| /* SPDX-License-Identifier: GPL-2.0 */ |
| /* |
| * Fast user context implementation of clock_gettime, gettimeofday, and time. |
| * |
| * Copyright (C) 2019 ARM Limited. |
| * Copyright 2006 Andi Kleen, SUSE Labs. |
| * 32 Bit compat layer by Stefani Seibold <stefani@seibold.net> |
| * sponsored by Rohde & Schwarz GmbH & Co. KG Munich/Germany |
| */ |
| #ifndef __ASM_VDSO_GETTIMEOFDAY_H |
| #define __ASM_VDSO_GETTIMEOFDAY_H |
| |
| #ifndef __ASSEMBLY__ |
| |
| #include <uapi/linux/time.h> |
| #include <asm/vgtod.h> |
| #include <asm/vvar.h> |
| #include <asm/unistd.h> |
| #include <asm/msr.h> |
| #include <asm/pvclock.h> |
| #include <clocksource/hyperv_timer.h> |
| |
| #define __vdso_data (VVAR(_vdso_data)) |
| #define __timens_vdso_data (TIMENS(_vdso_data)) |
| |
| #define VDSO_HAS_TIME 1 |
| |
| #define VDSO_HAS_CLOCK_GETRES 1 |
| |
| /* |
| * Declare the memory-mapped vclock data pages. These come from hypervisors. |
| * If we ever reintroduce something like direct access to an MMIO clock like |
| * the HPET again, it will go here as well. |
| * |
| * A load from any of these pages will segfault if the clock in question is |
| * disabled, so appropriate compiler barriers and checks need to be used |
| * to prevent stray loads. |
| * |
| * These declarations MUST NOT be const. The compiler will assume that |
| * an extern const variable has genuinely constant contents, and the |
| * resulting code won't work, since the whole point is that these pages |
| * change over time, possibly while we're accessing them. |
| */ |
| |
| #ifdef CONFIG_PARAVIRT_CLOCK |
| /* |
| * This is the vCPU 0 pvclock page. We only use pvclock from the vDSO |
| * if the hypervisor tells us that all vCPUs can get valid data from the |
| * vCPU 0 page. |
| */ |
| extern struct pvclock_vsyscall_time_info pvclock_page |
| __attribute__((visibility("hidden"))); |
| #endif |
| |
| #ifdef CONFIG_HYPERV_TIMER |
| extern struct ms_hyperv_tsc_page hvclock_page |
| __attribute__((visibility("hidden"))); |
| #endif |
| |
| #ifdef CONFIG_TIME_NS |
| static __always_inline |
| const struct vdso_data *__arch_get_timens_vdso_data(const struct vdso_data *vd) |
| { |
| return __timens_vdso_data; |
| } |
| #endif |
| |
| #ifndef BUILD_VDSO32 |
| |
| static __always_inline |
| long clock_gettime_fallback(clockid_t _clkid, struct __kernel_timespec *_ts) |
| { |
| long ret; |
| |
| asm ("syscall" : "=a" (ret), "=m" (*_ts) : |
| "0" (__NR_clock_gettime), "D" (_clkid), "S" (_ts) : |
| "rcx", "r11"); |
| |
| return ret; |
| } |
| |
| static __always_inline |
| long gettimeofday_fallback(struct __kernel_old_timeval *_tv, |
| struct timezone *_tz) |
| { |
| long ret; |
| |
| asm("syscall" : "=a" (ret) : |
| "0" (__NR_gettimeofday), "D" (_tv), "S" (_tz) : "memory"); |
| |
| return ret; |
| } |
| |
| static __always_inline |
| long clock_getres_fallback(clockid_t _clkid, struct __kernel_timespec *_ts) |
| { |
| long ret; |
| |
| asm ("syscall" : "=a" (ret), "=m" (*_ts) : |
| "0" (__NR_clock_getres), "D" (_clkid), "S" (_ts) : |
| "rcx", "r11"); |
| |
| return ret; |
| } |
| |
| #else |
| |
| static __always_inline |
| long clock_gettime_fallback(clockid_t _clkid, struct __kernel_timespec *_ts) |
| { |
| long ret; |
| |
| asm ( |
| "mov %%ebx, %%edx \n" |
| "mov %[clock], %%ebx \n" |
| "call __kernel_vsyscall \n" |
| "mov %%edx, %%ebx \n" |
| : "=a" (ret), "=m" (*_ts) |
| : "0" (__NR_clock_gettime64), [clock] "g" (_clkid), "c" (_ts) |
| : "edx"); |
| |
| return ret; |
| } |
| |
| static __always_inline |
| long clock_gettime32_fallback(clockid_t _clkid, struct old_timespec32 *_ts) |
| { |
| long ret; |
| |
| asm ( |
| "mov %%ebx, %%edx \n" |
| "mov %[clock], %%ebx \n" |
| "call __kernel_vsyscall \n" |
| "mov %%edx, %%ebx \n" |
| : "=a" (ret), "=m" (*_ts) |
| : "0" (__NR_clock_gettime), [clock] "g" (_clkid), "c" (_ts) |
| : "edx"); |
| |
| return ret; |
| } |
| |
| static __always_inline |
| long gettimeofday_fallback(struct __kernel_old_timeval *_tv, |
| struct timezone *_tz) |
| { |
| long ret; |
| |
| asm( |
| "mov %%ebx, %%edx \n" |
| "mov %2, %%ebx \n" |
| "call __kernel_vsyscall \n" |
| "mov %%edx, %%ebx \n" |
| : "=a" (ret) |
| : "0" (__NR_gettimeofday), "g" (_tv), "c" (_tz) |
| : "memory", "edx"); |
| |
| return ret; |
| } |
| |
| static __always_inline long |
| clock_getres_fallback(clockid_t _clkid, struct __kernel_timespec *_ts) |
| { |
| long ret; |
| |
| asm ( |
| "mov %%ebx, %%edx \n" |
| "mov %[clock], %%ebx \n" |
| "call __kernel_vsyscall \n" |
| "mov %%edx, %%ebx \n" |
| : "=a" (ret), "=m" (*_ts) |
| : "0" (__NR_clock_getres_time64), [clock] "g" (_clkid), "c" (_ts) |
| : "edx"); |
| |
| return ret; |
| } |
| |
| static __always_inline |
| long clock_getres32_fallback(clockid_t _clkid, struct old_timespec32 *_ts) |
| { |
| long ret; |
| |
| asm ( |
| "mov %%ebx, %%edx \n" |
| "mov %[clock], %%ebx \n" |
| "call __kernel_vsyscall \n" |
| "mov %%edx, %%ebx \n" |
| : "=a" (ret), "=m" (*_ts) |
| : "0" (__NR_clock_getres), [clock] "g" (_clkid), "c" (_ts) |
| : "edx"); |
| |
| return ret; |
| } |
| |
| #endif |
| |
| #ifdef CONFIG_PARAVIRT_CLOCK |
| static u64 vread_pvclock(void) |
| { |
| const struct pvclock_vcpu_time_info *pvti = &pvclock_page.pvti; |
| u32 version; |
| u64 ret; |
| |
| /* |
| * Note: The kernel and hypervisor must guarantee that cpu ID |
| * number maps 1:1 to per-CPU pvclock time info. |
| * |
| * Because the hypervisor is entirely unaware of guest userspace |
| * preemption, it cannot guarantee that per-CPU pvclock time |
| * info is updated if the underlying CPU changes or that that |
| * version is increased whenever underlying CPU changes. |
| * |
| * On KVM, we are guaranteed that pvti updates for any vCPU are |
| * atomic as seen by *all* vCPUs. This is an even stronger |
| * guarantee than we get with a normal seqlock. |
| * |
| * On Xen, we don't appear to have that guarantee, but Xen still |
| * supplies a valid seqlock using the version field. |
| * |
| * We only do pvclock vdso timing at all if |
| * PVCLOCK_TSC_STABLE_BIT is set, and we interpret that bit to |
| * mean that all vCPUs have matching pvti and that the TSC is |
| * synced, so we can just look at vCPU 0's pvti. |
| */ |
| |
| do { |
| version = pvclock_read_begin(pvti); |
| |
| if (unlikely(!(pvti->flags & PVCLOCK_TSC_STABLE_BIT))) |
| return U64_MAX; |
| |
| ret = __pvclock_read_cycles(pvti, rdtsc_ordered()); |
| } while (pvclock_read_retry(pvti, version)); |
| |
| return ret & S64_MAX; |
| } |
| #endif |
| |
| #ifdef CONFIG_HYPERV_TIMER |
| static u64 vread_hvclock(void) |
| { |
| u64 tsc, time; |
| |
| if (hv_read_tsc_page_tsc(&hvclock_page, &tsc, &time)) |
| return time & S64_MAX; |
| |
| return U64_MAX; |
| } |
| #endif |
| |
| static inline u64 __arch_get_hw_counter(s32 clock_mode, |
| const struct vdso_data *vd) |
| { |
| if (likely(clock_mode == VDSO_CLOCKMODE_TSC)) |
| return (u64)rdtsc_ordered() & S64_MAX; |
| /* |
| * For any memory-mapped vclock type, we need to make sure that gcc |
| * doesn't cleverly hoist a load before the mode check. Otherwise we |
| * might end up touching the memory-mapped page even if the vclock in |
| * question isn't enabled, which will segfault. Hence the barriers. |
| */ |
| #ifdef CONFIG_PARAVIRT_CLOCK |
| if (clock_mode == VDSO_CLOCKMODE_PVCLOCK) { |
| barrier(); |
| return vread_pvclock(); |
| } |
| #endif |
| #ifdef CONFIG_HYPERV_TIMER |
| if (clock_mode == VDSO_CLOCKMODE_HVCLOCK) { |
| barrier(); |
| return vread_hvclock(); |
| } |
| #endif |
| return U64_MAX; |
| } |
| |
| static __always_inline const struct vdso_data *__arch_get_vdso_data(void) |
| { |
| return __vdso_data; |
| } |
| |
| static inline bool arch_vdso_clocksource_ok(const struct vdso_data *vd) |
| { |
| return true; |
| } |
| #define vdso_clocksource_ok arch_vdso_clocksource_ok |
| |
| /* |
| * Clocksource read value validation to handle PV and HyperV clocksources |
| * which can be invalidated asynchronously and indicate invalidation by |
| * returning U64_MAX, which can be effectively tested by checking for a |
| * negative value after casting it to s64. |
| * |
| * This effectively forces a S64_MAX mask on the calculations, unlike the |
| * U64_MAX mask normally used by x86 clocksources. |
| */ |
| static inline bool arch_vdso_cycles_ok(u64 cycles) |
| { |
| return (s64)cycles >= 0; |
| } |
| #define vdso_cycles_ok arch_vdso_cycles_ok |
| |
| /* |
| * x86 specific delta calculation. |
| * |
| * The regular implementation assumes that clocksource reads are globally |
| * monotonic. The TSC can be slightly off across sockets which can cause |
| * the regular delta calculation (@cycles - @last) to return a huge time |
| * jump. |
| * |
| * Therefore it needs to be verified that @cycles are greater than |
| * @last. If not then use @last, which is the base time of the current |
| * conversion period. |
| * |
| * This variant also uses a custom mask because while the clocksource mask of |
| * all the VDSO capable clocksources on x86 is U64_MAX, the above code uses |
| * U64_MASK as an exception value, additionally arch_vdso_cycles_ok() above |
| * declares everything with the MSB/Sign-bit set as invalid. Therefore the |
| * effective mask is S64_MAX. |
| */ |
| static __always_inline |
| u64 vdso_calc_delta(u64 cycles, u64 last, u64 mask, u32 mult) |
| { |
| /* |
| * Due to the MSB/Sign-bit being used as invalid marker (see |
| * arch_vdso_cycles_valid() above), the effective mask is S64_MAX. |
| */ |
| u64 delta = (cycles - last) & S64_MAX; |
| |
| /* |
| * Due to the above mentioned TSC wobbles, filter out negative motion. |
| * Per the above masking, the effective sign bit is now bit 62. |
| */ |
| if (unlikely(delta & (1ULL << 62))) |
| return 0; |
| |
| return delta * mult; |
| } |
| #define vdso_calc_delta vdso_calc_delta |
| |
| #endif /* !__ASSEMBLY__ */ |
| |
| #endif /* __ASM_VDSO_GETTIMEOFDAY_H */ |