| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * BU27034 ROHM Ambient Light Sensor |
| * |
| * Copyright (c) 2023, ROHM Semiconductor. |
| * https://fscdn.rohm.com/en/products/databook/datasheet/ic/sensor/light/bu27034nuc-e.pdf |
| */ |
| |
| #include <linux/bitfield.h> |
| #include <linux/bits.h> |
| #include <linux/device.h> |
| #include <linux/i2c.h> |
| #include <linux/module.h> |
| #include <linux/property.h> |
| #include <linux/regmap.h> |
| #include <linux/regulator/consumer.h> |
| #include <linux/units.h> |
| |
| #include <linux/iio/buffer.h> |
| #include <linux/iio/iio.h> |
| #include <linux/iio/iio-gts-helper.h> |
| #include <linux/iio/kfifo_buf.h> |
| |
| #define BU27034_REG_SYSTEM_CONTROL 0x40 |
| #define BU27034_MASK_SW_RESET BIT(7) |
| #define BU27034_MASK_PART_ID GENMASK(5, 0) |
| #define BU27034_ID 0x19 |
| #define BU27034_REG_MODE_CONTROL1 0x41 |
| #define BU27034_MASK_MEAS_MODE GENMASK(2, 0) |
| |
| #define BU27034_REG_MODE_CONTROL2 0x42 |
| #define BU27034_MASK_D01_GAIN GENMASK(7, 3) |
| #define BU27034_MASK_D2_GAIN_HI GENMASK(7, 6) |
| #define BU27034_MASK_D2_GAIN_LO GENMASK(2, 0) |
| |
| #define BU27034_REG_MODE_CONTROL3 0x43 |
| #define BU27034_REG_MODE_CONTROL4 0x44 |
| #define BU27034_MASK_MEAS_EN BIT(0) |
| #define BU27034_MASK_VALID BIT(7) |
| #define BU27034_REG_DATA0_LO 0x50 |
| #define BU27034_REG_DATA1_LO 0x52 |
| #define BU27034_REG_DATA2_LO 0x54 |
| #define BU27034_REG_DATA2_HI 0x55 |
| #define BU27034_REG_MANUFACTURER_ID 0x92 |
| #define BU27034_REG_MAX BU27034_REG_MANUFACTURER_ID |
| |
| /* |
| * The BU27034 does not have interrupt to trigger the data read when a |
| * measurement has finished. Hence we poll the VALID bit in a thread. We will |
| * try to wake the thread BU27034_MEAS_WAIT_PREMATURE_MS milliseconds before |
| * the expected sampling time to prevent the drifting. |
| * |
| * If we constantly wake up a bit too late we would eventually skip a sample. |
| * And because the sleep can't wake up _exactly_ at given time this would be |
| * inevitable even if the sensor clock would be perfectly phase-locked to CPU |
| * clock - which we can't say is the case. |
| * |
| * This is still fragile. No matter how big advance do we have, we will still |
| * risk of losing a sample because things can in a rainy-day scenario be |
| * delayed a lot. Yet, more we reserve the time for polling, more we also lose |
| * the performance by spending cycles polling the register. So, selecting this |
| * value is a balancing dance between severity of wasting CPU time and severity |
| * of losing samples. |
| * |
| * In most cases losing the samples is not _that_ crucial because light levels |
| * tend to change slowly. |
| * |
| * Other option that was pointed to me would be always sleeping 1/2 of the |
| * measurement time, checking the VALID bit and just sleeping again if the bit |
| * was not set. That should be pretty tolerant against missing samples due to |
| * the scheduling delays while also not wasting much of cycles for polling. |
| * Downside is that the time-stamps would be very inaccurate as the wake-up |
| * would not really be tied to the sensor toggling the valid bit. This would also |
| * result 'jumps' in the time-stamps when the delay drifted so that wake-up was |
| * performed during the consecutive wake-ups (Or, when sensor and CPU clocks |
| * were very different and scheduling the wake-ups was very close to given |
| * timeout - and when the time-outs were very close to the actual sensor |
| * sampling, Eg. once in a blue moon, two consecutive time-outs would occur |
| * without having a sample ready). |
| */ |
| #define BU27034_MEAS_WAIT_PREMATURE_MS 5 |
| #define BU27034_DATA_WAIT_TIME_US 1000 |
| #define BU27034_TOTAL_DATA_WAIT_TIME_US (BU27034_MEAS_WAIT_PREMATURE_MS * 1000) |
| |
| #define BU27034_RETRY_LIMIT 18 |
| |
| enum { |
| BU27034_CHAN_ALS, |
| BU27034_CHAN_DATA0, |
| BU27034_CHAN_DATA1, |
| BU27034_CHAN_DATA2, |
| BU27034_NUM_CHANS |
| }; |
| |
| static const unsigned long bu27034_scan_masks[] = { |
| GENMASK(BU27034_CHAN_DATA2, BU27034_CHAN_ALS), 0 |
| }; |
| |
| /* |
| * Available scales with gain 1x - 4096x, timings 55, 100, 200, 400 mS |
| * Time impacts to gain: 1x, 2x, 4x, 8x. |
| * |
| * => Max total gain is HWGAIN * gain by integration time (8 * 4096) = 32768 |
| * |
| * Using NANO precision for scale we must use scale 64x corresponding gain 1x |
| * to avoid precision loss. (32x would result scale 976 562.5(nanos). |
| */ |
| #define BU27034_SCALE_1X 64 |
| |
| /* See the data sheet for the "Gain Setting" table */ |
| #define BU27034_GSEL_1X 0x00 /* 00000 */ |
| #define BU27034_GSEL_4X 0x08 /* 01000 */ |
| #define BU27034_GSEL_16X 0x0a /* 01010 */ |
| #define BU27034_GSEL_32X 0x0b /* 01011 */ |
| #define BU27034_GSEL_64X 0x0c /* 01100 */ |
| #define BU27034_GSEL_256X 0x18 /* 11000 */ |
| #define BU27034_GSEL_512X 0x19 /* 11001 */ |
| #define BU27034_GSEL_1024X 0x1a /* 11010 */ |
| #define BU27034_GSEL_2048X 0x1b /* 11011 */ |
| #define BU27034_GSEL_4096X 0x1c /* 11100 */ |
| |
| /* Available gain settings */ |
| static const struct iio_gain_sel_pair bu27034_gains[] = { |
| GAIN_SCALE_GAIN(1, BU27034_GSEL_1X), |
| GAIN_SCALE_GAIN(4, BU27034_GSEL_4X), |
| GAIN_SCALE_GAIN(16, BU27034_GSEL_16X), |
| GAIN_SCALE_GAIN(32, BU27034_GSEL_32X), |
| GAIN_SCALE_GAIN(64, BU27034_GSEL_64X), |
| GAIN_SCALE_GAIN(256, BU27034_GSEL_256X), |
| GAIN_SCALE_GAIN(512, BU27034_GSEL_512X), |
| GAIN_SCALE_GAIN(1024, BU27034_GSEL_1024X), |
| GAIN_SCALE_GAIN(2048, BU27034_GSEL_2048X), |
| GAIN_SCALE_GAIN(4096, BU27034_GSEL_4096X), |
| }; |
| |
| /* |
| * The IC has 5 modes for sampling time. 5 mS mode is exceptional as it limits |
| * the data collection to data0-channel only and cuts the supported range to |
| * 10 bit. It is not supported by the driver. |
| * |
| * "normal" modes are 55, 100, 200 and 400 mS modes - which do have direct |
| * multiplying impact to the register values (similar to gain). |
| * |
| * This means that if meas-mode is changed for example from 400 => 200, |
| * the scale is doubled. Eg, time impact to total gain is x1, x2, x4, x8. |
| */ |
| #define BU27034_MEAS_MODE_100MS 0 |
| #define BU27034_MEAS_MODE_55MS 1 |
| #define BU27034_MEAS_MODE_200MS 2 |
| #define BU27034_MEAS_MODE_400MS 4 |
| |
| static const struct iio_itime_sel_mul bu27034_itimes[] = { |
| GAIN_SCALE_ITIME_US(400000, BU27034_MEAS_MODE_400MS, 8), |
| GAIN_SCALE_ITIME_US(200000, BU27034_MEAS_MODE_200MS, 4), |
| GAIN_SCALE_ITIME_US(100000, BU27034_MEAS_MODE_100MS, 2), |
| GAIN_SCALE_ITIME_US(55000, BU27034_MEAS_MODE_55MS, 1), |
| }; |
| |
| #define BU27034_CHAN_DATA(_name, _ch2) \ |
| { \ |
| .type = IIO_INTENSITY, \ |
| .channel = BU27034_CHAN_##_name, \ |
| .channel2 = (_ch2), \ |
| .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \ |
| BIT(IIO_CHAN_INFO_SCALE), \ |
| .info_mask_separate_available = BIT(IIO_CHAN_INFO_SCALE), \ |
| .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_INT_TIME), \ |
| .info_mask_shared_by_all_available = \ |
| BIT(IIO_CHAN_INFO_INT_TIME), \ |
| .address = BU27034_REG_##_name##_LO, \ |
| .scan_index = BU27034_CHAN_##_name, \ |
| .scan_type = { \ |
| .sign = 'u', \ |
| .realbits = 16, \ |
| .storagebits = 16, \ |
| .endianness = IIO_LE, \ |
| }, \ |
| .indexed = 1, \ |
| } |
| |
| static const struct iio_chan_spec bu27034_channels[] = { |
| { |
| .type = IIO_LIGHT, |
| .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | |
| BIT(IIO_CHAN_INFO_SCALE), |
| .channel = BU27034_CHAN_ALS, |
| .scan_index = BU27034_CHAN_ALS, |
| .scan_type = { |
| .sign = 'u', |
| .realbits = 32, |
| .storagebits = 32, |
| .endianness = IIO_CPU, |
| }, |
| }, |
| /* |
| * The BU27034 DATA0 and DATA1 channels are both on the visible light |
| * area (mostly). The data0 sensitivity peaks at 500nm, DATA1 at 600nm. |
| * These wave lengths are pretty much on the border of colours making |
| * these a poor candidates for R/G/B standardization. Hence they're both |
| * marked as clear channels |
| */ |
| BU27034_CHAN_DATA(DATA0, IIO_MOD_LIGHT_CLEAR), |
| BU27034_CHAN_DATA(DATA1, IIO_MOD_LIGHT_CLEAR), |
| BU27034_CHAN_DATA(DATA2, IIO_MOD_LIGHT_IR), |
| IIO_CHAN_SOFT_TIMESTAMP(4), |
| }; |
| |
| struct bu27034_data { |
| struct regmap *regmap; |
| struct device *dev; |
| /* |
| * Protect gain and time during scale adjustment and data reading. |
| * Protect measurement enabling/disabling. |
| */ |
| struct mutex mutex; |
| struct iio_gts gts; |
| struct task_struct *task; |
| __le16 raw[3]; |
| struct { |
| u32 mlux; |
| __le16 channels[3]; |
| s64 ts __aligned(8); |
| } scan; |
| }; |
| |
| struct bu27034_result { |
| u16 ch0; |
| u16 ch1; |
| u16 ch2; |
| }; |
| |
| static const struct regmap_range bu27034_volatile_ranges[] = { |
| { |
| .range_min = BU27034_REG_SYSTEM_CONTROL, |
| .range_max = BU27034_REG_SYSTEM_CONTROL, |
| }, { |
| .range_min = BU27034_REG_MODE_CONTROL4, |
| .range_max = BU27034_REG_MODE_CONTROL4, |
| }, { |
| .range_min = BU27034_REG_DATA0_LO, |
| .range_max = BU27034_REG_DATA2_HI, |
| }, |
| }; |
| |
| static const struct regmap_access_table bu27034_volatile_regs = { |
| .yes_ranges = &bu27034_volatile_ranges[0], |
| .n_yes_ranges = ARRAY_SIZE(bu27034_volatile_ranges), |
| }; |
| |
| static const struct regmap_range bu27034_read_only_ranges[] = { |
| { |
| .range_min = BU27034_REG_DATA0_LO, |
| .range_max = BU27034_REG_DATA2_HI, |
| }, { |
| .range_min = BU27034_REG_MANUFACTURER_ID, |
| .range_max = BU27034_REG_MANUFACTURER_ID, |
| } |
| }; |
| |
| static const struct regmap_access_table bu27034_ro_regs = { |
| .no_ranges = &bu27034_read_only_ranges[0], |
| .n_no_ranges = ARRAY_SIZE(bu27034_read_only_ranges), |
| }; |
| |
| static const struct regmap_config bu27034_regmap = { |
| .reg_bits = 8, |
| .val_bits = 8, |
| .max_register = BU27034_REG_MAX, |
| .cache_type = REGCACHE_RBTREE, |
| .volatile_table = &bu27034_volatile_regs, |
| .wr_table = &bu27034_ro_regs, |
| }; |
| |
| struct bu27034_gain_check { |
| int old_gain; |
| int new_gain; |
| int chan; |
| }; |
| |
| static int bu27034_get_gain_sel(struct bu27034_data *data, int chan) |
| { |
| int ret, val; |
| |
| switch (chan) { |
| case BU27034_CHAN_DATA0: |
| case BU27034_CHAN_DATA1: |
| { |
| int reg[] = { |
| [BU27034_CHAN_DATA0] = BU27034_REG_MODE_CONTROL2, |
| [BU27034_CHAN_DATA1] = BU27034_REG_MODE_CONTROL3, |
| }; |
| ret = regmap_read(data->regmap, reg[chan], &val); |
| if (ret) |
| return ret; |
| |
| return FIELD_GET(BU27034_MASK_D01_GAIN, val); |
| } |
| case BU27034_CHAN_DATA2: |
| { |
| int d2_lo_bits = fls(BU27034_MASK_D2_GAIN_LO); |
| |
| ret = regmap_read(data->regmap, BU27034_REG_MODE_CONTROL2, &val); |
| if (ret) |
| return ret; |
| |
| /* |
| * The data2 channel gain is composed by 5 non continuous bits |
| * [7:6], [2:0]. Thus when we combine the 5-bit 'selector' |
| * from register value we must right shift the high bits by 3. |
| */ |
| return FIELD_GET(BU27034_MASK_D2_GAIN_HI, val) << d2_lo_bits | |
| FIELD_GET(BU27034_MASK_D2_GAIN_LO, val); |
| } |
| default: |
| return -EINVAL; |
| } |
| } |
| |
| static int bu27034_get_gain(struct bu27034_data *data, int chan, int *gain) |
| { |
| int ret, sel; |
| |
| ret = bu27034_get_gain_sel(data, chan); |
| if (ret < 0) |
| return ret; |
| |
| sel = ret; |
| |
| ret = iio_gts_find_gain_by_sel(&data->gts, sel); |
| if (ret < 0) { |
| dev_err(data->dev, "chan %u: unknown gain value 0x%x\n", chan, |
| sel); |
| |
| return ret; |
| } |
| |
| *gain = ret; |
| |
| return 0; |
| } |
| |
| static int bu27034_get_int_time(struct bu27034_data *data) |
| { |
| int ret, sel; |
| |
| ret = regmap_read(data->regmap, BU27034_REG_MODE_CONTROL1, &sel); |
| if (ret) |
| return ret; |
| |
| return iio_gts_find_int_time_by_sel(&data->gts, |
| sel & BU27034_MASK_MEAS_MODE); |
| } |
| |
| static int _bu27034_get_scale(struct bu27034_data *data, int channel, int *val, |
| int *val2) |
| { |
| int gain, ret; |
| |
| ret = bu27034_get_gain(data, channel, &gain); |
| if (ret) |
| return ret; |
| |
| ret = bu27034_get_int_time(data); |
| if (ret < 0) |
| return ret; |
| |
| return iio_gts_get_scale(&data->gts, gain, ret, val, val2); |
| } |
| |
| static int bu27034_get_scale(struct bu27034_data *data, int channel, int *val, |
| int *val2) |
| { |
| int ret; |
| |
| if (channel == BU27034_CHAN_ALS) { |
| *val = 0; |
| *val2 = 1000; |
| return IIO_VAL_INT_PLUS_MICRO; |
| } |
| |
| mutex_lock(&data->mutex); |
| ret = _bu27034_get_scale(data, channel, val, val2); |
| mutex_unlock(&data->mutex); |
| if (ret) |
| return ret; |
| |
| return IIO_VAL_INT_PLUS_NANO; |
| } |
| |
| /* Caller should hold the lock to protect lux reading */ |
| static int bu27034_write_gain_sel(struct bu27034_data *data, int chan, int sel) |
| { |
| static const int reg[] = { |
| [BU27034_CHAN_DATA0] = BU27034_REG_MODE_CONTROL2, |
| [BU27034_CHAN_DATA1] = BU27034_REG_MODE_CONTROL3, |
| }; |
| int mask, val; |
| |
| if (chan != BU27034_CHAN_DATA0 && chan != BU27034_CHAN_DATA1) |
| return -EINVAL; |
| |
| val = FIELD_PREP(BU27034_MASK_D01_GAIN, sel); |
| |
| mask = BU27034_MASK_D01_GAIN; |
| |
| if (chan == BU27034_CHAN_DATA0) { |
| /* |
| * We keep the same gain for channel 2 as we set for channel 0 |
| * We can't allow them to be individually controlled because |
| * setting one will impact also the other. Also, if we don't |
| * always update both gains we may result unsupported bit |
| * combinations. |
| * |
| * This is not nice but this is yet another place where the |
| * user space must be prepared to surprizes. Namely, see chan 2 |
| * gain changed when chan 0 gain is changed. |
| * |
| * This is not fatal for most users though. I don't expect the |
| * channel 2 to be used in any generic cases - the intensity |
| * values provided by the sensor for IR area are not openly |
| * documented. Also, channel 2 is not used for visible light. |
| * |
| * So, if there is application which is written to utilize the |
| * channel 2 - then it is probably specifically targeted to this |
| * sensor and knows how to utilize those values. It is safe to |
| * hope such user can also cope with the gain changes. |
| */ |
| mask |= BU27034_MASK_D2_GAIN_LO; |
| |
| /* |
| * The D2 gain bits are directly the lowest bits of selector. |
| * Just do add those bits to the value |
| */ |
| val |= sel & BU27034_MASK_D2_GAIN_LO; |
| } |
| |
| return regmap_update_bits(data->regmap, reg[chan], mask, val); |
| } |
| |
| static int bu27034_set_gain(struct bu27034_data *data, int chan, int gain) |
| { |
| int ret; |
| |
| /* |
| * We don't allow setting channel 2 gain as it messes up the |
| * gain for channel 0 - which shares the high bits |
| */ |
| if (chan != BU27034_CHAN_DATA0 && chan != BU27034_CHAN_DATA1) |
| return -EINVAL; |
| |
| ret = iio_gts_find_sel_by_gain(&data->gts, gain); |
| if (ret < 0) |
| return ret; |
| |
| return bu27034_write_gain_sel(data, chan, ret); |
| } |
| |
| /* Caller should hold the lock to protect data->int_time */ |
| static int bu27034_set_int_time(struct bu27034_data *data, int time) |
| { |
| int ret; |
| |
| ret = iio_gts_find_sel_by_int_time(&data->gts, time); |
| if (ret < 0) |
| return ret; |
| |
| return regmap_update_bits(data->regmap, BU27034_REG_MODE_CONTROL1, |
| BU27034_MASK_MEAS_MODE, ret); |
| } |
| |
| /* |
| * We try to change the time in such way that the scale is maintained for |
| * given channels by adjusting gain so that it compensates the time change. |
| */ |
| static int bu27034_try_set_int_time(struct bu27034_data *data, int time_us) |
| { |
| struct bu27034_gain_check gains[] = { |
| { .chan = BU27034_CHAN_DATA0 }, |
| { .chan = BU27034_CHAN_DATA1 }, |
| }; |
| int numg = ARRAY_SIZE(gains); |
| int ret, int_time_old, i; |
| |
| mutex_lock(&data->mutex); |
| ret = bu27034_get_int_time(data); |
| if (ret < 0) |
| goto unlock_out; |
| |
| int_time_old = ret; |
| |
| if (!iio_gts_valid_time(&data->gts, time_us)) { |
| dev_err(data->dev, "Unsupported integration time %u\n", |
| time_us); |
| ret = -EINVAL; |
| |
| goto unlock_out; |
| } |
| |
| if (time_us == int_time_old) { |
| ret = 0; |
| goto unlock_out; |
| } |
| |
| for (i = 0; i < numg; i++) { |
| ret = bu27034_get_gain(data, gains[i].chan, &gains[i].old_gain); |
| if (ret) |
| goto unlock_out; |
| |
| ret = iio_gts_find_new_gain_by_old_gain_time(&data->gts, |
| gains[i].old_gain, |
| int_time_old, time_us, |
| &gains[i].new_gain); |
| if (ret) { |
| int scale1, scale2; |
| bool ok; |
| |
| _bu27034_get_scale(data, gains[i].chan, &scale1, &scale2); |
| dev_dbg(data->dev, |
| "chan %u, can't support time %u with scale %u %u\n", |
| gains[i].chan, time_us, scale1, scale2); |
| |
| if (gains[i].new_gain < 0) |
| goto unlock_out; |
| |
| /* |
| * If caller requests for integration time change and we |
| * can't support the scale - then the caller should be |
| * prepared to 'pick up the pieces and deal with the |
| * fact that the scale changed'. |
| */ |
| ret = iio_find_closest_gain_low(&data->gts, |
| gains[i].new_gain, &ok); |
| |
| if (!ok) |
| dev_dbg(data->dev, |
| "optimal gain out of range for chan %u\n", |
| gains[i].chan); |
| |
| if (ret < 0) { |
| dev_dbg(data->dev, |
| "Total gain increase. Risk of saturation"); |
| ret = iio_gts_get_min_gain(&data->gts); |
| if (ret < 0) |
| goto unlock_out; |
| } |
| dev_dbg(data->dev, "chan %u scale changed\n", |
| gains[i].chan); |
| gains[i].new_gain = ret; |
| dev_dbg(data->dev, "chan %u new gain %u\n", |
| gains[i].chan, gains[i].new_gain); |
| } |
| } |
| |
| for (i = 0; i < numg; i++) { |
| ret = bu27034_set_gain(data, gains[i].chan, gains[i].new_gain); |
| if (ret) |
| goto unlock_out; |
| } |
| |
| ret = bu27034_set_int_time(data, time_us); |
| |
| unlock_out: |
| mutex_unlock(&data->mutex); |
| |
| return ret; |
| } |
| |
| static int bu27034_set_scale(struct bu27034_data *data, int chan, |
| int val, int val2) |
| { |
| int ret, time_sel, gain_sel, i; |
| bool found = false; |
| |
| if (chan == BU27034_CHAN_DATA2) |
| return -EINVAL; |
| |
| if (chan == BU27034_CHAN_ALS) { |
| if (val == 0 && val2 == 1000000) |
| return 0; |
| |
| return -EINVAL; |
| } |
| |
| mutex_lock(&data->mutex); |
| ret = regmap_read(data->regmap, BU27034_REG_MODE_CONTROL1, &time_sel); |
| if (ret) |
| goto unlock_out; |
| |
| ret = iio_gts_find_gain_sel_for_scale_using_time(&data->gts, time_sel, |
| val, val2, &gain_sel); |
| if (ret) { |
| /* |
| * Could not support scale with given time. Need to change time. |
| * We still want to maintain the scale for all channels |
| */ |
| struct bu27034_gain_check gain; |
| int new_time_sel; |
| |
| /* |
| * Populate information for the other channel which should also |
| * maintain the scale. (Due to the HW limitations the chan2 |
| * gets the same gain as chan0, so we only need to explicitly |
| * set the chan 0 and 1). |
| */ |
| if (chan == BU27034_CHAN_DATA0) |
| gain.chan = BU27034_CHAN_DATA1; |
| else if (chan == BU27034_CHAN_DATA1) |
| gain.chan = BU27034_CHAN_DATA0; |
| |
| ret = bu27034_get_gain(data, gain.chan, &gain.old_gain); |
| if (ret) |
| goto unlock_out; |
| |
| /* |
| * Iterate through all the times to see if we find one which |
| * can support requested scale for requested channel, while |
| * maintaining the scale for other channels |
| */ |
| for (i = 0; i < data->gts.num_itime; i++) { |
| new_time_sel = data->gts.itime_table[i].sel; |
| |
| if (new_time_sel == time_sel) |
| continue; |
| |
| /* Can we provide requested scale with this time? */ |
| ret = iio_gts_find_gain_sel_for_scale_using_time( |
| &data->gts, new_time_sel, val, val2, |
| &gain_sel); |
| if (ret) |
| continue; |
| |
| /* Can the other channel(s) maintain scale? */ |
| ret = iio_gts_find_new_gain_sel_by_old_gain_time( |
| &data->gts, gain.old_gain, time_sel, |
| new_time_sel, &gain.new_gain); |
| if (!ret) { |
| /* Yes - we found suitable time */ |
| found = true; |
| break; |
| } |
| } |
| if (!found) { |
| dev_dbg(data->dev, |
| "Can't set scale maintaining other channels\n"); |
| ret = -EINVAL; |
| |
| goto unlock_out; |
| } |
| |
| ret = bu27034_set_gain(data, gain.chan, gain.new_gain); |
| if (ret) |
| goto unlock_out; |
| |
| ret = regmap_update_bits(data->regmap, BU27034_REG_MODE_CONTROL1, |
| BU27034_MASK_MEAS_MODE, new_time_sel); |
| if (ret) |
| goto unlock_out; |
| } |
| |
| ret = bu27034_write_gain_sel(data, chan, gain_sel); |
| unlock_out: |
| mutex_unlock(&data->mutex); |
| |
| return ret; |
| } |
| |
| /* |
| * for (D1/D0 < 0.87): |
| * lx = 0.004521097 * D1 - 0.002663996 * D0 + |
| * 0.00012213 * D1 * D1 / D0 |
| * |
| * => 115.7400832 * ch1 / gain1 / mt - |
| * 68.1982976 * ch0 / gain0 / mt + |
| * 0.00012213 * 25600 * (ch1 / gain1 / mt) * 25600 * |
| * (ch1 /gain1 / mt) / (25600 * ch0 / gain0 / mt) |
| * |
| * A = 0.00012213 * 25600 * (ch1 /gain1 / mt) * 25600 * |
| * (ch1 /gain1 / mt) / (25600 * ch0 / gain0 / mt) |
| * => 0.00012213 * 25600 * (ch1 /gain1 / mt) * |
| * (ch1 /gain1 / mt) / (ch0 / gain0 / mt) |
| * => 0.00012213 * 25600 * (ch1 / gain1) * (ch1 /gain1 / mt) / |
| * (ch0 / gain0) |
| * => 0.00012213 * 25600 * (ch1 / gain1) * (ch1 /gain1 / mt) * |
| * gain0 / ch0 |
| * => 3.126528 * ch1 * ch1 * gain0 / gain1 / gain1 / mt /ch0 |
| * |
| * lx = (115.7400832 * ch1 / gain1 - 68.1982976 * ch0 / gain0) / |
| * mt + A |
| * => (115.7400832 * ch1 / gain1 - 68.1982976 * ch0 / gain0) / |
| * mt + 3.126528 * ch1 * ch1 * gain0 / gain1 / gain1 / mt / |
| * ch0 |
| * |
| * => (115.7400832 * ch1 / gain1 - 68.1982976 * ch0 / gain0 + |
| * 3.126528 * ch1 * ch1 * gain0 / gain1 / gain1 / ch0) / |
| * mt |
| * |
| * For (0.87 <= D1/D0 < 1.00) |
| * lx = (0.001331* D0 + 0.0000354 * D1) * ((D1/D0 – 0.87) * (0.385) + 1) |
| * => (0.001331 * 256 * 100 * ch0 / gain0 / mt + 0.0000354 * 256 * |
| * 100 * ch1 / gain1 / mt) * ((D1/D0 - 0.87) * (0.385) + 1) |
| * => (34.0736 * ch0 / gain0 / mt + 0.90624 * ch1 / gain1 / mt) * |
| * ((D1/D0 - 0.87) * (0.385) + 1) |
| * => (34.0736 * ch0 / gain0 / mt + 0.90624 * ch1 / gain1 / mt) * |
| * (0.385 * D1/D0 - 0.66505) |
| * => (34.0736 * ch0 / gain0 / mt + 0.90624 * ch1 / gain1 / mt) * |
| * (0.385 * 256 * 100 * ch1 / gain1 / mt / (256 * 100 * ch0 / gain0 / mt) - 0.66505) |
| * => (34.0736 * ch0 / gain0 / mt + 0.90624 * ch1 / gain1 / mt) * |
| * (9856 * ch1 / gain1 / mt / (25600 * ch0 / gain0 / mt) + 0.66505) |
| * => 13.118336 * ch1 / (gain1 * mt) |
| * + 22.66064768 * ch0 / (gain0 * mt) |
| * + 8931.90144 * ch1 * ch1 * gain0 / |
| * (25600 * ch0 * gain1 * gain1 * mt) |
| * + 0.602694912 * ch1 / (gain1 * mt) |
| * |
| * => [0.3489024 * ch1 * ch1 * gain0 / (ch0 * gain1 * gain1) |
| * + 22.66064768 * ch0 / gain0 |
| * + 13.721030912 * ch1 / gain1 |
| * ] / mt |
| * |
| * For (D1/D0 >= 1.00) |
| * |
| * lx = (0.001331* D0 + 0.0000354 * D1) * ((D1/D0 – 2.0) * (-0.05) + 1) |
| * => (0.001331* D0 + 0.0000354 * D1) * (-0.05D1/D0 + 1.1) |
| * => (0.001331 * 256 * 100 * ch0 / gain0 / mt + 0.0000354 * 256 * |
| * 100 * ch1 / gain1 / mt) * (-0.05D1/D0 + 1.1) |
| * => (34.0736 * ch0 / gain0 / mt + 0.90624 * ch1 / gain1 / mt) * |
| * (-0.05 * 256 * 100 * ch1 / gain1 / mt / (256 * 100 * ch0 / gain0 / mt) + 1.1) |
| * => (34.0736 * ch0 / gain0 / mt + 0.90624 * ch1 / gain1 / mt) * |
| * (-1280 * ch1 / (gain1 * mt * 25600 * ch0 / gain0 / mt) + 1.1) |
| * => (34.0736 * ch0 * -1280 * ch1 * gain0 * mt /( gain0 * mt * gain1 * mt * 25600 * ch0) |
| * + 34.0736 * 1.1 * ch0 / (gain0 * mt) |
| * + 0.90624 * ch1 * -1280 * ch1 *gain0 * mt / (gain1 * mt *gain1 * mt * 25600 * ch0) |
| * + 1.1 * 0.90624 * ch1 / (gain1 * mt) |
| * => -43614.208 * ch1 / (gain1 * mt * 25600) |
| * + 37.48096 ch0 / (gain0 * mt) |
| * - 1159.9872 * ch1 * ch1 * gain0 / (gain1 * gain1 * mt * 25600 * ch0) |
| * + 0.996864 ch1 / (gain1 * mt) |
| * => [ |
| * - 0.045312 * ch1 * ch1 * gain0 / (gain1 * gain1 * ch0) |
| * - 0.706816 * ch1 / gain1 |
| * + 37.48096 ch0 /gain0 |
| * ] * mt |
| * |
| * |
| * So, the first case (D1/D0 < 0.87) can be computed to a form: |
| * |
| * lx = (3.126528 * ch1 * ch1 * gain0 / (ch0 * gain1 * gain1) + |
| * 115.7400832 * ch1 / gain1 + |
| * -68.1982976 * ch0 / gain0 |
| * / mt |
| * |
| * Second case (0.87 <= D1/D0 < 1.00) goes to form: |
| * |
| * => [0.3489024 * ch1 * ch1 * gain0 / (ch0 * gain1 * gain1) + |
| * 13.721030912 * ch1 / gain1 + |
| * 22.66064768 * ch0 / gain0 |
| * ] / mt |
| * |
| * Third case (D1/D0 >= 1.00) goes to form: |
| * => [-0.045312 * ch1 * ch1 * gain0 / (ch0 * gain1 * gain1) + |
| * -0.706816 * ch1 / gain1 + |
| * 37.48096 ch0 /(gain0 |
| * ] / mt |
| * |
| * This can be unified to format: |
| * lx = [ |
| * A * ch1 * ch1 * gain0 / (ch0 * gain1 * gain1) + |
| * B * ch1 / gain1 + |
| * C * ch0 / gain0 |
| * ] / mt |
| * |
| * For case 1: |
| * A = 3.126528, |
| * B = 115.7400832 |
| * C = -68.1982976 |
| * |
| * For case 2: |
| * A = 0.3489024 |
| * B = 13.721030912 |
| * C = 22.66064768 |
| * |
| * For case 3: |
| * A = -0.045312 |
| * B = -0.706816 |
| * C = 37.48096 |
| */ |
| |
| struct bu27034_lx_coeff { |
| unsigned int A; |
| unsigned int B; |
| unsigned int C; |
| /* Indicate which of the coefficients above are negative */ |
| bool is_neg[3]; |
| }; |
| |
| static inline u64 gain_mul_div_helper(u64 val, unsigned int gain, |
| unsigned int div) |
| { |
| /* |
| * Max gain for a channel is 4096. The max u64 (0xffffffffffffffffULL) |
| * divided by 4096 is 0xFFFFFFFFFFFFF (GENMASK_ULL(51, 0)) (floored). |
| * Thus, the 0xFFFFFFFFFFFFF is the largest value we can safely multiply |
| * with the gain, no matter what gain is set. |
| * |
| * So, multiplication with max gain may overflow if val is greater than |
| * 0xFFFFFFFFFFFFF (52 bits set).. |
| * |
| * If this is the case we divide first. |
| */ |
| if (val < GENMASK_ULL(51, 0)) { |
| val *= gain; |
| do_div(val, div); |
| } else { |
| do_div(val, div); |
| val *= gain; |
| } |
| |
| return val; |
| } |
| |
| static u64 bu27034_fixp_calc_t1_64bit(unsigned int coeff, unsigned int ch0, |
| unsigned int ch1, unsigned int gain0, |
| unsigned int gain1) |
| { |
| unsigned int helper; |
| u64 helper64; |
| |
| helper64 = (u64)coeff * (u64)ch1 * (u64)ch1; |
| |
| helper = gain1 * gain1; |
| if (helper > ch0) { |
| do_div(helper64, helper); |
| |
| return gain_mul_div_helper(helper64, gain0, ch0); |
| } |
| |
| do_div(helper64, ch0); |
| |
| return gain_mul_div_helper(helper64, gain0, helper); |
| |
| } |
| |
| static u64 bu27034_fixp_calc_t1(unsigned int coeff, unsigned int ch0, |
| unsigned int ch1, unsigned int gain0, |
| unsigned int gain1) |
| { |
| unsigned int helper, tmp; |
| |
| /* |
| * Here we could overflow even the 64bit value. Hence we |
| * multiply with gain0 only after the divisions - even though |
| * it may result loss of accuracy |
| */ |
| helper = coeff * ch1 * ch1; |
| tmp = helper * gain0; |
| |
| helper = ch1 * ch1; |
| |
| if (check_mul_overflow(helper, coeff, &helper)) |
| return bu27034_fixp_calc_t1_64bit(coeff, ch0, ch1, gain0, gain1); |
| |
| if (check_mul_overflow(helper, gain0, &tmp)) |
| return bu27034_fixp_calc_t1_64bit(coeff, ch0, ch1, gain0, gain1); |
| |
| return tmp / (gain1 * gain1) / ch0; |
| |
| } |
| |
| static u64 bu27034_fixp_calc_t23(unsigned int coeff, unsigned int ch, |
| unsigned int gain) |
| { |
| unsigned int helper; |
| u64 helper64; |
| |
| if (!check_mul_overflow(coeff, ch, &helper)) |
| return helper / gain; |
| |
| helper64 = (u64)coeff * (u64)ch; |
| do_div(helper64, gain); |
| |
| return helper64; |
| } |
| |
| static int bu27034_fixp_calc_lx(unsigned int ch0, unsigned int ch1, |
| unsigned int gain0, unsigned int gain1, |
| unsigned int meastime, int coeff_idx) |
| { |
| static const struct bu27034_lx_coeff coeff[] = { |
| { |
| .A = 31265280, /* 3.126528 */ |
| .B = 1157400832, /*115.7400832 */ |
| .C = 681982976, /* -68.1982976 */ |
| .is_neg = {false, false, true}, |
| }, { |
| .A = 3489024, /* 0.3489024 */ |
| .B = 137210309, /* 13.721030912 */ |
| .C = 226606476, /* 22.66064768 */ |
| /* All terms positive */ |
| }, { |
| .A = 453120, /* -0.045312 */ |
| .B = 7068160, /* -0.706816 */ |
| .C = 374809600, /* 37.48096 */ |
| .is_neg = {true, true, false}, |
| } |
| }; |
| const struct bu27034_lx_coeff *c = &coeff[coeff_idx]; |
| u64 res = 0, terms[3]; |
| int i; |
| |
| if (coeff_idx >= ARRAY_SIZE(coeff)) |
| return -EINVAL; |
| |
| terms[0] = bu27034_fixp_calc_t1(c->A, ch0, ch1, gain0, gain1); |
| terms[1] = bu27034_fixp_calc_t23(c->B, ch1, gain1); |
| terms[2] = bu27034_fixp_calc_t23(c->C, ch0, gain0); |
| |
| /* First, add positive terms */ |
| for (i = 0; i < 3; i++) |
| if (!c->is_neg[i]) |
| res += terms[i]; |
| |
| /* No positive term => zero lux */ |
| if (!res) |
| return 0; |
| |
| /* Then, subtract negative terms (if any) */ |
| for (i = 0; i < 3; i++) |
| if (c->is_neg[i]) { |
| /* |
| * If the negative term is greater than positive - then |
| * the darkness has taken over and we are all doomed! Eh, |
| * I mean, then we can just return 0 lx and go out |
| */ |
| if (terms[i] >= res) |
| return 0; |
| |
| res -= terms[i]; |
| } |
| |
| meastime *= 10; |
| do_div(res, meastime); |
| |
| return (int) res; |
| } |
| |
| static bool bu27034_has_valid_sample(struct bu27034_data *data) |
| { |
| int ret, val; |
| |
| ret = regmap_read(data->regmap, BU27034_REG_MODE_CONTROL4, &val); |
| if (ret) { |
| dev_err(data->dev, "Read failed %d\n", ret); |
| |
| return false; |
| } |
| |
| return val & BU27034_MASK_VALID; |
| } |
| |
| /* |
| * Reading the register where VALID bit is clears this bit. (So does changing |
| * any gain / integration time configuration registers) The bit gets |
| * set when we have acquired new data. We use this bit to indicate data |
| * validity. |
| */ |
| static void bu27034_invalidate_read_data(struct bu27034_data *data) |
| { |
| bu27034_has_valid_sample(data); |
| } |
| |
| static int bu27034_read_result(struct bu27034_data *data, int chan, int *res) |
| { |
| int reg[] = { |
| [BU27034_CHAN_DATA0] = BU27034_REG_DATA0_LO, |
| [BU27034_CHAN_DATA1] = BU27034_REG_DATA1_LO, |
| [BU27034_CHAN_DATA2] = BU27034_REG_DATA2_LO, |
| }; |
| int valid, ret; |
| __le16 val; |
| |
| ret = regmap_read_poll_timeout(data->regmap, BU27034_REG_MODE_CONTROL4, |
| valid, (valid & BU27034_MASK_VALID), |
| BU27034_DATA_WAIT_TIME_US, 0); |
| if (ret) |
| return ret; |
| |
| ret = regmap_bulk_read(data->regmap, reg[chan], &val, sizeof(val)); |
| if (ret) |
| return ret; |
| |
| *res = le16_to_cpu(val); |
| |
| return 0; |
| } |
| |
| static int bu27034_get_result_unlocked(struct bu27034_data *data, __le16 *res, |
| int size) |
| { |
| int ret = 0, retry_cnt = 0; |
| |
| retry: |
| /* Get new value from sensor if data is ready */ |
| if (bu27034_has_valid_sample(data)) { |
| ret = regmap_bulk_read(data->regmap, BU27034_REG_DATA0_LO, |
| res, size); |
| if (ret) |
| return ret; |
| |
| bu27034_invalidate_read_data(data); |
| } else { |
| /* No new data in sensor. Wait and retry */ |
| retry_cnt++; |
| |
| if (retry_cnt > BU27034_RETRY_LIMIT) { |
| dev_err(data->dev, "No data from sensor\n"); |
| |
| return -ETIMEDOUT; |
| } |
| |
| msleep(25); |
| |
| goto retry; |
| } |
| |
| return ret; |
| } |
| |
| static int bu27034_meas_set(struct bu27034_data *data, bool en) |
| { |
| if (en) |
| return regmap_set_bits(data->regmap, BU27034_REG_MODE_CONTROL4, |
| BU27034_MASK_MEAS_EN); |
| |
| return regmap_clear_bits(data->regmap, BU27034_REG_MODE_CONTROL4, |
| BU27034_MASK_MEAS_EN); |
| } |
| |
| static int bu27034_get_single_result(struct bu27034_data *data, int chan, |
| int *val) |
| { |
| int ret; |
| |
| if (chan < BU27034_CHAN_DATA0 || chan > BU27034_CHAN_DATA2) |
| return -EINVAL; |
| |
| ret = bu27034_meas_set(data, true); |
| if (ret) |
| return ret; |
| |
| ret = bu27034_get_int_time(data); |
| if (ret < 0) |
| return ret; |
| |
| msleep(ret / 1000); |
| |
| return bu27034_read_result(data, chan, val); |
| } |
| |
| /* |
| * The formula given by vendor for computing luxes out of data0 and data1 |
| * (in open air) is as follows: |
| * |
| * Let's mark: |
| * D0 = data0/ch0_gain/meas_time_ms * 25600 |
| * D1 = data1/ch1_gain/meas_time_ms * 25600 |
| * |
| * Then: |
| * if (D1/D0 < 0.87) |
| * lx = (0.001331 * D0 + 0.0000354 * D1) * ((D1 / D0 - 0.87) * 3.45 + 1) |
| * else if (D1/D0 < 1) |
| * lx = (0.001331 * D0 + 0.0000354 * D1) * ((D1 / D0 - 0.87) * 0.385 + 1) |
| * else |
| * lx = (0.001331 * D0 + 0.0000354 * D1) * ((D1 / D0 - 2) * -0.05 + 1) |
| * |
| * We use it here. Users who have for example some colored lens |
| * need to modify the calculation but I hope this gives a starting point for |
| * those working with such devices. |
| */ |
| |
| static int bu27034_calc_mlux(struct bu27034_data *data, __le16 *res, int *val) |
| { |
| unsigned int gain0, gain1, meastime; |
| unsigned int d1_d0_ratio_scaled; |
| u16 ch0, ch1; |
| u64 helper64; |
| int ret; |
| |
| /* |
| * We return 0 lux if calculation fails. This should be reasonably |
| * easy to spot from the buffers especially if raw-data channels show |
| * valid values |
| */ |
| *val = 0; |
| |
| ch0 = max_t(u16, 1, le16_to_cpu(res[0])); |
| ch1 = max_t(u16, 1, le16_to_cpu(res[1])); |
| |
| ret = bu27034_get_gain(data, BU27034_CHAN_DATA0, &gain0); |
| if (ret) |
| return ret; |
| |
| ret = bu27034_get_gain(data, BU27034_CHAN_DATA1, &gain1); |
| if (ret) |
| return ret; |
| |
| ret = bu27034_get_int_time(data); |
| if (ret < 0) |
| return ret; |
| |
| meastime = ret; |
| |
| d1_d0_ratio_scaled = (unsigned int)ch1 * (unsigned int)gain0 * 100; |
| helper64 = (u64)ch1 * (u64)gain0 * 100LLU; |
| |
| if (helper64 != d1_d0_ratio_scaled) { |
| unsigned int div = (unsigned int)ch0 * gain1; |
| |
| do_div(helper64, div); |
| d1_d0_ratio_scaled = helper64; |
| } else { |
| d1_d0_ratio_scaled /= ch0 * gain1; |
| } |
| |
| if (d1_d0_ratio_scaled < 87) |
| ret = bu27034_fixp_calc_lx(ch0, ch1, gain0, gain1, meastime, 0); |
| else if (d1_d0_ratio_scaled < 100) |
| ret = bu27034_fixp_calc_lx(ch0, ch1, gain0, gain1, meastime, 1); |
| else |
| ret = bu27034_fixp_calc_lx(ch0, ch1, gain0, gain1, meastime, 2); |
| |
| if (ret < 0) |
| return ret; |
| |
| *val = ret; |
| |
| return 0; |
| |
| } |
| |
| static int bu27034_get_mlux(struct bu27034_data *data, int chan, int *val) |
| { |
| __le16 res[3]; |
| int ret; |
| |
| ret = bu27034_meas_set(data, true); |
| if (ret) |
| return ret; |
| |
| ret = bu27034_get_result_unlocked(data, &res[0], sizeof(res)); |
| if (ret) |
| return ret; |
| |
| ret = bu27034_calc_mlux(data, res, val); |
| if (ret) |
| return ret; |
| |
| ret = bu27034_meas_set(data, false); |
| if (ret) |
| dev_err(data->dev, "failed to disable measurement\n"); |
| |
| return 0; |
| } |
| |
| static int bu27034_read_raw(struct iio_dev *idev, |
| struct iio_chan_spec const *chan, |
| int *val, int *val2, long mask) |
| { |
| struct bu27034_data *data = iio_priv(idev); |
| int ret; |
| |
| switch (mask) { |
| case IIO_CHAN_INFO_INT_TIME: |
| *val = 0; |
| *val2 = bu27034_get_int_time(data); |
| if (*val2 < 0) |
| return *val2; |
| |
| return IIO_VAL_INT_PLUS_MICRO; |
| |
| case IIO_CHAN_INFO_SCALE: |
| return bu27034_get_scale(data, chan->channel, val, val2); |
| |
| case IIO_CHAN_INFO_RAW: |
| { |
| int (*result_get)(struct bu27034_data *data, int chan, int *val); |
| |
| if (chan->type == IIO_INTENSITY) |
| result_get = bu27034_get_single_result; |
| else if (chan->type == IIO_LIGHT) |
| result_get = bu27034_get_mlux; |
| else |
| return -EINVAL; |
| |
| /* Don't mess with measurement enabling while buffering */ |
| ret = iio_device_claim_direct_mode(idev); |
| if (ret) |
| return ret; |
| |
| mutex_lock(&data->mutex); |
| /* |
| * Reading one channel at a time is inefficient but we |
| * don't care here. Buffered version should be used if |
| * performance is an issue. |
| */ |
| ret = result_get(data, chan->channel, val); |
| |
| mutex_unlock(&data->mutex); |
| iio_device_release_direct_mode(idev); |
| |
| if (ret) |
| return ret; |
| |
| return IIO_VAL_INT; |
| } |
| default: |
| return -EINVAL; |
| } |
| } |
| |
| static int bu27034_write_raw_get_fmt(struct iio_dev *indio_dev, |
| struct iio_chan_spec const *chan, |
| long mask) |
| { |
| |
| switch (mask) { |
| case IIO_CHAN_INFO_SCALE: |
| return IIO_VAL_INT_PLUS_NANO; |
| case IIO_CHAN_INFO_INT_TIME: |
| return IIO_VAL_INT_PLUS_MICRO; |
| default: |
| return -EINVAL; |
| } |
| } |
| |
| static int bu27034_write_raw(struct iio_dev *idev, |
| struct iio_chan_spec const *chan, |
| int val, int val2, long mask) |
| { |
| struct bu27034_data *data = iio_priv(idev); |
| int ret; |
| |
| ret = iio_device_claim_direct_mode(idev); |
| if (ret) |
| return ret; |
| |
| switch (mask) { |
| case IIO_CHAN_INFO_SCALE: |
| ret = bu27034_set_scale(data, chan->channel, val, val2); |
| break; |
| case IIO_CHAN_INFO_INT_TIME: |
| if (!val) |
| ret = bu27034_try_set_int_time(data, val2); |
| else |
| ret = -EINVAL; |
| break; |
| default: |
| ret = -EINVAL; |
| break; |
| } |
| |
| iio_device_release_direct_mode(idev); |
| |
| return ret; |
| } |
| |
| static int bu27034_read_avail(struct iio_dev *idev, |
| struct iio_chan_spec const *chan, const int **vals, |
| int *type, int *length, long mask) |
| { |
| struct bu27034_data *data = iio_priv(idev); |
| |
| switch (mask) { |
| case IIO_CHAN_INFO_INT_TIME: |
| return iio_gts_avail_times(&data->gts, vals, type, length); |
| case IIO_CHAN_INFO_SCALE: |
| return iio_gts_all_avail_scales(&data->gts, vals, type, length); |
| default: |
| return -EINVAL; |
| } |
| } |
| |
| static const struct iio_info bu27034_info = { |
| .read_raw = &bu27034_read_raw, |
| .write_raw = &bu27034_write_raw, |
| .write_raw_get_fmt = &bu27034_write_raw_get_fmt, |
| .read_avail = &bu27034_read_avail, |
| }; |
| |
| static int bu27034_chip_init(struct bu27034_data *data) |
| { |
| int ret, sel; |
| |
| /* Reset */ |
| ret = regmap_write_bits(data->regmap, BU27034_REG_SYSTEM_CONTROL, |
| BU27034_MASK_SW_RESET, BU27034_MASK_SW_RESET); |
| if (ret) |
| return dev_err_probe(data->dev, ret, "Sensor reset failed\n"); |
| |
| msleep(1); |
| |
| ret = regmap_reinit_cache(data->regmap, &bu27034_regmap); |
| if (ret) { |
| dev_err(data->dev, "Failed to reinit reg cache\n"); |
| return ret; |
| } |
| |
| /* |
| * Read integration time here to ensure it is in regmap cache. We do |
| * this to speed-up the int-time acquisition in the start of the buffer |
| * handling thread where longer delays could make it more likely we end |
| * up skipping a sample, and where the longer delays make timestamps |
| * less accurate. |
| */ |
| ret = regmap_read(data->regmap, BU27034_REG_MODE_CONTROL1, &sel); |
| if (ret) |
| dev_err(data->dev, "reading integration time failed\n"); |
| |
| return 0; |
| } |
| |
| static int bu27034_wait_for_data(struct bu27034_data *data) |
| { |
| int ret, val; |
| |
| ret = regmap_read_poll_timeout(data->regmap, BU27034_REG_MODE_CONTROL4, |
| val, val & BU27034_MASK_VALID, |
| BU27034_DATA_WAIT_TIME_US, |
| BU27034_TOTAL_DATA_WAIT_TIME_US); |
| if (ret) { |
| dev_err(data->dev, "data polling %s\n", |
| !(val & BU27034_MASK_VALID) ? "timeout" : "fail"); |
| |
| return ret; |
| } |
| |
| ret = regmap_bulk_read(data->regmap, BU27034_REG_DATA0_LO, |
| &data->scan.channels[0], |
| sizeof(data->scan.channels)); |
| if (ret) |
| return ret; |
| |
| bu27034_invalidate_read_data(data); |
| |
| return 0; |
| } |
| |
| static int bu27034_buffer_thread(void *arg) |
| { |
| struct iio_dev *idev = arg; |
| struct bu27034_data *data; |
| int wait_ms; |
| |
| data = iio_priv(idev); |
| |
| wait_ms = bu27034_get_int_time(data); |
| wait_ms /= 1000; |
| |
| wait_ms -= BU27034_MEAS_WAIT_PREMATURE_MS; |
| |
| while (!kthread_should_stop()) { |
| int ret; |
| int64_t tstamp; |
| |
| msleep(wait_ms); |
| ret = bu27034_wait_for_data(data); |
| if (ret) |
| continue; |
| |
| tstamp = iio_get_time_ns(idev); |
| |
| if (test_bit(BU27034_CHAN_ALS, idev->active_scan_mask)) { |
| int mlux; |
| |
| ret = bu27034_calc_mlux(data, &data->scan.channels[0], |
| &mlux); |
| if (ret) |
| dev_err(data->dev, "failed to calculate lux\n"); |
| |
| /* |
| * The maximum Milli lux value we get with gain 1x time |
| * 55mS data ch0 = 0xffff ch1 = 0xffff fits in 26 bits |
| * so there should be no problem returning int from |
| * computations and casting it to u32 |
| */ |
| data->scan.mlux = (u32)mlux; |
| } |
| iio_push_to_buffers_with_timestamp(idev, &data->scan, tstamp); |
| } |
| |
| return 0; |
| } |
| |
| static int bu27034_buffer_enable(struct iio_dev *idev) |
| { |
| struct bu27034_data *data = iio_priv(idev); |
| struct task_struct *task; |
| int ret; |
| |
| mutex_lock(&data->mutex); |
| ret = bu27034_meas_set(data, true); |
| if (ret) |
| goto unlock_out; |
| |
| task = kthread_run(bu27034_buffer_thread, idev, |
| "bu27034-buffering-%u", |
| iio_device_id(idev)); |
| if (IS_ERR(task)) { |
| ret = PTR_ERR(task); |
| goto unlock_out; |
| } |
| |
| data->task = task; |
| |
| unlock_out: |
| mutex_unlock(&data->mutex); |
| |
| return ret; |
| } |
| |
| static int bu27034_buffer_disable(struct iio_dev *idev) |
| { |
| struct bu27034_data *data = iio_priv(idev); |
| int ret; |
| |
| mutex_lock(&data->mutex); |
| if (data->task) { |
| kthread_stop(data->task); |
| data->task = NULL; |
| } |
| |
| ret = bu27034_meas_set(data, false); |
| mutex_unlock(&data->mutex); |
| |
| return ret; |
| } |
| |
| static const struct iio_buffer_setup_ops bu27034_buffer_ops = { |
| .postenable = &bu27034_buffer_enable, |
| .predisable = &bu27034_buffer_disable, |
| }; |
| |
| static int bu27034_probe(struct i2c_client *i2c) |
| { |
| struct device *dev = &i2c->dev; |
| struct bu27034_data *data; |
| struct regmap *regmap; |
| struct iio_dev *idev; |
| unsigned int part_id, reg; |
| int ret; |
| |
| regmap = devm_regmap_init_i2c(i2c, &bu27034_regmap); |
| if (IS_ERR(regmap)) |
| return dev_err_probe(dev, PTR_ERR(regmap), |
| "Failed to initialize Regmap\n"); |
| |
| idev = devm_iio_device_alloc(dev, sizeof(*data)); |
| if (!idev) |
| return -ENOMEM; |
| |
| ret = devm_regulator_get_enable(dev, "vdd"); |
| if (ret) |
| return dev_err_probe(dev, ret, "Failed to get regulator\n"); |
| |
| data = iio_priv(idev); |
| |
| ret = regmap_read(regmap, BU27034_REG_SYSTEM_CONTROL, ®); |
| if (ret) |
| return dev_err_probe(dev, ret, "Failed to access sensor\n"); |
| |
| part_id = FIELD_GET(BU27034_MASK_PART_ID, reg); |
| |
| if (part_id != BU27034_ID) |
| dev_warn(dev, "unknown device 0x%x\n", part_id); |
| |
| ret = devm_iio_init_iio_gts(dev, BU27034_SCALE_1X, 0, bu27034_gains, |
| ARRAY_SIZE(bu27034_gains), bu27034_itimes, |
| ARRAY_SIZE(bu27034_itimes), &data->gts); |
| if (ret) |
| return ret; |
| |
| mutex_init(&data->mutex); |
| data->regmap = regmap; |
| data->dev = dev; |
| |
| idev->channels = bu27034_channels; |
| idev->num_channels = ARRAY_SIZE(bu27034_channels); |
| idev->name = "bu27034"; |
| idev->info = &bu27034_info; |
| |
| idev->modes = INDIO_DIRECT_MODE | INDIO_BUFFER_SOFTWARE; |
| idev->available_scan_masks = bu27034_scan_masks; |
| |
| ret = bu27034_chip_init(data); |
| if (ret) |
| return ret; |
| |
| ret = devm_iio_kfifo_buffer_setup(dev, idev, &bu27034_buffer_ops); |
| if (ret) |
| return dev_err_probe(dev, ret, "buffer setup failed\n"); |
| |
| ret = devm_iio_device_register(dev, idev); |
| if (ret < 0) |
| return dev_err_probe(dev, ret, |
| "Unable to register iio device\n"); |
| |
| return ret; |
| } |
| |
| static const struct of_device_id bu27034_of_match[] = { |
| { .compatible = "rohm,bu27034" }, |
| { } |
| }; |
| MODULE_DEVICE_TABLE(of, bu27034_of_match); |
| |
| static struct i2c_driver bu27034_i2c_driver = { |
| .driver = { |
| .name = "bu27034-als", |
| .of_match_table = bu27034_of_match, |
| .probe_type = PROBE_PREFER_ASYNCHRONOUS, |
| }, |
| .probe = bu27034_probe, |
| }; |
| module_i2c_driver(bu27034_i2c_driver); |
| |
| MODULE_LICENSE("GPL"); |
| MODULE_AUTHOR("Matti Vaittinen <matti.vaittinen@fi.rohmeurope.com>"); |
| MODULE_DESCRIPTION("ROHM BU27034 ambient light sensor driver"); |
| MODULE_IMPORT_NS(IIO_GTS_HELPER); |