| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Copyright (C) 2012,2013 - ARM Ltd |
| * Author: Marc Zyngier <marc.zyngier@arm.com> |
| * |
| * Derived from arch/arm/kvm/coproc.c: |
| * Copyright (C) 2012 - Virtual Open Systems and Columbia University |
| * Authors: Rusty Russell <rusty@rustcorp.com.au> |
| * Christoffer Dall <c.dall@virtualopensystems.com> |
| */ |
| |
| #include <linux/bitfield.h> |
| #include <linux/bsearch.h> |
| #include <linux/cacheinfo.h> |
| #include <linux/debugfs.h> |
| #include <linux/kvm_host.h> |
| #include <linux/mm.h> |
| #include <linux/printk.h> |
| #include <linux/uaccess.h> |
| |
| #include <asm/cacheflush.h> |
| #include <asm/cputype.h> |
| #include <asm/debug-monitors.h> |
| #include <asm/esr.h> |
| #include <asm/kvm_arm.h> |
| #include <asm/kvm_emulate.h> |
| #include <asm/kvm_hyp.h> |
| #include <asm/kvm_mmu.h> |
| #include <asm/kvm_nested.h> |
| #include <asm/perf_event.h> |
| #include <asm/sysreg.h> |
| |
| #include <trace/events/kvm.h> |
| |
| #include "sys_regs.h" |
| |
| #include "trace.h" |
| |
| /* |
| * For AArch32, we only take care of what is being trapped. Anything |
| * that has to do with init and userspace access has to go via the |
| * 64bit interface. |
| */ |
| |
| static u64 sys_reg_to_index(const struct sys_reg_desc *reg); |
| static int set_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, |
| u64 val); |
| |
| static bool bad_trap(struct kvm_vcpu *vcpu, |
| struct sys_reg_params *params, |
| const struct sys_reg_desc *r, |
| const char *msg) |
| { |
| WARN_ONCE(1, "Unexpected %s\n", msg); |
| print_sys_reg_instr(params); |
| kvm_inject_undefined(vcpu); |
| return false; |
| } |
| |
| static bool read_from_write_only(struct kvm_vcpu *vcpu, |
| struct sys_reg_params *params, |
| const struct sys_reg_desc *r) |
| { |
| return bad_trap(vcpu, params, r, |
| "sys_reg read to write-only register"); |
| } |
| |
| static bool write_to_read_only(struct kvm_vcpu *vcpu, |
| struct sys_reg_params *params, |
| const struct sys_reg_desc *r) |
| { |
| return bad_trap(vcpu, params, r, |
| "sys_reg write to read-only register"); |
| } |
| |
| #define PURE_EL2_SYSREG(el2) \ |
| case el2: { \ |
| *el1r = el2; \ |
| return true; \ |
| } |
| |
| #define MAPPED_EL2_SYSREG(el2, el1, fn) \ |
| case el2: { \ |
| *xlate = fn; \ |
| *el1r = el1; \ |
| return true; \ |
| } |
| |
| static bool get_el2_to_el1_mapping(unsigned int reg, |
| unsigned int *el1r, u64 (**xlate)(u64)) |
| { |
| switch (reg) { |
| PURE_EL2_SYSREG( VPIDR_EL2 ); |
| PURE_EL2_SYSREG( VMPIDR_EL2 ); |
| PURE_EL2_SYSREG( ACTLR_EL2 ); |
| PURE_EL2_SYSREG( HCR_EL2 ); |
| PURE_EL2_SYSREG( MDCR_EL2 ); |
| PURE_EL2_SYSREG( HSTR_EL2 ); |
| PURE_EL2_SYSREG( HACR_EL2 ); |
| PURE_EL2_SYSREG( VTTBR_EL2 ); |
| PURE_EL2_SYSREG( VTCR_EL2 ); |
| PURE_EL2_SYSREG( RVBAR_EL2 ); |
| PURE_EL2_SYSREG( TPIDR_EL2 ); |
| PURE_EL2_SYSREG( HPFAR_EL2 ); |
| PURE_EL2_SYSREG( CNTHCTL_EL2 ); |
| MAPPED_EL2_SYSREG(SCTLR_EL2, SCTLR_EL1, |
| translate_sctlr_el2_to_sctlr_el1 ); |
| MAPPED_EL2_SYSREG(CPTR_EL2, CPACR_EL1, |
| translate_cptr_el2_to_cpacr_el1 ); |
| MAPPED_EL2_SYSREG(TTBR0_EL2, TTBR0_EL1, |
| translate_ttbr0_el2_to_ttbr0_el1 ); |
| MAPPED_EL2_SYSREG(TTBR1_EL2, TTBR1_EL1, NULL ); |
| MAPPED_EL2_SYSREG(TCR_EL2, TCR_EL1, |
| translate_tcr_el2_to_tcr_el1 ); |
| MAPPED_EL2_SYSREG(VBAR_EL2, VBAR_EL1, NULL ); |
| MAPPED_EL2_SYSREG(AFSR0_EL2, AFSR0_EL1, NULL ); |
| MAPPED_EL2_SYSREG(AFSR1_EL2, AFSR1_EL1, NULL ); |
| MAPPED_EL2_SYSREG(ESR_EL2, ESR_EL1, NULL ); |
| MAPPED_EL2_SYSREG(FAR_EL2, FAR_EL1, NULL ); |
| MAPPED_EL2_SYSREG(MAIR_EL2, MAIR_EL1, NULL ); |
| MAPPED_EL2_SYSREG(AMAIR_EL2, AMAIR_EL1, NULL ); |
| MAPPED_EL2_SYSREG(ELR_EL2, ELR_EL1, NULL ); |
| MAPPED_EL2_SYSREG(SPSR_EL2, SPSR_EL1, NULL ); |
| default: |
| return false; |
| } |
| } |
| |
| u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg) |
| { |
| u64 val = 0x8badf00d8badf00d; |
| u64 (*xlate)(u64) = NULL; |
| unsigned int el1r; |
| |
| if (!vcpu_get_flag(vcpu, SYSREGS_ON_CPU)) |
| goto memory_read; |
| |
| if (unlikely(get_el2_to_el1_mapping(reg, &el1r, &xlate))) { |
| if (!is_hyp_ctxt(vcpu)) |
| goto memory_read; |
| |
| /* |
| * If this register does not have an EL1 counterpart, |
| * then read the stored EL2 version. |
| */ |
| if (reg == el1r) |
| goto memory_read; |
| |
| /* |
| * If we have a non-VHE guest and that the sysreg |
| * requires translation to be used at EL1, use the |
| * in-memory copy instead. |
| */ |
| if (!vcpu_el2_e2h_is_set(vcpu) && xlate) |
| goto memory_read; |
| |
| /* Get the current version of the EL1 counterpart. */ |
| WARN_ON(!__vcpu_read_sys_reg_from_cpu(el1r, &val)); |
| return val; |
| } |
| |
| /* EL1 register can't be on the CPU if the guest is in vEL2. */ |
| if (unlikely(is_hyp_ctxt(vcpu))) |
| goto memory_read; |
| |
| if (__vcpu_read_sys_reg_from_cpu(reg, &val)) |
| return val; |
| |
| memory_read: |
| return __vcpu_sys_reg(vcpu, reg); |
| } |
| |
| void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg) |
| { |
| u64 (*xlate)(u64) = NULL; |
| unsigned int el1r; |
| |
| if (!vcpu_get_flag(vcpu, SYSREGS_ON_CPU)) |
| goto memory_write; |
| |
| if (unlikely(get_el2_to_el1_mapping(reg, &el1r, &xlate))) { |
| if (!is_hyp_ctxt(vcpu)) |
| goto memory_write; |
| |
| /* |
| * Always store a copy of the write to memory to avoid having |
| * to reverse-translate virtual EL2 system registers for a |
| * non-VHE guest hypervisor. |
| */ |
| __vcpu_sys_reg(vcpu, reg) = val; |
| |
| /* No EL1 counterpart? We're done here.? */ |
| if (reg == el1r) |
| return; |
| |
| if (!vcpu_el2_e2h_is_set(vcpu) && xlate) |
| val = xlate(val); |
| |
| /* Redirect this to the EL1 version of the register. */ |
| WARN_ON(!__vcpu_write_sys_reg_to_cpu(val, el1r)); |
| return; |
| } |
| |
| /* EL1 register can't be on the CPU if the guest is in vEL2. */ |
| if (unlikely(is_hyp_ctxt(vcpu))) |
| goto memory_write; |
| |
| if (__vcpu_write_sys_reg_to_cpu(val, reg)) |
| return; |
| |
| memory_write: |
| __vcpu_sys_reg(vcpu, reg) = val; |
| } |
| |
| /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */ |
| #define CSSELR_MAX 14 |
| |
| /* |
| * Returns the minimum line size for the selected cache, expressed as |
| * Log2(bytes). |
| */ |
| static u8 get_min_cache_line_size(bool icache) |
| { |
| u64 ctr = read_sanitised_ftr_reg(SYS_CTR_EL0); |
| u8 field; |
| |
| if (icache) |
| field = SYS_FIELD_GET(CTR_EL0, IminLine, ctr); |
| else |
| field = SYS_FIELD_GET(CTR_EL0, DminLine, ctr); |
| |
| /* |
| * Cache line size is represented as Log2(words) in CTR_EL0. |
| * Log2(bytes) can be derived with the following: |
| * |
| * Log2(words) + 2 = Log2(bytes / 4) + 2 |
| * = Log2(bytes) - 2 + 2 |
| * = Log2(bytes) |
| */ |
| return field + 2; |
| } |
| |
| /* Which cache CCSIDR represents depends on CSSELR value. */ |
| static u32 get_ccsidr(struct kvm_vcpu *vcpu, u32 csselr) |
| { |
| u8 line_size; |
| |
| if (vcpu->arch.ccsidr) |
| return vcpu->arch.ccsidr[csselr]; |
| |
| line_size = get_min_cache_line_size(csselr & CSSELR_EL1_InD); |
| |
| /* |
| * Fabricate a CCSIDR value as the overriding value does not exist. |
| * The real CCSIDR value will not be used as it can vary by the |
| * physical CPU which the vcpu currently resides in. |
| * |
| * The line size is determined with get_min_cache_line_size(), which |
| * should be valid for all CPUs even if they have different cache |
| * configuration. |
| * |
| * The associativity bits are cleared, meaning the geometry of all data |
| * and unified caches (which are guaranteed to be PIPT and thus |
| * non-aliasing) are 1 set and 1 way. |
| * Guests should not be doing cache operations by set/way at all, and |
| * for this reason, we trap them and attempt to infer the intent, so |
| * that we can flush the entire guest's address space at the appropriate |
| * time. The exposed geometry minimizes the number of the traps. |
| * [If guests should attempt to infer aliasing properties from the |
| * geometry (which is not permitted by the architecture), they would |
| * only do so for virtually indexed caches.] |
| * |
| * We don't check if the cache level exists as it is allowed to return |
| * an UNKNOWN value if not. |
| */ |
| return SYS_FIELD_PREP(CCSIDR_EL1, LineSize, line_size - 4); |
| } |
| |
| static int set_ccsidr(struct kvm_vcpu *vcpu, u32 csselr, u32 val) |
| { |
| u8 line_size = FIELD_GET(CCSIDR_EL1_LineSize, val) + 4; |
| u32 *ccsidr = vcpu->arch.ccsidr; |
| u32 i; |
| |
| if ((val & CCSIDR_EL1_RES0) || |
| line_size < get_min_cache_line_size(csselr & CSSELR_EL1_InD)) |
| return -EINVAL; |
| |
| if (!ccsidr) { |
| if (val == get_ccsidr(vcpu, csselr)) |
| return 0; |
| |
| ccsidr = kmalloc_array(CSSELR_MAX, sizeof(u32), GFP_KERNEL_ACCOUNT); |
| if (!ccsidr) |
| return -ENOMEM; |
| |
| for (i = 0; i < CSSELR_MAX; i++) |
| ccsidr[i] = get_ccsidr(vcpu, i); |
| |
| vcpu->arch.ccsidr = ccsidr; |
| } |
| |
| ccsidr[csselr] = val; |
| |
| return 0; |
| } |
| |
| static bool access_rw(struct kvm_vcpu *vcpu, |
| struct sys_reg_params *p, |
| const struct sys_reg_desc *r) |
| { |
| if (p->is_write) |
| vcpu_write_sys_reg(vcpu, p->regval, r->reg); |
| else |
| p->regval = vcpu_read_sys_reg(vcpu, r->reg); |
| |
| return true; |
| } |
| |
| /* |
| * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized). |
| */ |
| static bool access_dcsw(struct kvm_vcpu *vcpu, |
| struct sys_reg_params *p, |
| const struct sys_reg_desc *r) |
| { |
| if (!p->is_write) |
| return read_from_write_only(vcpu, p, r); |
| |
| /* |
| * Only track S/W ops if we don't have FWB. It still indicates |
| * that the guest is a bit broken (S/W operations should only |
| * be done by firmware, knowing that there is only a single |
| * CPU left in the system, and certainly not from non-secure |
| * software). |
| */ |
| if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB)) |
| kvm_set_way_flush(vcpu); |
| |
| return true; |
| } |
| |
| static bool access_dcgsw(struct kvm_vcpu *vcpu, |
| struct sys_reg_params *p, |
| const struct sys_reg_desc *r) |
| { |
| if (!kvm_has_mte(vcpu->kvm)) { |
| kvm_inject_undefined(vcpu); |
| return false; |
| } |
| |
| /* Treat MTE S/W ops as we treat the classic ones: with contempt */ |
| return access_dcsw(vcpu, p, r); |
| } |
| |
| static void get_access_mask(const struct sys_reg_desc *r, u64 *mask, u64 *shift) |
| { |
| switch (r->aarch32_map) { |
| case AA32_LO: |
| *mask = GENMASK_ULL(31, 0); |
| *shift = 0; |
| break; |
| case AA32_HI: |
| *mask = GENMASK_ULL(63, 32); |
| *shift = 32; |
| break; |
| default: |
| *mask = GENMASK_ULL(63, 0); |
| *shift = 0; |
| break; |
| } |
| } |
| |
| /* |
| * Generic accessor for VM registers. Only called as long as HCR_TVM |
| * is set. If the guest enables the MMU, we stop trapping the VM |
| * sys_regs and leave it in complete control of the caches. |
| */ |
| static bool access_vm_reg(struct kvm_vcpu *vcpu, |
| struct sys_reg_params *p, |
| const struct sys_reg_desc *r) |
| { |
| bool was_enabled = vcpu_has_cache_enabled(vcpu); |
| u64 val, mask, shift; |
| |
| BUG_ON(!p->is_write); |
| |
| get_access_mask(r, &mask, &shift); |
| |
| if (~mask) { |
| val = vcpu_read_sys_reg(vcpu, r->reg); |
| val &= ~mask; |
| } else { |
| val = 0; |
| } |
| |
| val |= (p->regval & (mask >> shift)) << shift; |
| vcpu_write_sys_reg(vcpu, val, r->reg); |
| |
| kvm_toggle_cache(vcpu, was_enabled); |
| return true; |
| } |
| |
| static bool access_actlr(struct kvm_vcpu *vcpu, |
| struct sys_reg_params *p, |
| const struct sys_reg_desc *r) |
| { |
| u64 mask, shift; |
| |
| if (p->is_write) |
| return ignore_write(vcpu, p); |
| |
| get_access_mask(r, &mask, &shift); |
| p->regval = (vcpu_read_sys_reg(vcpu, r->reg) & mask) >> shift; |
| |
| return true; |
| } |
| |
| /* |
| * Trap handler for the GICv3 SGI generation system register. |
| * Forward the request to the VGIC emulation. |
| * The cp15_64 code makes sure this automatically works |
| * for both AArch64 and AArch32 accesses. |
| */ |
| static bool access_gic_sgi(struct kvm_vcpu *vcpu, |
| struct sys_reg_params *p, |
| const struct sys_reg_desc *r) |
| { |
| bool g1; |
| |
| if (!p->is_write) |
| return read_from_write_only(vcpu, p, r); |
| |
| /* |
| * In a system where GICD_CTLR.DS=1, a ICC_SGI0R_EL1 access generates |
| * Group0 SGIs only, while ICC_SGI1R_EL1 can generate either group, |
| * depending on the SGI configuration. ICC_ASGI1R_EL1 is effectively |
| * equivalent to ICC_SGI0R_EL1, as there is no "alternative" secure |
| * group. |
| */ |
| if (p->Op0 == 0) { /* AArch32 */ |
| switch (p->Op1) { |
| default: /* Keep GCC quiet */ |
| case 0: /* ICC_SGI1R */ |
| g1 = true; |
| break; |
| case 1: /* ICC_ASGI1R */ |
| case 2: /* ICC_SGI0R */ |
| g1 = false; |
| break; |
| } |
| } else { /* AArch64 */ |
| switch (p->Op2) { |
| default: /* Keep GCC quiet */ |
| case 5: /* ICC_SGI1R_EL1 */ |
| g1 = true; |
| break; |
| case 6: /* ICC_ASGI1R_EL1 */ |
| case 7: /* ICC_SGI0R_EL1 */ |
| g1 = false; |
| break; |
| } |
| } |
| |
| vgic_v3_dispatch_sgi(vcpu, p->regval, g1); |
| |
| return true; |
| } |
| |
| static bool access_gic_sre(struct kvm_vcpu *vcpu, |
| struct sys_reg_params *p, |
| const struct sys_reg_desc *r) |
| { |
| if (p->is_write) |
| return ignore_write(vcpu, p); |
| |
| p->regval = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre; |
| return true; |
| } |
| |
| static bool trap_raz_wi(struct kvm_vcpu *vcpu, |
| struct sys_reg_params *p, |
| const struct sys_reg_desc *r) |
| { |
| if (p->is_write) |
| return ignore_write(vcpu, p); |
| else |
| return read_zero(vcpu, p); |
| } |
| |
| static bool trap_undef(struct kvm_vcpu *vcpu, |
| struct sys_reg_params *p, |
| const struct sys_reg_desc *r) |
| { |
| kvm_inject_undefined(vcpu); |
| return false; |
| } |
| |
| /* |
| * ARMv8.1 mandates at least a trivial LORegion implementation, where all the |
| * RW registers are RES0 (which we can implement as RAZ/WI). On an ARMv8.0 |
| * system, these registers should UNDEF. LORID_EL1 being a RO register, we |
| * treat it separately. |
| */ |
| static bool trap_loregion(struct kvm_vcpu *vcpu, |
| struct sys_reg_params *p, |
| const struct sys_reg_desc *r) |
| { |
| u32 sr = reg_to_encoding(r); |
| |
| if (!kvm_has_feat(vcpu->kvm, ID_AA64MMFR1_EL1, LO, IMP)) { |
| kvm_inject_undefined(vcpu); |
| return false; |
| } |
| |
| if (p->is_write && sr == SYS_LORID_EL1) |
| return write_to_read_only(vcpu, p, r); |
| |
| return trap_raz_wi(vcpu, p, r); |
| } |
| |
| static bool trap_oslar_el1(struct kvm_vcpu *vcpu, |
| struct sys_reg_params *p, |
| const struct sys_reg_desc *r) |
| { |
| u64 oslsr; |
| |
| if (!p->is_write) |
| return read_from_write_only(vcpu, p, r); |
| |
| /* Forward the OSLK bit to OSLSR */ |
| oslsr = __vcpu_sys_reg(vcpu, OSLSR_EL1) & ~OSLSR_EL1_OSLK; |
| if (p->regval & OSLAR_EL1_OSLK) |
| oslsr |= OSLSR_EL1_OSLK; |
| |
| __vcpu_sys_reg(vcpu, OSLSR_EL1) = oslsr; |
| return true; |
| } |
| |
| static bool trap_oslsr_el1(struct kvm_vcpu *vcpu, |
| struct sys_reg_params *p, |
| const struct sys_reg_desc *r) |
| { |
| if (p->is_write) |
| return write_to_read_only(vcpu, p, r); |
| |
| p->regval = __vcpu_sys_reg(vcpu, r->reg); |
| return true; |
| } |
| |
| static int set_oslsr_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, |
| u64 val) |
| { |
| /* |
| * The only modifiable bit is the OSLK bit. Refuse the write if |
| * userspace attempts to change any other bit in the register. |
| */ |
| if ((val ^ rd->val) & ~OSLSR_EL1_OSLK) |
| return -EINVAL; |
| |
| __vcpu_sys_reg(vcpu, rd->reg) = val; |
| return 0; |
| } |
| |
| static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu, |
| struct sys_reg_params *p, |
| const struct sys_reg_desc *r) |
| { |
| if (p->is_write) { |
| return ignore_write(vcpu, p); |
| } else { |
| p->regval = read_sysreg(dbgauthstatus_el1); |
| return true; |
| } |
| } |
| |
| /* |
| * We want to avoid world-switching all the DBG registers all the |
| * time: |
| * |
| * - If we've touched any debug register, it is likely that we're |
| * going to touch more of them. It then makes sense to disable the |
| * traps and start doing the save/restore dance |
| * - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is |
| * then mandatory to save/restore the registers, as the guest |
| * depends on them. |
| * |
| * For this, we use a DIRTY bit, indicating the guest has modified the |
| * debug registers, used as follow: |
| * |
| * On guest entry: |
| * - If the dirty bit is set (because we're coming back from trapping), |
| * disable the traps, save host registers, restore guest registers. |
| * - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), |
| * set the dirty bit, disable the traps, save host registers, |
| * restore guest registers. |
| * - Otherwise, enable the traps |
| * |
| * On guest exit: |
| * - If the dirty bit is set, save guest registers, restore host |
| * registers and clear the dirty bit. This ensure that the host can |
| * now use the debug registers. |
| */ |
| static bool trap_debug_regs(struct kvm_vcpu *vcpu, |
| struct sys_reg_params *p, |
| const struct sys_reg_desc *r) |
| { |
| access_rw(vcpu, p, r); |
| if (p->is_write) |
| vcpu_set_flag(vcpu, DEBUG_DIRTY); |
| |
| trace_trap_reg(__func__, r->reg, p->is_write, p->regval); |
| |
| return true; |
| } |
| |
| /* |
| * reg_to_dbg/dbg_to_reg |
| * |
| * A 32 bit write to a debug register leave top bits alone |
| * A 32 bit read from a debug register only returns the bottom bits |
| * |
| * All writes will set the DEBUG_DIRTY flag to ensure the hyp code |
| * switches between host and guest values in future. |
| */ |
| static void reg_to_dbg(struct kvm_vcpu *vcpu, |
| struct sys_reg_params *p, |
| const struct sys_reg_desc *rd, |
| u64 *dbg_reg) |
| { |
| u64 mask, shift, val; |
| |
| get_access_mask(rd, &mask, &shift); |
| |
| val = *dbg_reg; |
| val &= ~mask; |
| val |= (p->regval & (mask >> shift)) << shift; |
| *dbg_reg = val; |
| |
| vcpu_set_flag(vcpu, DEBUG_DIRTY); |
| } |
| |
| static void dbg_to_reg(struct kvm_vcpu *vcpu, |
| struct sys_reg_params *p, |
| const struct sys_reg_desc *rd, |
| u64 *dbg_reg) |
| { |
| u64 mask, shift; |
| |
| get_access_mask(rd, &mask, &shift); |
| p->regval = (*dbg_reg & mask) >> shift; |
| } |
| |
| static bool trap_bvr(struct kvm_vcpu *vcpu, |
| struct sys_reg_params *p, |
| const struct sys_reg_desc *rd) |
| { |
| u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm]; |
| |
| if (p->is_write) |
| reg_to_dbg(vcpu, p, rd, dbg_reg); |
| else |
| dbg_to_reg(vcpu, p, rd, dbg_reg); |
| |
| trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg); |
| |
| return true; |
| } |
| |
| static int set_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, |
| u64 val) |
| { |
| vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm] = val; |
| return 0; |
| } |
| |
| static int get_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, |
| u64 *val) |
| { |
| *val = vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm]; |
| return 0; |
| } |
| |
| static u64 reset_bvr(struct kvm_vcpu *vcpu, |
| const struct sys_reg_desc *rd) |
| { |
| vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm] = rd->val; |
| return rd->val; |
| } |
| |
| static bool trap_bcr(struct kvm_vcpu *vcpu, |
| struct sys_reg_params *p, |
| const struct sys_reg_desc *rd) |
| { |
| u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm]; |
| |
| if (p->is_write) |
| reg_to_dbg(vcpu, p, rd, dbg_reg); |
| else |
| dbg_to_reg(vcpu, p, rd, dbg_reg); |
| |
| trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg); |
| |
| return true; |
| } |
| |
| static int set_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, |
| u64 val) |
| { |
| vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm] = val; |
| return 0; |
| } |
| |
| static int get_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, |
| u64 *val) |
| { |
| *val = vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm]; |
| return 0; |
| } |
| |
| static u64 reset_bcr(struct kvm_vcpu *vcpu, |
| const struct sys_reg_desc *rd) |
| { |
| vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm] = rd->val; |
| return rd->val; |
| } |
| |
| static bool trap_wvr(struct kvm_vcpu *vcpu, |
| struct sys_reg_params *p, |
| const struct sys_reg_desc *rd) |
| { |
| u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm]; |
| |
| if (p->is_write) |
| reg_to_dbg(vcpu, p, rd, dbg_reg); |
| else |
| dbg_to_reg(vcpu, p, rd, dbg_reg); |
| |
| trace_trap_reg(__func__, rd->CRm, p->is_write, |
| vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm]); |
| |
| return true; |
| } |
| |
| static int set_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, |
| u64 val) |
| { |
| vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm] = val; |
| return 0; |
| } |
| |
| static int get_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, |
| u64 *val) |
| { |
| *val = vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm]; |
| return 0; |
| } |
| |
| static u64 reset_wvr(struct kvm_vcpu *vcpu, |
| const struct sys_reg_desc *rd) |
| { |
| vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm] = rd->val; |
| return rd->val; |
| } |
| |
| static bool trap_wcr(struct kvm_vcpu *vcpu, |
| struct sys_reg_params *p, |
| const struct sys_reg_desc *rd) |
| { |
| u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm]; |
| |
| if (p->is_write) |
| reg_to_dbg(vcpu, p, rd, dbg_reg); |
| else |
| dbg_to_reg(vcpu, p, rd, dbg_reg); |
| |
| trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg); |
| |
| return true; |
| } |
| |
| static int set_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, |
| u64 val) |
| { |
| vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm] = val; |
| return 0; |
| } |
| |
| static int get_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, |
| u64 *val) |
| { |
| *val = vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm]; |
| return 0; |
| } |
| |
| static u64 reset_wcr(struct kvm_vcpu *vcpu, |
| const struct sys_reg_desc *rd) |
| { |
| vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm] = rd->val; |
| return rd->val; |
| } |
| |
| static u64 reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) |
| { |
| u64 amair = read_sysreg(amair_el1); |
| vcpu_write_sys_reg(vcpu, amair, AMAIR_EL1); |
| return amair; |
| } |
| |
| static u64 reset_actlr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) |
| { |
| u64 actlr = read_sysreg(actlr_el1); |
| vcpu_write_sys_reg(vcpu, actlr, ACTLR_EL1); |
| return actlr; |
| } |
| |
| static u64 reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) |
| { |
| u64 mpidr; |
| |
| /* |
| * Map the vcpu_id into the first three affinity level fields of |
| * the MPIDR. We limit the number of VCPUs in level 0 due to a |
| * limitation to 16 CPUs in that level in the ICC_SGIxR registers |
| * of the GICv3 to be able to address each CPU directly when |
| * sending IPIs. |
| */ |
| mpidr = (vcpu->vcpu_id & 0x0f) << MPIDR_LEVEL_SHIFT(0); |
| mpidr |= ((vcpu->vcpu_id >> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1); |
| mpidr |= ((vcpu->vcpu_id >> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2); |
| mpidr |= (1ULL << 31); |
| vcpu_write_sys_reg(vcpu, mpidr, MPIDR_EL1); |
| |
| return mpidr; |
| } |
| |
| static unsigned int pmu_visibility(const struct kvm_vcpu *vcpu, |
| const struct sys_reg_desc *r) |
| { |
| if (kvm_vcpu_has_pmu(vcpu)) |
| return 0; |
| |
| return REG_HIDDEN; |
| } |
| |
| static u64 reset_pmu_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) |
| { |
| u64 mask = BIT(ARMV8_PMU_CYCLE_IDX); |
| u8 n = vcpu->kvm->arch.pmcr_n; |
| |
| if (n) |
| mask |= GENMASK(n - 1, 0); |
| |
| reset_unknown(vcpu, r); |
| __vcpu_sys_reg(vcpu, r->reg) &= mask; |
| |
| return __vcpu_sys_reg(vcpu, r->reg); |
| } |
| |
| static u64 reset_pmevcntr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) |
| { |
| reset_unknown(vcpu, r); |
| __vcpu_sys_reg(vcpu, r->reg) &= GENMASK(31, 0); |
| |
| return __vcpu_sys_reg(vcpu, r->reg); |
| } |
| |
| static u64 reset_pmevtyper(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) |
| { |
| /* This thing will UNDEF, who cares about the reset value? */ |
| if (!kvm_vcpu_has_pmu(vcpu)) |
| return 0; |
| |
| reset_unknown(vcpu, r); |
| __vcpu_sys_reg(vcpu, r->reg) &= kvm_pmu_evtyper_mask(vcpu->kvm); |
| |
| return __vcpu_sys_reg(vcpu, r->reg); |
| } |
| |
| static u64 reset_pmselr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) |
| { |
| reset_unknown(vcpu, r); |
| __vcpu_sys_reg(vcpu, r->reg) &= ARMV8_PMU_COUNTER_MASK; |
| |
| return __vcpu_sys_reg(vcpu, r->reg); |
| } |
| |
| static u64 reset_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) |
| { |
| u64 pmcr = 0; |
| |
| if (!kvm_supports_32bit_el0()) |
| pmcr |= ARMV8_PMU_PMCR_LC; |
| |
| /* |
| * The value of PMCR.N field is included when the |
| * vCPU register is read via kvm_vcpu_read_pmcr(). |
| */ |
| __vcpu_sys_reg(vcpu, r->reg) = pmcr; |
| |
| return __vcpu_sys_reg(vcpu, r->reg); |
| } |
| |
| static bool check_pmu_access_disabled(struct kvm_vcpu *vcpu, u64 flags) |
| { |
| u64 reg = __vcpu_sys_reg(vcpu, PMUSERENR_EL0); |
| bool enabled = (reg & flags) || vcpu_mode_priv(vcpu); |
| |
| if (!enabled) |
| kvm_inject_undefined(vcpu); |
| |
| return !enabled; |
| } |
| |
| static bool pmu_access_el0_disabled(struct kvm_vcpu *vcpu) |
| { |
| return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_EN); |
| } |
| |
| static bool pmu_write_swinc_el0_disabled(struct kvm_vcpu *vcpu) |
| { |
| return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_SW | ARMV8_PMU_USERENR_EN); |
| } |
| |
| static bool pmu_access_cycle_counter_el0_disabled(struct kvm_vcpu *vcpu) |
| { |
| return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_CR | ARMV8_PMU_USERENR_EN); |
| } |
| |
| static bool pmu_access_event_counter_el0_disabled(struct kvm_vcpu *vcpu) |
| { |
| return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_ER | ARMV8_PMU_USERENR_EN); |
| } |
| |
| static bool access_pmcr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, |
| const struct sys_reg_desc *r) |
| { |
| u64 val; |
| |
| if (pmu_access_el0_disabled(vcpu)) |
| return false; |
| |
| if (p->is_write) { |
| /* |
| * Only update writeable bits of PMCR (continuing into |
| * kvm_pmu_handle_pmcr() as well) |
| */ |
| val = kvm_vcpu_read_pmcr(vcpu); |
| val &= ~ARMV8_PMU_PMCR_MASK; |
| val |= p->regval & ARMV8_PMU_PMCR_MASK; |
| if (!kvm_supports_32bit_el0()) |
| val |= ARMV8_PMU_PMCR_LC; |
| kvm_pmu_handle_pmcr(vcpu, val); |
| } else { |
| /* PMCR.P & PMCR.C are RAZ */ |
| val = kvm_vcpu_read_pmcr(vcpu) |
| & ~(ARMV8_PMU_PMCR_P | ARMV8_PMU_PMCR_C); |
| p->regval = val; |
| } |
| |
| return true; |
| } |
| |
| static bool access_pmselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, |
| const struct sys_reg_desc *r) |
| { |
| if (pmu_access_event_counter_el0_disabled(vcpu)) |
| return false; |
| |
| if (p->is_write) |
| __vcpu_sys_reg(vcpu, PMSELR_EL0) = p->regval; |
| else |
| /* return PMSELR.SEL field */ |
| p->regval = __vcpu_sys_reg(vcpu, PMSELR_EL0) |
| & ARMV8_PMU_COUNTER_MASK; |
| |
| return true; |
| } |
| |
| static bool access_pmceid(struct kvm_vcpu *vcpu, struct sys_reg_params *p, |
| const struct sys_reg_desc *r) |
| { |
| u64 pmceid, mask, shift; |
| |
| BUG_ON(p->is_write); |
| |
| if (pmu_access_el0_disabled(vcpu)) |
| return false; |
| |
| get_access_mask(r, &mask, &shift); |
| |
| pmceid = kvm_pmu_get_pmceid(vcpu, (p->Op2 & 1)); |
| pmceid &= mask; |
| pmceid >>= shift; |
| |
| p->regval = pmceid; |
| |
| return true; |
| } |
| |
| static bool pmu_counter_idx_valid(struct kvm_vcpu *vcpu, u64 idx) |
| { |
| u64 pmcr, val; |
| |
| pmcr = kvm_vcpu_read_pmcr(vcpu); |
| val = FIELD_GET(ARMV8_PMU_PMCR_N, pmcr); |
| if (idx >= val && idx != ARMV8_PMU_CYCLE_IDX) { |
| kvm_inject_undefined(vcpu); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static int get_pmu_evcntr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r, |
| u64 *val) |
| { |
| u64 idx; |
| |
| if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 0) |
| /* PMCCNTR_EL0 */ |
| idx = ARMV8_PMU_CYCLE_IDX; |
| else |
| /* PMEVCNTRn_EL0 */ |
| idx = ((r->CRm & 3) << 3) | (r->Op2 & 7); |
| |
| *val = kvm_pmu_get_counter_value(vcpu, idx); |
| return 0; |
| } |
| |
| static bool access_pmu_evcntr(struct kvm_vcpu *vcpu, |
| struct sys_reg_params *p, |
| const struct sys_reg_desc *r) |
| { |
| u64 idx = ~0UL; |
| |
| if (r->CRn == 9 && r->CRm == 13) { |
| if (r->Op2 == 2) { |
| /* PMXEVCNTR_EL0 */ |
| if (pmu_access_event_counter_el0_disabled(vcpu)) |
| return false; |
| |
| idx = __vcpu_sys_reg(vcpu, PMSELR_EL0) |
| & ARMV8_PMU_COUNTER_MASK; |
| } else if (r->Op2 == 0) { |
| /* PMCCNTR_EL0 */ |
| if (pmu_access_cycle_counter_el0_disabled(vcpu)) |
| return false; |
| |
| idx = ARMV8_PMU_CYCLE_IDX; |
| } |
| } else if (r->CRn == 0 && r->CRm == 9) { |
| /* PMCCNTR */ |
| if (pmu_access_event_counter_el0_disabled(vcpu)) |
| return false; |
| |
| idx = ARMV8_PMU_CYCLE_IDX; |
| } else if (r->CRn == 14 && (r->CRm & 12) == 8) { |
| /* PMEVCNTRn_EL0 */ |
| if (pmu_access_event_counter_el0_disabled(vcpu)) |
| return false; |
| |
| idx = ((r->CRm & 3) << 3) | (r->Op2 & 7); |
| } |
| |
| /* Catch any decoding mistake */ |
| WARN_ON(idx == ~0UL); |
| |
| if (!pmu_counter_idx_valid(vcpu, idx)) |
| return false; |
| |
| if (p->is_write) { |
| if (pmu_access_el0_disabled(vcpu)) |
| return false; |
| |
| kvm_pmu_set_counter_value(vcpu, idx, p->regval); |
| } else { |
| p->regval = kvm_pmu_get_counter_value(vcpu, idx); |
| } |
| |
| return true; |
| } |
| |
| static bool access_pmu_evtyper(struct kvm_vcpu *vcpu, struct sys_reg_params *p, |
| const struct sys_reg_desc *r) |
| { |
| u64 idx, reg; |
| |
| if (pmu_access_el0_disabled(vcpu)) |
| return false; |
| |
| if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 1) { |
| /* PMXEVTYPER_EL0 */ |
| idx = __vcpu_sys_reg(vcpu, PMSELR_EL0) & ARMV8_PMU_COUNTER_MASK; |
| reg = PMEVTYPER0_EL0 + idx; |
| } else if (r->CRn == 14 && (r->CRm & 12) == 12) { |
| idx = ((r->CRm & 3) << 3) | (r->Op2 & 7); |
| if (idx == ARMV8_PMU_CYCLE_IDX) |
| reg = PMCCFILTR_EL0; |
| else |
| /* PMEVTYPERn_EL0 */ |
| reg = PMEVTYPER0_EL0 + idx; |
| } else { |
| BUG(); |
| } |
| |
| if (!pmu_counter_idx_valid(vcpu, idx)) |
| return false; |
| |
| if (p->is_write) { |
| kvm_pmu_set_counter_event_type(vcpu, p->regval, idx); |
| kvm_vcpu_pmu_restore_guest(vcpu); |
| } else { |
| p->regval = __vcpu_sys_reg(vcpu, reg); |
| } |
| |
| return true; |
| } |
| |
| static int set_pmreg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r, u64 val) |
| { |
| bool set; |
| |
| val &= kvm_pmu_valid_counter_mask(vcpu); |
| |
| switch (r->reg) { |
| case PMOVSSET_EL0: |
| /* CRm[1] being set indicates a SET register, and CLR otherwise */ |
| set = r->CRm & 2; |
| break; |
| default: |
| /* Op2[0] being set indicates a SET register, and CLR otherwise */ |
| set = r->Op2 & 1; |
| break; |
| } |
| |
| if (set) |
| __vcpu_sys_reg(vcpu, r->reg) |= val; |
| else |
| __vcpu_sys_reg(vcpu, r->reg) &= ~val; |
| |
| return 0; |
| } |
| |
| static int get_pmreg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r, u64 *val) |
| { |
| u64 mask = kvm_pmu_valid_counter_mask(vcpu); |
| |
| *val = __vcpu_sys_reg(vcpu, r->reg) & mask; |
| return 0; |
| } |
| |
| static bool access_pmcnten(struct kvm_vcpu *vcpu, struct sys_reg_params *p, |
| const struct sys_reg_desc *r) |
| { |
| u64 val, mask; |
| |
| if (pmu_access_el0_disabled(vcpu)) |
| return false; |
| |
| mask = kvm_pmu_valid_counter_mask(vcpu); |
| if (p->is_write) { |
| val = p->regval & mask; |
| if (r->Op2 & 0x1) { |
| /* accessing PMCNTENSET_EL0 */ |
| __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) |= val; |
| kvm_pmu_enable_counter_mask(vcpu, val); |
| kvm_vcpu_pmu_restore_guest(vcpu); |
| } else { |
| /* accessing PMCNTENCLR_EL0 */ |
| __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) &= ~val; |
| kvm_pmu_disable_counter_mask(vcpu, val); |
| } |
| } else { |
| p->regval = __vcpu_sys_reg(vcpu, PMCNTENSET_EL0); |
| } |
| |
| return true; |
| } |
| |
| static bool access_pminten(struct kvm_vcpu *vcpu, struct sys_reg_params *p, |
| const struct sys_reg_desc *r) |
| { |
| u64 mask = kvm_pmu_valid_counter_mask(vcpu); |
| |
| if (check_pmu_access_disabled(vcpu, 0)) |
| return false; |
| |
| if (p->is_write) { |
| u64 val = p->regval & mask; |
| |
| if (r->Op2 & 0x1) |
| /* accessing PMINTENSET_EL1 */ |
| __vcpu_sys_reg(vcpu, PMINTENSET_EL1) |= val; |
| else |
| /* accessing PMINTENCLR_EL1 */ |
| __vcpu_sys_reg(vcpu, PMINTENSET_EL1) &= ~val; |
| } else { |
| p->regval = __vcpu_sys_reg(vcpu, PMINTENSET_EL1); |
| } |
| |
| return true; |
| } |
| |
| static bool access_pmovs(struct kvm_vcpu *vcpu, struct sys_reg_params *p, |
| const struct sys_reg_desc *r) |
| { |
| u64 mask = kvm_pmu_valid_counter_mask(vcpu); |
| |
| if (pmu_access_el0_disabled(vcpu)) |
| return false; |
| |
| if (p->is_write) { |
| if (r->CRm & 0x2) |
| /* accessing PMOVSSET_EL0 */ |
| __vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= (p->regval & mask); |
| else |
| /* accessing PMOVSCLR_EL0 */ |
| __vcpu_sys_reg(vcpu, PMOVSSET_EL0) &= ~(p->regval & mask); |
| } else { |
| p->regval = __vcpu_sys_reg(vcpu, PMOVSSET_EL0); |
| } |
| |
| return true; |
| } |
| |
| static bool access_pmswinc(struct kvm_vcpu *vcpu, struct sys_reg_params *p, |
| const struct sys_reg_desc *r) |
| { |
| u64 mask; |
| |
| if (!p->is_write) |
| return read_from_write_only(vcpu, p, r); |
| |
| if (pmu_write_swinc_el0_disabled(vcpu)) |
| return false; |
| |
| mask = kvm_pmu_valid_counter_mask(vcpu); |
| kvm_pmu_software_increment(vcpu, p->regval & mask); |
| return true; |
| } |
| |
| static bool access_pmuserenr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, |
| const struct sys_reg_desc *r) |
| { |
| if (p->is_write) { |
| if (!vcpu_mode_priv(vcpu)) { |
| kvm_inject_undefined(vcpu); |
| return false; |
| } |
| |
| __vcpu_sys_reg(vcpu, PMUSERENR_EL0) = |
| p->regval & ARMV8_PMU_USERENR_MASK; |
| } else { |
| p->regval = __vcpu_sys_reg(vcpu, PMUSERENR_EL0) |
| & ARMV8_PMU_USERENR_MASK; |
| } |
| |
| return true; |
| } |
| |
| static int get_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r, |
| u64 *val) |
| { |
| *val = kvm_vcpu_read_pmcr(vcpu); |
| return 0; |
| } |
| |
| static int set_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r, |
| u64 val) |
| { |
| u8 new_n = FIELD_GET(ARMV8_PMU_PMCR_N, val); |
| struct kvm *kvm = vcpu->kvm; |
| |
| mutex_lock(&kvm->arch.config_lock); |
| |
| /* |
| * The vCPU can't have more counters than the PMU hardware |
| * implements. Ignore this error to maintain compatibility |
| * with the existing KVM behavior. |
| */ |
| if (!kvm_vm_has_ran_once(kvm) && |
| new_n <= kvm_arm_pmu_get_max_counters(kvm)) |
| kvm->arch.pmcr_n = new_n; |
| |
| mutex_unlock(&kvm->arch.config_lock); |
| |
| /* |
| * Ignore writes to RES0 bits, read only bits that are cleared on |
| * vCPU reset, and writable bits that KVM doesn't support yet. |
| * (i.e. only PMCR.N and bits [7:0] are mutable from userspace) |
| * The LP bit is RES0 when FEAT_PMUv3p5 is not supported on the vCPU. |
| * But, we leave the bit as it is here, as the vCPU's PMUver might |
| * be changed later (NOTE: the bit will be cleared on first vCPU run |
| * if necessary). |
| */ |
| val &= ARMV8_PMU_PMCR_MASK; |
| |
| /* The LC bit is RES1 when AArch32 is not supported */ |
| if (!kvm_supports_32bit_el0()) |
| val |= ARMV8_PMU_PMCR_LC; |
| |
| __vcpu_sys_reg(vcpu, r->reg) = val; |
| return 0; |
| } |
| |
| /* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */ |
| #define DBG_BCR_BVR_WCR_WVR_EL1(n) \ |
| { SYS_DESC(SYS_DBGBVRn_EL1(n)), \ |
| trap_bvr, reset_bvr, 0, 0, get_bvr, set_bvr }, \ |
| { SYS_DESC(SYS_DBGBCRn_EL1(n)), \ |
| trap_bcr, reset_bcr, 0, 0, get_bcr, set_bcr }, \ |
| { SYS_DESC(SYS_DBGWVRn_EL1(n)), \ |
| trap_wvr, reset_wvr, 0, 0, get_wvr, set_wvr }, \ |
| { SYS_DESC(SYS_DBGWCRn_EL1(n)), \ |
| trap_wcr, reset_wcr, 0, 0, get_wcr, set_wcr } |
| |
| #define PMU_SYS_REG(name) \ |
| SYS_DESC(SYS_##name), .reset = reset_pmu_reg, \ |
| .visibility = pmu_visibility |
| |
| /* Macro to expand the PMEVCNTRn_EL0 register */ |
| #define PMU_PMEVCNTR_EL0(n) \ |
| { PMU_SYS_REG(PMEVCNTRn_EL0(n)), \ |
| .reset = reset_pmevcntr, .get_user = get_pmu_evcntr, \ |
| .access = access_pmu_evcntr, .reg = (PMEVCNTR0_EL0 + n), } |
| |
| /* Macro to expand the PMEVTYPERn_EL0 register */ |
| #define PMU_PMEVTYPER_EL0(n) \ |
| { PMU_SYS_REG(PMEVTYPERn_EL0(n)), \ |
| .reset = reset_pmevtyper, \ |
| .access = access_pmu_evtyper, .reg = (PMEVTYPER0_EL0 + n), } |
| |
| static bool undef_access(struct kvm_vcpu *vcpu, struct sys_reg_params *p, |
| const struct sys_reg_desc *r) |
| { |
| kvm_inject_undefined(vcpu); |
| |
| return false; |
| } |
| |
| /* Macro to expand the AMU counter and type registers*/ |
| #define AMU_AMEVCNTR0_EL0(n) { SYS_DESC(SYS_AMEVCNTR0_EL0(n)), undef_access } |
| #define AMU_AMEVTYPER0_EL0(n) { SYS_DESC(SYS_AMEVTYPER0_EL0(n)), undef_access } |
| #define AMU_AMEVCNTR1_EL0(n) { SYS_DESC(SYS_AMEVCNTR1_EL0(n)), undef_access } |
| #define AMU_AMEVTYPER1_EL0(n) { SYS_DESC(SYS_AMEVTYPER1_EL0(n)), undef_access } |
| |
| static unsigned int ptrauth_visibility(const struct kvm_vcpu *vcpu, |
| const struct sys_reg_desc *rd) |
| { |
| return vcpu_has_ptrauth(vcpu) ? 0 : REG_HIDDEN; |
| } |
| |
| /* |
| * If we land here on a PtrAuth access, that is because we didn't |
| * fixup the access on exit by allowing the PtrAuth sysregs. The only |
| * way this happens is when the guest does not have PtrAuth support |
| * enabled. |
| */ |
| #define __PTRAUTH_KEY(k) \ |
| { SYS_DESC(SYS_## k), undef_access, reset_unknown, k, \ |
| .visibility = ptrauth_visibility} |
| |
| #define PTRAUTH_KEY(k) \ |
| __PTRAUTH_KEY(k ## KEYLO_EL1), \ |
| __PTRAUTH_KEY(k ## KEYHI_EL1) |
| |
| static bool access_arch_timer(struct kvm_vcpu *vcpu, |
| struct sys_reg_params *p, |
| const struct sys_reg_desc *r) |
| { |
| enum kvm_arch_timers tmr; |
| enum kvm_arch_timer_regs treg; |
| u64 reg = reg_to_encoding(r); |
| |
| switch (reg) { |
| case SYS_CNTP_TVAL_EL0: |
| case SYS_AARCH32_CNTP_TVAL: |
| tmr = TIMER_PTIMER; |
| treg = TIMER_REG_TVAL; |
| break; |
| case SYS_CNTP_CTL_EL0: |
| case SYS_AARCH32_CNTP_CTL: |
| tmr = TIMER_PTIMER; |
| treg = TIMER_REG_CTL; |
| break; |
| case SYS_CNTP_CVAL_EL0: |
| case SYS_AARCH32_CNTP_CVAL: |
| tmr = TIMER_PTIMER; |
| treg = TIMER_REG_CVAL; |
| break; |
| case SYS_CNTPCT_EL0: |
| case SYS_CNTPCTSS_EL0: |
| case SYS_AARCH32_CNTPCT: |
| tmr = TIMER_PTIMER; |
| treg = TIMER_REG_CNT; |
| break; |
| default: |
| print_sys_reg_msg(p, "%s", "Unhandled trapped timer register"); |
| kvm_inject_undefined(vcpu); |
| return false; |
| } |
| |
| if (p->is_write) |
| kvm_arm_timer_write_sysreg(vcpu, tmr, treg, p->regval); |
| else |
| p->regval = kvm_arm_timer_read_sysreg(vcpu, tmr, treg); |
| |
| return true; |
| } |
| |
| static s64 kvm_arm64_ftr_safe_value(u32 id, const struct arm64_ftr_bits *ftrp, |
| s64 new, s64 cur) |
| { |
| struct arm64_ftr_bits kvm_ftr = *ftrp; |
| |
| /* Some features have different safe value type in KVM than host features */ |
| switch (id) { |
| case SYS_ID_AA64DFR0_EL1: |
| switch (kvm_ftr.shift) { |
| case ID_AA64DFR0_EL1_PMUVer_SHIFT: |
| kvm_ftr.type = FTR_LOWER_SAFE; |
| break; |
| case ID_AA64DFR0_EL1_DebugVer_SHIFT: |
| kvm_ftr.type = FTR_LOWER_SAFE; |
| break; |
| } |
| break; |
| case SYS_ID_DFR0_EL1: |
| if (kvm_ftr.shift == ID_DFR0_EL1_PerfMon_SHIFT) |
| kvm_ftr.type = FTR_LOWER_SAFE; |
| break; |
| } |
| |
| return arm64_ftr_safe_value(&kvm_ftr, new, cur); |
| } |
| |
| /* |
| * arm64_check_features() - Check if a feature register value constitutes |
| * a subset of features indicated by the idreg's KVM sanitised limit. |
| * |
| * This function will check if each feature field of @val is the "safe" value |
| * against idreg's KVM sanitised limit return from reset() callback. |
| * If a field value in @val is the same as the one in limit, it is always |
| * considered the safe value regardless For register fields that are not in |
| * writable, only the value in limit is considered the safe value. |
| * |
| * Return: 0 if all the fields are safe. Otherwise, return negative errno. |
| */ |
| static int arm64_check_features(struct kvm_vcpu *vcpu, |
| const struct sys_reg_desc *rd, |
| u64 val) |
| { |
| const struct arm64_ftr_reg *ftr_reg; |
| const struct arm64_ftr_bits *ftrp = NULL; |
| u32 id = reg_to_encoding(rd); |
| u64 writable_mask = rd->val; |
| u64 limit = rd->reset(vcpu, rd); |
| u64 mask = 0; |
| |
| /* |
| * Hidden and unallocated ID registers may not have a corresponding |
| * struct arm64_ftr_reg. Of course, if the register is RAZ we know the |
| * only safe value is 0. |
| */ |
| if (sysreg_visible_as_raz(vcpu, rd)) |
| return val ? -E2BIG : 0; |
| |
| ftr_reg = get_arm64_ftr_reg(id); |
| if (!ftr_reg) |
| return -EINVAL; |
| |
| ftrp = ftr_reg->ftr_bits; |
| |
| for (; ftrp && ftrp->width; ftrp++) { |
| s64 f_val, f_lim, safe_val; |
| u64 ftr_mask; |
| |
| ftr_mask = arm64_ftr_mask(ftrp); |
| if ((ftr_mask & writable_mask) != ftr_mask) |
| continue; |
| |
| f_val = arm64_ftr_value(ftrp, val); |
| f_lim = arm64_ftr_value(ftrp, limit); |
| mask |= ftr_mask; |
| |
| if (f_val == f_lim) |
| safe_val = f_val; |
| else |
| safe_val = kvm_arm64_ftr_safe_value(id, ftrp, f_val, f_lim); |
| |
| if (safe_val != f_val) |
| return -E2BIG; |
| } |
| |
| /* For fields that are not writable, values in limit are the safe values. */ |
| if ((val & ~mask) != (limit & ~mask)) |
| return -E2BIG; |
| |
| return 0; |
| } |
| |
| static u8 pmuver_to_perfmon(u8 pmuver) |
| { |
| switch (pmuver) { |
| case ID_AA64DFR0_EL1_PMUVer_IMP: |
| return ID_DFR0_EL1_PerfMon_PMUv3; |
| case ID_AA64DFR0_EL1_PMUVer_IMP_DEF: |
| return ID_DFR0_EL1_PerfMon_IMPDEF; |
| default: |
| /* Anything ARMv8.1+ and NI have the same value. For now. */ |
| return pmuver; |
| } |
| } |
| |
| /* Read a sanitised cpufeature ID register by sys_reg_desc */ |
| static u64 __kvm_read_sanitised_id_reg(const struct kvm_vcpu *vcpu, |
| const struct sys_reg_desc *r) |
| { |
| u32 id = reg_to_encoding(r); |
| u64 val; |
| |
| if (sysreg_visible_as_raz(vcpu, r)) |
| return 0; |
| |
| val = read_sanitised_ftr_reg(id); |
| |
| switch (id) { |
| case SYS_ID_AA64PFR1_EL1: |
| if (!kvm_has_mte(vcpu->kvm)) |
| val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_MTE); |
| |
| val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_SME); |
| break; |
| case SYS_ID_AA64ISAR1_EL1: |
| if (!vcpu_has_ptrauth(vcpu)) |
| val &= ~(ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_APA) | |
| ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_API) | |
| ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_GPA) | |
| ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_GPI)); |
| break; |
| case SYS_ID_AA64ISAR2_EL1: |
| if (!vcpu_has_ptrauth(vcpu)) |
| val &= ~(ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_APA3) | |
| ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_GPA3)); |
| if (!cpus_have_final_cap(ARM64_HAS_WFXT)) |
| val &= ~ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_WFxT); |
| break; |
| case SYS_ID_AA64MMFR2_EL1: |
| val &= ~ID_AA64MMFR2_EL1_CCIDX_MASK; |
| break; |
| case SYS_ID_MMFR4_EL1: |
| val &= ~ARM64_FEATURE_MASK(ID_MMFR4_EL1_CCIDX); |
| break; |
| } |
| |
| return val; |
| } |
| |
| static u64 kvm_read_sanitised_id_reg(struct kvm_vcpu *vcpu, |
| const struct sys_reg_desc *r) |
| { |
| return __kvm_read_sanitised_id_reg(vcpu, r); |
| } |
| |
| static u64 read_id_reg(const struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) |
| { |
| return IDREG(vcpu->kvm, reg_to_encoding(r)); |
| } |
| |
| /* |
| * Return true if the register's (Op0, Op1, CRn, CRm, Op2) is |
| * (3, 0, 0, crm, op2), where 1<=crm<8, 0<=op2<8. |
| */ |
| static inline bool is_id_reg(u32 id) |
| { |
| return (sys_reg_Op0(id) == 3 && sys_reg_Op1(id) == 0 && |
| sys_reg_CRn(id) == 0 && sys_reg_CRm(id) >= 1 && |
| sys_reg_CRm(id) < 8); |
| } |
| |
| static inline bool is_aa32_id_reg(u32 id) |
| { |
| return (sys_reg_Op0(id) == 3 && sys_reg_Op1(id) == 0 && |
| sys_reg_CRn(id) == 0 && sys_reg_CRm(id) >= 1 && |
| sys_reg_CRm(id) <= 3); |
| } |
| |
| static unsigned int id_visibility(const struct kvm_vcpu *vcpu, |
| const struct sys_reg_desc *r) |
| { |
| u32 id = reg_to_encoding(r); |
| |
| switch (id) { |
| case SYS_ID_AA64ZFR0_EL1: |
| if (!vcpu_has_sve(vcpu)) |
| return REG_RAZ; |
| break; |
| } |
| |
| return 0; |
| } |
| |
| static unsigned int aa32_id_visibility(const struct kvm_vcpu *vcpu, |
| const struct sys_reg_desc *r) |
| { |
| /* |
| * AArch32 ID registers are UNKNOWN if AArch32 isn't implemented at any |
| * EL. Promote to RAZ/WI in order to guarantee consistency between |
| * systems. |
| */ |
| if (!kvm_supports_32bit_el0()) |
| return REG_RAZ | REG_USER_WI; |
| |
| return id_visibility(vcpu, r); |
| } |
| |
| static unsigned int raz_visibility(const struct kvm_vcpu *vcpu, |
| const struct sys_reg_desc *r) |
| { |
| return REG_RAZ; |
| } |
| |
| /* cpufeature ID register access trap handlers */ |
| |
| static bool access_id_reg(struct kvm_vcpu *vcpu, |
| struct sys_reg_params *p, |
| const struct sys_reg_desc *r) |
| { |
| if (p->is_write) |
| return write_to_read_only(vcpu, p, r); |
| |
| p->regval = read_id_reg(vcpu, r); |
| |
| return true; |
| } |
| |
| /* Visibility overrides for SVE-specific control registers */ |
| static unsigned int sve_visibility(const struct kvm_vcpu *vcpu, |
| const struct sys_reg_desc *rd) |
| { |
| if (vcpu_has_sve(vcpu)) |
| return 0; |
| |
| return REG_HIDDEN; |
| } |
| |
| static u64 read_sanitised_id_aa64pfr0_el1(struct kvm_vcpu *vcpu, |
| const struct sys_reg_desc *rd) |
| { |
| u64 val = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1); |
| |
| if (!vcpu_has_sve(vcpu)) |
| val &= ~ID_AA64PFR0_EL1_SVE_MASK; |
| |
| /* |
| * The default is to expose CSV2 == 1 if the HW isn't affected. |
| * Although this is a per-CPU feature, we make it global because |
| * asymmetric systems are just a nuisance. |
| * |
| * Userspace can override this as long as it doesn't promise |
| * the impossible. |
| */ |
| if (arm64_get_spectre_v2_state() == SPECTRE_UNAFFECTED) { |
| val &= ~ID_AA64PFR0_EL1_CSV2_MASK; |
| val |= SYS_FIELD_PREP_ENUM(ID_AA64PFR0_EL1, CSV2, IMP); |
| } |
| if (arm64_get_meltdown_state() == SPECTRE_UNAFFECTED) { |
| val &= ~ID_AA64PFR0_EL1_CSV3_MASK; |
| val |= SYS_FIELD_PREP_ENUM(ID_AA64PFR0_EL1, CSV3, IMP); |
| } |
| |
| if (kvm_vgic_global_state.type == VGIC_V3) { |
| val &= ~ID_AA64PFR0_EL1_GIC_MASK; |
| val |= SYS_FIELD_PREP_ENUM(ID_AA64PFR0_EL1, GIC, IMP); |
| } |
| |
| val &= ~ID_AA64PFR0_EL1_AMU_MASK; |
| |
| return val; |
| } |
| |
| #define ID_REG_LIMIT_FIELD_ENUM(val, reg, field, limit) \ |
| ({ \ |
| u64 __f_val = FIELD_GET(reg##_##field##_MASK, val); \ |
| (val) &= ~reg##_##field##_MASK; \ |
| (val) |= FIELD_PREP(reg##_##field##_MASK, \ |
| min(__f_val, \ |
| (u64)SYS_FIELD_VALUE(reg, field, limit))); \ |
| (val); \ |
| }) |
| |
| static u64 read_sanitised_id_aa64dfr0_el1(struct kvm_vcpu *vcpu, |
| const struct sys_reg_desc *rd) |
| { |
| u64 val = read_sanitised_ftr_reg(SYS_ID_AA64DFR0_EL1); |
| |
| val = ID_REG_LIMIT_FIELD_ENUM(val, ID_AA64DFR0_EL1, DebugVer, V8P8); |
| |
| /* |
| * Only initialize the PMU version if the vCPU was configured with one. |
| */ |
| val &= ~ID_AA64DFR0_EL1_PMUVer_MASK; |
| if (kvm_vcpu_has_pmu(vcpu)) |
| val |= SYS_FIELD_PREP(ID_AA64DFR0_EL1, PMUVer, |
| kvm_arm_pmu_get_pmuver_limit()); |
| |
| /* Hide SPE from guests */ |
| val &= ~ID_AA64DFR0_EL1_PMSVer_MASK; |
| |
| return val; |
| } |
| |
| static int set_id_aa64dfr0_el1(struct kvm_vcpu *vcpu, |
| const struct sys_reg_desc *rd, |
| u64 val) |
| { |
| u8 debugver = SYS_FIELD_GET(ID_AA64DFR0_EL1, DebugVer, val); |
| u8 pmuver = SYS_FIELD_GET(ID_AA64DFR0_EL1, PMUVer, val); |
| |
| /* |
| * Prior to commit 3d0dba5764b9 ("KVM: arm64: PMU: Move the |
| * ID_AA64DFR0_EL1.PMUver limit to VM creation"), KVM erroneously |
| * exposed an IMP_DEF PMU to userspace and the guest on systems w/ |
| * non-architectural PMUs. Of course, PMUv3 is the only game in town for |
| * PMU virtualization, so the IMP_DEF value was rather user-hostile. |
| * |
| * At minimum, we're on the hook to allow values that were given to |
| * userspace by KVM. Cover our tracks here and replace the IMP_DEF value |
| * with a more sensible NI. The value of an ID register changing under |
| * the nose of the guest is unfortunate, but is certainly no more |
| * surprising than an ill-guided PMU driver poking at impdef system |
| * registers that end in an UNDEF... |
| */ |
| if (pmuver == ID_AA64DFR0_EL1_PMUVer_IMP_DEF) |
| val &= ~ID_AA64DFR0_EL1_PMUVer_MASK; |
| |
| /* |
| * ID_AA64DFR0_EL1.DebugVer is one of those awkward fields with a |
| * nonzero minimum safe value. |
| */ |
| if (debugver < ID_AA64DFR0_EL1_DebugVer_IMP) |
| return -EINVAL; |
| |
| return set_id_reg(vcpu, rd, val); |
| } |
| |
| static u64 read_sanitised_id_dfr0_el1(struct kvm_vcpu *vcpu, |
| const struct sys_reg_desc *rd) |
| { |
| u8 perfmon = pmuver_to_perfmon(kvm_arm_pmu_get_pmuver_limit()); |
| u64 val = read_sanitised_ftr_reg(SYS_ID_DFR0_EL1); |
| |
| val &= ~ID_DFR0_EL1_PerfMon_MASK; |
| if (kvm_vcpu_has_pmu(vcpu)) |
| val |= SYS_FIELD_PREP(ID_DFR0_EL1, PerfMon, perfmon); |
| |
| val = ID_REG_LIMIT_FIELD_ENUM(val, ID_DFR0_EL1, CopDbg, Debugv8p8); |
| |
| return val; |
| } |
| |
| static int set_id_dfr0_el1(struct kvm_vcpu *vcpu, |
| const struct sys_reg_desc *rd, |
| u64 val) |
| { |
| u8 perfmon = SYS_FIELD_GET(ID_DFR0_EL1, PerfMon, val); |
| u8 copdbg = SYS_FIELD_GET(ID_DFR0_EL1, CopDbg, val); |
| |
| if (perfmon == ID_DFR0_EL1_PerfMon_IMPDEF) { |
| val &= ~ID_DFR0_EL1_PerfMon_MASK; |
| perfmon = 0; |
| } |
| |
| /* |
| * Allow DFR0_EL1.PerfMon to be set from userspace as long as |
| * it doesn't promise more than what the HW gives us on the |
| * AArch64 side (as everything is emulated with that), and |
| * that this is a PMUv3. |
| */ |
| if (perfmon != 0 && perfmon < ID_DFR0_EL1_PerfMon_PMUv3) |
| return -EINVAL; |
| |
| if (copdbg < ID_DFR0_EL1_CopDbg_Armv8) |
| return -EINVAL; |
| |
| return set_id_reg(vcpu, rd, val); |
| } |
| |
| /* |
| * cpufeature ID register user accessors |
| * |
| * For now, these registers are immutable for userspace, so no values |
| * are stored, and for set_id_reg() we don't allow the effective value |
| * to be changed. |
| */ |
| static int get_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, |
| u64 *val) |
| { |
| /* |
| * Avoid locking if the VM has already started, as the ID registers are |
| * guaranteed to be invariant at that point. |
| */ |
| if (kvm_vm_has_ran_once(vcpu->kvm)) { |
| *val = read_id_reg(vcpu, rd); |
| return 0; |
| } |
| |
| mutex_lock(&vcpu->kvm->arch.config_lock); |
| *val = read_id_reg(vcpu, rd); |
| mutex_unlock(&vcpu->kvm->arch.config_lock); |
| |
| return 0; |
| } |
| |
| static int set_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, |
| u64 val) |
| { |
| u32 id = reg_to_encoding(rd); |
| int ret; |
| |
| mutex_lock(&vcpu->kvm->arch.config_lock); |
| |
| /* |
| * Once the VM has started the ID registers are immutable. Reject any |
| * write that does not match the final register value. |
| */ |
| if (kvm_vm_has_ran_once(vcpu->kvm)) { |
| if (val != read_id_reg(vcpu, rd)) |
| ret = -EBUSY; |
| else |
| ret = 0; |
| |
| mutex_unlock(&vcpu->kvm->arch.config_lock); |
| return ret; |
| } |
| |
| ret = arm64_check_features(vcpu, rd, val); |
| if (!ret) |
| IDREG(vcpu->kvm, id) = val; |
| |
| mutex_unlock(&vcpu->kvm->arch.config_lock); |
| |
| /* |
| * arm64_check_features() returns -E2BIG to indicate the register's |
| * feature set is a superset of the maximally-allowed register value. |
| * While it would be nice to precisely describe this to userspace, the |
| * existing UAPI for KVM_SET_ONE_REG has it that invalid register |
| * writes return -EINVAL. |
| */ |
| if (ret == -E2BIG) |
| ret = -EINVAL; |
| return ret; |
| } |
| |
| static int get_raz_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, |
| u64 *val) |
| { |
| *val = 0; |
| return 0; |
| } |
| |
| static int set_wi_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, |
| u64 val) |
| { |
| return 0; |
| } |
| |
| static bool access_ctr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, |
| const struct sys_reg_desc *r) |
| { |
| if (p->is_write) |
| return write_to_read_only(vcpu, p, r); |
| |
| p->regval = read_sanitised_ftr_reg(SYS_CTR_EL0); |
| return true; |
| } |
| |
| static bool access_clidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, |
| const struct sys_reg_desc *r) |
| { |
| if (p->is_write) |
| return write_to_read_only(vcpu, p, r); |
| |
| p->regval = __vcpu_sys_reg(vcpu, r->reg); |
| return true; |
| } |
| |
| /* |
| * Fabricate a CLIDR_EL1 value instead of using the real value, which can vary |
| * by the physical CPU which the vcpu currently resides in. |
| */ |
| static u64 reset_clidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) |
| { |
| u64 ctr_el0 = read_sanitised_ftr_reg(SYS_CTR_EL0); |
| u64 clidr; |
| u8 loc; |
| |
| if ((ctr_el0 & CTR_EL0_IDC)) { |
| /* |
| * Data cache clean to the PoU is not required so LoUU and LoUIS |
| * will not be set and a unified cache, which will be marked as |
| * LoC, will be added. |
| * |
| * If not DIC, let the unified cache L2 so that an instruction |
| * cache can be added as L1 later. |
| */ |
| loc = (ctr_el0 & CTR_EL0_DIC) ? 1 : 2; |
| clidr = CACHE_TYPE_UNIFIED << CLIDR_CTYPE_SHIFT(loc); |
| } else { |
| /* |
| * Data cache clean to the PoU is required so let L1 have a data |
| * cache and mark it as LoUU and LoUIS. As L1 has a data cache, |
| * it can be marked as LoC too. |
| */ |
| loc = 1; |
| clidr = 1 << CLIDR_LOUU_SHIFT; |
| clidr |= 1 << CLIDR_LOUIS_SHIFT; |
| clidr |= CACHE_TYPE_DATA << CLIDR_CTYPE_SHIFT(1); |
| } |
| |
| /* |
| * Instruction cache invalidation to the PoU is required so let L1 have |
| * an instruction cache. If L1 already has a data cache, it will be |
| * CACHE_TYPE_SEPARATE. |
| */ |
| if (!(ctr_el0 & CTR_EL0_DIC)) |
| clidr |= CACHE_TYPE_INST << CLIDR_CTYPE_SHIFT(1); |
| |
| clidr |= loc << CLIDR_LOC_SHIFT; |
| |
| /* |
| * Add tag cache unified to data cache. Allocation tags and data are |
| * unified in a cache line so that it looks valid even if there is only |
| * one cache line. |
| */ |
| if (kvm_has_mte(vcpu->kvm)) |
| clidr |= 2 << CLIDR_TTYPE_SHIFT(loc); |
| |
| __vcpu_sys_reg(vcpu, r->reg) = clidr; |
| |
| return __vcpu_sys_reg(vcpu, r->reg); |
| } |
| |
| static int set_clidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, |
| u64 val) |
| { |
| u64 ctr_el0 = read_sanitised_ftr_reg(SYS_CTR_EL0); |
| u64 idc = !CLIDR_LOC(val) || (!CLIDR_LOUIS(val) && !CLIDR_LOUU(val)); |
| |
| if ((val & CLIDR_EL1_RES0) || (!(ctr_el0 & CTR_EL0_IDC) && idc)) |
| return -EINVAL; |
| |
| __vcpu_sys_reg(vcpu, rd->reg) = val; |
| |
| return 0; |
| } |
| |
| static bool access_csselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, |
| const struct sys_reg_desc *r) |
| { |
| int reg = r->reg; |
| |
| if (p->is_write) |
| vcpu_write_sys_reg(vcpu, p->regval, reg); |
| else |
| p->regval = vcpu_read_sys_reg(vcpu, reg); |
| return true; |
| } |
| |
| static bool access_ccsidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, |
| const struct sys_reg_desc *r) |
| { |
| u32 csselr; |
| |
| if (p->is_write) |
| return write_to_read_only(vcpu, p, r); |
| |
| csselr = vcpu_read_sys_reg(vcpu, CSSELR_EL1); |
| csselr &= CSSELR_EL1_Level | CSSELR_EL1_InD; |
| if (csselr < CSSELR_MAX) |
| p->regval = get_ccsidr(vcpu, csselr); |
| |
| return true; |
| } |
| |
| static unsigned int mte_visibility(const struct kvm_vcpu *vcpu, |
| const struct sys_reg_desc *rd) |
| { |
| if (kvm_has_mte(vcpu->kvm)) |
| return 0; |
| |
| return REG_HIDDEN; |
| } |
| |
| #define MTE_REG(name) { \ |
| SYS_DESC(SYS_##name), \ |
| .access = undef_access, \ |
| .reset = reset_unknown, \ |
| .reg = name, \ |
| .visibility = mte_visibility, \ |
| } |
| |
| static unsigned int el2_visibility(const struct kvm_vcpu *vcpu, |
| const struct sys_reg_desc *rd) |
| { |
| if (vcpu_has_nv(vcpu)) |
| return 0; |
| |
| return REG_HIDDEN; |
| } |
| |
| static bool bad_vncr_trap(struct kvm_vcpu *vcpu, |
| struct sys_reg_params *p, |
| const struct sys_reg_desc *r) |
| { |
| /* |
| * We really shouldn't be here, and this is likely the result |
| * of a misconfigured trap, as this register should target the |
| * VNCR page, and nothing else. |
| */ |
| return bad_trap(vcpu, p, r, |
| "trap of VNCR-backed register"); |
| } |
| |
| static bool bad_redir_trap(struct kvm_vcpu *vcpu, |
| struct sys_reg_params *p, |
| const struct sys_reg_desc *r) |
| { |
| /* |
| * We really shouldn't be here, and this is likely the result |
| * of a misconfigured trap, as this register should target the |
| * corresponding EL1, and nothing else. |
| */ |
| return bad_trap(vcpu, p, r, |
| "trap of EL2 register redirected to EL1"); |
| } |
| |
| #define EL2_REG(name, acc, rst, v) { \ |
| SYS_DESC(SYS_##name), \ |
| .access = acc, \ |
| .reset = rst, \ |
| .reg = name, \ |
| .visibility = el2_visibility, \ |
| .val = v, \ |
| } |
| |
| #define EL2_REG_VNCR(name, rst, v) EL2_REG(name, bad_vncr_trap, rst, v) |
| #define EL2_REG_REDIR(name, rst, v) EL2_REG(name, bad_redir_trap, rst, v) |
| |
| /* |
| * EL{0,1}2 registers are the EL2 view on an EL0 or EL1 register when |
| * HCR_EL2.E2H==1, and only in the sysreg table for convenience of |
| * handling traps. Given that, they are always hidden from userspace. |
| */ |
| static unsigned int hidden_user_visibility(const struct kvm_vcpu *vcpu, |
| const struct sys_reg_desc *rd) |
| { |
| return REG_HIDDEN_USER; |
| } |
| |
| #define EL12_REG(name, acc, rst, v) { \ |
| SYS_DESC(SYS_##name##_EL12), \ |
| .access = acc, \ |
| .reset = rst, \ |
| .reg = name##_EL1, \ |
| .val = v, \ |
| .visibility = hidden_user_visibility, \ |
| } |
| |
| /* |
| * Since reset() callback and field val are not used for idregs, they will be |
| * used for specific purposes for idregs. |
| * The reset() would return KVM sanitised register value. The value would be the |
| * same as the host kernel sanitised value if there is no KVM sanitisation. |
| * The val would be used as a mask indicating writable fields for the idreg. |
| * Only bits with 1 are writable from userspace. This mask might not be |
| * necessary in the future whenever all ID registers are enabled as writable |
| * from userspace. |
| */ |
| |
| #define ID_DESC(name) \ |
| SYS_DESC(SYS_##name), \ |
| .access = access_id_reg, \ |
| .get_user = get_id_reg \ |
| |
| /* sys_reg_desc initialiser for known cpufeature ID registers */ |
| #define ID_SANITISED(name) { \ |
| ID_DESC(name), \ |
| .set_user = set_id_reg, \ |
| .visibility = id_visibility, \ |
| .reset = kvm_read_sanitised_id_reg, \ |
| .val = 0, \ |
| } |
| |
| /* sys_reg_desc initialiser for known cpufeature ID registers */ |
| #define AA32_ID_SANITISED(name) { \ |
| ID_DESC(name), \ |
| .set_user = set_id_reg, \ |
| .visibility = aa32_id_visibility, \ |
| .reset = kvm_read_sanitised_id_reg, \ |
| .val = 0, \ |
| } |
| |
| /* sys_reg_desc initialiser for writable ID registers */ |
| #define ID_WRITABLE(name, mask) { \ |
| ID_DESC(name), \ |
| .set_user = set_id_reg, \ |
| .visibility = id_visibility, \ |
| .reset = kvm_read_sanitised_id_reg, \ |
| .val = mask, \ |
| } |
| |
| /* |
| * sys_reg_desc initialiser for architecturally unallocated cpufeature ID |
| * register with encoding Op0=3, Op1=0, CRn=0, CRm=crm, Op2=op2 |
| * (1 <= crm < 8, 0 <= Op2 < 8). |
| */ |
| #define ID_UNALLOCATED(crm, op2) { \ |
| Op0(3), Op1(0), CRn(0), CRm(crm), Op2(op2), \ |
| .access = access_id_reg, \ |
| .get_user = get_id_reg, \ |
| .set_user = set_id_reg, \ |
| .visibility = raz_visibility, \ |
| .reset = kvm_read_sanitised_id_reg, \ |
| .val = 0, \ |
| } |
| |
| /* |
| * sys_reg_desc initialiser for known ID registers that we hide from guests. |
| * For now, these are exposed just like unallocated ID regs: they appear |
| * RAZ for the guest. |
| */ |
| #define ID_HIDDEN(name) { \ |
| ID_DESC(name), \ |
| .set_user = set_id_reg, \ |
| .visibility = raz_visibility, \ |
| .reset = kvm_read_sanitised_id_reg, \ |
| .val = 0, \ |
| } |
| |
| static bool access_sp_el1(struct kvm_vcpu *vcpu, |
| struct sys_reg_params *p, |
| const struct sys_reg_desc *r) |
| { |
| if (p->is_write) |
| __vcpu_sys_reg(vcpu, SP_EL1) = p->regval; |
| else |
| p->regval = __vcpu_sys_reg(vcpu, SP_EL1); |
| |
| return true; |
| } |
| |
| static bool access_elr(struct kvm_vcpu *vcpu, |
| struct sys_reg_params *p, |
| const struct sys_reg_desc *r) |
| { |
| if (p->is_write) |
| vcpu_write_sys_reg(vcpu, p->regval, ELR_EL1); |
| else |
| p->regval = vcpu_read_sys_reg(vcpu, ELR_EL1); |
| |
| return true; |
| } |
| |
| static bool access_spsr(struct kvm_vcpu *vcpu, |
| struct sys_reg_params *p, |
| const struct sys_reg_desc *r) |
| { |
| if (p->is_write) |
| __vcpu_sys_reg(vcpu, SPSR_EL1) = p->regval; |
| else |
| p->regval = __vcpu_sys_reg(vcpu, SPSR_EL1); |
| |
| return true; |
| } |
| |
| static u64 reset_hcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) |
| { |
| u64 val = r->val; |
| |
| if (!cpus_have_final_cap(ARM64_HAS_HCR_NV1)) |
| val |= HCR_E2H; |
| |
| return __vcpu_sys_reg(vcpu, r->reg) = val; |
| } |
| |
| /* |
| * Architected system registers. |
| * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2 |
| * |
| * Debug handling: We do trap most, if not all debug related system |
| * registers. The implementation is good enough to ensure that a guest |
| * can use these with minimal performance degradation. The drawback is |
| * that we don't implement any of the external debug architecture. |
| * This should be revisited if we ever encounter a more demanding |
| * guest... |
| */ |
| static const struct sys_reg_desc sys_reg_descs[] = { |
| DBG_BCR_BVR_WCR_WVR_EL1(0), |
| DBG_BCR_BVR_WCR_WVR_EL1(1), |
| { SYS_DESC(SYS_MDCCINT_EL1), trap_debug_regs, reset_val, MDCCINT_EL1, 0 }, |
| { SYS_DESC(SYS_MDSCR_EL1), trap_debug_regs, reset_val, MDSCR_EL1, 0 }, |
| DBG_BCR_BVR_WCR_WVR_EL1(2), |
| DBG_BCR_BVR_WCR_WVR_EL1(3), |
| DBG_BCR_BVR_WCR_WVR_EL1(4), |
| DBG_BCR_BVR_WCR_WVR_EL1(5), |
| DBG_BCR_BVR_WCR_WVR_EL1(6), |
| DBG_BCR_BVR_WCR_WVR_EL1(7), |
| DBG_BCR_BVR_WCR_WVR_EL1(8), |
| DBG_BCR_BVR_WCR_WVR_EL1(9), |
| DBG_BCR_BVR_WCR_WVR_EL1(10), |
| DBG_BCR_BVR_WCR_WVR_EL1(11), |
| DBG_BCR_BVR_WCR_WVR_EL1(12), |
| DBG_BCR_BVR_WCR_WVR_EL1(13), |
| DBG_BCR_BVR_WCR_WVR_EL1(14), |
| DBG_BCR_BVR_WCR_WVR_EL1(15), |
| |
| { SYS_DESC(SYS_MDRAR_EL1), trap_raz_wi }, |
| { SYS_DESC(SYS_OSLAR_EL1), trap_oslar_el1 }, |
| { SYS_DESC(SYS_OSLSR_EL1), trap_oslsr_el1, reset_val, OSLSR_EL1, |
| OSLSR_EL1_OSLM_IMPLEMENTED, .set_user = set_oslsr_el1, }, |
| { SYS_DESC(SYS_OSDLR_EL1), trap_raz_wi }, |
| { SYS_DESC(SYS_DBGPRCR_EL1), trap_raz_wi }, |
| { SYS_DESC(SYS_DBGCLAIMSET_EL1), trap_raz_wi }, |
| { SYS_DESC(SYS_DBGCLAIMCLR_EL1), trap_raz_wi }, |
| { SYS_DESC(SYS_DBGAUTHSTATUS_EL1), trap_dbgauthstatus_el1 }, |
| |
| { SYS_DESC(SYS_MDCCSR_EL0), trap_raz_wi }, |
| { SYS_DESC(SYS_DBGDTR_EL0), trap_raz_wi }, |
| // DBGDTR[TR]X_EL0 share the same encoding |
| { SYS_DESC(SYS_DBGDTRTX_EL0), trap_raz_wi }, |
| |
| { SYS_DESC(SYS_DBGVCR32_EL2), trap_undef, reset_val, DBGVCR32_EL2, 0 }, |
| |
| { SYS_DESC(SYS_MPIDR_EL1), NULL, reset_mpidr, MPIDR_EL1 }, |
| |
| /* |
| * ID regs: all ID_SANITISED() entries here must have corresponding |
| * entries in arm64_ftr_regs[]. |
| */ |
| |
| /* AArch64 mappings of the AArch32 ID registers */ |
| /* CRm=1 */ |
| AA32_ID_SANITISED(ID_PFR0_EL1), |
| AA32_ID_SANITISED(ID_PFR1_EL1), |
| { SYS_DESC(SYS_ID_DFR0_EL1), |
| .access = access_id_reg, |
| .get_user = get_id_reg, |
| .set_user = set_id_dfr0_el1, |
| .visibility = aa32_id_visibility, |
| .reset = read_sanitised_id_dfr0_el1, |
| .val = ID_DFR0_EL1_PerfMon_MASK | |
| ID_DFR0_EL1_CopDbg_MASK, }, |
| ID_HIDDEN(ID_AFR0_EL1), |
| AA32_ID_SANITISED(ID_MMFR0_EL1), |
| AA32_ID_SANITISED(ID_MMFR1_EL1), |
| AA32_ID_SANITISED(ID_MMFR2_EL1), |
| AA32_ID_SANITISED(ID_MMFR3_EL1), |
| |
| /* CRm=2 */ |
| AA32_ID_SANITISED(ID_ISAR0_EL1), |
| AA32_ID_SANITISED(ID_ISAR1_EL1), |
| AA32_ID_SANITISED(ID_ISAR2_EL1), |
| AA32_ID_SANITISED(ID_ISAR3_EL1), |
| AA32_ID_SANITISED(ID_ISAR4_EL1), |
| AA32_ID_SANITISED(ID_ISAR5_EL1), |
| AA32_ID_SANITISED(ID_MMFR4_EL1), |
| AA32_ID_SANITISED(ID_ISAR6_EL1), |
| |
| /* CRm=3 */ |
| AA32_ID_SANITISED(MVFR0_EL1), |
| AA32_ID_SANITISED(MVFR1_EL1), |
| AA32_ID_SANITISED(MVFR2_EL1), |
| ID_UNALLOCATED(3,3), |
| AA32_ID_SANITISED(ID_PFR2_EL1), |
| ID_HIDDEN(ID_DFR1_EL1), |
| AA32_ID_SANITISED(ID_MMFR5_EL1), |
| ID_UNALLOCATED(3,7), |
| |
| /* AArch64 ID registers */ |
| /* CRm=4 */ |
| { SYS_DESC(SYS_ID_AA64PFR0_EL1), |
| .access = access_id_reg, |
| .get_user = get_id_reg, |
| .set_user = set_id_reg, |
| .reset = read_sanitised_id_aa64pfr0_el1, |
| .val = ~(ID_AA64PFR0_EL1_AMU | |
| ID_AA64PFR0_EL1_MPAM | |
| ID_AA64PFR0_EL1_SVE | |
| ID_AA64PFR0_EL1_RAS | |
| ID_AA64PFR0_EL1_GIC | |
| ID_AA64PFR0_EL1_AdvSIMD | |
| ID_AA64PFR0_EL1_FP), }, |
| ID_SANITISED(ID_AA64PFR1_EL1), |
| ID_UNALLOCATED(4,2), |
| ID_UNALLOCATED(4,3), |
| ID_WRITABLE(ID_AA64ZFR0_EL1, ~ID_AA64ZFR0_EL1_RES0), |
| ID_HIDDEN(ID_AA64SMFR0_EL1), |
| ID_UNALLOCATED(4,6), |
| ID_UNALLOCATED(4,7), |
| |
| /* CRm=5 */ |
| { SYS_DESC(SYS_ID_AA64DFR0_EL1), |
| .access = access_id_reg, |
| .get_user = get_id_reg, |
| .set_user = set_id_aa64dfr0_el1, |
| .reset = read_sanitised_id_aa64dfr0_el1, |
| .val = ID_AA64DFR0_EL1_PMUVer_MASK | |
| ID_AA64DFR0_EL1_DebugVer_MASK, }, |
| ID_SANITISED(ID_AA64DFR1_EL1), |
| ID_UNALLOCATED(5,2), |
| ID_UNALLOCATED(5,3), |
| ID_HIDDEN(ID_AA64AFR0_EL1), |
| ID_HIDDEN(ID_AA64AFR1_EL1), |
| ID_UNALLOCATED(5,6), |
| ID_UNALLOCATED(5,7), |
| |
| /* CRm=6 */ |
| ID_WRITABLE(ID_AA64ISAR0_EL1, ~ID_AA64ISAR0_EL1_RES0), |
| ID_WRITABLE(ID_AA64ISAR1_EL1, ~(ID_AA64ISAR1_EL1_GPI | |
| ID_AA64ISAR1_EL1_GPA | |
| ID_AA64ISAR1_EL1_API | |
| ID_AA64ISAR1_EL1_APA)), |
| ID_WRITABLE(ID_AA64ISAR2_EL1, ~(ID_AA64ISAR2_EL1_RES0 | |
| ID_AA64ISAR2_EL1_APA3 | |
| ID_AA64ISAR2_EL1_GPA3)), |
| ID_UNALLOCATED(6,3), |
| ID_UNALLOCATED(6,4), |
| ID_UNALLOCATED(6,5), |
| ID_UNALLOCATED(6,6), |
| ID_UNALLOCATED(6,7), |
| |
| /* CRm=7 */ |
| ID_WRITABLE(ID_AA64MMFR0_EL1, ~(ID_AA64MMFR0_EL1_RES0 | |
| ID_AA64MMFR0_EL1_TGRAN4_2 | |
| ID_AA64MMFR0_EL1_TGRAN64_2 | |
| ID_AA64MMFR0_EL1_TGRAN16_2)), |
| ID_WRITABLE(ID_AA64MMFR1_EL1, ~(ID_AA64MMFR1_EL1_RES0 | |
| ID_AA64MMFR1_EL1_HCX | |
| ID_AA64MMFR1_EL1_XNX | |
| ID_AA64MMFR1_EL1_TWED | |
| ID_AA64MMFR1_EL1_XNX | |
| ID_AA64MMFR1_EL1_VH | |
| ID_AA64MMFR1_EL1_VMIDBits)), |
| ID_WRITABLE(ID_AA64MMFR2_EL1, ~(ID_AA64MMFR2_EL1_RES0 | |
| ID_AA64MMFR2_EL1_EVT | |
| ID_AA64MMFR2_EL1_FWB | |
| ID_AA64MMFR2_EL1_IDS | |
| ID_AA64MMFR2_EL1_NV | |
| ID_AA64MMFR2_EL1_CCIDX)), |
| ID_SANITISED(ID_AA64MMFR3_EL1), |
| ID_SANITISED(ID_AA64MMFR4_EL1), |
| ID_UNALLOCATED(7,5), |
| ID_UNALLOCATED(7,6), |
| ID_UNALLOCATED(7,7), |
| |
| { SYS_DESC(SYS_SCTLR_EL1), access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 }, |
| { SYS_DESC(SYS_ACTLR_EL1), access_actlr, reset_actlr, ACTLR_EL1 }, |
| { SYS_DESC(SYS_CPACR_EL1), NULL, reset_val, CPACR_EL1, 0 }, |
| |
| MTE_REG(RGSR_EL1), |
| MTE_REG(GCR_EL1), |
| |
| { SYS_DESC(SYS_ZCR_EL1), NULL, reset_val, ZCR_EL1, 0, .visibility = sve_visibility }, |
| { SYS_DESC(SYS_TRFCR_EL1), undef_access }, |
| { SYS_DESC(SYS_SMPRI_EL1), undef_access }, |
| { SYS_DESC(SYS_SMCR_EL1), undef_access }, |
| { SYS_DESC(SYS_TTBR0_EL1), access_vm_reg, reset_unknown, TTBR0_EL1 }, |
| { SYS_DESC(SYS_TTBR1_EL1), access_vm_reg, reset_unknown, TTBR1_EL1 }, |
| { SYS_DESC(SYS_TCR_EL1), access_vm_reg, reset_val, TCR_EL1, 0 }, |
| { SYS_DESC(SYS_TCR2_EL1), access_vm_reg, reset_val, TCR2_EL1, 0 }, |
| |
| PTRAUTH_KEY(APIA), |
| PTRAUTH_KEY(APIB), |
| PTRAUTH_KEY(APDA), |
| PTRAUTH_KEY(APDB), |
| PTRAUTH_KEY(APGA), |
| |
| { SYS_DESC(SYS_SPSR_EL1), access_spsr}, |
| { SYS_DESC(SYS_ELR_EL1), access_elr}, |
| |
| { SYS_DESC(SYS_AFSR0_EL1), access_vm_reg, reset_unknown, AFSR0_EL1 }, |
| { SYS_DESC(SYS_AFSR1_EL1), access_vm_reg, reset_unknown, AFSR1_EL1 }, |
| { SYS_DESC(SYS_ESR_EL1), access_vm_reg, reset_unknown, ESR_EL1 }, |
| |
| { SYS_DESC(SYS_ERRIDR_EL1), trap_raz_wi }, |
| { SYS_DESC(SYS_ERRSELR_EL1), trap_raz_wi }, |
| { SYS_DESC(SYS_ERXFR_EL1), trap_raz_wi }, |
| { SYS_DESC(SYS_ERXCTLR_EL1), trap_raz_wi }, |
| { SYS_DESC(SYS_ERXSTATUS_EL1), trap_raz_wi }, |
| { SYS_DESC(SYS_ERXADDR_EL1), trap_raz_wi }, |
| { SYS_DESC(SYS_ERXMISC0_EL1), trap_raz_wi }, |
| { SYS_DESC(SYS_ERXMISC1_EL1), trap_raz_wi }, |
| |
| MTE_REG(TFSR_EL1), |
| MTE_REG(TFSRE0_EL1), |
| |
| { SYS_DESC(SYS_FAR_EL1), access_vm_reg, reset_unknown, FAR_EL1 }, |
| { SYS_DESC(SYS_PAR_EL1), NULL, reset_unknown, PAR_EL1 }, |
| |
| { SYS_DESC(SYS_PMSCR_EL1), undef_access }, |
| { SYS_DESC(SYS_PMSNEVFR_EL1), undef_access }, |
| { SYS_DESC(SYS_PMSICR_EL1), undef_access }, |
| { SYS_DESC(SYS_PMSIRR_EL1), undef_access }, |
| { SYS_DESC(SYS_PMSFCR_EL1), undef_access }, |
| { SYS_DESC(SYS_PMSEVFR_EL1), undef_access }, |
| { SYS_DESC(SYS_PMSLATFR_EL1), undef_access }, |
| { SYS_DESC(SYS_PMSIDR_EL1), undef_access }, |
| { SYS_DESC(SYS_PMBLIMITR_EL1), undef_access }, |
| { SYS_DESC(SYS_PMBPTR_EL1), undef_access }, |
| { SYS_DESC(SYS_PMBSR_EL1), undef_access }, |
| /* PMBIDR_EL1 is not trapped */ |
| |
| { PMU_SYS_REG(PMINTENSET_EL1), |
| .access = access_pminten, .reg = PMINTENSET_EL1, |
| .get_user = get_pmreg, .set_user = set_pmreg }, |
| { PMU_SYS_REG(PMINTENCLR_EL1), |
| .access = access_pminten, .reg = PMINTENSET_EL1, |
| .get_user = get_pmreg, .set_user = set_pmreg }, |
| { SYS_DESC(SYS_PMMIR_EL1), trap_raz_wi }, |
| |
| { SYS_DESC(SYS_MAIR_EL1), access_vm_reg, reset_unknown, MAIR_EL1 }, |
| { SYS_DESC(SYS_PIRE0_EL1), NULL, reset_unknown, PIRE0_EL1 }, |
| { SYS_DESC(SYS_PIR_EL1), NULL, reset_unknown, PIR_EL1 }, |
| { SYS_DESC(SYS_AMAIR_EL1), access_vm_reg, reset_amair_el1, AMAIR_EL1 }, |
| |
| { SYS_DESC(SYS_LORSA_EL1), trap_loregion }, |
| { SYS_DESC(SYS_LOREA_EL1), trap_loregion }, |
| { SYS_DESC(SYS_LORN_EL1), trap_loregion }, |
| { SYS_DESC(SYS_LORC_EL1), trap_loregion }, |
| { SYS_DESC(SYS_LORID_EL1), trap_loregion }, |
| |
| { SYS_DESC(SYS_VBAR_EL1), access_rw, reset_val, VBAR_EL1, 0 }, |
| { SYS_DESC(SYS_DISR_EL1), NULL, reset_val, DISR_EL1, 0 }, |
| |
| { SYS_DESC(SYS_ICC_IAR0_EL1), write_to_read_only }, |
| { SYS_DESC(SYS_ICC_EOIR0_EL1), read_from_write_only }, |
| { SYS_DESC(SYS_ICC_HPPIR0_EL1), write_to_read_only }, |
| { SYS_DESC(SYS_ICC_DIR_EL1), read_from_write_only }, |
| { SYS_DESC(SYS_ICC_RPR_EL1), write_to_read_only }, |
| { SYS_DESC(SYS_ICC_SGI1R_EL1), access_gic_sgi }, |
| { SYS_DESC(SYS_ICC_ASGI1R_EL1), access_gic_sgi }, |
| { SYS_DESC(SYS_ICC_SGI0R_EL1), access_gic_sgi }, |
| { SYS_DESC(SYS_ICC_IAR1_EL1), write_to_read_only }, |
| { SYS_DESC(SYS_ICC_EOIR1_EL1), read_from_write_only }, |
| { SYS_DESC(SYS_ICC_HPPIR1_EL1), write_to_read_only }, |
| { SYS_DESC(SYS_ICC_SRE_EL1), access_gic_sre }, |
| |
| { SYS_DESC(SYS_CONTEXTIDR_EL1), access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 }, |
| { SYS_DESC(SYS_TPIDR_EL1), NULL, reset_unknown, TPIDR_EL1 }, |
| |
| { SYS_DESC(SYS_ACCDATA_EL1), undef_access }, |
| |
| { SYS_DESC(SYS_SCXTNUM_EL1), undef_access }, |
| |
| { SYS_DESC(SYS_CNTKCTL_EL1), NULL, reset_val, CNTKCTL_EL1, 0}, |
| |
| { SYS_DESC(SYS_CCSIDR_EL1), access_ccsidr }, |
| { SYS_DESC(SYS_CLIDR_EL1), access_clidr, reset_clidr, CLIDR_EL1, |
| .set_user = set_clidr }, |
| { SYS_DESC(SYS_CCSIDR2_EL1), undef_access }, |
| { SYS_DESC(SYS_SMIDR_EL1), undef_access }, |
| { SYS_DESC(SYS_CSSELR_EL1), access_csselr, reset_unknown, CSSELR_EL1 }, |
| { SYS_DESC(SYS_CTR_EL0), access_ctr }, |
| { SYS_DESC(SYS_SVCR), undef_access }, |
| |
| { PMU_SYS_REG(PMCR_EL0), .access = access_pmcr, .reset = reset_pmcr, |
| .reg = PMCR_EL0, .get_user = get_pmcr, .set_user = set_pmcr }, |
| { PMU_SYS_REG(PMCNTENSET_EL0), |
| .access = access_pmcnten, .reg = PMCNTENSET_EL0, |
| .get_user = get_pmreg, .set_user = set_pmreg }, |
| { PMU_SYS_REG(PMCNTENCLR_EL0), |
| .access = access_pmcnten, .reg = PMCNTENSET_EL0, |
| .get_user = get_pmreg, .set_user = set_pmreg }, |
| { PMU_SYS_REG(PMOVSCLR_EL0), |
| .access = access_pmovs, .reg = PMOVSSET_EL0, |
| .get_user = get_pmreg, .set_user = set_pmreg }, |
| /* |
| * PM_SWINC_EL0 is exposed to userspace as RAZ/WI, as it was |
| * previously (and pointlessly) advertised in the past... |
| */ |
| { PMU_SYS_REG(PMSWINC_EL0), |
| .get_user = get_raz_reg, .set_user = set_wi_reg, |
| .access = access_pmswinc, .reset = NULL }, |
| { PMU_SYS_REG(PMSELR_EL0), |
| .access = access_pmselr, .reset = reset_pmselr, .reg = PMSELR_EL0 }, |
| { PMU_SYS_REG(PMCEID0_EL0), |
| .access = access_pmceid, .reset = NULL }, |
| { PMU_SYS_REG(PMCEID1_EL0), |
| .access = access_pmceid, .reset = NULL }, |
| { PMU_SYS_REG(PMCCNTR_EL0), |
| .access = access_pmu_evcntr, .reset = reset_unknown, |
| .reg = PMCCNTR_EL0, .get_user = get_pmu_evcntr}, |
| { PMU_SYS_REG(PMXEVTYPER_EL0), |
| .access = access_pmu_evtyper, .reset = NULL }, |
| { PMU_SYS_REG(PMXEVCNTR_EL0), |
| .access = access_pmu_evcntr, .reset = NULL }, |
| /* |
| * PMUSERENR_EL0 resets as unknown in 64bit mode while it resets as zero |
| * in 32bit mode. Here we choose to reset it as zero for consistency. |
| */ |
| { PMU_SYS_REG(PMUSERENR_EL0), .access = access_pmuserenr, |
| .reset = reset_val, .reg = PMUSERENR_EL0, .val = 0 }, |
| { PMU_SYS_REG(PMOVSSET_EL0), |
| .access = access_pmovs, .reg = PMOVSSET_EL0, |
| .get_user = get_pmreg, .set_user = set_pmreg }, |
| |
| { SYS_DESC(SYS_TPIDR_EL0), NULL, reset_unknown, TPIDR_EL0 }, |
| { SYS_DESC(SYS_TPIDRRO_EL0), NULL, reset_unknown, TPIDRRO_EL0 }, |
| { SYS_DESC(SYS_TPIDR2_EL0), undef_access }, |
| |
| { SYS_DESC(SYS_SCXTNUM_EL0), undef_access }, |
| |
| { SYS_DESC(SYS_AMCR_EL0), undef_access }, |
| { SYS_DESC(SYS_AMCFGR_EL0), undef_access }, |
| { SYS_DESC(SYS_AMCGCR_EL0), undef_access }, |
| { SYS_DESC(SYS_AMUSERENR_EL0), undef_access }, |
| { SYS_DESC(SYS_AMCNTENCLR0_EL0), undef_access }, |
| { SYS_DESC(SYS_AMCNTENSET0_EL0), undef_access }, |
| { SYS_DESC(SYS_AMCNTENCLR1_EL0), undef_access }, |
| { SYS_DESC(SYS_AMCNTENSET1_EL0), undef_access }, |
| AMU_AMEVCNTR0_EL0(0), |
| AMU_AMEVCNTR0_EL0(1), |
| AMU_AMEVCNTR0_EL0(2), |
| AMU_AMEVCNTR0_EL0(3), |
| AMU_AMEVCNTR0_EL0(4), |
| AMU_AMEVCNTR0_EL0(5), |
| AMU_AMEVCNTR0_EL0(6), |
| AMU_AMEVCNTR0_EL0(7), |
| AMU_AMEVCNTR0_EL0(8), |
| AMU_AMEVCNTR0_EL0(9), |
| AMU_AMEVCNTR0_EL0(10), |
| AMU_AMEVCNTR0_EL0(11), |
| AMU_AMEVCNTR0_EL0(12), |
| AMU_AMEVCNTR0_EL0(13), |
| AMU_AMEVCNTR0_EL0(14), |
| AMU_AMEVCNTR0_EL0(15), |
| AMU_AMEVTYPER0_EL0(0), |
| AMU_AMEVTYPER0_EL0(1), |
| AMU_AMEVTYPER0_EL0(2), |
| AMU_AMEVTYPER0_EL0(3), |
| AMU_AMEVTYPER0_EL0(4), |
| AMU_AMEVTYPER0_EL0(5), |
| AMU_AMEVTYPER0_EL0(6), |
| AMU_AMEVTYPER0_EL0(7), |
| AMU_AMEVTYPER0_EL0(8), |
| AMU_AMEVTYPER0_EL0(9), |
| AMU_AMEVTYPER0_EL0(10), |
| AMU_AMEVTYPER0_EL0(11), |
| AMU_AMEVTYPER0_EL0(12), |
| AMU_AMEVTYPER0_EL0(13), |
| AMU_AMEVTYPER0_EL0(14), |
| AMU_AMEVTYPER0_EL0(15), |
| AMU_AMEVCNTR1_EL0(0), |
| AMU_AMEVCNTR1_EL0(1), |
| AMU_AMEVCNTR1_EL0(2), |
| AMU_AMEVCNTR1_EL0(3), |
| AMU_AMEVCNTR1_EL0(4), |
| AMU_AMEVCNTR1_EL0(5), |
| AMU_AMEVCNTR1_EL0(6), |
| AMU_AMEVCNTR1_EL0(7), |
| AMU_AMEVCNTR1_EL0(8), |
| AMU_AMEVCNTR1_EL0(9), |
| AMU_AMEVCNTR1_EL0(10), |
| AMU_AMEVCNTR1_EL0(11), |
| AMU_AMEVCNTR1_EL0(12), |
| AMU_AMEVCNTR1_EL0(13), |
| AMU_AMEVCNTR1_EL0(14), |
| AMU_AMEVCNTR1_EL0(15), |
| AMU_AMEVTYPER1_EL0(0), |
| AMU_AMEVTYPER1_EL0(1), |
| AMU_AMEVTYPER1_EL0(2), |
| AMU_AMEVTYPER1_EL0(3), |
| AMU_AMEVTYPER1_EL0(4), |
| AMU_AMEVTYPER1_EL0(5), |
| AMU_AMEVTYPER1_EL0(6), |
| AMU_AMEVTYPER1_EL0(7), |
| AMU_AMEVTYPER1_EL0(8), |
| AMU_AMEVTYPER1_EL0(9), |
| AMU_AMEVTYPER1_EL0(10), |
| AMU_AMEVTYPER1_EL0(11), |
| AMU_AMEVTYPER1_EL0(12), |
| AMU_AMEVTYPER1_EL0(13), |
| AMU_AMEVTYPER1_EL0(14), |
| AMU_AMEVTYPER1_EL0(15), |
| |
| { SYS_DESC(SYS_CNTPCT_EL0), access_arch_timer }, |
| { SYS_DESC(SYS_CNTPCTSS_EL0), access_arch_timer }, |
| { SYS_DESC(SYS_CNTP_TVAL_EL0), access_arch_timer }, |
| { SYS_DESC(SYS_CNTP_CTL_EL0), access_arch_timer }, |
| { SYS_DESC(SYS_CNTP_CVAL_EL0), access_arch_timer }, |
| |
| /* PMEVCNTRn_EL0 */ |
| PMU_PMEVCNTR_EL0(0), |
| PMU_PMEVCNTR_EL0(1), |
| PMU_PMEVCNTR_EL0(2), |
| PMU_PMEVCNTR_EL0(3), |
| PMU_PMEVCNTR_EL0(4), |
| PMU_PMEVCNTR_EL0(5), |
| PMU_PMEVCNTR_EL0(6), |
| PMU_PMEVCNTR_EL0(7), |
| PMU_PMEVCNTR_EL0(8), |
| PMU_PMEVCNTR_EL0(9), |
| PMU_PMEVCNTR_EL0(10), |
| PMU_PMEVCNTR_EL0(11), |
| PMU_PMEVCNTR_EL0(12), |
| PMU_PMEVCNTR_EL0(13), |
| PMU_PMEVCNTR_EL0(14), |
| PMU_PMEVCNTR_EL0(15), |
| PMU_PMEVCNTR_EL0(16), |
| PMU_PMEVCNTR_EL0(17), |
| PMU_PMEVCNTR_EL0(18), |
| PMU_PMEVCNTR_EL0(19), |
| PMU_PMEVCNTR_EL0(20), |
| PMU_PMEVCNTR_EL0(21), |
| PMU_PMEVCNTR_EL0(22), |
| PMU_PMEVCNTR_EL0(23), |
| PMU_PMEVCNTR_EL0(24), |
| PMU_PMEVCNTR_EL0(25), |
| PMU_PMEVCNTR_EL0(26), |
| PMU_PMEVCNTR_EL0(27), |
| PMU_PMEVCNTR_EL0(28), |
| PMU_PMEVCNTR_EL0(29), |
| PMU_PMEVCNTR_EL0(30), |
| /* PMEVTYPERn_EL0 */ |
| PMU_PMEVTYPER_EL0(0), |
| PMU_PMEVTYPER_EL0(1), |
| PMU_PMEVTYPER_EL0(2), |
| PMU_PMEVTYPER_EL0(3), |
| PMU_PMEVTYPER_EL0(4), |
| PMU_PMEVTYPER_EL0(5), |
| PMU_PMEVTYPER_EL0(6), |
| PMU_PMEVTYPER_EL0(7), |
| PMU_PMEVTYPER_EL0(8), |
| PMU_PMEVTYPER_EL0(9), |
| PMU_PMEVTYPER_EL0(10), |
| PMU_PMEVTYPER_EL0(11), |
| PMU_PMEVTYPER_EL0(12), |
| PMU_PMEVTYPER_EL0(13), |
| PMU_PMEVTYPER_EL0(14), |
| PMU_PMEVTYPER_EL0(15), |
| PMU_PMEVTYPER_EL0(16), |
| PMU_PMEVTYPER_EL0(17), |
| PMU_PMEVTYPER_EL0(18), |
| PMU_PMEVTYPER_EL0(19), |
| PMU_PMEVTYPER_EL0(20), |
| PMU_PMEVTYPER_EL0(21), |
| PMU_PMEVTYPER_EL0(22), |
| PMU_PMEVTYPER_EL0(23), |
| PMU_PMEVTYPER_EL0(24), |
| PMU_PMEVTYPER_EL0(25), |
| PMU_PMEVTYPER_EL0(26), |
| PMU_PMEVTYPER_EL0(27), |
| PMU_PMEVTYPER_EL0(28), |
| PMU_PMEVTYPER_EL0(29), |
| PMU_PMEVTYPER_EL0(30), |
| /* |
| * PMCCFILTR_EL0 resets as unknown in 64bit mode while it resets as zero |
| * in 32bit mode. Here we choose to reset it as zero for consistency. |
| */ |
| { PMU_SYS_REG(PMCCFILTR_EL0), .access = access_pmu_evtyper, |
| .reset = reset_val, .reg = PMCCFILTR_EL0, .val = 0 }, |
| |
| EL2_REG_VNCR(VPIDR_EL2, reset_unknown, 0), |
| EL2_REG_VNCR(VMPIDR_EL2, reset_unknown, 0), |
| EL2_REG(SCTLR_EL2, access_rw, reset_val, SCTLR_EL2_RES1), |
| EL2_REG(ACTLR_EL2, access_rw, reset_val, 0), |
| EL2_REG_VNCR(HCR_EL2, reset_hcr, 0), |
| EL2_REG(MDCR_EL2, access_rw, reset_val, 0), |
| EL2_REG(CPTR_EL2, access_rw, reset_val, CPTR_NVHE_EL2_RES1), |
| EL2_REG_VNCR(HSTR_EL2, reset_val, 0), |
| EL2_REG_VNCR(HFGRTR_EL2, reset_val, 0), |
| EL2_REG_VNCR(HFGWTR_EL2, reset_val, 0), |
| EL2_REG_VNCR(HFGITR_EL2, reset_val, 0), |
| EL2_REG_VNCR(HACR_EL2, reset_val, 0), |
| |
| EL2_REG_VNCR(HCRX_EL2, reset_val, 0), |
| |
| EL2_REG(TTBR0_EL2, access_rw, reset_val, 0), |
| EL2_REG(TTBR1_EL2, access_rw, reset_val, 0), |
| EL2_REG(TCR_EL2, access_rw, reset_val, TCR_EL2_RES1), |
| EL2_REG_VNCR(VTTBR_EL2, reset_val, 0), |
| EL2_REG_VNCR(VTCR_EL2, reset_val, 0), |
| |
| { SYS_DESC(SYS_DACR32_EL2), trap_undef, reset_unknown, DACR32_EL2 }, |
| EL2_REG_VNCR(HDFGRTR_EL2, reset_val, 0), |
| EL2_REG_VNCR(HDFGWTR_EL2, reset_val, 0), |
| EL2_REG_VNCR(HAFGRTR_EL2, reset_val, 0), |
| EL2_REG_REDIR(SPSR_EL2, reset_val, 0), |
| EL2_REG_REDIR(ELR_EL2, reset_val, 0), |
| { SYS_DESC(SYS_SP_EL1), access_sp_el1}, |
| |
| /* AArch32 SPSR_* are RES0 if trapped from a NV guest */ |
| { SYS_DESC(SYS_SPSR_irq), .access = trap_raz_wi, |
| .visibility = hidden_user_visibility }, |
| { SYS_DESC(SYS_SPSR_abt), .access = trap_raz_wi, |
| .visibility = hidden_user_visibility }, |
| { SYS_DESC(SYS_SPSR_und), .access = trap_raz_wi, |
| .visibility = hidden_user_visibility }, |
| { SYS_DESC(SYS_SPSR_fiq), .access = trap_raz_wi, |
| .visibility = hidden_user_visibility }, |
| |
| { SYS_DESC(SYS_IFSR32_EL2), trap_undef, reset_unknown, IFSR32_EL2 }, |
| EL2_REG(AFSR0_EL2, access_rw, reset_val, 0), |
| EL2_REG(AFSR1_EL2, access_rw, reset_val, 0), |
| EL2_REG_REDIR(ESR_EL2, reset_val, 0), |
| { SYS_DESC(SYS_FPEXC32_EL2), trap_undef, reset_val, FPEXC32_EL2, 0x700 }, |
| |
| EL2_REG_REDIR(FAR_EL2, reset_val, 0), |
| EL2_REG(HPFAR_EL2, access_rw, reset_val, 0), |
| |
| EL2_REG(MAIR_EL2, access_rw, reset_val, 0), |
| EL2_REG(AMAIR_EL2, access_rw, reset_val, 0), |
| |
| EL2_REG(VBAR_EL2, access_rw, reset_val, 0), |
| EL2_REG(RVBAR_EL2, access_rw, reset_val, 0), |
| { SYS_DESC(SYS_RMR_EL2), trap_undef }, |
| |
| EL2_REG(CONTEXTIDR_EL2, access_rw, reset_val, 0), |
| EL2_REG(TPIDR_EL2, access_rw, reset_val, 0), |
| |
| EL2_REG_VNCR(CNTVOFF_EL2, reset_val, 0), |
| EL2_REG(CNTHCTL_EL2, access_rw, reset_val, 0), |
| |
| EL12_REG(CNTKCTL, access_rw, reset_val, 0), |
| |
| EL2_REG(SP_EL2, NULL, reset_unknown, 0), |
| }; |
| |
| static struct sys_reg_desc sys_insn_descs[] = { |
| { SYS_DESC(SYS_DC_ISW), access_dcsw }, |
| { SYS_DESC(SYS_DC_IGSW), access_dcgsw }, |
| { SYS_DESC(SYS_DC_IGDSW), access_dcgsw }, |
| { SYS_DESC(SYS_DC_CSW), access_dcsw }, |
| { SYS_DESC(SYS_DC_CGSW), access_dcgsw }, |
| { SYS_DESC(SYS_DC_CGDSW), access_dcgsw }, |
| { SYS_DESC(SYS_DC_CISW), access_dcsw }, |
| { SYS_DESC(SYS_DC_CIGSW), access_dcgsw }, |
| { SYS_DESC(SYS_DC_CIGDSW), access_dcgsw }, |
| }; |
| |
| static const struct sys_reg_desc *first_idreg; |
| |
| static bool trap_dbgdidr(struct kvm_vcpu *vcpu, |
| struct sys_reg_params *p, |
| const struct sys_reg_desc *r) |
| { |
| if (p->is_write) { |
| return ignore_write(vcpu, p); |
| } else { |
| u64 dfr = IDREG(vcpu->kvm, SYS_ID_AA64DFR0_EL1); |
| u32 el3 = kvm_has_feat(vcpu->kvm, ID_AA64PFR0_EL1, EL3, IMP); |
| |
| p->regval = ((SYS_FIELD_GET(ID_AA64DFR0_EL1, WRPs, dfr) << 28) | |
| (SYS_FIELD_GET(ID_AA64DFR0_EL1, BRPs, dfr) << 24) | |
| (SYS_FIELD_GET(ID_AA64DFR0_EL1, CTX_CMPs, dfr) << 20) | |
| (SYS_FIELD_GET(ID_AA64DFR0_EL1, DebugVer, dfr) << 16) | |
| (1 << 15) | (el3 << 14) | (el3 << 12)); |
| return true; |
| } |
| } |
| |
| /* |
| * AArch32 debug register mappings |
| * |
| * AArch32 DBGBVRn is mapped to DBGBVRn_EL1[31:0] |
| * AArch32 DBGBXVRn is mapped to DBGBVRn_EL1[63:32] |
| * |
| * None of the other registers share their location, so treat them as |
| * if they were 64bit. |
| */ |
| #define DBG_BCR_BVR_WCR_WVR(n) \ |
| /* DBGBVRn */ \ |
| { AA32(LO), Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_bvr, NULL, n }, \ |
| /* DBGBCRn */ \ |
| { Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_bcr, NULL, n }, \ |
| /* DBGWVRn */ \ |
| { Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_wvr, NULL, n }, \ |
| /* DBGWCRn */ \ |
| { Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_wcr, NULL, n } |
| |
| #define DBGBXVR(n) \ |
| { AA32(HI), Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_bvr, NULL, n } |
| |
| /* |
| * Trapped cp14 registers. We generally ignore most of the external |
| * debug, on the principle that they don't really make sense to a |
| * guest. Revisit this one day, would this principle change. |
| */ |
| static const struct sys_reg_desc cp14_regs[] = { |
| /* DBGDIDR */ |
| { Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgdidr }, |
| /* DBGDTRRXext */ |
| { Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi }, |
| |
| DBG_BCR_BVR_WCR_WVR(0), |
| /* DBGDSCRint */ |
| { Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi }, |
| DBG_BCR_BVR_WCR_WVR(1), |
| /* DBGDCCINT */ |
| { Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug_regs, NULL, MDCCINT_EL1 }, |
| /* DBGDSCRext */ |
| { Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug_regs, NULL, MDSCR_EL1 }, |
| DBG_BCR_BVR_WCR_WVR(2), |
| /* DBGDTR[RT]Xint */ |
| { Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi }, |
| /* DBGDTR[RT]Xext */ |
| { Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi }, |
| DBG_BCR_BVR_WCR_WVR(3), |
| DBG_BCR_BVR_WCR_WVR(4), |
| DBG_BCR_BVR_WCR_WVR(5), |
| /* DBGWFAR */ |
| { Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi }, |
| /* DBGOSECCR */ |
| { Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi }, |
| DBG_BCR_BVR_WCR_WVR(6), |
| /* DBGVCR */ |
| { Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug_regs, NULL, DBGVCR32_EL2 }, |
| DBG_BCR_BVR_WCR_WVR(7), |
| DBG_BCR_BVR_WCR_WVR(8), |
| DBG_BCR_BVR_WCR_WVR(9), |
| DBG_BCR_BVR_WCR_WVR(10), |
| DBG_BCR_BVR_WCR_WVR(11), |
| DBG_BCR_BVR_WCR_WVR(12), |
| DBG_BCR_BVR_WCR_WVR(13), |
| DBG_BCR_BVR_WCR_WVR(14), |
| DBG_BCR_BVR_WCR_WVR(15), |
| |
| /* DBGDRAR (32bit) */ |
| { Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi }, |
| |
| DBGBXVR(0), |
| /* DBGOSLAR */ |
| { Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_oslar_el1 }, |
| DBGBXVR(1), |
| /* DBGOSLSR */ |
| { Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1, NULL, OSLSR_EL1 }, |
| DBGBXVR(2), |
| DBGBXVR(3), |
| /* DBGOSDLR */ |
| { Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi }, |
| DBGBXVR(4), |
| /* DBGPRCR */ |
| { Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi }, |
| DBGBXVR(5), |
| DBGBXVR(6), |
| DBGBXVR(7), |
| DBGBXVR(8), |
| DBGBXVR(9), |
| DBGBXVR(10), |
| DBGBXVR(11), |
| DBGBXVR(12), |
| DBGBXVR(13), |
| DBGBXVR(14), |
| DBGBXVR(15), |
| |
| /* DBGDSAR (32bit) */ |
| { Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi }, |
| |
| /* DBGDEVID2 */ |
| { Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi }, |
| /* DBGDEVID1 */ |
| { Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi }, |
| /* DBGDEVID */ |
| { Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi }, |
| /* DBGCLAIMSET */ |
| { Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi }, |
| /* DBGCLAIMCLR */ |
| { Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi }, |
| /* DBGAUTHSTATUS */ |
| { Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 }, |
| }; |
| |
| /* Trapped cp14 64bit registers */ |
| static const struct sys_reg_desc cp14_64_regs[] = { |
| /* DBGDRAR (64bit) */ |
| { Op1( 0), CRm( 1), .access = trap_raz_wi }, |
| |
| /* DBGDSAR (64bit) */ |
| { Op1( 0), CRm( 2), .access = trap_raz_wi }, |
| }; |
| |
| #define CP15_PMU_SYS_REG(_map, _Op1, _CRn, _CRm, _Op2) \ |
| AA32(_map), \ |
| Op1(_Op1), CRn(_CRn), CRm(_CRm), Op2(_Op2), \ |
| .visibility = pmu_visibility |
| |
| /* Macro to expand the PMEVCNTRn register */ |
| #define PMU_PMEVCNTR(n) \ |
| { CP15_PMU_SYS_REG(DIRECT, 0, 0b1110, \ |
| (0b1000 | (((n) >> 3) & 0x3)), ((n) & 0x7)), \ |
| .access = access_pmu_evcntr } |
| |
| /* Macro to expand the PMEVTYPERn register */ |
| #define PMU_PMEVTYPER(n) \ |
| { CP15_PMU_SYS_REG(DIRECT, 0, 0b1110, \ |
| (0b1100 | (((n) >> 3) & 0x3)), ((n) & 0x7)), \ |
| .access = access_pmu_evtyper } |
| /* |
| * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding, |
| * depending on the way they are accessed (as a 32bit or a 64bit |
| * register). |
| */ |
| static const struct sys_reg_desc cp15_regs[] = { |
| { Op1( 0), CRn( 0), CRm( 0), Op2( 1), access_ctr }, |
| { Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg, NULL, SCTLR_EL1 }, |
| /* ACTLR */ |
| { AA32(LO), Op1( 0), CRn( 1), CRm( 0), Op2( 1), access_actlr, NULL, ACTLR_EL1 }, |
| /* ACTLR2 */ |
| { AA32(HI), Op1( 0), CRn( 1), CRm( 0), Op2( 3), access_actlr, NULL, ACTLR_EL1 }, |
| { Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, TTBR0_EL1 }, |
| { Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, TTBR1_EL1 }, |
| /* TTBCR */ |
| { AA32(LO), Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, TCR_EL1 }, |
| /* TTBCR2 */ |
| { AA32(HI), Op1( 0), CRn( 2), CRm( 0), Op2( 3), access_vm_reg, NULL, TCR_EL1 }, |
| { Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, DACR32_EL2 }, |
| /* DFSR */ |
| { Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, ESR_EL1 }, |
| { Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, IFSR32_EL2 }, |
| /* ADFSR */ |
| { Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, AFSR0_EL1 }, |
| /* AIFSR */ |
| { Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, AFSR1_EL1 }, |
| /* DFAR */ |
| { AA32(LO), Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, FAR_EL1 }, |
| /* IFAR */ |
| { AA32(HI), Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, FAR_EL1 }, |
| |
| /* |
| * DC{C,I,CI}SW operations: |
| */ |
| { Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw }, |
| { Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw }, |
| { Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw }, |
| |
| /* PMU */ |
| { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 0), .access = access_pmcr }, |
| { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 1), .access = access_pmcnten }, |
| { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 2), .access = access_pmcnten }, |
| { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 3), .access = access_pmovs }, |
| { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 4), .access = access_pmswinc }, |
| { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 5), .access = access_pmselr }, |
| { CP15_PMU_SYS_REG(LO, 0, 9, 12, 6), .access = access_pmceid }, |
| { CP15_PMU_SYS_REG(LO, 0, 9, 12, 7), .access = access_pmceid }, |
| { CP15_PMU_SYS_REG(DIRECT, 0, 9, 13, 0), .access = access_pmu_evcntr }, |
| { CP15_PMU_SYS_REG(DIRECT, 0, 9, 13, 1), .access = access_pmu_evtyper }, |
| { CP15_PMU_SYS_REG(DIRECT, 0, 9, 13, 2), .access = access_pmu_evcntr }, |
| { CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 0), .access = access_pmuserenr }, |
| { CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 1), .access = access_pminten }, |
| { CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 2), .access = access_pminten }, |
| { CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 3), .access = access_pmovs }, |
| { CP15_PMU_SYS_REG(HI, 0, 9, 14, 4), .access = access_pmceid }, |
| { CP15_PMU_SYS_REG(HI, 0, 9, 14, 5), .access = access_pmceid }, |
| /* PMMIR */ |
| { CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 6), .access = trap_raz_wi }, |
| |
| /* PRRR/MAIR0 */ |
| { AA32(LO), Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, MAIR_EL1 }, |
| /* NMRR/MAIR1 */ |
| { AA32(HI), Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, MAIR_EL1 }, |
| /* AMAIR0 */ |
| { AA32(LO), Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, AMAIR_EL1 }, |
| /* AMAIR1 */ |
| { AA32(HI), Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, AMAIR_EL1 }, |
| |
| /* ICC_SRE */ |
| { Op1( 0), CRn(12), CRm(12), Op2( 5), access_gic_sre }, |
| |
| { Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, CONTEXTIDR_EL1 }, |
| |
| /* Arch Tmers */ |
| { SYS_DESC(SYS_AARCH32_CNTP_TVAL), access_arch_timer }, |
| { SYS_DESC(SYS_AARCH32_CNTP_CTL), access_arch_timer }, |
| |
| /* PMEVCNTRn */ |
| PMU_PMEVCNTR(0), |
| PMU_PMEVCNTR(1), |
| PMU_PMEVCNTR(2), |
| PMU_PMEVCNTR(3), |
| PMU_PMEVCNTR(4), |
| PMU_PMEVCNTR(5), |
| PMU_PMEVCNTR(6), |
| PMU_PMEVCNTR(7), |
| PMU_PMEVCNTR(8), |
| PMU_PMEVCNTR(9), |
| PMU_PMEVCNTR(10), |
| PMU_PMEVCNTR(11), |
| PMU_PMEVCNTR(12), |
| PMU_PMEVCNTR(13), |
| PMU_PMEVCNTR(14), |
| PMU_PMEVCNTR(15), |
| PMU_PMEVCNTR(16), |
| PMU_PMEVCNTR(17), |
| PMU_PMEVCNTR(18), |
| PMU_PMEVCNTR(19), |
| PMU_PMEVCNTR(20), |
| PMU_PMEVCNTR(21), |
| PMU_PMEVCNTR(22), |
| PMU_PMEVCNTR(23), |
| PMU_PMEVCNTR(24), |
| PMU_PMEVCNTR(25), |
| PMU_PMEVCNTR(26), |
| PMU_PMEVCNTR(27), |
| PMU_PMEVCNTR(28), |
| PMU_PMEVCNTR(29), |
| PMU_PMEVCNTR(30), |
| /* PMEVTYPERn */ |
| PMU_PMEVTYPER(0), |
| PMU_PMEVTYPER(1), |
| PMU_PMEVTYPER(2), |
| PMU_PMEVTYPER(3), |
| PMU_PMEVTYPER(4), |
| PMU_PMEVTYPER(5), |
| PMU_PMEVTYPER(6), |
| PMU_PMEVTYPER(7), |
| PMU_PMEVTYPER(8), |
| PMU_PMEVTYPER(9), |
| PMU_PMEVTYPER(10), |
| PMU_PMEVTYPER(11), |
| PMU_PMEVTYPER(12), |
| PMU_PMEVTYPER(13), |
| PMU_PMEVTYPER(14), |
| PMU_PMEVTYPER(15), |
| PMU_PMEVTYPER(16), |
| PMU_PMEVTYPER(17), |
| PMU_PMEVTYPER(18), |
| PMU_PMEVTYPER(19), |
| PMU_PMEVTYPER(20), |
| PMU_PMEVTYPER(21), |
| PMU_PMEVTYPER(22), |
| PMU_PMEVTYPER(23), |
| PMU_PMEVTYPER(24), |
| PMU_PMEVTYPER(25), |
| PMU_PMEVTYPER(26), |
| PMU_PMEVTYPER(27), |
| PMU_PMEVTYPER(28), |
| PMU_PMEVTYPER(29), |
| PMU_PMEVTYPER(30), |
| /* PMCCFILTR */ |
| { CP15_PMU_SYS_REG(DIRECT, 0, 14, 15, 7), .access = access_pmu_evtyper }, |
| |
| { Op1(1), CRn( 0), CRm( 0), Op2(0), access_ccsidr }, |
| { Op1(1), CRn( 0), CRm( 0), Op2(1), access_clidr }, |
| |
| /* CCSIDR2 */ |
| { Op1(1), CRn( 0), CRm( 0), Op2(2), undef_access }, |
| |
| { Op1(2), CRn( 0), CRm( 0), Op2(0), access_csselr, NULL, CSSELR_EL1 }, |
| }; |
| |
| static const struct sys_reg_desc cp15_64_regs[] = { |
| { Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, TTBR0_EL1 }, |
| { CP15_PMU_SYS_REG(DIRECT, 0, 0, 9, 0), .access = access_pmu_evcntr }, |
| { Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI1R */ |
| { SYS_DESC(SYS_AARCH32_CNTPCT), access_arch_timer }, |
| { Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, TTBR1_EL1 }, |
| { Op1( 1), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_ASGI1R */ |
| { Op1( 2), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI0R */ |
| { SYS_DESC(SYS_AARCH32_CNTP_CVAL), access_arch_timer }, |
| { SYS_DESC(SYS_AARCH32_CNTPCTSS), access_arch_timer }, |
| }; |
| |
| static bool check_sysreg_table(const struct sys_reg_desc *table, unsigned int n, |
| bool is_32) |
| { |
| unsigned int i; |
| |
| for (i = 0; i < n; i++) { |
| if (!is_32 && table[i].reg && !table[i].reset) { |
| kvm_err("sys_reg table %pS entry %d lacks reset\n", &table[i], i); |
| return false; |
| } |
| |
| if (i && cmp_sys_reg(&table[i-1], &table[i]) >= 0) { |
| kvm_err("sys_reg table %pS entry %d out of order\n", &table[i - 1], i - 1); |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu) |
| { |
| kvm_inject_undefined(vcpu); |
| return 1; |
| } |
| |
| static void perform_access(struct kvm_vcpu *vcpu, |
| struct sys_reg_params *params, |
| const struct sys_reg_desc *r) |
| { |
| trace_kvm_sys_access(*vcpu_pc(vcpu), params, r); |
| |
| /* Check for regs disabled by runtime config */ |
| if (sysreg_hidden(vcpu, r)) { |
| kvm_inject_undefined(vcpu); |
| return; |
| } |
| |
| /* |
| * Not having an accessor means that we have configured a trap |
| * that we don't know how to handle. This certainly qualifies |
| * as a gross bug that should be fixed right away. |
| */ |
| BUG_ON(!r->access); |
| |
| /* Skip instruction if instructed so */ |
| if (likely(r->access(vcpu, params, r))) |
| kvm_incr_pc(vcpu); |
| } |
| |
| /* |
| * emulate_cp -- tries to match a sys_reg access in a handling table, and |
| * call the corresponding trap handler. |
| * |
| * @params: pointer to the descriptor of the access |
| * @table: array of trap descriptors |
| * @num: size of the trap descriptor array |
| * |
| * Return true if the access has been handled, false if not. |
| */ |
| static bool emulate_cp(struct kvm_vcpu *vcpu, |
| struct sys_reg_params *params, |
| const struct sys_reg_desc *table, |
| size_t num) |
| { |
| const struct sys_reg_desc *r; |
| |
| if (!table) |
| return false; /* Not handled */ |
| |
| r = find_reg(params, table, num); |
| |
| if (r) { |
| perform_access(vcpu, params, r); |
| return true; |
| } |
| |
| /* Not handled */ |
| return false; |
| } |
| |
| static void unhandled_cp_access(struct kvm_vcpu *vcpu, |
| struct sys_reg_params *params) |
| { |
| u8 esr_ec = kvm_vcpu_trap_get_class(vcpu); |
| int cp = -1; |
| |
| switch (esr_ec) { |
| case ESR_ELx_EC_CP15_32: |
| case ESR_ELx_EC_CP15_64: |
| cp = 15; |
| break; |
| case ESR_ELx_EC_CP14_MR: |
| case ESR_ELx_EC_CP14_64: |
| cp = 14; |
| break; |
| default: |
| WARN_ON(1); |
| } |
| |
| print_sys_reg_msg(params, |
| "Unsupported guest CP%d access at: %08lx [%08lx]\n", |
| cp, *vcpu_pc(vcpu), *vcpu_cpsr(vcpu)); |
| kvm_inject_undefined(vcpu); |
| } |
| |
| /** |
| * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP14/CP15 access |
| * @vcpu: The VCPU pointer |
| * @global: &struct sys_reg_desc |
| * @nr_global: size of the @global array |
| */ |
| static int kvm_handle_cp_64(struct kvm_vcpu *vcpu, |
| const struct sys_reg_desc *global, |
| size_t nr_global) |
| { |
| struct sys_reg_params params; |
| u64 esr = kvm_vcpu_get_esr(vcpu); |
| int Rt = kvm_vcpu_sys_get_rt(vcpu); |
| int Rt2 = (esr >> 10) & 0x1f; |
| |
| params.CRm = (esr >> 1) & 0xf; |
| params.is_write = ((esr & 1) == 0); |
| |
| params.Op0 = 0; |
| params.Op1 = (esr >> 16) & 0xf; |
| params.Op2 = 0; |
| params.CRn = 0; |
| |
| /* |
| * Make a 64-bit value out of Rt and Rt2. As we use the same trap |
| * backends between AArch32 and AArch64, we get away with it. |
| */ |
| if (params.is_write) { |
| params.regval = vcpu_get_reg(vcpu, Rt) & 0xffffffff; |
| params.regval |= vcpu_get_reg(vcpu, Rt2) << 32; |
| } |
| |
| /* |
| * If the table contains a handler, handle the |
| * potential register operation in the case of a read and return |
| * with success. |
| */ |
| if (emulate_cp(vcpu, ¶ms, global, nr_global)) { |
| /* Split up the value between registers for the read side */ |
| if (!params.is_write) { |
| vcpu_set_reg(vcpu, Rt, lower_32_bits(params.regval)); |
| vcpu_set_reg(vcpu, Rt2, upper_32_bits(params.regval)); |
| } |
| |
| return 1; |
| } |
| |
| unhandled_cp_access(vcpu, ¶ms); |
| return 1; |
| } |
| |
| static bool emulate_sys_reg(struct kvm_vcpu *vcpu, struct sys_reg_params *params); |
| |
| /* |
| * The CP10 ID registers are architecturally mapped to AArch64 feature |
| * registers. Abuse that fact so we can rely on the AArch64 handler for accesses |
| * from AArch32. |
| */ |
| static bool kvm_esr_cp10_id_to_sys64(u64 esr, struct sys_reg_params *params) |
| { |
| u8 reg_id = (esr >> 10) & 0xf; |
| bool valid; |
| |
| params->is_write = ((esr & 1) == 0); |
| params->Op0 = 3; |
| params->Op1 = 0; |
| params->CRn = 0; |
| params->CRm = 3; |
| |
| /* CP10 ID registers are read-only */ |
| valid = !params->is_write; |
| |
| switch (reg_id) { |
| /* MVFR0 */ |
| case 0b0111: |
| params->Op2 = 0; |
| break; |
| /* MVFR1 */ |
| case 0b0110: |
| params->Op2 = 1; |
| break; |
| /* MVFR2 */ |
| case 0b0101: |
| params->Op2 = 2; |
| break; |
| default: |
| valid = false; |
| } |
| |
| if (valid) |
| return true; |
| |
| kvm_pr_unimpl("Unhandled cp10 register %s: %u\n", |
| params->is_write ? "write" : "read", reg_id); |
| return false; |
| } |
| |
| /** |
| * kvm_handle_cp10_id() - Handles a VMRS trap on guest access to a 'Media and |
| * VFP Register' from AArch32. |
| * @vcpu: The vCPU pointer |
| * |
| * MVFR{0-2} are architecturally mapped to the AArch64 MVFR{0-2}_EL1 registers. |
| * Work out the correct AArch64 system register encoding and reroute to the |
| * AArch64 system register emulation. |
| */ |
| int kvm_handle_cp10_id(struct kvm_vcpu *vcpu) |
| { |
| int Rt = kvm_vcpu_sys_get_rt(vcpu); |
| u64 esr = kvm_vcpu_get_esr(vcpu); |
| struct sys_reg_params params; |
| |
| /* UNDEF on any unhandled register access */ |
| if (!kvm_esr_cp10_id_to_sys64(esr, ¶ms)) { |
| kvm_inject_undefined(vcpu); |
| return 1; |
| } |
| |
| if (emulate_sys_reg(vcpu, ¶ms)) |
| vcpu_set_reg(vcpu, Rt, params.regval); |
| |
| return 1; |
| } |
| |
| /** |
| * kvm_emulate_cp15_id_reg() - Handles an MRC trap on a guest CP15 access where |
| * CRn=0, which corresponds to the AArch32 feature |
| * registers. |
| * @vcpu: the vCPU pointer |
| * @params: the system register access parameters. |
| * |
| * Our cp15 system register tables do not enumerate the AArch32 feature |
| * registers. Conveniently, our AArch64 table does, and the AArch32 system |
| * register encoding can be trivially remapped into the AArch64 for the feature |
| * registers: Append op0=3, leaving op1, CRn, CRm, and op2 the same. |
| * |
| * According to DDI0487G.b G7.3.1, paragraph "Behavior of VMSAv8-32 32-bit |
| * System registers with (coproc=0b1111, CRn==c0)", read accesses from this |
| * range are either UNKNOWN or RES0. Rerouting remains architectural as we |
| * treat undefined registers in this range as RAZ. |
| */ |
| static int kvm_emulate_cp15_id_reg(struct kvm_vcpu *vcpu, |
| struct sys_reg_params *params) |
| { |
| int Rt = kvm_vcpu_sys_get_rt(vcpu); |
| |
| /* Treat impossible writes to RO registers as UNDEFINED */ |
| if (params->is_write) { |
| unhandled_cp_access(vcpu, params); |
| return 1; |
| } |
| |
| params->Op0 = 3; |
| |
| /* |
| * All registers where CRm > 3 are known to be UNKNOWN/RAZ from AArch32. |
| * Avoid conflicting with future expansion of AArch64 feature registers |
| * and simply treat them as RAZ here. |
| */ |
| if (params->CRm > 3) |
| params->regval = 0; |
| else if (!emulate_sys_reg(vcpu, params)) |
| return 1; |
| |
| vcpu_set_reg(vcpu, Rt, params->regval); |
| return 1; |
| } |
| |
| /** |
| * kvm_handle_cp_32 -- handles a mrc/mcr trap on a guest CP14/CP15 access |
| * @vcpu: The VCPU pointer |
| * @params: &struct sys_reg_params |
| * @global: &struct sys_reg_desc |
| * @nr_global: size of the @global array |
| */ |
| static int kvm_handle_cp_32(struct kvm_vcpu *vcpu, |
| struct sys_reg_params *params, |
| const struct sys_reg_desc *global, |
| size_t nr_global) |
| { |
| int Rt = kvm_vcpu_sys_get_rt(vcpu); |
| |
| params->regval = vcpu_get_reg(vcpu, Rt); |
| |
| if (emulate_cp(vcpu, params, global, nr_global)) { |
| if (!params->is_write) |
| vcpu_set_reg(vcpu, Rt, params->regval); |
| return 1; |
| } |
| |
| unhandled_cp_access(vcpu, params); |
| return 1; |
| } |
| |
| int kvm_handle_cp15_64(struct kvm_vcpu *vcpu) |
| { |
| return kvm_handle_cp_64(vcpu, cp15_64_regs, ARRAY_SIZE(cp15_64_regs)); |
| } |
| |
| int kvm_handle_cp15_32(struct kvm_vcpu *vcpu) |
| { |
| struct sys_reg_params params; |
| |
| params = esr_cp1x_32_to_params(kvm_vcpu_get_esr(vcpu)); |
| |
| /* |
| * Certain AArch32 ID registers are handled by rerouting to the AArch64 |
| * system register table. Registers in the ID range where CRm=0 are |
| * excluded from this scheme as they do not trivially map into AArch64 |
| * system register encodings. |
| */ |
| if (params.Op1 == 0 && params.CRn == 0 && params.CRm) |
| return kvm_emulate_cp15_id_reg(vcpu, ¶ms); |
| |
| return kvm_handle_cp_32(vcpu, ¶ms, cp15_regs, ARRAY_SIZE(cp15_regs)); |
| } |
| |
| int kvm_handle_cp14_64(struct kvm_vcpu *vcpu) |
| { |
| return kvm_handle_cp_64(vcpu, cp14_64_regs, ARRAY_SIZE(cp14_64_regs)); |
| } |
| |
| int kvm_handle_cp14_32(struct kvm_vcpu *vcpu) |
| { |
| struct sys_reg_params params; |
| |
| params = esr_cp1x_32_to_params(kvm_vcpu_get_esr(vcpu)); |
| |
| return kvm_handle_cp_32(vcpu, ¶ms, cp14_regs, ARRAY_SIZE(cp14_regs)); |
| } |
| |
| /** |
| * emulate_sys_reg - Emulate a guest access to an AArch64 system register |
| * @vcpu: The VCPU pointer |
| * @params: Decoded system register parameters |
| * |
| * Return: true if the system register access was successful, false otherwise. |
| */ |
| static bool emulate_sys_reg(struct kvm_vcpu *vcpu, |
| struct sys_reg_params *params) |
| { |
| const struct sys_reg_desc *r; |
| |
| r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs)); |
| if (likely(r)) { |
| perform_access(vcpu, params, r); |
| return true; |
| } |
| |
| print_sys_reg_msg(params, |
| "Unsupported guest sys_reg access at: %lx [%08lx]\n", |
| *vcpu_pc(vcpu), *vcpu_cpsr(vcpu)); |
| kvm_inject_undefined(vcpu); |
| |
| return false; |
| } |
| |
| static void *idregs_debug_start(struct seq_file *s, loff_t *pos) |
| { |
| struct kvm *kvm = s->private; |
| u8 *iter; |
| |
| mutex_lock(&kvm->arch.config_lock); |
| |
| iter = &kvm->arch.idreg_debugfs_iter; |
| if (test_bit(KVM_ARCH_FLAG_ID_REGS_INITIALIZED, &kvm->arch.flags) && |
| *iter == (u8)~0) { |
| *iter = *pos; |
| if (*iter >= KVM_ARM_ID_REG_NUM) |
| iter = NULL; |
| } else { |
| iter = ERR_PTR(-EBUSY); |
| } |
| |
| mutex_unlock(&kvm->arch.config_lock); |
| |
| return iter; |
| } |
| |
| static void *idregs_debug_next(struct seq_file *s, void *v, loff_t *pos) |
| { |
| struct kvm *kvm = s->private; |
| |
| (*pos)++; |
| |
| if ((kvm->arch.idreg_debugfs_iter + 1) < KVM_ARM_ID_REG_NUM) { |
| kvm->arch.idreg_debugfs_iter++; |
| |
| return &kvm->arch.idreg_debugfs_iter; |
| } |
| |
| return NULL; |
| } |
| |
| static void idregs_debug_stop(struct seq_file *s, void *v) |
| { |
| struct kvm *kvm = s->private; |
| |
| if (IS_ERR(v)) |
| return; |
| |
| mutex_lock(&kvm->arch.config_lock); |
| |
| kvm->arch.idreg_debugfs_iter = ~0; |
| |
| mutex_unlock(&kvm->arch.config_lock); |
| } |
| |
| static int idregs_debug_show(struct seq_file *s, void *v) |
| { |
| struct kvm *kvm = s->private; |
| const struct sys_reg_desc *desc; |
| |
| desc = first_idreg + kvm->arch.idreg_debugfs_iter; |
| |
| if (!desc->name) |
| return 0; |
| |
| seq_printf(s, "%20s:\t%016llx\n", |
| desc->name, IDREG(kvm, IDX_IDREG(kvm->arch.idreg_debugfs_iter))); |
| |
| return 0; |
| } |
| |
| static const struct seq_operations idregs_debug_sops = { |
| .start = idregs_debug_start, |
| .next = idregs_debug_next, |
| .stop = idregs_debug_stop, |
| .show = idregs_debug_show, |
| }; |
| |
| DEFINE_SEQ_ATTRIBUTE(idregs_debug); |
| |
| void kvm_sys_regs_create_debugfs(struct kvm *kvm) |
| { |
| kvm->arch.idreg_debugfs_iter = ~0; |
| |
| debugfs_create_file("idregs", 0444, kvm->debugfs_dentry, kvm, |
| &idregs_debug_fops); |
| } |
| |
| static void kvm_reset_id_regs(struct kvm_vcpu *vcpu) |
| { |
| const struct sys_reg_desc *idreg = first_idreg; |
| u32 id = reg_to_encoding(idreg); |
| struct kvm *kvm = vcpu->kvm; |
| |
| if (test_bit(KVM_ARCH_FLAG_ID_REGS_INITIALIZED, &kvm->arch.flags)) |
| return; |
| |
| lockdep_assert_held(&kvm->arch.config_lock); |
| |
| /* Initialize all idregs */ |
| while (is_id_reg(id)) { |
| IDREG(kvm, id) = idreg->reset(vcpu, idreg); |
| |
| idreg++; |
| id = reg_to_encoding(idreg); |
| } |
| |
| set_bit(KVM_ARCH_FLAG_ID_REGS_INITIALIZED, &kvm->arch.flags); |
| } |
| |
| /** |
| * kvm_reset_sys_regs - sets system registers to reset value |
| * @vcpu: The VCPU pointer |
| * |
| * This function finds the right table above and sets the registers on the |
| * virtual CPU struct to their architecturally defined reset values. |
| */ |
| void kvm_reset_sys_regs(struct kvm_vcpu *vcpu) |
| { |
| unsigned long i; |
| |
| kvm_reset_id_regs(vcpu); |
| |
| for (i = 0; i < ARRAY_SIZE(sys_reg_descs); i++) { |
| const struct sys_reg_desc *r = &sys_reg_descs[i]; |
| |
| if (is_id_reg(reg_to_encoding(r))) |
| continue; |
| |
| if (r->reset) |
| r->reset(vcpu, r); |
| } |
| } |
| |
| /** |
| * kvm_handle_sys_reg -- handles a system instruction or mrs/msr instruction |
| * trap on a guest execution |
| * @vcpu: The VCPU pointer |
| */ |
| int kvm_handle_sys_reg(struct kvm_vcpu *vcpu) |
| { |
| const struct sys_reg_desc *desc = NULL; |
| struct sys_reg_params params; |
| unsigned long esr = kvm_vcpu_get_esr(vcpu); |
| int Rt = kvm_vcpu_sys_get_rt(vcpu); |
| int sr_idx; |
| |
| trace_kvm_handle_sys_reg(esr); |
| |
| if (triage_sysreg_trap(vcpu, &sr_idx)) |
| return 1; |
| |
| params = esr_sys64_to_params(esr); |
| params.regval = vcpu_get_reg(vcpu, Rt); |
| |
| /* System registers have Op0=={2,3}, as per DDI487 J.a C5.1.2 */ |
| if (params.Op0 == 2 || params.Op0 == 3) |
| desc = &sys_reg_descs[sr_idx]; |
| else |
| desc = &sys_insn_descs[sr_idx]; |
| |
| perform_access(vcpu, ¶ms, desc); |
| |
| /* Read from system register? */ |
| if (!params.is_write && |
| (params.Op0 == 2 || params.Op0 == 3)) |
| vcpu_set_reg(vcpu, Rt, params.regval); |
| |
| return 1; |
| } |
| |
| /****************************************************************************** |
| * Userspace API |
| *****************************************************************************/ |
| |
| static bool index_to_params(u64 id, struct sys_reg_params *params) |
| { |
| switch (id & KVM_REG_SIZE_MASK) { |
| case KVM_REG_SIZE_U64: |
| /* Any unused index bits means it's not valid. */ |
| if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK |
| | KVM_REG_ARM_COPROC_MASK |
| | KVM_REG_ARM64_SYSREG_OP0_MASK |
| | KVM_REG_ARM64_SYSREG_OP1_MASK |
| | KVM_REG_ARM64_SYSREG_CRN_MASK |
| | KVM_REG_ARM64_SYSREG_CRM_MASK |
| | KVM_REG_ARM64_SYSREG_OP2_MASK)) |
| return false; |
| params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK) |
| >> KVM_REG_ARM64_SYSREG_OP0_SHIFT); |
| params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK) |
| >> KVM_REG_ARM64_SYSREG_OP1_SHIFT); |
| params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK) |
| >> KVM_REG_ARM64_SYSREG_CRN_SHIFT); |
| params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK) |
| >> KVM_REG_ARM64_SYSREG_CRM_SHIFT); |
| params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK) |
| >> KVM_REG_ARM64_SYSREG_OP2_SHIFT); |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| const struct sys_reg_desc *get_reg_by_id(u64 id, |
| const struct sys_reg_desc table[], |
| unsigned int num) |
| { |
| struct sys_reg_params params; |
| |
| if (!index_to_params(id, ¶ms)) |
| return NULL; |
| |
| return find_reg(¶ms, table, num); |
| } |
| |
| /* Decode an index value, and find the sys_reg_desc entry. */ |
| static const struct sys_reg_desc * |
| id_to_sys_reg_desc(struct kvm_vcpu *vcpu, u64 id, |
| const struct sys_reg_desc table[], unsigned int num) |
| |
| { |
| const struct sys_reg_desc *r; |
| |
| /* We only do sys_reg for now. */ |
| if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG) |
| return NULL; |
| |
| r = get_reg_by_id(id, table, num); |
| |
| /* Not saved in the sys_reg array and not otherwise accessible? */ |
| if (r && (!(r->reg || r->get_user) || sysreg_hidden(vcpu, r))) |
| r = NULL; |
| |
| return r; |
| } |
| |
| /* |
| * These are the invariant sys_reg registers: we let the guest see the |
| * host versions of these, so they're part of the guest state. |
| * |
| * A future CPU may provide a mechanism to present different values to |
| * the guest, or a future kvm may trap them. |
| */ |
| |
| #define FUNCTION_INVARIANT(reg) \ |
| static u64 get_##reg(struct kvm_vcpu *v, \ |
| const struct sys_reg_desc *r) \ |
| { \ |
| ((struct sys_reg_desc *)r)->val = read_sysreg(reg); \ |
| return ((struct sys_reg_desc *)r)->val; \ |
| } |
| |
| FUNCTION_INVARIANT(midr_el1) |
| FUNCTION_INVARIANT(revidr_el1) |
| FUNCTION_INVARIANT(aidr_el1) |
| |
| static u64 get_ctr_el0(struct kvm_vcpu *v, const struct sys_reg_desc *r) |
| { |
| ((struct sys_reg_desc *)r)->val = read_sanitised_ftr_reg(SYS_CTR_EL0); |
| return ((struct sys_reg_desc *)r)->val; |
| } |
| |
| /* ->val is filled in by kvm_sys_reg_table_init() */ |
| static struct sys_reg_desc invariant_sys_regs[] __ro_after_init = { |
| { SYS_DESC(SYS_MIDR_EL1), NULL, get_midr_el1 }, |
| { SYS_DESC(SYS_REVIDR_EL1), NULL, get_revidr_el1 }, |
| { SYS_DESC(SYS_AIDR_EL1), NULL, get_aidr_el1 }, |
| { SYS_DESC(SYS_CTR_EL0), NULL, get_ctr_el0 }, |
| }; |
| |
| static int get_invariant_sys_reg(u64 id, u64 __user *uaddr) |
| { |
| const struct sys_reg_desc *r; |
| |
| r = get_reg_by_id(id, invariant_sys_regs, |
| ARRAY_SIZE(invariant_sys_regs)); |
| if (!r) |
| return -ENOENT; |
| |
| return put_user(r->val, uaddr); |
| } |
| |
| static int set_invariant_sys_reg(u64 id, u64 __user *uaddr) |
| { |
| const struct sys_reg_desc *r; |
| u64 val; |
| |
| r = get_reg_by_id(id, invariant_sys_regs, |
| ARRAY_SIZE(invariant_sys_regs)); |
| if (!r) |
| return -ENOENT; |
| |
| if (get_user(val, uaddr)) |
| return -EFAULT; |
| |
| /* This is what we mean by invariant: you can't change it. */ |
| if (r->val != val) |
| return -EINVAL; |
| |
| return 0; |
| } |
| |
| static int demux_c15_get(struct kvm_vcpu *vcpu, u64 id, void __user *uaddr) |
| { |
| u32 val; |
| u32 __user *uval = uaddr; |
| |
| /* Fail if we have unknown bits set. */ |
| if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK |
| | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1))) |
| return -ENOENT; |
| |
| switch (id & KVM_REG_ARM_DEMUX_ID_MASK) { |
| case KVM_REG_ARM_DEMUX_ID_CCSIDR: |
| if (KVM_REG_SIZE(id) != 4) |
| return -ENOENT; |
| val = (id & KVM_REG_ARM_DEMUX_VAL_MASK) |
| >> KVM_REG_ARM_DEMUX_VAL_SHIFT; |
| if (val >= CSSELR_MAX) |
| return -ENOENT; |
| |
| return put_user(get_ccsidr(vcpu, val), uval); |
| default: |
| return -ENOENT; |
| } |
| } |
| |
| static int demux_c15_set(struct kvm_vcpu *vcpu, u64 id, void __user *uaddr) |
| { |
| u32 val, newval; |
| u32 __user *uval = uaddr; |
| |
| /* Fail if we have unknown bits set. */ |
| if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK |
| | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1))) |
| return -ENOENT; |
| |
| switch (id & KVM_REG_ARM_DEMUX_ID_MASK) { |
| case KVM_REG_ARM_DEMUX_ID_CCSIDR: |
| if (KVM_REG_SIZE(id) != 4) |
| return -ENOENT; |
| val = (id & KVM_REG_ARM_DEMUX_VAL_MASK) |
| >> KVM_REG_ARM_DEMUX_VAL_SHIFT; |
| if (val >= CSSELR_MAX) |
| return -ENOENT; |
| |
| if (get_user(newval, uval)) |
| return -EFAULT; |
| |
| return set_ccsidr(vcpu, val, newval); |
| default: |
| return -ENOENT; |
| } |
| } |
| |
| int kvm_sys_reg_get_user(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg, |
| const struct sys_reg_desc table[], unsigned int num) |
| { |
| u64 __user *uaddr = (u64 __user *)(unsigned long)reg->addr; |
| const struct sys_reg_desc *r; |
| u64 val; |
| int ret; |
| |
| r = id_to_sys_reg_desc(vcpu, reg->id, table, num); |
| if (!r || sysreg_hidden_user(vcpu, r)) |
| return -ENOENT; |
| |
| if (r->get_user) { |
| ret = (r->get_user)(vcpu, r, &val); |
| } else { |
| val = __vcpu_sys_reg(vcpu, r->reg); |
| ret = 0; |
| } |
| |
| if (!ret) |
| ret = put_user(val, uaddr); |
| |
| return ret; |
| } |
| |
| int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) |
| { |
| void __user *uaddr = (void __user *)(unsigned long)reg->addr; |
| int err; |
| |
| if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX) |
| return demux_c15_get(vcpu, reg->id, uaddr); |
| |
| err = get_invariant_sys_reg(reg->id, uaddr); |
| if (err != -ENOENT) |
| return err; |
| |
| return kvm_sys_reg_get_user(vcpu, reg, |
| sys_reg_descs, ARRAY_SIZE(sys_reg_descs)); |
| } |
| |
| int kvm_sys_reg_set_user(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg, |
| const struct sys_reg_desc table[], unsigned int num) |
| { |
| u64 __user *uaddr = (u64 __user *)(unsigned long)reg->addr; |
| const struct sys_reg_desc *r; |
| u64 val; |
| int ret; |
| |
| if (get_user(val, uaddr)) |
| return -EFAULT; |
| |
| r = id_to_sys_reg_desc(vcpu, reg->id, table, num); |
| if (!r || sysreg_hidden_user(vcpu, r)) |
| return -ENOENT; |
| |
| if (sysreg_user_write_ignore(vcpu, r)) |
| return 0; |
| |
| if (r->set_user) { |
| ret = (r->set_user)(vcpu, r, val); |
| } else { |
| __vcpu_sys_reg(vcpu, r->reg) = val; |
| ret = 0; |
| } |
| |
| return ret; |
| } |
| |
| int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) |
| { |
| void __user *uaddr = (void __user *)(unsigned long)reg->addr; |
| int err; |
| |
| if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX) |
| return demux_c15_set(vcpu, reg->id, uaddr); |
| |
| err = set_invariant_sys_reg(reg->id, uaddr); |
| if (err != -ENOENT) |
| return err; |
| |
| return kvm_sys_reg_set_user(vcpu, reg, |
| sys_reg_descs, ARRAY_SIZE(sys_reg_descs)); |
| } |
| |
| static unsigned int num_demux_regs(void) |
| { |
| return CSSELR_MAX; |
| } |
| |
| static int write_demux_regids(u64 __user *uindices) |
| { |
| u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX; |
| unsigned int i; |
| |
| val |= KVM_REG_ARM_DEMUX_ID_CCSIDR; |
| for (i = 0; i < CSSELR_MAX; i++) { |
| if (put_user(val | i, uindices)) |
| return -EFAULT; |
| uindices++; |
| } |
| return 0; |
| } |
| |
| static u64 sys_reg_to_index(const struct sys_reg_desc *reg) |
| { |
| return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 | |
| KVM_REG_ARM64_SYSREG | |
| (reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) | |
| (reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) | |
| (reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) | |
| (reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) | |
| (reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT)); |
| } |
| |
| static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind) |
| { |
| if (!*uind) |
| return true; |
| |
| if (put_user(sys_reg_to_index(reg), *uind)) |
| return false; |
| |
| (*uind)++; |
| return true; |
| } |
| |
| static int walk_one_sys_reg(const struct kvm_vcpu *vcpu, |
| const struct sys_reg_desc *rd, |
| u64 __user **uind, |
| unsigned int *total) |
| { |
| /* |
| * Ignore registers we trap but don't save, |
| * and for which no custom user accessor is provided. |
| */ |
| if (!(rd->reg || rd->get_user)) |
| return 0; |
| |
| if (sysreg_hidden_user(vcpu, rd)) |
| return 0; |
| |
| if (!copy_reg_to_user(rd, uind)) |
| return -EFAULT; |
| |
| (*total)++; |
| return 0; |
| } |
| |
| /* Assumed ordered tables, see kvm_sys_reg_table_init. */ |
| static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind) |
| { |
| const struct sys_reg_desc *i2, *end2; |
| unsigned int total = 0; |
| int err; |
| |
| i2 = sys_reg_descs; |
| end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs); |
| |
| while (i2 != end2) { |
| err = walk_one_sys_reg(vcpu, i2++, &uind, &total); |
| if (err) |
| return err; |
| } |
| return total; |
| } |
| |
| unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu) |
| { |
| return ARRAY_SIZE(invariant_sys_regs) |
| + num_demux_regs() |
| + walk_sys_regs(vcpu, (u64 __user *)NULL); |
| } |
| |
| int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices) |
| { |
| unsigned int i; |
| int err; |
| |
| /* Then give them all the invariant registers' indices. */ |
| for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) { |
| if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices)) |
| return -EFAULT; |
| uindices++; |
| } |
| |
| err = walk_sys_regs(vcpu, uindices); |
| if (err < 0) |
| return err; |
| uindices += err; |
| |
| return write_demux_regids(uindices); |
| } |
| |
| #define KVM_ARM_FEATURE_ID_RANGE_INDEX(r) \ |
| KVM_ARM_FEATURE_ID_RANGE_IDX(sys_reg_Op0(r), \ |
| sys_reg_Op1(r), \ |
| sys_reg_CRn(r), \ |
| sys_reg_CRm(r), \ |
| sys_reg_Op2(r)) |
| |
| static bool is_feature_id_reg(u32 encoding) |
| { |
| return (sys_reg_Op0(encoding) == 3 && |
| (sys_reg_Op1(encoding) < 2 || sys_reg_Op1(encoding) == 3) && |
| sys_reg_CRn(encoding) == 0 && |
| sys_reg_CRm(encoding) <= 7); |
| } |
| |
| int kvm_vm_ioctl_get_reg_writable_masks(struct kvm *kvm, struct reg_mask_range *range) |
| { |
| const void *zero_page = page_to_virt(ZERO_PAGE(0)); |
| u64 __user *masks = (u64 __user *)range->addr; |
| |
| /* Only feature id range is supported, reserved[13] must be zero. */ |
| if (range->range || |
| memcmp(range->reserved, zero_page, sizeof(range->reserved))) |
| return -EINVAL; |
| |
| /* Wipe the whole thing first */ |
| if (clear_user(masks, KVM_ARM_FEATURE_ID_RANGE_SIZE * sizeof(__u64))) |
| return -EFAULT; |
| |
| for (int i = 0; i < ARRAY_SIZE(sys_reg_descs); i++) { |
| const struct sys_reg_desc *reg = &sys_reg_descs[i]; |
| u32 encoding = reg_to_encoding(reg); |
| u64 val; |
| |
| if (!is_feature_id_reg(encoding) || !reg->set_user) |
| continue; |
| |
| /* |
| * For ID registers, we return the writable mask. Other feature |
| * registers return a full 64bit mask. That's not necessary |
| * compliant with a given revision of the architecture, but the |
| * RES0/RES1 definitions allow us to do that. |
| */ |
| if (is_id_reg(encoding)) { |
| if (!reg->val || |
| (is_aa32_id_reg(encoding) && !kvm_supports_32bit_el0())) |
| continue; |
| val = reg->val; |
| } else { |
| val = ~0UL; |
| } |
| |
| if (put_user(val, (masks + KVM_ARM_FEATURE_ID_RANGE_INDEX(encoding)))) |
| return -EFAULT; |
| } |
| |
| return 0; |
| } |
| |
| void kvm_init_sysreg(struct kvm_vcpu *vcpu) |
| { |
| struct kvm *kvm = vcpu->kvm; |
| |
| mutex_lock(&kvm->arch.config_lock); |
| |
| /* |
| * In the absence of FGT, we cannot independently trap TLBI |
| * Range instructions. This isn't great, but trapping all |
| * TLBIs would be far worse. Live with it... |
| */ |
| if (!kvm_has_feat(kvm, ID_AA64ISAR0_EL1, TLB, OS)) |
| vcpu->arch.hcr_el2 |= HCR_TTLBOS; |
| |
| if (cpus_have_final_cap(ARM64_HAS_HCX)) { |
| vcpu->arch.hcrx_el2 = HCRX_GUEST_FLAGS; |
| |
| if (kvm_has_feat(kvm, ID_AA64ISAR2_EL1, MOPS, IMP)) |
| vcpu->arch.hcrx_el2 |= (HCRX_EL2_MSCEn | HCRX_EL2_MCE2); |
| } |
| |
| if (test_bit(KVM_ARCH_FLAG_FGU_INITIALIZED, &kvm->arch.flags)) |
| goto out; |
| |
| kvm->arch.fgu[HFGxTR_GROUP] = (HFGxTR_EL2_nAMAIR2_EL1 | |
| HFGxTR_EL2_nMAIR2_EL1 | |
| HFGxTR_EL2_nS2POR_EL1 | |
| HFGxTR_EL2_nPOR_EL1 | |
| HFGxTR_EL2_nPOR_EL0 | |
| HFGxTR_EL2_nACCDATA_EL1 | |
| HFGxTR_EL2_nSMPRI_EL1_MASK | |
| HFGxTR_EL2_nTPIDR2_EL0_MASK); |
| |
| if (!kvm_has_feat(kvm, ID_AA64ISAR0_EL1, TLB, OS)) |
| kvm->arch.fgu[HFGITR_GROUP] |= (HFGITR_EL2_TLBIRVAALE1OS| |
| HFGITR_EL2_TLBIRVALE1OS | |
| HFGITR_EL2_TLBIRVAAE1OS | |
| HFGITR_EL2_TLBIRVAE1OS | |
| HFGITR_EL2_TLBIVAALE1OS | |
| HFGITR_EL2_TLBIVALE1OS | |
| HFGITR_EL2_TLBIVAAE1OS | |
| HFGITR_EL2_TLBIASIDE1OS | |
| HFGITR_EL2_TLBIVAE1OS | |
| HFGITR_EL2_TLBIVMALLE1OS); |
| |
| if (!kvm_has_feat(kvm, ID_AA64ISAR0_EL1, TLB, RANGE)) |
| kvm->arch.fgu[HFGITR_GROUP] |= (HFGITR_EL2_TLBIRVAALE1 | |
| HFGITR_EL2_TLBIRVALE1 | |
| HFGITR_EL2_TLBIRVAAE1 | |
| HFGITR_EL2_TLBIRVAE1 | |
| HFGITR_EL2_TLBIRVAALE1IS| |
| HFGITR_EL2_TLBIRVALE1IS | |
| HFGITR_EL2_TLBIRVAAE1IS | |
| HFGITR_EL2_TLBIRVAE1IS | |
| HFGITR_EL2_TLBIRVAALE1OS| |
| HFGITR_EL2_TLBIRVALE1OS | |
| HFGITR_EL2_TLBIRVAAE1OS | |
| HFGITR_EL2_TLBIRVAE1OS); |
| |
| if (!kvm_has_feat(kvm, ID_AA64MMFR3_EL1, S1PIE, IMP)) |
| kvm->arch.fgu[HFGxTR_GROUP] |= (HFGxTR_EL2_nPIRE0_EL1 | |
| HFGxTR_EL2_nPIR_EL1); |
| |
| if (!kvm_has_feat(kvm, ID_AA64PFR0_EL1, AMU, IMP)) |
| kvm->arch.fgu[HAFGRTR_GROUP] |= ~(HAFGRTR_EL2_RES0 | |
| HAFGRTR_EL2_RES1); |
| |
| set_bit(KVM_ARCH_FLAG_FGU_INITIALIZED, &kvm->arch.flags); |
| out: |
| mutex_unlock(&kvm->arch.config_lock); |
| } |
| |
| int __init kvm_sys_reg_table_init(void) |
| { |
| struct sys_reg_params params; |
| bool valid = true; |
| unsigned int i; |
| int ret = 0; |
| |
| /* Make sure tables are unique and in order. */ |
| valid &= check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs), false); |
| valid &= check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs), true); |
| valid &= check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs), true); |
| valid &= check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs), true); |
| valid &= check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs), true); |
| valid &= check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs), false); |
| valid &= check_sysreg_table(sys_insn_descs, ARRAY_SIZE(sys_insn_descs), false); |
| |
| if (!valid) |
| return -EINVAL; |
| |
| /* We abuse the reset function to overwrite the table itself. */ |
| for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) |
| invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]); |
| |
| /* Find the first idreg (SYS_ID_PFR0_EL1) in sys_reg_descs. */ |
| params = encoding_to_params(SYS_ID_PFR0_EL1); |
| first_idreg = find_reg(¶ms, sys_reg_descs, ARRAY_SIZE(sys_reg_descs)); |
| if (!first_idreg) |
| return -EINVAL; |
| |
| ret = populate_nv_trap_config(); |
| |
| for (i = 0; !ret && i < ARRAY_SIZE(sys_reg_descs); i++) |
| ret = populate_sysreg_config(sys_reg_descs + i, i); |
| |
| for (i = 0; !ret && i < ARRAY_SIZE(sys_insn_descs); i++) |
| ret = populate_sysreg_config(sys_insn_descs + i, i); |
| |
| return ret; |
| } |