| // SPDX-License-Identifier: GPL-2.0-or-later |
| /* |
| * amd-pstate.c - AMD Processor P-state Frequency Driver |
| * |
| * Copyright (C) 2021 Advanced Micro Devices, Inc. All Rights Reserved. |
| * |
| * Author: Huang Rui <ray.huang@amd.com> |
| * |
| * AMD P-State introduces a new CPU performance scaling design for AMD |
| * processors using the ACPI Collaborative Performance and Power Control (CPPC) |
| * feature which works with the AMD SMU firmware providing a finer grained |
| * frequency control range. It is to replace the legacy ACPI P-States control, |
| * allows a flexible, low-latency interface for the Linux kernel to directly |
| * communicate the performance hints to hardware. |
| * |
| * AMD P-State is supported on recent AMD Zen base CPU series include some of |
| * Zen2 and Zen3 processors. _CPC needs to be present in the ACPI tables of AMD |
| * P-State supported system. And there are two types of hardware implementations |
| * for AMD P-State: 1) Full MSR Solution and 2) Shared Memory Solution. |
| * X86_FEATURE_CPPC CPU feature flag is used to distinguish the different types. |
| */ |
| |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/init.h> |
| #include <linux/smp.h> |
| #include <linux/sched.h> |
| #include <linux/cpufreq.h> |
| #include <linux/compiler.h> |
| #include <linux/dmi.h> |
| #include <linux/slab.h> |
| #include <linux/acpi.h> |
| #include <linux/io.h> |
| #include <linux/delay.h> |
| #include <linux/uaccess.h> |
| #include <linux/static_call.h> |
| #include <linux/amd-pstate.h> |
| #include <linux/topology.h> |
| |
| #include <acpi/processor.h> |
| #include <acpi/cppc_acpi.h> |
| |
| #include <asm/msr.h> |
| #include <asm/processor.h> |
| #include <asm/cpufeature.h> |
| #include <asm/cpu_device_id.h> |
| #include "amd-pstate-trace.h" |
| |
| #define AMD_PSTATE_TRANSITION_LATENCY 20000 |
| #define AMD_PSTATE_TRANSITION_DELAY 1000 |
| #define AMD_PSTATE_PREFCORE_THRESHOLD 166 |
| |
| /* |
| * TODO: We need more time to fine tune processors with shared memory solution |
| * with community together. |
| * |
| * There are some performance drops on the CPU benchmarks which reports from |
| * Suse. We are co-working with them to fine tune the shared memory solution. So |
| * we disable it by default to go acpi-cpufreq on these processors and add a |
| * module parameter to be able to enable it manually for debugging. |
| */ |
| static struct cpufreq_driver *current_pstate_driver; |
| static struct cpufreq_driver amd_pstate_driver; |
| static struct cpufreq_driver amd_pstate_epp_driver; |
| static int cppc_state = AMD_PSTATE_UNDEFINED; |
| static bool cppc_enabled; |
| static bool amd_pstate_prefcore = true; |
| |
| /* |
| * AMD Energy Preference Performance (EPP) |
| * The EPP is used in the CCLK DPM controller to drive |
| * the frequency that a core is going to operate during |
| * short periods of activity. EPP values will be utilized for |
| * different OS profiles (balanced, performance, power savings) |
| * display strings corresponding to EPP index in the |
| * energy_perf_strings[] |
| * index String |
| *------------------------------------- |
| * 0 default |
| * 1 performance |
| * 2 balance_performance |
| * 3 balance_power |
| * 4 power |
| */ |
| enum energy_perf_value_index { |
| EPP_INDEX_DEFAULT = 0, |
| EPP_INDEX_PERFORMANCE, |
| EPP_INDEX_BALANCE_PERFORMANCE, |
| EPP_INDEX_BALANCE_POWERSAVE, |
| EPP_INDEX_POWERSAVE, |
| }; |
| |
| static const char * const energy_perf_strings[] = { |
| [EPP_INDEX_DEFAULT] = "default", |
| [EPP_INDEX_PERFORMANCE] = "performance", |
| [EPP_INDEX_BALANCE_PERFORMANCE] = "balance_performance", |
| [EPP_INDEX_BALANCE_POWERSAVE] = "balance_power", |
| [EPP_INDEX_POWERSAVE] = "power", |
| NULL |
| }; |
| |
| static unsigned int epp_values[] = { |
| [EPP_INDEX_DEFAULT] = 0, |
| [EPP_INDEX_PERFORMANCE] = AMD_CPPC_EPP_PERFORMANCE, |
| [EPP_INDEX_BALANCE_PERFORMANCE] = AMD_CPPC_EPP_BALANCE_PERFORMANCE, |
| [EPP_INDEX_BALANCE_POWERSAVE] = AMD_CPPC_EPP_BALANCE_POWERSAVE, |
| [EPP_INDEX_POWERSAVE] = AMD_CPPC_EPP_POWERSAVE, |
| }; |
| |
| typedef int (*cppc_mode_transition_fn)(int); |
| |
| static inline int get_mode_idx_from_str(const char *str, size_t size) |
| { |
| int i; |
| |
| for (i=0; i < AMD_PSTATE_MAX; i++) { |
| if (!strncmp(str, amd_pstate_mode_string[i], size)) |
| return i; |
| } |
| return -EINVAL; |
| } |
| |
| static DEFINE_MUTEX(amd_pstate_limits_lock); |
| static DEFINE_MUTEX(amd_pstate_driver_lock); |
| |
| static s16 amd_pstate_get_epp(struct amd_cpudata *cpudata, u64 cppc_req_cached) |
| { |
| u64 epp; |
| int ret; |
| |
| if (boot_cpu_has(X86_FEATURE_CPPC)) { |
| if (!cppc_req_cached) { |
| epp = rdmsrl_on_cpu(cpudata->cpu, MSR_AMD_CPPC_REQ, |
| &cppc_req_cached); |
| if (epp) |
| return epp; |
| } |
| epp = (cppc_req_cached >> 24) & 0xFF; |
| } else { |
| ret = cppc_get_epp_perf(cpudata->cpu, &epp); |
| if (ret < 0) { |
| pr_debug("Could not retrieve energy perf value (%d)\n", ret); |
| return -EIO; |
| } |
| } |
| |
| return (s16)(epp & 0xff); |
| } |
| |
| static int amd_pstate_get_energy_pref_index(struct amd_cpudata *cpudata) |
| { |
| s16 epp; |
| int index = -EINVAL; |
| |
| epp = amd_pstate_get_epp(cpudata, 0); |
| if (epp < 0) |
| return epp; |
| |
| switch (epp) { |
| case AMD_CPPC_EPP_PERFORMANCE: |
| index = EPP_INDEX_PERFORMANCE; |
| break; |
| case AMD_CPPC_EPP_BALANCE_PERFORMANCE: |
| index = EPP_INDEX_BALANCE_PERFORMANCE; |
| break; |
| case AMD_CPPC_EPP_BALANCE_POWERSAVE: |
| index = EPP_INDEX_BALANCE_POWERSAVE; |
| break; |
| case AMD_CPPC_EPP_POWERSAVE: |
| index = EPP_INDEX_POWERSAVE; |
| break; |
| default: |
| break; |
| } |
| |
| return index; |
| } |
| |
| static int amd_pstate_set_epp(struct amd_cpudata *cpudata, u32 epp) |
| { |
| int ret; |
| struct cppc_perf_ctrls perf_ctrls; |
| |
| if (boot_cpu_has(X86_FEATURE_CPPC)) { |
| u64 value = READ_ONCE(cpudata->cppc_req_cached); |
| |
| value &= ~GENMASK_ULL(31, 24); |
| value |= (u64)epp << 24; |
| WRITE_ONCE(cpudata->cppc_req_cached, value); |
| |
| ret = wrmsrl_on_cpu(cpudata->cpu, MSR_AMD_CPPC_REQ, value); |
| if (!ret) |
| cpudata->epp_cached = epp; |
| } else { |
| perf_ctrls.energy_perf = epp; |
| ret = cppc_set_epp_perf(cpudata->cpu, &perf_ctrls, 1); |
| if (ret) { |
| pr_debug("failed to set energy perf value (%d)\n", ret); |
| return ret; |
| } |
| cpudata->epp_cached = epp; |
| } |
| |
| return ret; |
| } |
| |
| static int amd_pstate_set_energy_pref_index(struct amd_cpudata *cpudata, |
| int pref_index) |
| { |
| int epp = -EINVAL; |
| int ret; |
| |
| if (!pref_index) { |
| pr_debug("EPP pref_index is invalid\n"); |
| return -EINVAL; |
| } |
| |
| if (epp == -EINVAL) |
| epp = epp_values[pref_index]; |
| |
| if (epp > 0 && cpudata->policy == CPUFREQ_POLICY_PERFORMANCE) { |
| pr_debug("EPP cannot be set under performance policy\n"); |
| return -EBUSY; |
| } |
| |
| ret = amd_pstate_set_epp(cpudata, epp); |
| |
| return ret; |
| } |
| |
| static inline int pstate_enable(bool enable) |
| { |
| int ret, cpu; |
| unsigned long logical_proc_id_mask = 0; |
| |
| if (enable == cppc_enabled) |
| return 0; |
| |
| for_each_present_cpu(cpu) { |
| unsigned long logical_id = topology_logical_die_id(cpu); |
| |
| if (test_bit(logical_id, &logical_proc_id_mask)) |
| continue; |
| |
| set_bit(logical_id, &logical_proc_id_mask); |
| |
| ret = wrmsrl_safe_on_cpu(cpu, MSR_AMD_CPPC_ENABLE, |
| enable); |
| if (ret) |
| return ret; |
| } |
| |
| cppc_enabled = enable; |
| return 0; |
| } |
| |
| static int cppc_enable(bool enable) |
| { |
| int cpu, ret = 0; |
| struct cppc_perf_ctrls perf_ctrls; |
| |
| if (enable == cppc_enabled) |
| return 0; |
| |
| for_each_present_cpu(cpu) { |
| ret = cppc_set_enable(cpu, enable); |
| if (ret) |
| return ret; |
| |
| /* Enable autonomous mode for EPP */ |
| if (cppc_state == AMD_PSTATE_ACTIVE) { |
| /* Set desired perf as zero to allow EPP firmware control */ |
| perf_ctrls.desired_perf = 0; |
| ret = cppc_set_perf(cpu, &perf_ctrls); |
| if (ret) |
| return ret; |
| } |
| } |
| |
| cppc_enabled = enable; |
| return ret; |
| } |
| |
| DEFINE_STATIC_CALL(amd_pstate_enable, pstate_enable); |
| |
| static inline int amd_pstate_enable(bool enable) |
| { |
| return static_call(amd_pstate_enable)(enable); |
| } |
| |
| static int pstate_init_perf(struct amd_cpudata *cpudata) |
| { |
| u64 cap1; |
| u32 highest_perf; |
| |
| int ret = rdmsrl_safe_on_cpu(cpudata->cpu, MSR_AMD_CPPC_CAP1, |
| &cap1); |
| if (ret) |
| return ret; |
| |
| /* For platforms that do not support the preferred core feature, the |
| * highest_pef may be configured with 166 or 255, to avoid max frequency |
| * calculated wrongly. we take the AMD_CPPC_HIGHEST_PERF(cap1) value as |
| * the default max perf. |
| */ |
| if (cpudata->hw_prefcore) |
| highest_perf = AMD_PSTATE_PREFCORE_THRESHOLD; |
| else |
| highest_perf = AMD_CPPC_HIGHEST_PERF(cap1); |
| |
| WRITE_ONCE(cpudata->highest_perf, highest_perf); |
| WRITE_ONCE(cpudata->max_limit_perf, highest_perf); |
| WRITE_ONCE(cpudata->nominal_perf, AMD_CPPC_NOMINAL_PERF(cap1)); |
| WRITE_ONCE(cpudata->lowest_nonlinear_perf, AMD_CPPC_LOWNONLIN_PERF(cap1)); |
| WRITE_ONCE(cpudata->lowest_perf, AMD_CPPC_LOWEST_PERF(cap1)); |
| WRITE_ONCE(cpudata->prefcore_ranking, AMD_CPPC_HIGHEST_PERF(cap1)); |
| WRITE_ONCE(cpudata->min_limit_perf, AMD_CPPC_LOWEST_PERF(cap1)); |
| return 0; |
| } |
| |
| static int cppc_init_perf(struct amd_cpudata *cpudata) |
| { |
| struct cppc_perf_caps cppc_perf; |
| u32 highest_perf; |
| |
| int ret = cppc_get_perf_caps(cpudata->cpu, &cppc_perf); |
| if (ret) |
| return ret; |
| |
| if (cpudata->hw_prefcore) |
| highest_perf = AMD_PSTATE_PREFCORE_THRESHOLD; |
| else |
| highest_perf = cppc_perf.highest_perf; |
| |
| WRITE_ONCE(cpudata->highest_perf, highest_perf); |
| WRITE_ONCE(cpudata->max_limit_perf, highest_perf); |
| WRITE_ONCE(cpudata->nominal_perf, cppc_perf.nominal_perf); |
| WRITE_ONCE(cpudata->lowest_nonlinear_perf, |
| cppc_perf.lowest_nonlinear_perf); |
| WRITE_ONCE(cpudata->lowest_perf, cppc_perf.lowest_perf); |
| WRITE_ONCE(cpudata->prefcore_ranking, cppc_perf.highest_perf); |
| WRITE_ONCE(cpudata->min_limit_perf, cppc_perf.lowest_perf); |
| |
| if (cppc_state == AMD_PSTATE_ACTIVE) |
| return 0; |
| |
| ret = cppc_get_auto_sel_caps(cpudata->cpu, &cppc_perf); |
| if (ret) { |
| pr_warn("failed to get auto_sel, ret: %d\n", ret); |
| return 0; |
| } |
| |
| ret = cppc_set_auto_sel(cpudata->cpu, |
| (cppc_state == AMD_PSTATE_PASSIVE) ? 0 : 1); |
| |
| if (ret) |
| pr_warn("failed to set auto_sel, ret: %d\n", ret); |
| |
| return ret; |
| } |
| |
| DEFINE_STATIC_CALL(amd_pstate_init_perf, pstate_init_perf); |
| |
| static inline int amd_pstate_init_perf(struct amd_cpudata *cpudata) |
| { |
| return static_call(amd_pstate_init_perf)(cpudata); |
| } |
| |
| static void pstate_update_perf(struct amd_cpudata *cpudata, u32 min_perf, |
| u32 des_perf, u32 max_perf, bool fast_switch) |
| { |
| if (fast_switch) |
| wrmsrl(MSR_AMD_CPPC_REQ, READ_ONCE(cpudata->cppc_req_cached)); |
| else |
| wrmsrl_on_cpu(cpudata->cpu, MSR_AMD_CPPC_REQ, |
| READ_ONCE(cpudata->cppc_req_cached)); |
| } |
| |
| static void cppc_update_perf(struct amd_cpudata *cpudata, |
| u32 min_perf, u32 des_perf, |
| u32 max_perf, bool fast_switch) |
| { |
| struct cppc_perf_ctrls perf_ctrls; |
| |
| perf_ctrls.max_perf = max_perf; |
| perf_ctrls.min_perf = min_perf; |
| perf_ctrls.desired_perf = des_perf; |
| |
| cppc_set_perf(cpudata->cpu, &perf_ctrls); |
| } |
| |
| DEFINE_STATIC_CALL(amd_pstate_update_perf, pstate_update_perf); |
| |
| static inline void amd_pstate_update_perf(struct amd_cpudata *cpudata, |
| u32 min_perf, u32 des_perf, |
| u32 max_perf, bool fast_switch) |
| { |
| static_call(amd_pstate_update_perf)(cpudata, min_perf, des_perf, |
| max_perf, fast_switch); |
| } |
| |
| static inline bool amd_pstate_sample(struct amd_cpudata *cpudata) |
| { |
| u64 aperf, mperf, tsc; |
| unsigned long flags; |
| |
| local_irq_save(flags); |
| rdmsrl(MSR_IA32_APERF, aperf); |
| rdmsrl(MSR_IA32_MPERF, mperf); |
| tsc = rdtsc(); |
| |
| if (cpudata->prev.mperf == mperf || cpudata->prev.tsc == tsc) { |
| local_irq_restore(flags); |
| return false; |
| } |
| |
| local_irq_restore(flags); |
| |
| cpudata->cur.aperf = aperf; |
| cpudata->cur.mperf = mperf; |
| cpudata->cur.tsc = tsc; |
| cpudata->cur.aperf -= cpudata->prev.aperf; |
| cpudata->cur.mperf -= cpudata->prev.mperf; |
| cpudata->cur.tsc -= cpudata->prev.tsc; |
| |
| cpudata->prev.aperf = aperf; |
| cpudata->prev.mperf = mperf; |
| cpudata->prev.tsc = tsc; |
| |
| cpudata->freq = div64_u64((cpudata->cur.aperf * cpu_khz), cpudata->cur.mperf); |
| |
| return true; |
| } |
| |
| static void amd_pstate_update(struct amd_cpudata *cpudata, u32 min_perf, |
| u32 des_perf, u32 max_perf, bool fast_switch, int gov_flags) |
| { |
| u64 prev = READ_ONCE(cpudata->cppc_req_cached); |
| u64 value = prev; |
| |
| min_perf = clamp_t(unsigned long, min_perf, cpudata->min_limit_perf, |
| cpudata->max_limit_perf); |
| max_perf = clamp_t(unsigned long, max_perf, cpudata->min_limit_perf, |
| cpudata->max_limit_perf); |
| des_perf = clamp_t(unsigned long, des_perf, min_perf, max_perf); |
| |
| if ((cppc_state == AMD_PSTATE_GUIDED) && (gov_flags & CPUFREQ_GOV_DYNAMIC_SWITCHING)) { |
| min_perf = des_perf; |
| des_perf = 0; |
| } |
| |
| value &= ~AMD_CPPC_MIN_PERF(~0L); |
| value |= AMD_CPPC_MIN_PERF(min_perf); |
| |
| value &= ~AMD_CPPC_DES_PERF(~0L); |
| value |= AMD_CPPC_DES_PERF(des_perf); |
| |
| value &= ~AMD_CPPC_MAX_PERF(~0L); |
| value |= AMD_CPPC_MAX_PERF(max_perf); |
| |
| if (trace_amd_pstate_perf_enabled() && amd_pstate_sample(cpudata)) { |
| trace_amd_pstate_perf(min_perf, des_perf, max_perf, cpudata->freq, |
| cpudata->cur.mperf, cpudata->cur.aperf, cpudata->cur.tsc, |
| cpudata->cpu, (value != prev), fast_switch); |
| } |
| |
| if (value == prev) |
| return; |
| |
| WRITE_ONCE(cpudata->cppc_req_cached, value); |
| |
| amd_pstate_update_perf(cpudata, min_perf, des_perf, |
| max_perf, fast_switch); |
| } |
| |
| static int amd_pstate_verify(struct cpufreq_policy_data *policy) |
| { |
| cpufreq_verify_within_cpu_limits(policy); |
| |
| return 0; |
| } |
| |
| static int amd_pstate_update_min_max_limit(struct cpufreq_policy *policy) |
| { |
| u32 max_limit_perf, min_limit_perf, lowest_perf; |
| struct amd_cpudata *cpudata = policy->driver_data; |
| |
| max_limit_perf = div_u64(policy->max * cpudata->highest_perf, cpudata->max_freq); |
| min_limit_perf = div_u64(policy->min * cpudata->highest_perf, cpudata->max_freq); |
| |
| lowest_perf = READ_ONCE(cpudata->lowest_perf); |
| if (min_limit_perf < lowest_perf) |
| min_limit_perf = lowest_perf; |
| |
| if (max_limit_perf < min_limit_perf) |
| max_limit_perf = min_limit_perf; |
| |
| WRITE_ONCE(cpudata->max_limit_perf, max_limit_perf); |
| WRITE_ONCE(cpudata->min_limit_perf, min_limit_perf); |
| WRITE_ONCE(cpudata->max_limit_freq, policy->max); |
| WRITE_ONCE(cpudata->min_limit_freq, policy->min); |
| |
| return 0; |
| } |
| |
| static int amd_pstate_update_freq(struct cpufreq_policy *policy, |
| unsigned int target_freq, bool fast_switch) |
| { |
| struct cpufreq_freqs freqs; |
| struct amd_cpudata *cpudata = policy->driver_data; |
| unsigned long max_perf, min_perf, des_perf, cap_perf; |
| |
| if (!cpudata->max_freq) |
| return -ENODEV; |
| |
| if (policy->min != cpudata->min_limit_freq || policy->max != cpudata->max_limit_freq) |
| amd_pstate_update_min_max_limit(policy); |
| |
| cap_perf = READ_ONCE(cpudata->highest_perf); |
| min_perf = READ_ONCE(cpudata->lowest_perf); |
| max_perf = cap_perf; |
| |
| freqs.old = policy->cur; |
| freqs.new = target_freq; |
| |
| des_perf = DIV_ROUND_CLOSEST(target_freq * cap_perf, |
| cpudata->max_freq); |
| |
| WARN_ON(fast_switch && !policy->fast_switch_enabled); |
| /* |
| * If fast_switch is desired, then there aren't any registered |
| * transition notifiers. See comment for |
| * cpufreq_enable_fast_switch(). |
| */ |
| if (!fast_switch) |
| cpufreq_freq_transition_begin(policy, &freqs); |
| |
| amd_pstate_update(cpudata, min_perf, des_perf, |
| max_perf, fast_switch, policy->governor->flags); |
| |
| if (!fast_switch) |
| cpufreq_freq_transition_end(policy, &freqs, false); |
| |
| return 0; |
| } |
| |
| static int amd_pstate_target(struct cpufreq_policy *policy, |
| unsigned int target_freq, |
| unsigned int relation) |
| { |
| return amd_pstate_update_freq(policy, target_freq, false); |
| } |
| |
| static unsigned int amd_pstate_fast_switch(struct cpufreq_policy *policy, |
| unsigned int target_freq) |
| { |
| if (!amd_pstate_update_freq(policy, target_freq, true)) |
| return target_freq; |
| return policy->cur; |
| } |
| |
| static void amd_pstate_adjust_perf(unsigned int cpu, |
| unsigned long _min_perf, |
| unsigned long target_perf, |
| unsigned long capacity) |
| { |
| unsigned long max_perf, min_perf, des_perf, |
| cap_perf, lowest_nonlinear_perf, max_freq; |
| struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); |
| struct amd_cpudata *cpudata = policy->driver_data; |
| unsigned int target_freq; |
| |
| if (policy->min != cpudata->min_limit_freq || policy->max != cpudata->max_limit_freq) |
| amd_pstate_update_min_max_limit(policy); |
| |
| |
| cap_perf = READ_ONCE(cpudata->highest_perf); |
| lowest_nonlinear_perf = READ_ONCE(cpudata->lowest_nonlinear_perf); |
| max_freq = READ_ONCE(cpudata->max_freq); |
| |
| des_perf = cap_perf; |
| if (target_perf < capacity) |
| des_perf = DIV_ROUND_UP(cap_perf * target_perf, capacity); |
| |
| min_perf = READ_ONCE(cpudata->lowest_perf); |
| if (_min_perf < capacity) |
| min_perf = DIV_ROUND_UP(cap_perf * _min_perf, capacity); |
| |
| if (min_perf < lowest_nonlinear_perf) |
| min_perf = lowest_nonlinear_perf; |
| |
| max_perf = cap_perf; |
| if (max_perf < min_perf) |
| max_perf = min_perf; |
| |
| des_perf = clamp_t(unsigned long, des_perf, min_perf, max_perf); |
| target_freq = div_u64(des_perf * max_freq, max_perf); |
| policy->cur = target_freq; |
| |
| amd_pstate_update(cpudata, min_perf, des_perf, max_perf, true, |
| policy->governor->flags); |
| cpufreq_cpu_put(policy); |
| } |
| |
| static int amd_get_min_freq(struct amd_cpudata *cpudata) |
| { |
| struct cppc_perf_caps cppc_perf; |
| |
| int ret = cppc_get_perf_caps(cpudata->cpu, &cppc_perf); |
| if (ret) |
| return ret; |
| |
| /* Switch to khz */ |
| return cppc_perf.lowest_freq * 1000; |
| } |
| |
| static int amd_get_max_freq(struct amd_cpudata *cpudata) |
| { |
| struct cppc_perf_caps cppc_perf; |
| u32 max_perf, max_freq, nominal_freq, nominal_perf; |
| u64 boost_ratio; |
| |
| int ret = cppc_get_perf_caps(cpudata->cpu, &cppc_perf); |
| if (ret) |
| return ret; |
| |
| nominal_freq = cppc_perf.nominal_freq; |
| nominal_perf = READ_ONCE(cpudata->nominal_perf); |
| max_perf = READ_ONCE(cpudata->highest_perf); |
| |
| boost_ratio = div_u64(max_perf << SCHED_CAPACITY_SHIFT, |
| nominal_perf); |
| |
| max_freq = nominal_freq * boost_ratio >> SCHED_CAPACITY_SHIFT; |
| |
| /* Switch to khz */ |
| return max_freq * 1000; |
| } |
| |
| static int amd_get_nominal_freq(struct amd_cpudata *cpudata) |
| { |
| struct cppc_perf_caps cppc_perf; |
| |
| int ret = cppc_get_perf_caps(cpudata->cpu, &cppc_perf); |
| if (ret) |
| return ret; |
| |
| /* Switch to khz */ |
| return cppc_perf.nominal_freq * 1000; |
| } |
| |
| static int amd_get_lowest_nonlinear_freq(struct amd_cpudata *cpudata) |
| { |
| struct cppc_perf_caps cppc_perf; |
| u32 lowest_nonlinear_freq, lowest_nonlinear_perf, |
| nominal_freq, nominal_perf; |
| u64 lowest_nonlinear_ratio; |
| |
| int ret = cppc_get_perf_caps(cpudata->cpu, &cppc_perf); |
| if (ret) |
| return ret; |
| |
| nominal_freq = cppc_perf.nominal_freq; |
| nominal_perf = READ_ONCE(cpudata->nominal_perf); |
| |
| lowest_nonlinear_perf = cppc_perf.lowest_nonlinear_perf; |
| |
| lowest_nonlinear_ratio = div_u64(lowest_nonlinear_perf << SCHED_CAPACITY_SHIFT, |
| nominal_perf); |
| |
| lowest_nonlinear_freq = nominal_freq * lowest_nonlinear_ratio >> SCHED_CAPACITY_SHIFT; |
| |
| /* Switch to khz */ |
| return lowest_nonlinear_freq * 1000; |
| } |
| |
| static int amd_pstate_set_boost(struct cpufreq_policy *policy, int state) |
| { |
| struct amd_cpudata *cpudata = policy->driver_data; |
| int ret; |
| |
| if (!cpudata->boost_supported) { |
| pr_err("Boost mode is not supported by this processor or SBIOS\n"); |
| return -EINVAL; |
| } |
| |
| if (state) |
| policy->cpuinfo.max_freq = cpudata->max_freq; |
| else |
| policy->cpuinfo.max_freq = cpudata->nominal_freq; |
| |
| policy->max = policy->cpuinfo.max_freq; |
| |
| ret = freq_qos_update_request(&cpudata->req[1], |
| policy->cpuinfo.max_freq); |
| if (ret < 0) |
| return ret; |
| |
| return 0; |
| } |
| |
| static void amd_pstate_boost_init(struct amd_cpudata *cpudata) |
| { |
| u32 highest_perf, nominal_perf; |
| |
| highest_perf = READ_ONCE(cpudata->highest_perf); |
| nominal_perf = READ_ONCE(cpudata->nominal_perf); |
| |
| if (highest_perf <= nominal_perf) |
| return; |
| |
| cpudata->boost_supported = true; |
| current_pstate_driver->boost_enabled = true; |
| } |
| |
| static void amd_perf_ctl_reset(unsigned int cpu) |
| { |
| wrmsrl_on_cpu(cpu, MSR_AMD_PERF_CTL, 0); |
| } |
| |
| /* |
| * Set amd-pstate preferred core enable can't be done directly from cpufreq callbacks |
| * due to locking, so queue the work for later. |
| */ |
| static void amd_pstste_sched_prefcore_workfn(struct work_struct *work) |
| { |
| sched_set_itmt_support(); |
| } |
| static DECLARE_WORK(sched_prefcore_work, amd_pstste_sched_prefcore_workfn); |
| |
| /* |
| * Get the highest performance register value. |
| * @cpu: CPU from which to get highest performance. |
| * @highest_perf: Return address. |
| * |
| * Return: 0 for success, -EIO otherwise. |
| */ |
| static int amd_pstate_get_highest_perf(int cpu, u32 *highest_perf) |
| { |
| int ret; |
| |
| if (boot_cpu_has(X86_FEATURE_CPPC)) { |
| u64 cap1; |
| |
| ret = rdmsrl_safe_on_cpu(cpu, MSR_AMD_CPPC_CAP1, &cap1); |
| if (ret) |
| return ret; |
| WRITE_ONCE(*highest_perf, AMD_CPPC_HIGHEST_PERF(cap1)); |
| } else { |
| u64 cppc_highest_perf; |
| |
| ret = cppc_get_highest_perf(cpu, &cppc_highest_perf); |
| if (ret) |
| return ret; |
| WRITE_ONCE(*highest_perf, cppc_highest_perf); |
| } |
| |
| return (ret); |
| } |
| |
| #define CPPC_MAX_PERF U8_MAX |
| |
| static void amd_pstate_init_prefcore(struct amd_cpudata *cpudata) |
| { |
| int ret, prio; |
| u32 highest_perf; |
| |
| ret = amd_pstate_get_highest_perf(cpudata->cpu, &highest_perf); |
| if (ret) |
| return; |
| |
| cpudata->hw_prefcore = true; |
| /* check if CPPC preferred core feature is enabled*/ |
| if (highest_perf < CPPC_MAX_PERF) |
| prio = (int)highest_perf; |
| else { |
| pr_debug("AMD CPPC preferred core is unsupported!\n"); |
| cpudata->hw_prefcore = false; |
| return; |
| } |
| |
| if (!amd_pstate_prefcore) |
| return; |
| |
| /* |
| * The priorities can be set regardless of whether or not |
| * sched_set_itmt_support(true) has been called and it is valid to |
| * update them at any time after it has been called. |
| */ |
| sched_set_itmt_core_prio(prio, cpudata->cpu); |
| |
| schedule_work(&sched_prefcore_work); |
| } |
| |
| static void amd_pstate_update_limits(unsigned int cpu) |
| { |
| struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); |
| struct amd_cpudata *cpudata = policy->driver_data; |
| u32 prev_high = 0, cur_high = 0; |
| int ret; |
| bool highest_perf_changed = false; |
| |
| mutex_lock(&amd_pstate_driver_lock); |
| if ((!amd_pstate_prefcore) || (!cpudata->hw_prefcore)) |
| goto free_cpufreq_put; |
| |
| ret = amd_pstate_get_highest_perf(cpu, &cur_high); |
| if (ret) |
| goto free_cpufreq_put; |
| |
| prev_high = READ_ONCE(cpudata->prefcore_ranking); |
| if (prev_high != cur_high) { |
| highest_perf_changed = true; |
| WRITE_ONCE(cpudata->prefcore_ranking, cur_high); |
| |
| if (cur_high < CPPC_MAX_PERF) |
| sched_set_itmt_core_prio((int)cur_high, cpu); |
| } |
| |
| free_cpufreq_put: |
| cpufreq_cpu_put(policy); |
| |
| if (!highest_perf_changed) |
| cpufreq_update_policy(cpu); |
| |
| mutex_unlock(&amd_pstate_driver_lock); |
| } |
| |
| static int amd_pstate_cpu_init(struct cpufreq_policy *policy) |
| { |
| int min_freq, max_freq, nominal_freq, lowest_nonlinear_freq, ret; |
| struct device *dev; |
| struct amd_cpudata *cpudata; |
| |
| /* |
| * Resetting PERF_CTL_MSR will put the CPU in P0 frequency, |
| * which is ideal for initialization process. |
| */ |
| amd_perf_ctl_reset(policy->cpu); |
| dev = get_cpu_device(policy->cpu); |
| if (!dev) |
| return -ENODEV; |
| |
| cpudata = kzalloc(sizeof(*cpudata), GFP_KERNEL); |
| if (!cpudata) |
| return -ENOMEM; |
| |
| cpudata->cpu = policy->cpu; |
| |
| amd_pstate_init_prefcore(cpudata); |
| |
| ret = amd_pstate_init_perf(cpudata); |
| if (ret) |
| goto free_cpudata1; |
| |
| min_freq = amd_get_min_freq(cpudata); |
| max_freq = amd_get_max_freq(cpudata); |
| nominal_freq = amd_get_nominal_freq(cpudata); |
| lowest_nonlinear_freq = amd_get_lowest_nonlinear_freq(cpudata); |
| |
| if (min_freq < 0 || max_freq < 0 || min_freq > max_freq) { |
| dev_err(dev, "min_freq(%d) or max_freq(%d) value is incorrect\n", |
| min_freq, max_freq); |
| ret = -EINVAL; |
| goto free_cpudata1; |
| } |
| |
| policy->cpuinfo.transition_latency = AMD_PSTATE_TRANSITION_LATENCY; |
| policy->transition_delay_us = AMD_PSTATE_TRANSITION_DELAY; |
| |
| policy->min = min_freq; |
| policy->max = max_freq; |
| |
| policy->cpuinfo.min_freq = min_freq; |
| policy->cpuinfo.max_freq = max_freq; |
| |
| /* It will be updated by governor */ |
| policy->cur = policy->cpuinfo.min_freq; |
| |
| if (boot_cpu_has(X86_FEATURE_CPPC)) |
| policy->fast_switch_possible = true; |
| |
| ret = freq_qos_add_request(&policy->constraints, &cpudata->req[0], |
| FREQ_QOS_MIN, policy->cpuinfo.min_freq); |
| if (ret < 0) { |
| dev_err(dev, "Failed to add min-freq constraint (%d)\n", ret); |
| goto free_cpudata1; |
| } |
| |
| ret = freq_qos_add_request(&policy->constraints, &cpudata->req[1], |
| FREQ_QOS_MAX, policy->cpuinfo.max_freq); |
| if (ret < 0) { |
| dev_err(dev, "Failed to add max-freq constraint (%d)\n", ret); |
| goto free_cpudata2; |
| } |
| |
| /* Initial processor data capability frequencies */ |
| cpudata->max_freq = max_freq; |
| cpudata->min_freq = min_freq; |
| cpudata->max_limit_freq = max_freq; |
| cpudata->min_limit_freq = min_freq; |
| cpudata->nominal_freq = nominal_freq; |
| cpudata->lowest_nonlinear_freq = lowest_nonlinear_freq; |
| |
| policy->driver_data = cpudata; |
| |
| amd_pstate_boost_init(cpudata); |
| if (!current_pstate_driver->adjust_perf) |
| current_pstate_driver->adjust_perf = amd_pstate_adjust_perf; |
| |
| return 0; |
| |
| free_cpudata2: |
| freq_qos_remove_request(&cpudata->req[0]); |
| free_cpudata1: |
| kfree(cpudata); |
| return ret; |
| } |
| |
| static int amd_pstate_cpu_exit(struct cpufreq_policy *policy) |
| { |
| struct amd_cpudata *cpudata = policy->driver_data; |
| |
| freq_qos_remove_request(&cpudata->req[1]); |
| freq_qos_remove_request(&cpudata->req[0]); |
| policy->fast_switch_possible = false; |
| kfree(cpudata); |
| |
| return 0; |
| } |
| |
| static int amd_pstate_cpu_resume(struct cpufreq_policy *policy) |
| { |
| int ret; |
| |
| ret = amd_pstate_enable(true); |
| if (ret) |
| pr_err("failed to enable amd-pstate during resume, return %d\n", ret); |
| |
| return ret; |
| } |
| |
| static int amd_pstate_cpu_suspend(struct cpufreq_policy *policy) |
| { |
| int ret; |
| |
| ret = amd_pstate_enable(false); |
| if (ret) |
| pr_err("failed to disable amd-pstate during suspend, return %d\n", ret); |
| |
| return ret; |
| } |
| |
| /* Sysfs attributes */ |
| |
| /* |
| * This frequency is to indicate the maximum hardware frequency. |
| * If boost is not active but supported, the frequency will be larger than the |
| * one in cpuinfo. |
| */ |
| static ssize_t show_amd_pstate_max_freq(struct cpufreq_policy *policy, |
| char *buf) |
| { |
| int max_freq; |
| struct amd_cpudata *cpudata = policy->driver_data; |
| |
| max_freq = amd_get_max_freq(cpudata); |
| if (max_freq < 0) |
| return max_freq; |
| |
| return sysfs_emit(buf, "%u\n", max_freq); |
| } |
| |
| static ssize_t show_amd_pstate_lowest_nonlinear_freq(struct cpufreq_policy *policy, |
| char *buf) |
| { |
| int freq; |
| struct amd_cpudata *cpudata = policy->driver_data; |
| |
| freq = amd_get_lowest_nonlinear_freq(cpudata); |
| if (freq < 0) |
| return freq; |
| |
| return sysfs_emit(buf, "%u\n", freq); |
| } |
| |
| /* |
| * In some of ASICs, the highest_perf is not the one in the _CPC table, so we |
| * need to expose it to sysfs. |
| */ |
| static ssize_t show_amd_pstate_highest_perf(struct cpufreq_policy *policy, |
| char *buf) |
| { |
| u32 perf; |
| struct amd_cpudata *cpudata = policy->driver_data; |
| |
| perf = READ_ONCE(cpudata->highest_perf); |
| |
| return sysfs_emit(buf, "%u\n", perf); |
| } |
| |
| static ssize_t show_amd_pstate_prefcore_ranking(struct cpufreq_policy *policy, |
| char *buf) |
| { |
| u32 perf; |
| struct amd_cpudata *cpudata = policy->driver_data; |
| |
| perf = READ_ONCE(cpudata->prefcore_ranking); |
| |
| return sysfs_emit(buf, "%u\n", perf); |
| } |
| |
| static ssize_t show_amd_pstate_hw_prefcore(struct cpufreq_policy *policy, |
| char *buf) |
| { |
| bool hw_prefcore; |
| struct amd_cpudata *cpudata = policy->driver_data; |
| |
| hw_prefcore = READ_ONCE(cpudata->hw_prefcore); |
| |
| return sysfs_emit(buf, "%s\n", str_enabled_disabled(hw_prefcore)); |
| } |
| |
| static ssize_t show_energy_performance_available_preferences( |
| struct cpufreq_policy *policy, char *buf) |
| { |
| int i = 0; |
| int offset = 0; |
| struct amd_cpudata *cpudata = policy->driver_data; |
| |
| if (cpudata->policy == CPUFREQ_POLICY_PERFORMANCE) |
| return sysfs_emit_at(buf, offset, "%s\n", |
| energy_perf_strings[EPP_INDEX_PERFORMANCE]); |
| |
| while (energy_perf_strings[i] != NULL) |
| offset += sysfs_emit_at(buf, offset, "%s ", energy_perf_strings[i++]); |
| |
| offset += sysfs_emit_at(buf, offset, "\n"); |
| |
| return offset; |
| } |
| |
| static ssize_t store_energy_performance_preference( |
| struct cpufreq_policy *policy, const char *buf, size_t count) |
| { |
| struct amd_cpudata *cpudata = policy->driver_data; |
| char str_preference[21]; |
| ssize_t ret; |
| |
| ret = sscanf(buf, "%20s", str_preference); |
| if (ret != 1) |
| return -EINVAL; |
| |
| ret = match_string(energy_perf_strings, -1, str_preference); |
| if (ret < 0) |
| return -EINVAL; |
| |
| mutex_lock(&amd_pstate_limits_lock); |
| ret = amd_pstate_set_energy_pref_index(cpudata, ret); |
| mutex_unlock(&amd_pstate_limits_lock); |
| |
| return ret ?: count; |
| } |
| |
| static ssize_t show_energy_performance_preference( |
| struct cpufreq_policy *policy, char *buf) |
| { |
| struct amd_cpudata *cpudata = policy->driver_data; |
| int preference; |
| |
| preference = amd_pstate_get_energy_pref_index(cpudata); |
| if (preference < 0) |
| return preference; |
| |
| return sysfs_emit(buf, "%s\n", energy_perf_strings[preference]); |
| } |
| |
| static void amd_pstate_driver_cleanup(void) |
| { |
| amd_pstate_enable(false); |
| cppc_state = AMD_PSTATE_DISABLE; |
| current_pstate_driver = NULL; |
| } |
| |
| static int amd_pstate_register_driver(int mode) |
| { |
| int ret; |
| |
| if (mode == AMD_PSTATE_PASSIVE || mode == AMD_PSTATE_GUIDED) |
| current_pstate_driver = &amd_pstate_driver; |
| else if (mode == AMD_PSTATE_ACTIVE) |
| current_pstate_driver = &amd_pstate_epp_driver; |
| else |
| return -EINVAL; |
| |
| cppc_state = mode; |
| ret = cpufreq_register_driver(current_pstate_driver); |
| if (ret) { |
| amd_pstate_driver_cleanup(); |
| return ret; |
| } |
| return 0; |
| } |
| |
| static int amd_pstate_unregister_driver(int dummy) |
| { |
| cpufreq_unregister_driver(current_pstate_driver); |
| amd_pstate_driver_cleanup(); |
| return 0; |
| } |
| |
| static int amd_pstate_change_mode_without_dvr_change(int mode) |
| { |
| int cpu = 0; |
| |
| cppc_state = mode; |
| |
| if (boot_cpu_has(X86_FEATURE_CPPC) || cppc_state == AMD_PSTATE_ACTIVE) |
| return 0; |
| |
| for_each_present_cpu(cpu) { |
| cppc_set_auto_sel(cpu, (cppc_state == AMD_PSTATE_PASSIVE) ? 0 : 1); |
| } |
| |
| return 0; |
| } |
| |
| static int amd_pstate_change_driver_mode(int mode) |
| { |
| int ret; |
| |
| ret = amd_pstate_unregister_driver(0); |
| if (ret) |
| return ret; |
| |
| ret = amd_pstate_register_driver(mode); |
| if (ret) |
| return ret; |
| |
| return 0; |
| } |
| |
| static cppc_mode_transition_fn mode_state_machine[AMD_PSTATE_MAX][AMD_PSTATE_MAX] = { |
| [AMD_PSTATE_DISABLE] = { |
| [AMD_PSTATE_DISABLE] = NULL, |
| [AMD_PSTATE_PASSIVE] = amd_pstate_register_driver, |
| [AMD_PSTATE_ACTIVE] = amd_pstate_register_driver, |
| [AMD_PSTATE_GUIDED] = amd_pstate_register_driver, |
| }, |
| [AMD_PSTATE_PASSIVE] = { |
| [AMD_PSTATE_DISABLE] = amd_pstate_unregister_driver, |
| [AMD_PSTATE_PASSIVE] = NULL, |
| [AMD_PSTATE_ACTIVE] = amd_pstate_change_driver_mode, |
| [AMD_PSTATE_GUIDED] = amd_pstate_change_mode_without_dvr_change, |
| }, |
| [AMD_PSTATE_ACTIVE] = { |
| [AMD_PSTATE_DISABLE] = amd_pstate_unregister_driver, |
| [AMD_PSTATE_PASSIVE] = amd_pstate_change_driver_mode, |
| [AMD_PSTATE_ACTIVE] = NULL, |
| [AMD_PSTATE_GUIDED] = amd_pstate_change_driver_mode, |
| }, |
| [AMD_PSTATE_GUIDED] = { |
| [AMD_PSTATE_DISABLE] = amd_pstate_unregister_driver, |
| [AMD_PSTATE_PASSIVE] = amd_pstate_change_mode_without_dvr_change, |
| [AMD_PSTATE_ACTIVE] = amd_pstate_change_driver_mode, |
| [AMD_PSTATE_GUIDED] = NULL, |
| }, |
| }; |
| |
| static ssize_t amd_pstate_show_status(char *buf) |
| { |
| if (!current_pstate_driver) |
| return sysfs_emit(buf, "disable\n"); |
| |
| return sysfs_emit(buf, "%s\n", amd_pstate_mode_string[cppc_state]); |
| } |
| |
| static int amd_pstate_update_status(const char *buf, size_t size) |
| { |
| int mode_idx; |
| |
| if (size > strlen("passive") || size < strlen("active")) |
| return -EINVAL; |
| |
| mode_idx = get_mode_idx_from_str(buf, size); |
| |
| if (mode_idx < 0 || mode_idx >= AMD_PSTATE_MAX) |
| return -EINVAL; |
| |
| if (mode_state_machine[cppc_state][mode_idx]) |
| return mode_state_machine[cppc_state][mode_idx](mode_idx); |
| |
| return 0; |
| } |
| |
| static ssize_t status_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| ssize_t ret; |
| |
| mutex_lock(&amd_pstate_driver_lock); |
| ret = amd_pstate_show_status(buf); |
| mutex_unlock(&amd_pstate_driver_lock); |
| |
| return ret; |
| } |
| |
| static ssize_t status_store(struct device *a, struct device_attribute *b, |
| const char *buf, size_t count) |
| { |
| char *p = memchr(buf, '\n', count); |
| int ret; |
| |
| mutex_lock(&amd_pstate_driver_lock); |
| ret = amd_pstate_update_status(buf, p ? p - buf : count); |
| mutex_unlock(&amd_pstate_driver_lock); |
| |
| return ret < 0 ? ret : count; |
| } |
| |
| static ssize_t prefcore_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| return sysfs_emit(buf, "%s\n", str_enabled_disabled(amd_pstate_prefcore)); |
| } |
| |
| cpufreq_freq_attr_ro(amd_pstate_max_freq); |
| cpufreq_freq_attr_ro(amd_pstate_lowest_nonlinear_freq); |
| |
| cpufreq_freq_attr_ro(amd_pstate_highest_perf); |
| cpufreq_freq_attr_ro(amd_pstate_prefcore_ranking); |
| cpufreq_freq_attr_ro(amd_pstate_hw_prefcore); |
| cpufreq_freq_attr_rw(energy_performance_preference); |
| cpufreq_freq_attr_ro(energy_performance_available_preferences); |
| static DEVICE_ATTR_RW(status); |
| static DEVICE_ATTR_RO(prefcore); |
| |
| static struct freq_attr *amd_pstate_attr[] = { |
| &amd_pstate_max_freq, |
| &amd_pstate_lowest_nonlinear_freq, |
| &amd_pstate_highest_perf, |
| &amd_pstate_prefcore_ranking, |
| &amd_pstate_hw_prefcore, |
| NULL, |
| }; |
| |
| static struct freq_attr *amd_pstate_epp_attr[] = { |
| &amd_pstate_max_freq, |
| &amd_pstate_lowest_nonlinear_freq, |
| &amd_pstate_highest_perf, |
| &amd_pstate_prefcore_ranking, |
| &amd_pstate_hw_prefcore, |
| &energy_performance_preference, |
| &energy_performance_available_preferences, |
| NULL, |
| }; |
| |
| static struct attribute *pstate_global_attributes[] = { |
| &dev_attr_status.attr, |
| &dev_attr_prefcore.attr, |
| NULL |
| }; |
| |
| static const struct attribute_group amd_pstate_global_attr_group = { |
| .name = "amd_pstate", |
| .attrs = pstate_global_attributes, |
| }; |
| |
| static bool amd_pstate_acpi_pm_profile_server(void) |
| { |
| switch (acpi_gbl_FADT.preferred_profile) { |
| case PM_ENTERPRISE_SERVER: |
| case PM_SOHO_SERVER: |
| case PM_PERFORMANCE_SERVER: |
| return true; |
| } |
| return false; |
| } |
| |
| static bool amd_pstate_acpi_pm_profile_undefined(void) |
| { |
| if (acpi_gbl_FADT.preferred_profile == PM_UNSPECIFIED) |
| return true; |
| if (acpi_gbl_FADT.preferred_profile >= NR_PM_PROFILES) |
| return true; |
| return false; |
| } |
| |
| static int amd_pstate_epp_cpu_init(struct cpufreq_policy *policy) |
| { |
| int min_freq, max_freq, nominal_freq, lowest_nonlinear_freq, ret; |
| struct amd_cpudata *cpudata; |
| struct device *dev; |
| u64 value; |
| |
| /* |
| * Resetting PERF_CTL_MSR will put the CPU in P0 frequency, |
| * which is ideal for initialization process. |
| */ |
| amd_perf_ctl_reset(policy->cpu); |
| dev = get_cpu_device(policy->cpu); |
| if (!dev) |
| return -ENODEV; |
| |
| cpudata = kzalloc(sizeof(*cpudata), GFP_KERNEL); |
| if (!cpudata) |
| return -ENOMEM; |
| |
| cpudata->cpu = policy->cpu; |
| cpudata->epp_policy = 0; |
| |
| amd_pstate_init_prefcore(cpudata); |
| |
| ret = amd_pstate_init_perf(cpudata); |
| if (ret) |
| goto free_cpudata1; |
| |
| min_freq = amd_get_min_freq(cpudata); |
| max_freq = amd_get_max_freq(cpudata); |
| nominal_freq = amd_get_nominal_freq(cpudata); |
| lowest_nonlinear_freq = amd_get_lowest_nonlinear_freq(cpudata); |
| if (min_freq < 0 || max_freq < 0 || min_freq > max_freq) { |
| dev_err(dev, "min_freq(%d) or max_freq(%d) value is incorrect\n", |
| min_freq, max_freq); |
| ret = -EINVAL; |
| goto free_cpudata1; |
| } |
| |
| policy->cpuinfo.min_freq = min_freq; |
| policy->cpuinfo.max_freq = max_freq; |
| /* It will be updated by governor */ |
| policy->cur = policy->cpuinfo.min_freq; |
| |
| /* Initial processor data capability frequencies */ |
| cpudata->max_freq = max_freq; |
| cpudata->min_freq = min_freq; |
| cpudata->nominal_freq = nominal_freq; |
| cpudata->lowest_nonlinear_freq = lowest_nonlinear_freq; |
| |
| policy->driver_data = cpudata; |
| |
| cpudata->epp_cached = amd_pstate_get_epp(cpudata, 0); |
| |
| policy->min = policy->cpuinfo.min_freq; |
| policy->max = policy->cpuinfo.max_freq; |
| |
| /* |
| * Set the policy to provide a valid fallback value in case |
| * the default cpufreq governor is neither powersave nor performance. |
| */ |
| if (amd_pstate_acpi_pm_profile_server() || |
| amd_pstate_acpi_pm_profile_undefined()) |
| policy->policy = CPUFREQ_POLICY_PERFORMANCE; |
| else |
| policy->policy = CPUFREQ_POLICY_POWERSAVE; |
| |
| if (boot_cpu_has(X86_FEATURE_CPPC)) { |
| ret = rdmsrl_on_cpu(cpudata->cpu, MSR_AMD_CPPC_REQ, &value); |
| if (ret) |
| return ret; |
| WRITE_ONCE(cpudata->cppc_req_cached, value); |
| |
| ret = rdmsrl_on_cpu(cpudata->cpu, MSR_AMD_CPPC_CAP1, &value); |
| if (ret) |
| return ret; |
| WRITE_ONCE(cpudata->cppc_cap1_cached, value); |
| } |
| amd_pstate_boost_init(cpudata); |
| |
| return 0; |
| |
| free_cpudata1: |
| kfree(cpudata); |
| return ret; |
| } |
| |
| static int amd_pstate_epp_cpu_exit(struct cpufreq_policy *policy) |
| { |
| pr_debug("CPU %d exiting\n", policy->cpu); |
| return 0; |
| } |
| |
| static void amd_pstate_epp_update_limit(struct cpufreq_policy *policy) |
| { |
| struct amd_cpudata *cpudata = policy->driver_data; |
| u32 max_perf, min_perf, min_limit_perf, max_limit_perf; |
| u64 value; |
| s16 epp; |
| |
| max_perf = READ_ONCE(cpudata->highest_perf); |
| min_perf = READ_ONCE(cpudata->lowest_perf); |
| max_limit_perf = div_u64(policy->max * cpudata->highest_perf, cpudata->max_freq); |
| min_limit_perf = div_u64(policy->min * cpudata->highest_perf, cpudata->max_freq); |
| |
| if (min_limit_perf < min_perf) |
| min_limit_perf = min_perf; |
| |
| if (max_limit_perf < min_limit_perf) |
| max_limit_perf = min_limit_perf; |
| |
| WRITE_ONCE(cpudata->max_limit_perf, max_limit_perf); |
| WRITE_ONCE(cpudata->min_limit_perf, min_limit_perf); |
| |
| max_perf = clamp_t(unsigned long, max_perf, cpudata->min_limit_perf, |
| cpudata->max_limit_perf); |
| min_perf = clamp_t(unsigned long, min_perf, cpudata->min_limit_perf, |
| cpudata->max_limit_perf); |
| value = READ_ONCE(cpudata->cppc_req_cached); |
| |
| if (cpudata->policy == CPUFREQ_POLICY_PERFORMANCE) |
| min_perf = max_perf; |
| |
| /* Initial min/max values for CPPC Performance Controls Register */ |
| value &= ~AMD_CPPC_MIN_PERF(~0L); |
| value |= AMD_CPPC_MIN_PERF(min_perf); |
| |
| value &= ~AMD_CPPC_MAX_PERF(~0L); |
| value |= AMD_CPPC_MAX_PERF(max_perf); |
| |
| /* CPPC EPP feature require to set zero to the desire perf bit */ |
| value &= ~AMD_CPPC_DES_PERF(~0L); |
| value |= AMD_CPPC_DES_PERF(0); |
| |
| cpudata->epp_policy = cpudata->policy; |
| |
| /* Get BIOS pre-defined epp value */ |
| epp = amd_pstate_get_epp(cpudata, value); |
| if (epp < 0) { |
| /** |
| * This return value can only be negative for shared_memory |
| * systems where EPP register read/write not supported. |
| */ |
| return; |
| } |
| |
| if (cpudata->policy == CPUFREQ_POLICY_PERFORMANCE) |
| epp = 0; |
| |
| /* Set initial EPP value */ |
| if (boot_cpu_has(X86_FEATURE_CPPC)) { |
| value &= ~GENMASK_ULL(31, 24); |
| value |= (u64)epp << 24; |
| } |
| |
| WRITE_ONCE(cpudata->cppc_req_cached, value); |
| amd_pstate_set_epp(cpudata, epp); |
| } |
| |
| static int amd_pstate_epp_set_policy(struct cpufreq_policy *policy) |
| { |
| struct amd_cpudata *cpudata = policy->driver_data; |
| |
| if (!policy->cpuinfo.max_freq) |
| return -ENODEV; |
| |
| pr_debug("set_policy: cpuinfo.max %u policy->max %u\n", |
| policy->cpuinfo.max_freq, policy->max); |
| |
| cpudata->policy = policy->policy; |
| |
| amd_pstate_epp_update_limit(policy); |
| |
| return 0; |
| } |
| |
| static void amd_pstate_epp_reenable(struct amd_cpudata *cpudata) |
| { |
| struct cppc_perf_ctrls perf_ctrls; |
| u64 value, max_perf; |
| int ret; |
| |
| ret = amd_pstate_enable(true); |
| if (ret) |
| pr_err("failed to enable amd pstate during resume, return %d\n", ret); |
| |
| value = READ_ONCE(cpudata->cppc_req_cached); |
| max_perf = READ_ONCE(cpudata->highest_perf); |
| |
| if (boot_cpu_has(X86_FEATURE_CPPC)) { |
| wrmsrl_on_cpu(cpudata->cpu, MSR_AMD_CPPC_REQ, value); |
| } else { |
| perf_ctrls.max_perf = max_perf; |
| perf_ctrls.energy_perf = AMD_CPPC_ENERGY_PERF_PREF(cpudata->epp_cached); |
| cppc_set_perf(cpudata->cpu, &perf_ctrls); |
| } |
| } |
| |
| static int amd_pstate_epp_cpu_online(struct cpufreq_policy *policy) |
| { |
| struct amd_cpudata *cpudata = policy->driver_data; |
| |
| pr_debug("AMD CPU Core %d going online\n", cpudata->cpu); |
| |
| if (cppc_state == AMD_PSTATE_ACTIVE) { |
| amd_pstate_epp_reenable(cpudata); |
| cpudata->suspended = false; |
| } |
| |
| return 0; |
| } |
| |
| static void amd_pstate_epp_offline(struct cpufreq_policy *policy) |
| { |
| struct amd_cpudata *cpudata = policy->driver_data; |
| struct cppc_perf_ctrls perf_ctrls; |
| int min_perf; |
| u64 value; |
| |
| min_perf = READ_ONCE(cpudata->lowest_perf); |
| value = READ_ONCE(cpudata->cppc_req_cached); |
| |
| mutex_lock(&amd_pstate_limits_lock); |
| if (boot_cpu_has(X86_FEATURE_CPPC)) { |
| cpudata->epp_policy = CPUFREQ_POLICY_UNKNOWN; |
| |
| /* Set max perf same as min perf */ |
| value &= ~AMD_CPPC_MAX_PERF(~0L); |
| value |= AMD_CPPC_MAX_PERF(min_perf); |
| value &= ~AMD_CPPC_MIN_PERF(~0L); |
| value |= AMD_CPPC_MIN_PERF(min_perf); |
| wrmsrl_on_cpu(cpudata->cpu, MSR_AMD_CPPC_REQ, value); |
| } else { |
| perf_ctrls.desired_perf = 0; |
| perf_ctrls.max_perf = min_perf; |
| perf_ctrls.energy_perf = AMD_CPPC_ENERGY_PERF_PREF(HWP_EPP_BALANCE_POWERSAVE); |
| cppc_set_perf(cpudata->cpu, &perf_ctrls); |
| } |
| mutex_unlock(&amd_pstate_limits_lock); |
| } |
| |
| static int amd_pstate_epp_cpu_offline(struct cpufreq_policy *policy) |
| { |
| struct amd_cpudata *cpudata = policy->driver_data; |
| |
| pr_debug("AMD CPU Core %d going offline\n", cpudata->cpu); |
| |
| if (cpudata->suspended) |
| return 0; |
| |
| if (cppc_state == AMD_PSTATE_ACTIVE) |
| amd_pstate_epp_offline(policy); |
| |
| return 0; |
| } |
| |
| static int amd_pstate_epp_verify_policy(struct cpufreq_policy_data *policy) |
| { |
| cpufreq_verify_within_cpu_limits(policy); |
| pr_debug("policy_max =%d, policy_min=%d\n", policy->max, policy->min); |
| return 0; |
| } |
| |
| static int amd_pstate_epp_suspend(struct cpufreq_policy *policy) |
| { |
| struct amd_cpudata *cpudata = policy->driver_data; |
| int ret; |
| |
| /* avoid suspending when EPP is not enabled */ |
| if (cppc_state != AMD_PSTATE_ACTIVE) |
| return 0; |
| |
| /* set this flag to avoid setting core offline*/ |
| cpudata->suspended = true; |
| |
| /* disable CPPC in lowlevel firmware */ |
| ret = amd_pstate_enable(false); |
| if (ret) |
| pr_err("failed to suspend, return %d\n", ret); |
| |
| return 0; |
| } |
| |
| static int amd_pstate_epp_resume(struct cpufreq_policy *policy) |
| { |
| struct amd_cpudata *cpudata = policy->driver_data; |
| |
| if (cpudata->suspended) { |
| mutex_lock(&amd_pstate_limits_lock); |
| |
| /* enable amd pstate from suspend state*/ |
| amd_pstate_epp_reenable(cpudata); |
| |
| mutex_unlock(&amd_pstate_limits_lock); |
| |
| cpudata->suspended = false; |
| } |
| |
| return 0; |
| } |
| |
| static struct cpufreq_driver amd_pstate_driver = { |
| .flags = CPUFREQ_CONST_LOOPS | CPUFREQ_NEED_UPDATE_LIMITS, |
| .verify = amd_pstate_verify, |
| .target = amd_pstate_target, |
| .fast_switch = amd_pstate_fast_switch, |
| .init = amd_pstate_cpu_init, |
| .exit = amd_pstate_cpu_exit, |
| .suspend = amd_pstate_cpu_suspend, |
| .resume = amd_pstate_cpu_resume, |
| .set_boost = amd_pstate_set_boost, |
| .update_limits = amd_pstate_update_limits, |
| .name = "amd-pstate", |
| .attr = amd_pstate_attr, |
| }; |
| |
| static struct cpufreq_driver amd_pstate_epp_driver = { |
| .flags = CPUFREQ_CONST_LOOPS, |
| .verify = amd_pstate_epp_verify_policy, |
| .setpolicy = amd_pstate_epp_set_policy, |
| .init = amd_pstate_epp_cpu_init, |
| .exit = amd_pstate_epp_cpu_exit, |
| .offline = amd_pstate_epp_cpu_offline, |
| .online = amd_pstate_epp_cpu_online, |
| .suspend = amd_pstate_epp_suspend, |
| .resume = amd_pstate_epp_resume, |
| .update_limits = amd_pstate_update_limits, |
| .name = "amd-pstate-epp", |
| .attr = amd_pstate_epp_attr, |
| }; |
| |
| static int __init amd_pstate_set_driver(int mode_idx) |
| { |
| if (mode_idx >= AMD_PSTATE_DISABLE && mode_idx < AMD_PSTATE_MAX) { |
| cppc_state = mode_idx; |
| if (cppc_state == AMD_PSTATE_DISABLE) |
| pr_info("driver is explicitly disabled\n"); |
| |
| if (cppc_state == AMD_PSTATE_ACTIVE) |
| current_pstate_driver = &amd_pstate_epp_driver; |
| |
| if (cppc_state == AMD_PSTATE_PASSIVE || cppc_state == AMD_PSTATE_GUIDED) |
| current_pstate_driver = &amd_pstate_driver; |
| |
| return 0; |
| } |
| |
| return -EINVAL; |
| } |
| |
| static int __init amd_pstate_init(void) |
| { |
| struct device *dev_root; |
| int ret; |
| |
| if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD) |
| return -ENODEV; |
| |
| if (!acpi_cpc_valid()) { |
| pr_warn_once("the _CPC object is not present in SBIOS or ACPI disabled\n"); |
| return -ENODEV; |
| } |
| |
| /* don't keep reloading if cpufreq_driver exists */ |
| if (cpufreq_get_current_driver()) |
| return -EEXIST; |
| |
| switch (cppc_state) { |
| case AMD_PSTATE_UNDEFINED: |
| /* Disable on the following configs by default: |
| * 1. Undefined platforms |
| * 2. Server platforms |
| * 3. Shared memory designs |
| */ |
| if (amd_pstate_acpi_pm_profile_undefined() || |
| amd_pstate_acpi_pm_profile_server() || |
| !boot_cpu_has(X86_FEATURE_CPPC)) { |
| pr_info("driver load is disabled, boot with specific mode to enable this\n"); |
| return -ENODEV; |
| } |
| ret = amd_pstate_set_driver(CONFIG_X86_AMD_PSTATE_DEFAULT_MODE); |
| if (ret) |
| return ret; |
| break; |
| case AMD_PSTATE_DISABLE: |
| return -ENODEV; |
| case AMD_PSTATE_PASSIVE: |
| case AMD_PSTATE_ACTIVE: |
| case AMD_PSTATE_GUIDED: |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| /* capability check */ |
| if (boot_cpu_has(X86_FEATURE_CPPC)) { |
| pr_debug("AMD CPPC MSR based functionality is supported\n"); |
| if (cppc_state != AMD_PSTATE_ACTIVE) |
| current_pstate_driver->adjust_perf = amd_pstate_adjust_perf; |
| } else { |
| pr_debug("AMD CPPC shared memory based functionality is supported\n"); |
| static_call_update(amd_pstate_enable, cppc_enable); |
| static_call_update(amd_pstate_init_perf, cppc_init_perf); |
| static_call_update(amd_pstate_update_perf, cppc_update_perf); |
| } |
| |
| /* enable amd pstate feature */ |
| ret = amd_pstate_enable(true); |
| if (ret) { |
| pr_err("failed to enable with return %d\n", ret); |
| return ret; |
| } |
| |
| ret = cpufreq_register_driver(current_pstate_driver); |
| if (ret) |
| pr_err("failed to register with return %d\n", ret); |
| |
| dev_root = bus_get_dev_root(&cpu_subsys); |
| if (dev_root) { |
| ret = sysfs_create_group(&dev_root->kobj, &amd_pstate_global_attr_group); |
| put_device(dev_root); |
| if (ret) { |
| pr_err("sysfs attribute export failed with error %d.\n", ret); |
| goto global_attr_free; |
| } |
| } |
| |
| return ret; |
| |
| global_attr_free: |
| cpufreq_unregister_driver(current_pstate_driver); |
| return ret; |
| } |
| device_initcall(amd_pstate_init); |
| |
| static int __init amd_pstate_param(char *str) |
| { |
| size_t size; |
| int mode_idx; |
| |
| if (!str) |
| return -EINVAL; |
| |
| size = strlen(str); |
| mode_idx = get_mode_idx_from_str(str, size); |
| |
| return amd_pstate_set_driver(mode_idx); |
| } |
| |
| static int __init amd_prefcore_param(char *str) |
| { |
| if (!strcmp(str, "disable")) |
| amd_pstate_prefcore = false; |
| |
| return 0; |
| } |
| |
| early_param("amd_pstate", amd_pstate_param); |
| early_param("amd_prefcore", amd_prefcore_param); |
| |
| MODULE_AUTHOR("Huang Rui <ray.huang@amd.com>"); |
| MODULE_DESCRIPTION("AMD Processor P-state Frequency Driver"); |