl);
(*pkts_compl)++;
(*bytes_compl) += skb->len;
if (tx_queue->timestamping &&
(tx_queue->completed_timestamp_major ||
tx_queue->completed_timestamp_minor)) {
struct skb_shared_hwtstamps hwtstamp;
hwtstamp.hwtstamp =
efx_siena_ptp_nic_to_kernel_time(tx_queue);
skb_tstamp_tx(skb, &hwtstamp);
tx_queue->completed_timestamp_major = 0;
tx_queue->completed_timestamp_minor = 0;
}
dev_consume_skb_any((struct sk_buff *)buffer->skb);
netif_vdbg(tx_queue->efx, tx_done, tx_queue->efx->net_dev,
"TX queue %d transmission id %x complete\n",
tx_queue->queue, tx_queue->read_count);
} else if (buffer->flags & EFX_TX_BUF_XDP) {
xdp_return_frame_rx_napi(buffer->xdpf);
}
buffer->len = 0;
buffer->flags = 0;
}
void efx_siena_fini_tx_queue(struct efx_tx_queue *tx_queue)
{
struct efx_tx_buffer *buffer;
netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
"shutting down TX queue %d\n", tx_queue->queue);
if (!tx_queue->buffer)
return;
/* Free any buffers left in the ring */
while (tx_queue->read_count != tx_queue->write_count) {
unsigned int pkts_compl = 0, bytes_compl = 0;
buffer = &tx_queue->buffer[tx_queue->read_count & tx_queue->ptr_mask];
efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl);
++tx_queue->read_count;
}
tx_queue->xmit_pending = false;
netdev_tx_reset_queue(tx_queue->core_txq);
}
/* Remove packets from the TX queue
*
* This removes packets from the TX queue, up to and including the
* specified index.
*/
static void efx_dequeue_buffers(struct efx_tx_queue *tx_queue,
unsigned int index,
unsigned int *pkts_compl,
unsigned int *bytes_compl)
{
struct efx_nic *efx = tx_queue->efx;
unsigned int stop_index, read_ptr;
stop_index = (index + 1) & tx_queue->ptr_mask;
read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
while (read_ptr != stop_index) {
struct efx_tx_buffer *buffer = &tx_queue->buffer[read_ptr];
if (!efx_tx_buffer_in_use(buffer)) {
netif_err(efx, tx_err, efx->net_dev,
"TX queue %d spurious TX completion id %d\n",
tx_queue->queue, read_ptr);
efx_siena_schedule_reset(efx, RESET_TYPE_TX_SKIP);
return;
}
efx_dequeue_buffer(tx_queue, buffer, pkts_compl, bytes_compl);
++tx_queue->read_count;
read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
}
}
void efx_siena_xmit_done_check_empty(struct efx_tx_queue *tx_queue)
{
if ((int)(tx_queue->read_count - tx_queue->old_write_count) >= 0) {
tx_queue->old_write_count = READ_ONCE(tx_queue->write_count);
if (tx_queue->read_count == tx_queue->old_write_count) {
/* Ensure that read_count is flushed. */
smp_mb();
tx_queue->empty_read_count =
tx_queue->read_count | EFX_EMPTY_COUNT_VALID;
}
}
}
void efx_siena_xmit_done(struct efx_tx_queue *tx_queue, unsigned int index)
{
unsigned int fill_level, pkts_compl = 0, bytes_compl = 0;
struct efx_nic *efx = tx_queue->efx;
EFX_WARN_ON_ONCE_PARANOID(index > tx_queue->ptr_mask);
efx_dequeue_buffers(tx_queue, index, &pkts_compl, &bytes_compl);
tx_queue->pkts_compl += pkts_compl;
tx_queue->bytes_compl += bytes_compl;
if (pkts_compl > 1)
++tx_queue->merge_events;
/* See if we need to restart the netif queue. This memory
* barrier ensures that we write read_count (inside
* efx_dequeue_buffers()) before reading the queue status.
*/
smp_mb();
if (unlikely(netif_tx_queue_stopped(tx_queue->core_txq)) &&
likely(efx->port_enabled) &&
likely(netif_device_present(efx->net_dev))) {
fill_level = efx_channel_tx_fill_level(tx_queue->channel);
if (fill_level <= efx->txq_wake_thresh)
netif_tx_wake_queue(tx_queue->core_txq);
}
efx_siena_xmit_done_check_empty(tx_queue);
}
/* Remove buffers put into a tx_queue for the current packet.
* None of the buffers must have an skb attached.
*/
void efx_siena_enqueue_unwind(struct efx_tx_queue *tx_queue,
unsigned int insert_count)
{
struct efx_tx_buffer *buffer;
unsigned int bytes_compl = 0;
unsigned int pkts_compl = 0;
/* Work backwards until we hit the original insert pointer value */
while (tx_queue->insert_count != insert_count) {
--tx_queue->insert_count;
buffer = __efx_tx_queue_get_insert_buffer(tx_queue);
efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl);
}
}
struct efx_tx_buffer *efx_siena_tx_map_chunk(struct efx_tx_queue *tx_queue,
dma_addr_t dma_addr, size_t len)
{
const struct efx_nic_type *nic_type = tx_queue->efx->type;
struct efx_tx_buffer *buffer;
unsigned int dma_len;
/* Map the fragment taking account of NIC-dependent DMA limits. */
do {
buffer = efx_tx_queue_get_insert_buffer(tx_queue);
if (nic_type->tx_limit_len)
dma_len = nic_type->tx_limit_len(tx_queue, dma_addr, len);
else
dma_len = len;
buffer->len = dma_len;
buffer->dma_addr = dma_addr;
buffer->flags = EFX_TX_BUF_CONT;
len -= dma_len;
dma_addr += dma_len;
++tx_queue->insert_count;
} while (len);
return buffer;
}
static int efx_tx_tso_header_length(struct sk_buff *skb)
{
size_t header_len;
if (skb->encapsulation)
header_len = skb_inner_transport_offset(skb) +
(inner_tcp_hdr(skb)->doff << 2u);
else
header_len = skb_transport_offset(skb) +
(tcp_hdr(skb)->doff << 2u);
return header_len;
}
/* Map all data from an SKB for DMA and create descriptors on the queue. */
int efx_siena_tx_map_data(struct efx_tx_queue *tx_queue, struct sk_buff *skb,
unsigned int segment_count)
{
struct efx_nic *efx = tx_queue->efx;
struct device *dma_dev = &efx->pci_dev->dev;
unsigned int frag_index, nr_frags;
dma_addr_t dma_addr, unmap_addr;
unsigned short dma_flags;
size_t len, unmap_len;
nr_frags = skb_shinfo(skb)->nr_frags;
frag_index = 0;
/* Map header data. */
len = skb_headlen(skb);
dma_addr = dma_map_single(dma_dev, skb->data, len, DMA_TO_DEVICE);
dma_flags = EFX_TX_BUF_MAP_SINGLE;
unmap_len = len;
unmap_addr = dma_addr;
if (unlikely(dma_mapping_error(dma_dev, dma_addr)))
return -EIO;
if (segment_count) {
/* For TSO we need to put the header in to a separate
* descriptor. Map this separately if necessary.
*/
size_t header_len = efx_tx_tso_header_length(skb);
if (header_len != len) {
tx_queue->tso_long_headers++;
efx_siena_tx_map_chunk(tx_queue, dma_addr, header_len);
len -= header_len;
dma_addr += header_len;
}
}
/* Add descriptors for each fragment. */
do {
struct efx_tx_buffer *buffer;
skb_frag_t *fragment;
buffer = efx_siena_tx_map_chunk(tx_queue, dma_addr, len);
/* The final descriptor for a fragment is responsible for
* unmapping the whole fragment.
*/
buffer->flags = EFX_TX_BUF_CONT | dma_flags;
buffer->unmap_len = unmap_len;
buffer->dma_offset = buffer->dma_addr - unmap_addr;
if (frag_index >= nr_frags) {
/* Store SKB details with the final buffer for
* the completion.
*/
buffer->skb = skb;
buffer->flags = EFX_TX_BUF_SKB | dma_flags;
return 0;
}
/* Move on to the next fragment. */
fragment = &skb_shinfo(skb)->frags[frag_index++];
len = skb_frag_size(fragment);
dma_addr = skb_frag_dma_map(dma_dev, fragment, 0, len,
DMA_TO_DEVICE);
dma_flags = 0;
unmap_len = len;
unmap_addr = dma_addr;
if (unlikely(dma_mapping_error(dma_dev, dma_addr)))
return -EIO;
} while (1);
}
unsigned int efx_siena_tx_max_skb_descs(struct efx_nic *efx)
{
/* Header and payload descriptor for each output segment, plus
* one for every input fragment boundary within a segment
*/
unsigned int max_descs = EFX_TSO_MAX_SEGS * 2 + MAX_SKB_FRAGS;
/* Possibly one more per segment for option descriptors */
if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0)
max_descs += EFX_TSO_MAX_SEGS;
/* Possibly more for PCIe page boundaries within input fragments */
if (PAGE_SIZE > EFX_PAGE_SIZE)
max_descs += max_t(unsigned int, MAX_SKB_FRAGS,
DIV_ROUND_UP(GSO_MAX_SIZE, EFX_PAGE_SIZE));
return max_descs;
}
/*
* Fallback to software TSO.
*
* This is used if we are unable to send a GSO packet through hardware TSO.
* This should only ever happen due to per-queue restrictions - unsupported
* packets should first be filtered by the feature flags.
*
* Returns 0 on success, error code otherwise.
*/
int efx_siena_tx_tso_fallback(struct efx_tx_queue *tx_queue,
struct sk_buff *skb)
{
struct sk_buff *segments, *next;
segments = skb_gso_segment(skb, 0);
if (IS_ERR(segments))
return PTR_ERR(segments);
dev_consume_skb_any(skb);
skb_list_walk_safe(segments, skb, next) {
skb_mark_not_on_list(skb);
efx_enqueue_skb(tx_queue, skb);
}
return 0;
}