| // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause |
| /* |
| * Copyright (C) 2020-2024 Intel Corporation |
| */ |
| #include <net/tso.h> |
| #include <linux/tcp.h> |
| |
| #include "iwl-debug.h" |
| #include "iwl-io.h" |
| #include "fw/api/commands.h" |
| #include "fw/api/tx.h" |
| #include "fw/api/datapath.h" |
| #include "fw/api/debug.h" |
| #include "queue/tx.h" |
| #include "iwl-fh.h" |
| #include "iwl-scd.h" |
| #include <linux/dmapool.h> |
| |
| /* |
| * iwl_txq_update_byte_tbl - Set up entry in Tx byte-count array |
| */ |
| static void iwl_pcie_gen2_update_byte_tbl(struct iwl_trans *trans, |
| struct iwl_txq *txq, u16 byte_cnt, |
| int num_tbs) |
| { |
| int idx = iwl_txq_get_cmd_index(txq, txq->write_ptr); |
| u8 filled_tfd_size, num_fetch_chunks; |
| u16 len = byte_cnt; |
| __le16 bc_ent; |
| |
| if (WARN(idx >= txq->n_window, "%d >= %d\n", idx, txq->n_window)) |
| return; |
| |
| filled_tfd_size = offsetof(struct iwl_tfh_tfd, tbs) + |
| num_tbs * sizeof(struct iwl_tfh_tb); |
| /* |
| * filled_tfd_size contains the number of filled bytes in the TFD. |
| * Dividing it by 64 will give the number of chunks to fetch |
| * to SRAM- 0 for one chunk, 1 for 2 and so on. |
| * If, for example, TFD contains only 3 TBs then 32 bytes |
| * of the TFD are used, and only one chunk of 64 bytes should |
| * be fetched |
| */ |
| num_fetch_chunks = DIV_ROUND_UP(filled_tfd_size, 64) - 1; |
| |
| if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) { |
| struct iwl_gen3_bc_tbl_entry *scd_bc_tbl_gen3 = txq->bc_tbl.addr; |
| |
| /* Starting from AX210, the HW expects bytes */ |
| WARN_ON(trans->txqs.bc_table_dword); |
| WARN_ON(len > 0x3FFF); |
| bc_ent = cpu_to_le16(len | (num_fetch_chunks << 14)); |
| scd_bc_tbl_gen3[idx].tfd_offset = bc_ent; |
| } else { |
| struct iwlagn_scd_bc_tbl *scd_bc_tbl = txq->bc_tbl.addr; |
| |
| /* Before AX210, the HW expects DW */ |
| WARN_ON(!trans->txqs.bc_table_dword); |
| len = DIV_ROUND_UP(len, 4); |
| WARN_ON(len > 0xFFF); |
| bc_ent = cpu_to_le16(len | (num_fetch_chunks << 12)); |
| scd_bc_tbl->tfd_offset[idx] = bc_ent; |
| } |
| } |
| |
| /* |
| * iwl_txq_inc_wr_ptr - Send new write index to hardware |
| */ |
| void iwl_txq_inc_wr_ptr(struct iwl_trans *trans, struct iwl_txq *txq) |
| { |
| lockdep_assert_held(&txq->lock); |
| |
| IWL_DEBUG_TX(trans, "Q:%d WR: 0x%x\n", txq->id, txq->write_ptr); |
| |
| /* |
| * if not in power-save mode, uCode will never sleep when we're |
| * trying to tx (during RFKILL, we're not trying to tx). |
| */ |
| iwl_write32(trans, HBUS_TARG_WRPTR, txq->write_ptr | (txq->id << 16)); |
| } |
| |
| static u8 iwl_txq_gen2_get_num_tbs(struct iwl_trans *trans, |
| struct iwl_tfh_tfd *tfd) |
| { |
| return le16_to_cpu(tfd->num_tbs) & 0x1f; |
| } |
| |
| int iwl_txq_gen2_set_tb(struct iwl_trans *trans, struct iwl_tfh_tfd *tfd, |
| dma_addr_t addr, u16 len) |
| { |
| int idx = iwl_txq_gen2_get_num_tbs(trans, tfd); |
| struct iwl_tfh_tb *tb; |
| |
| /* Only WARN here so we know about the issue, but we mess up our |
| * unmap path because not every place currently checks for errors |
| * returned from this function - it can only return an error if |
| * there's no more space, and so when we know there is enough we |
| * don't always check ... |
| */ |
| WARN(iwl_txq_crosses_4g_boundary(addr, len), |
| "possible DMA problem with iova:0x%llx, len:%d\n", |
| (unsigned long long)addr, len); |
| |
| if (WARN_ON(idx >= IWL_TFH_NUM_TBS)) |
| return -EINVAL; |
| tb = &tfd->tbs[idx]; |
| |
| /* Each TFD can point to a maximum max_tbs Tx buffers */ |
| if (le16_to_cpu(tfd->num_tbs) >= trans->txqs.tfd.max_tbs) { |
| IWL_ERR(trans, "Error can not send more than %d chunks\n", |
| trans->txqs.tfd.max_tbs); |
| return -EINVAL; |
| } |
| |
| put_unaligned_le64(addr, &tb->addr); |
| tb->tb_len = cpu_to_le16(len); |
| |
| tfd->num_tbs = cpu_to_le16(idx + 1); |
| |
| return idx; |
| } |
| |
| static void iwl_txq_set_tfd_invalid_gen2(struct iwl_trans *trans, |
| struct iwl_tfh_tfd *tfd) |
| { |
| tfd->num_tbs = 0; |
| |
| iwl_txq_gen2_set_tb(trans, tfd, trans->invalid_tx_cmd.dma, |
| trans->invalid_tx_cmd.size); |
| } |
| |
| void iwl_txq_gen2_tfd_unmap(struct iwl_trans *trans, struct iwl_cmd_meta *meta, |
| struct iwl_tfh_tfd *tfd) |
| { |
| int i, num_tbs; |
| |
| /* Sanity check on number of chunks */ |
| num_tbs = iwl_txq_gen2_get_num_tbs(trans, tfd); |
| |
| if (num_tbs > trans->txqs.tfd.max_tbs) { |
| IWL_ERR(trans, "Too many chunks: %i\n", num_tbs); |
| return; |
| } |
| |
| /* first TB is never freed - it's the bidirectional DMA data */ |
| for (i = 1; i < num_tbs; i++) { |
| if (meta->tbs & BIT(i)) |
| dma_unmap_page(trans->dev, |
| le64_to_cpu(tfd->tbs[i].addr), |
| le16_to_cpu(tfd->tbs[i].tb_len), |
| DMA_TO_DEVICE); |
| else |
| dma_unmap_single(trans->dev, |
| le64_to_cpu(tfd->tbs[i].addr), |
| le16_to_cpu(tfd->tbs[i].tb_len), |
| DMA_TO_DEVICE); |
| } |
| |
| iwl_txq_set_tfd_invalid_gen2(trans, tfd); |
| } |
| |
| void iwl_txq_gen2_free_tfd(struct iwl_trans *trans, struct iwl_txq *txq) |
| { |
| /* rd_ptr is bounded by TFD_QUEUE_SIZE_MAX and |
| * idx is bounded by n_window |
| */ |
| int idx = iwl_txq_get_cmd_index(txq, txq->read_ptr); |
| struct sk_buff *skb; |
| |
| lockdep_assert_held(&txq->lock); |
| |
| if (!txq->entries) |
| return; |
| |
| iwl_txq_gen2_tfd_unmap(trans, &txq->entries[idx].meta, |
| iwl_txq_get_tfd(trans, txq, idx)); |
| |
| skb = txq->entries[idx].skb; |
| |
| /* Can be called from irqs-disabled context |
| * If skb is not NULL, it means that the whole queue is being |
| * freed and that the queue is not empty - free the skb |
| */ |
| if (skb) { |
| iwl_op_mode_free_skb(trans->op_mode, skb); |
| txq->entries[idx].skb = NULL; |
| } |
| } |
| |
| static struct page *get_workaround_page(struct iwl_trans *trans, |
| struct sk_buff *skb) |
| { |
| struct page **page_ptr; |
| struct page *ret; |
| |
| page_ptr = (void *)((u8 *)skb->cb + trans->txqs.page_offs); |
| |
| ret = alloc_page(GFP_ATOMIC); |
| if (!ret) |
| return NULL; |
| |
| /* set the chaining pointer to the previous page if there */ |
| *(void **)((u8 *)page_address(ret) + PAGE_SIZE - sizeof(void *)) = *page_ptr; |
| *page_ptr = ret; |
| |
| return ret; |
| } |
| |
| /* |
| * Add a TB and if needed apply the FH HW bug workaround; |
| * meta != NULL indicates that it's a page mapping and we |
| * need to dma_unmap_page() and set the meta->tbs bit in |
| * this case. |
| */ |
| static int iwl_txq_gen2_set_tb_with_wa(struct iwl_trans *trans, |
| struct sk_buff *skb, |
| struct iwl_tfh_tfd *tfd, |
| dma_addr_t phys, void *virt, |
| u16 len, struct iwl_cmd_meta *meta) |
| { |
| dma_addr_t oldphys = phys; |
| struct page *page; |
| int ret; |
| |
| if (unlikely(dma_mapping_error(trans->dev, phys))) |
| return -ENOMEM; |
| |
| if (likely(!iwl_txq_crosses_4g_boundary(phys, len))) { |
| ret = iwl_txq_gen2_set_tb(trans, tfd, phys, len); |
| |
| if (ret < 0) |
| goto unmap; |
| |
| if (meta) |
| meta->tbs |= BIT(ret); |
| |
| ret = 0; |
| goto trace; |
| } |
| |
| /* |
| * Work around a hardware bug. If (as expressed in the |
| * condition above) the TB ends on a 32-bit boundary, |
| * then the next TB may be accessed with the wrong |
| * address. |
| * To work around it, copy the data elsewhere and make |
| * a new mapping for it so the device will not fail. |
| */ |
| |
| if (WARN_ON(len > PAGE_SIZE - sizeof(void *))) { |
| ret = -ENOBUFS; |
| goto unmap; |
| } |
| |
| page = get_workaround_page(trans, skb); |
| if (!page) { |
| ret = -ENOMEM; |
| goto unmap; |
| } |
| |
| memcpy(page_address(page), virt, len); |
| |
| phys = dma_map_single(trans->dev, page_address(page), len, |
| DMA_TO_DEVICE); |
| if (unlikely(dma_mapping_error(trans->dev, phys))) |
| return -ENOMEM; |
| ret = iwl_txq_gen2_set_tb(trans, tfd, phys, len); |
| if (ret < 0) { |
| /* unmap the new allocation as single */ |
| oldphys = phys; |
| meta = NULL; |
| goto unmap; |
| } |
| IWL_DEBUG_TX(trans, |
| "TB bug workaround: copied %d bytes from 0x%llx to 0x%llx\n", |
| len, (unsigned long long)oldphys, |
| (unsigned long long)phys); |
| |
| ret = 0; |
| unmap: |
| if (meta) |
| dma_unmap_page(trans->dev, oldphys, len, DMA_TO_DEVICE); |
| else |
| dma_unmap_single(trans->dev, oldphys, len, DMA_TO_DEVICE); |
| trace: |
| trace_iwlwifi_dev_tx_tb(trans->dev, skb, virt, phys, len); |
| |
| return ret; |
| } |
| |
| #ifdef CONFIG_INET |
| struct iwl_tso_hdr_page *get_page_hdr(struct iwl_trans *trans, size_t len, |
| struct sk_buff *skb) |
| { |
| struct iwl_tso_hdr_page *p = this_cpu_ptr(trans->txqs.tso_hdr_page); |
| struct page **page_ptr; |
| |
| page_ptr = (void *)((u8 *)skb->cb + trans->txqs.page_offs); |
| |
| if (WARN_ON(*page_ptr)) |
| return NULL; |
| |
| if (!p->page) |
| goto alloc; |
| |
| /* |
| * Check if there's enough room on this page |
| * |
| * Note that we put a page chaining pointer *last* in the |
| * page - we need it somewhere, and if it's there then we |
| * avoid DMA mapping the last bits of the page which may |
| * trigger the 32-bit boundary hardware bug. |
| * |
| * (see also get_workaround_page() in tx-gen2.c) |
| */ |
| if (p->pos + len < (u8 *)page_address(p->page) + PAGE_SIZE - |
| sizeof(void *)) |
| goto out; |
| |
| /* We don't have enough room on this page, get a new one. */ |
| __free_page(p->page); |
| |
| alloc: |
| p->page = alloc_page(GFP_ATOMIC); |
| if (!p->page) |
| return NULL; |
| p->pos = page_address(p->page); |
| /* set the chaining pointer to NULL */ |
| *(void **)((u8 *)page_address(p->page) + PAGE_SIZE - sizeof(void *)) = NULL; |
| out: |
| *page_ptr = p->page; |
| get_page(p->page); |
| return p; |
| } |
| #endif |
| |
| static int iwl_txq_gen2_build_amsdu(struct iwl_trans *trans, |
| struct sk_buff *skb, |
| struct iwl_tfh_tfd *tfd, int start_len, |
| u8 hdr_len, |
| struct iwl_device_tx_cmd *dev_cmd) |
| { |
| #ifdef CONFIG_INET |
| struct iwl_tx_cmd_gen2 *tx_cmd = (void *)dev_cmd->payload; |
| struct ieee80211_hdr *hdr = (void *)skb->data; |
| unsigned int snap_ip_tcp_hdrlen, ip_hdrlen, total_len, hdr_room; |
| unsigned int mss = skb_shinfo(skb)->gso_size; |
| u16 length, amsdu_pad; |
| u8 *start_hdr; |
| struct iwl_tso_hdr_page *hdr_page; |
| struct tso_t tso; |
| |
| trace_iwlwifi_dev_tx(trans->dev, skb, tfd, sizeof(*tfd), |
| &dev_cmd->hdr, start_len, 0); |
| |
| ip_hdrlen = skb_network_header_len(skb); |
| snap_ip_tcp_hdrlen = 8 + ip_hdrlen + tcp_hdrlen(skb); |
| total_len = skb->len - snap_ip_tcp_hdrlen - hdr_len; |
| amsdu_pad = 0; |
| |
| /* total amount of header we may need for this A-MSDU */ |
| hdr_room = DIV_ROUND_UP(total_len, mss) * |
| (3 + snap_ip_tcp_hdrlen + sizeof(struct ethhdr)); |
| |
| /* Our device supports 9 segments at most, it will fit in 1 page */ |
| hdr_page = get_page_hdr(trans, hdr_room, skb); |
| if (!hdr_page) |
| return -ENOMEM; |
| |
| start_hdr = hdr_page->pos; |
| |
| /* |
| * Pull the ieee80211 header to be able to use TSO core, |
| * we will restore it for the tx_status flow. |
| */ |
| skb_pull(skb, hdr_len); |
| |
| /* |
| * Remove the length of all the headers that we don't actually |
| * have in the MPDU by themselves, but that we duplicate into |
| * all the different MSDUs inside the A-MSDU. |
| */ |
| le16_add_cpu(&tx_cmd->len, -snap_ip_tcp_hdrlen); |
| |
| tso_start(skb, &tso); |
| |
| while (total_len) { |
| /* this is the data left for this subframe */ |
| unsigned int data_left = min_t(unsigned int, mss, total_len); |
| unsigned int tb_len; |
| dma_addr_t tb_phys; |
| u8 *subf_hdrs_start = hdr_page->pos; |
| |
| total_len -= data_left; |
| |
| memset(hdr_page->pos, 0, amsdu_pad); |
| hdr_page->pos += amsdu_pad; |
| amsdu_pad = (4 - (sizeof(struct ethhdr) + snap_ip_tcp_hdrlen + |
| data_left)) & 0x3; |
| ether_addr_copy(hdr_page->pos, ieee80211_get_DA(hdr)); |
| hdr_page->pos += ETH_ALEN; |
| ether_addr_copy(hdr_page->pos, ieee80211_get_SA(hdr)); |
| hdr_page->pos += ETH_ALEN; |
| |
| length = snap_ip_tcp_hdrlen + data_left; |
| *((__be16 *)hdr_page->pos) = cpu_to_be16(length); |
| hdr_page->pos += sizeof(length); |
| |
| /* |
| * This will copy the SNAP as well which will be considered |
| * as MAC header. |
| */ |
| tso_build_hdr(skb, hdr_page->pos, &tso, data_left, !total_len); |
| |
| hdr_page->pos += snap_ip_tcp_hdrlen; |
| |
| tb_len = hdr_page->pos - start_hdr; |
| tb_phys = dma_map_single(trans->dev, start_hdr, |
| tb_len, DMA_TO_DEVICE); |
| if (unlikely(dma_mapping_error(trans->dev, tb_phys))) |
| goto out_err; |
| /* |
| * No need for _with_wa, this is from the TSO page and |
| * we leave some space at the end of it so can't hit |
| * the buggy scenario. |
| */ |
| iwl_txq_gen2_set_tb(trans, tfd, tb_phys, tb_len); |
| trace_iwlwifi_dev_tx_tb(trans->dev, skb, start_hdr, |
| tb_phys, tb_len); |
| /* add this subframe's headers' length to the tx_cmd */ |
| le16_add_cpu(&tx_cmd->len, hdr_page->pos - subf_hdrs_start); |
| |
| /* prepare the start_hdr for the next subframe */ |
| start_hdr = hdr_page->pos; |
| |
| /* put the payload */ |
| while (data_left) { |
| int ret; |
| |
| tb_len = min_t(unsigned int, tso.size, data_left); |
| tb_phys = dma_map_single(trans->dev, tso.data, |
| tb_len, DMA_TO_DEVICE); |
| ret = iwl_txq_gen2_set_tb_with_wa(trans, skb, tfd, |
| tb_phys, tso.data, |
| tb_len, NULL); |
| if (ret) |
| goto out_err; |
| |
| data_left -= tb_len; |
| tso_build_data(skb, &tso, tb_len); |
| } |
| } |
| |
| /* re -add the WiFi header */ |
| skb_push(skb, hdr_len); |
| |
| return 0; |
| |
| out_err: |
| #endif |
| return -EINVAL; |
| } |
| |
| static struct |
| iwl_tfh_tfd *iwl_txq_gen2_build_tx_amsdu(struct iwl_trans *trans, |
| struct iwl_txq *txq, |
| struct iwl_device_tx_cmd *dev_cmd, |
| struct sk_buff *skb, |
| struct iwl_cmd_meta *out_meta, |
| int hdr_len, |
| int tx_cmd_len) |
| { |
| int idx = iwl_txq_get_cmd_index(txq, txq->write_ptr); |
| struct iwl_tfh_tfd *tfd = iwl_txq_get_tfd(trans, txq, idx); |
| dma_addr_t tb_phys; |
| int len; |
| void *tb1_addr; |
| |
| tb_phys = iwl_txq_get_first_tb_dma(txq, idx); |
| |
| /* |
| * No need for _with_wa, the first TB allocation is aligned up |
| * to a 64-byte boundary and thus can't be at the end or cross |
| * a page boundary (much less a 2^32 boundary). |
| */ |
| iwl_txq_gen2_set_tb(trans, tfd, tb_phys, IWL_FIRST_TB_SIZE); |
| |
| /* |
| * The second TB (tb1) points to the remainder of the TX command |
| * and the 802.11 header - dword aligned size |
| * (This calculation modifies the TX command, so do it before the |
| * setup of the first TB) |
| */ |
| len = tx_cmd_len + sizeof(struct iwl_cmd_header) + hdr_len - |
| IWL_FIRST_TB_SIZE; |
| |
| /* do not align A-MSDU to dword as the subframe header aligns it */ |
| |
| /* map the data for TB1 */ |
| tb1_addr = ((u8 *)&dev_cmd->hdr) + IWL_FIRST_TB_SIZE; |
| tb_phys = dma_map_single(trans->dev, tb1_addr, len, DMA_TO_DEVICE); |
| if (unlikely(dma_mapping_error(trans->dev, tb_phys))) |
| goto out_err; |
| /* |
| * No need for _with_wa(), we ensure (via alignment) that the data |
| * here can never cross or end at a page boundary. |
| */ |
| iwl_txq_gen2_set_tb(trans, tfd, tb_phys, len); |
| |
| if (iwl_txq_gen2_build_amsdu(trans, skb, tfd, len + IWL_FIRST_TB_SIZE, |
| hdr_len, dev_cmd)) |
| goto out_err; |
| |
| /* building the A-MSDU might have changed this data, memcpy it now */ |
| memcpy(&txq->first_tb_bufs[idx], dev_cmd, IWL_FIRST_TB_SIZE); |
| return tfd; |
| |
| out_err: |
| iwl_txq_gen2_tfd_unmap(trans, out_meta, tfd); |
| return NULL; |
| } |
| |
| static int iwl_txq_gen2_tx_add_frags(struct iwl_trans *trans, |
| struct sk_buff *skb, |
| struct iwl_tfh_tfd *tfd, |
| struct iwl_cmd_meta *out_meta) |
| { |
| int i; |
| |
| for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { |
| const skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; |
| dma_addr_t tb_phys; |
| unsigned int fragsz = skb_frag_size(frag); |
| int ret; |
| |
| if (!fragsz) |
| continue; |
| |
| tb_phys = skb_frag_dma_map(trans->dev, frag, 0, |
| fragsz, DMA_TO_DEVICE); |
| ret = iwl_txq_gen2_set_tb_with_wa(trans, skb, tfd, tb_phys, |
| skb_frag_address(frag), |
| fragsz, out_meta); |
| if (ret) |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| static struct |
| iwl_tfh_tfd *iwl_txq_gen2_build_tx(struct iwl_trans *trans, |
| struct iwl_txq *txq, |
| struct iwl_device_tx_cmd *dev_cmd, |
| struct sk_buff *skb, |
| struct iwl_cmd_meta *out_meta, |
| int hdr_len, |
| int tx_cmd_len, |
| bool pad) |
| { |
| int idx = iwl_txq_get_cmd_index(txq, txq->write_ptr); |
| struct iwl_tfh_tfd *tfd = iwl_txq_get_tfd(trans, txq, idx); |
| dma_addr_t tb_phys; |
| int len, tb1_len, tb2_len; |
| void *tb1_addr; |
| struct sk_buff *frag; |
| |
| tb_phys = iwl_txq_get_first_tb_dma(txq, idx); |
| |
| /* The first TB points to bi-directional DMA data */ |
| memcpy(&txq->first_tb_bufs[idx], dev_cmd, IWL_FIRST_TB_SIZE); |
| |
| /* |
| * No need for _with_wa, the first TB allocation is aligned up |
| * to a 64-byte boundary and thus can't be at the end or cross |
| * a page boundary (much less a 2^32 boundary). |
| */ |
| iwl_txq_gen2_set_tb(trans, tfd, tb_phys, IWL_FIRST_TB_SIZE); |
| |
| /* |
| * The second TB (tb1) points to the remainder of the TX command |
| * and the 802.11 header - dword aligned size |
| * (This calculation modifies the TX command, so do it before the |
| * setup of the first TB) |
| */ |
| len = tx_cmd_len + sizeof(struct iwl_cmd_header) + hdr_len - |
| IWL_FIRST_TB_SIZE; |
| |
| if (pad) |
| tb1_len = ALIGN(len, 4); |
| else |
| tb1_len = len; |
| |
| /* map the data for TB1 */ |
| tb1_addr = ((u8 *)&dev_cmd->hdr) + IWL_FIRST_TB_SIZE; |
| tb_phys = dma_map_single(trans->dev, tb1_addr, tb1_len, DMA_TO_DEVICE); |
| if (unlikely(dma_mapping_error(trans->dev, tb_phys))) |
| goto out_err; |
| /* |
| * No need for _with_wa(), we ensure (via alignment) that the data |
| * here can never cross or end at a page boundary. |
| */ |
| iwl_txq_gen2_set_tb(trans, tfd, tb_phys, tb1_len); |
| trace_iwlwifi_dev_tx(trans->dev, skb, tfd, sizeof(*tfd), &dev_cmd->hdr, |
| IWL_FIRST_TB_SIZE + tb1_len, hdr_len); |
| |
| /* set up TFD's third entry to point to remainder of skb's head */ |
| tb2_len = skb_headlen(skb) - hdr_len; |
| |
| if (tb2_len > 0) { |
| int ret; |
| |
| tb_phys = dma_map_single(trans->dev, skb->data + hdr_len, |
| tb2_len, DMA_TO_DEVICE); |
| ret = iwl_txq_gen2_set_tb_with_wa(trans, skb, tfd, tb_phys, |
| skb->data + hdr_len, tb2_len, |
| NULL); |
| if (ret) |
| goto out_err; |
| } |
| |
| if (iwl_txq_gen2_tx_add_frags(trans, skb, tfd, out_meta)) |
| goto out_err; |
| |
| skb_walk_frags(skb, frag) { |
| int ret; |
| |
| tb_phys = dma_map_single(trans->dev, frag->data, |
| skb_headlen(frag), DMA_TO_DEVICE); |
| ret = iwl_txq_gen2_set_tb_with_wa(trans, skb, tfd, tb_phys, |
| frag->data, |
| skb_headlen(frag), NULL); |
| if (ret) |
| goto out_err; |
| if (iwl_txq_gen2_tx_add_frags(trans, frag, tfd, out_meta)) |
| goto out_err; |
| } |
| |
| return tfd; |
| |
| out_err: |
| iwl_txq_gen2_tfd_unmap(trans, out_meta, tfd); |
| return NULL; |
| } |
| |
| static |
| struct iwl_tfh_tfd *iwl_txq_gen2_build_tfd(struct iwl_trans *trans, |
| struct iwl_txq *txq, |
| struct iwl_device_tx_cmd *dev_cmd, |
| struct sk_buff *skb, |
| struct iwl_cmd_meta *out_meta) |
| { |
| struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; |
| int idx = iwl_txq_get_cmd_index(txq, txq->write_ptr); |
| struct iwl_tfh_tfd *tfd = iwl_txq_get_tfd(trans, txq, idx); |
| int len, hdr_len; |
| bool amsdu; |
| |
| /* There must be data left over for TB1 or this code must be changed */ |
| BUILD_BUG_ON(sizeof(struct iwl_tx_cmd_gen2) < IWL_FIRST_TB_SIZE); |
| BUILD_BUG_ON(sizeof(struct iwl_cmd_header) + |
| offsetofend(struct iwl_tx_cmd_gen2, dram_info) > |
| IWL_FIRST_TB_SIZE); |
| BUILD_BUG_ON(sizeof(struct iwl_tx_cmd_gen3) < IWL_FIRST_TB_SIZE); |
| BUILD_BUG_ON(sizeof(struct iwl_cmd_header) + |
| offsetofend(struct iwl_tx_cmd_gen3, dram_info) > |
| IWL_FIRST_TB_SIZE); |
| |
| memset(tfd, 0, sizeof(*tfd)); |
| |
| if (trans->trans_cfg->device_family < IWL_DEVICE_FAMILY_AX210) |
| len = sizeof(struct iwl_tx_cmd_gen2); |
| else |
| len = sizeof(struct iwl_tx_cmd_gen3); |
| |
| amsdu = ieee80211_is_data_qos(hdr->frame_control) && |
| (*ieee80211_get_qos_ctl(hdr) & |
| IEEE80211_QOS_CTL_A_MSDU_PRESENT); |
| |
| hdr_len = ieee80211_hdrlen(hdr->frame_control); |
| |
| /* |
| * Only build A-MSDUs here if doing so by GSO, otherwise it may be |
| * an A-MSDU for other reasons, e.g. NAN or an A-MSDU having been |
| * built in the higher layers already. |
| */ |
| if (amsdu && skb_shinfo(skb)->gso_size) |
| return iwl_txq_gen2_build_tx_amsdu(trans, txq, dev_cmd, skb, |
| out_meta, hdr_len, len); |
| return iwl_txq_gen2_build_tx(trans, txq, dev_cmd, skb, out_meta, |
| hdr_len, len, !amsdu); |
| } |
| |
| int iwl_txq_space(struct iwl_trans *trans, const struct iwl_txq *q) |
| { |
| unsigned int max; |
| unsigned int used; |
| |
| /* |
| * To avoid ambiguity between empty and completely full queues, there |
| * should always be less than max_tfd_queue_size elements in the queue. |
| * If q->n_window is smaller than max_tfd_queue_size, there is no need |
| * to reserve any queue entries for this purpose. |
| */ |
| if (q->n_window < trans->trans_cfg->base_params->max_tfd_queue_size) |
| max = q->n_window; |
| else |
| max = trans->trans_cfg->base_params->max_tfd_queue_size - 1; |
| |
| /* |
| * max_tfd_queue_size is a power of 2, so the following is equivalent to |
| * modulo by max_tfd_queue_size and is well defined. |
| */ |
| used = (q->write_ptr - q->read_ptr) & |
| (trans->trans_cfg->base_params->max_tfd_queue_size - 1); |
| |
| if (WARN_ON(used > max)) |
| return 0; |
| |
| return max - used; |
| } |
| |
| int iwl_txq_gen2_tx(struct iwl_trans *trans, struct sk_buff *skb, |
| struct iwl_device_tx_cmd *dev_cmd, int txq_id) |
| { |
| struct iwl_cmd_meta *out_meta; |
| struct iwl_txq *txq = trans->txqs.txq[txq_id]; |
| u16 cmd_len; |
| int idx; |
| void *tfd; |
| |
| if (WARN_ONCE(txq_id >= IWL_MAX_TVQM_QUEUES, |
| "queue %d out of range", txq_id)) |
| return -EINVAL; |
| |
| if (WARN_ONCE(!test_bit(txq_id, trans->txqs.queue_used), |
| "TX on unused queue %d\n", txq_id)) |
| return -EINVAL; |
| |
| if (skb_is_nonlinear(skb) && |
| skb_shinfo(skb)->nr_frags > IWL_TRANS_MAX_FRAGS(trans) && |
| __skb_linearize(skb)) |
| return -ENOMEM; |
| |
| spin_lock(&txq->lock); |
| |
| if (iwl_txq_space(trans, txq) < txq->high_mark) { |
| iwl_txq_stop(trans, txq); |
| |
| /* don't put the packet on the ring, if there is no room */ |
| if (unlikely(iwl_txq_space(trans, txq) < 3)) { |
| struct iwl_device_tx_cmd **dev_cmd_ptr; |
| |
| dev_cmd_ptr = (void *)((u8 *)skb->cb + |
| trans->txqs.dev_cmd_offs); |
| |
| *dev_cmd_ptr = dev_cmd; |
| __skb_queue_tail(&txq->overflow_q, skb); |
| spin_unlock(&txq->lock); |
| return 0; |
| } |
| } |
| |
| idx = iwl_txq_get_cmd_index(txq, txq->write_ptr); |
| |
| /* Set up driver data for this TFD */ |
| txq->entries[idx].skb = skb; |
| txq->entries[idx].cmd = dev_cmd; |
| |
| dev_cmd->hdr.sequence = |
| cpu_to_le16((u16)(QUEUE_TO_SEQ(txq_id) | |
| INDEX_TO_SEQ(idx))); |
| |
| /* Set up first empty entry in queue's array of Tx/cmd buffers */ |
| out_meta = &txq->entries[idx].meta; |
| out_meta->flags = 0; |
| |
| tfd = iwl_txq_gen2_build_tfd(trans, txq, dev_cmd, skb, out_meta); |
| if (!tfd) { |
| spin_unlock(&txq->lock); |
| return -1; |
| } |
| |
| if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) { |
| struct iwl_tx_cmd_gen3 *tx_cmd_gen3 = |
| (void *)dev_cmd->payload; |
| |
| cmd_len = le16_to_cpu(tx_cmd_gen3->len); |
| } else { |
| struct iwl_tx_cmd_gen2 *tx_cmd_gen2 = |
| (void *)dev_cmd->payload; |
| |
| cmd_len = le16_to_cpu(tx_cmd_gen2->len); |
| } |
| |
| /* Set up entry for this TFD in Tx byte-count array */ |
| iwl_pcie_gen2_update_byte_tbl(trans, txq, cmd_len, |
| iwl_txq_gen2_get_num_tbs(trans, tfd)); |
| |
| /* start timer if queue currently empty */ |
| if (txq->read_ptr == txq->write_ptr && txq->wd_timeout) |
| mod_timer(&txq->stuck_timer, jiffies + txq->wd_timeout); |
| |
| /* Tell device the write index *just past* this latest filled TFD */ |
| txq->write_ptr = iwl_txq_inc_wrap(trans, txq->write_ptr); |
| iwl_txq_inc_wr_ptr(trans, txq); |
| /* |
| * At this point the frame is "transmitted" successfully |
| * and we will get a TX status notification eventually. |
| */ |
| spin_unlock(&txq->lock); |
| return 0; |
| } |
| |
| /*************** HOST COMMAND QUEUE FUNCTIONS *****/ |
| |
| /* |
| * iwl_txq_gen2_unmap - Unmap any remaining DMA mappings and free skb's |
| */ |
| void iwl_txq_gen2_unmap(struct iwl_trans *trans, int txq_id) |
| { |
| struct iwl_txq *txq = trans->txqs.txq[txq_id]; |
| |
| spin_lock_bh(&txq->lock); |
| while (txq->write_ptr != txq->read_ptr) { |
| IWL_DEBUG_TX_REPLY(trans, "Q %d Free %d\n", |
| txq_id, txq->read_ptr); |
| |
| if (txq_id != trans->txqs.cmd.q_id) { |
| int idx = iwl_txq_get_cmd_index(txq, txq->read_ptr); |
| struct sk_buff *skb = txq->entries[idx].skb; |
| |
| if (!WARN_ON_ONCE(!skb)) |
| iwl_txq_free_tso_page(trans, skb); |
| } |
| iwl_txq_gen2_free_tfd(trans, txq); |
| txq->read_ptr = iwl_txq_inc_wrap(trans, txq->read_ptr); |
| } |
| |
| while (!skb_queue_empty(&txq->overflow_q)) { |
| struct sk_buff *skb = __skb_dequeue(&txq->overflow_q); |
| |
| iwl_op_mode_free_skb(trans->op_mode, skb); |
| } |
| |
| spin_unlock_bh(&txq->lock); |
| |
| /* just in case - this queue may have been stopped */ |
| iwl_wake_queue(trans, txq); |
| } |
| |
| static void iwl_txq_gen2_free_memory(struct iwl_trans *trans, |
| struct iwl_txq *txq) |
| { |
| struct device *dev = trans->dev; |
| |
| /* De-alloc circular buffer of TFDs */ |
| if (txq->tfds) { |
| dma_free_coherent(dev, |
| trans->txqs.tfd.size * txq->n_window, |
| txq->tfds, txq->dma_addr); |
| dma_free_coherent(dev, |
| sizeof(*txq->first_tb_bufs) * txq->n_window, |
| txq->first_tb_bufs, txq->first_tb_dma); |
| } |
| |
| kfree(txq->entries); |
| if (txq->bc_tbl.addr) |
| dma_pool_free(trans->txqs.bc_pool, |
| txq->bc_tbl.addr, txq->bc_tbl.dma); |
| kfree(txq); |
| } |
| |
| /* |
| * iwl_pcie_txq_free - Deallocate DMA queue. |
| * @txq: Transmit queue to deallocate. |
| * |
| * Empty queue by removing and destroying all BD's. |
| * Free all buffers. |
| * 0-fill, but do not free "txq" descriptor structure. |
| */ |
| static void iwl_txq_gen2_free(struct iwl_trans *trans, int txq_id) |
| { |
| struct iwl_txq *txq; |
| int i; |
| |
| if (WARN_ONCE(txq_id >= IWL_MAX_TVQM_QUEUES, |
| "queue %d out of range", txq_id)) |
| return; |
| |
| txq = trans->txqs.txq[txq_id]; |
| |
| if (WARN_ON(!txq)) |
| return; |
| |
| iwl_txq_gen2_unmap(trans, txq_id); |
| |
| /* De-alloc array of command/tx buffers */ |
| if (txq_id == trans->txqs.cmd.q_id) |
| for (i = 0; i < txq->n_window; i++) { |
| kfree_sensitive(txq->entries[i].cmd); |
| kfree_sensitive(txq->entries[i].free_buf); |
| } |
| del_timer_sync(&txq->stuck_timer); |
| |
| iwl_txq_gen2_free_memory(trans, txq); |
| |
| trans->txqs.txq[txq_id] = NULL; |
| |
| clear_bit(txq_id, trans->txqs.queue_used); |
| } |
| |
| /* |
| * iwl_queue_init - Initialize queue's high/low-water and read/write indexes |
| */ |
| static int iwl_queue_init(struct iwl_txq *q, int slots_num) |
| { |
| q->n_window = slots_num; |
| |
| /* slots_num must be power-of-two size, otherwise |
| * iwl_txq_get_cmd_index is broken. */ |
| if (WARN_ON(!is_power_of_2(slots_num))) |
| return -EINVAL; |
| |
| q->low_mark = q->n_window / 4; |
| if (q->low_mark < 4) |
| q->low_mark = 4; |
| |
| q->high_mark = q->n_window / 8; |
| if (q->high_mark < 2) |
| q->high_mark = 2; |
| |
| q->write_ptr = 0; |
| q->read_ptr = 0; |
| |
| return 0; |
| } |
| |
| int iwl_txq_init(struct iwl_trans *trans, struct iwl_txq *txq, int slots_num, |
| bool cmd_queue) |
| { |
| int ret; |
| u32 tfd_queue_max_size = |
| trans->trans_cfg->base_params->max_tfd_queue_size; |
| |
| txq->need_update = false; |
| |
| /* max_tfd_queue_size must be power-of-two size, otherwise |
| * iwl_txq_inc_wrap and iwl_txq_dec_wrap are broken. */ |
| if (WARN_ONCE(tfd_queue_max_size & (tfd_queue_max_size - 1), |
| "Max tfd queue size must be a power of two, but is %d", |
| tfd_queue_max_size)) |
| return -EINVAL; |
| |
| /* Initialize queue's high/low-water marks, and head/tail indexes */ |
| ret = iwl_queue_init(txq, slots_num); |
| if (ret) |
| return ret; |
| |
| spin_lock_init(&txq->lock); |
| |
| if (cmd_queue) { |
| static struct lock_class_key iwl_txq_cmd_queue_lock_class; |
| |
| lockdep_set_class(&txq->lock, &iwl_txq_cmd_queue_lock_class); |
| } |
| |
| __skb_queue_head_init(&txq->overflow_q); |
| |
| return 0; |
| } |
| |
| void iwl_txq_free_tso_page(struct iwl_trans *trans, struct sk_buff *skb) |
| { |
| struct page **page_ptr; |
| struct page *next; |
| |
| page_ptr = (void *)((u8 *)skb->cb + trans->txqs.page_offs); |
| next = *page_ptr; |
| *page_ptr = NULL; |
| |
| while (next) { |
| struct page *tmp = next; |
| |
| next = *(void **)((u8 *)page_address(next) + PAGE_SIZE - |
| sizeof(void *)); |
| __free_page(tmp); |
| } |
| } |
| |
| void iwl_txq_log_scd_error(struct iwl_trans *trans, struct iwl_txq *txq) |
| { |
| u32 txq_id = txq->id; |
| u32 status; |
| bool active; |
| u8 fifo; |
| |
| if (trans->trans_cfg->gen2) { |
| IWL_ERR(trans, "Queue %d is stuck %d %d\n", txq_id, |
| txq->read_ptr, txq->write_ptr); |
| /* TODO: access new SCD registers and dump them */ |
| return; |
| } |
| |
| status = iwl_read_prph(trans, SCD_QUEUE_STATUS_BITS(txq_id)); |
| fifo = (status >> SCD_QUEUE_STTS_REG_POS_TXF) & 0x7; |
| active = !!(status & BIT(SCD_QUEUE_STTS_REG_POS_ACTIVE)); |
| |
| IWL_ERR(trans, |
| "Queue %d is %sactive on fifo %d and stuck for %u ms. SW [%d, %d] HW [%d, %d] FH TRB=0x0%x\n", |
| txq_id, active ? "" : "in", fifo, |
| jiffies_to_msecs(txq->wd_timeout), |
| txq->read_ptr, txq->write_ptr, |
| iwl_read_prph(trans, SCD_QUEUE_RDPTR(txq_id)) & |
| (trans->trans_cfg->base_params->max_tfd_queue_size - 1), |
| iwl_read_prph(trans, SCD_QUEUE_WRPTR(txq_id)) & |
| (trans->trans_cfg->base_params->max_tfd_queue_size - 1), |
| iwl_read_direct32(trans, FH_TX_TRB_REG(fifo))); |
| } |
| |
| static void iwl_txq_stuck_timer(struct timer_list *t) |
| { |
| struct iwl_txq *txq = from_timer(txq, t, stuck_timer); |
| struct iwl_trans *trans = txq->trans; |
| |
| spin_lock(&txq->lock); |
| /* check if triggered erroneously */ |
| if (txq->read_ptr == txq->write_ptr) { |
| spin_unlock(&txq->lock); |
| return; |
| } |
| spin_unlock(&txq->lock); |
| |
| iwl_txq_log_scd_error(trans, txq); |
| |
| iwl_force_nmi(trans); |
| } |
| |
| static void iwl_txq_set_tfd_invalid_gen1(struct iwl_trans *trans, |
| struct iwl_tfd *tfd) |
| { |
| tfd->num_tbs = 0; |
| |
| iwl_pcie_gen1_tfd_set_tb(trans, tfd, 0, trans->invalid_tx_cmd.dma, |
| trans->invalid_tx_cmd.size); |
| } |
| |
| int iwl_txq_alloc(struct iwl_trans *trans, struct iwl_txq *txq, int slots_num, |
| bool cmd_queue) |
| { |
| size_t num_entries = trans->trans_cfg->gen2 ? |
| slots_num : trans->trans_cfg->base_params->max_tfd_queue_size; |
| size_t tfd_sz; |
| size_t tb0_buf_sz; |
| int i; |
| |
| if (WARN_ONCE(slots_num <= 0, "Invalid slots num:%d\n", slots_num)) |
| return -EINVAL; |
| |
| if (WARN_ON(txq->entries || txq->tfds)) |
| return -EINVAL; |
| |
| tfd_sz = trans->txqs.tfd.size * num_entries; |
| |
| timer_setup(&txq->stuck_timer, iwl_txq_stuck_timer, 0); |
| txq->trans = trans; |
| |
| txq->n_window = slots_num; |
| |
| txq->entries = kcalloc(slots_num, |
| sizeof(struct iwl_pcie_txq_entry), |
| GFP_KERNEL); |
| |
| if (!txq->entries) |
| goto error; |
| |
| if (cmd_queue) |
| for (i = 0; i < slots_num; i++) { |
| txq->entries[i].cmd = |
| kmalloc(sizeof(struct iwl_device_cmd), |
| GFP_KERNEL); |
| if (!txq->entries[i].cmd) |
| goto error; |
| } |
| |
| /* Circular buffer of transmit frame descriptors (TFDs), |
| * shared with device */ |
| txq->tfds = dma_alloc_coherent(trans->dev, tfd_sz, |
| &txq->dma_addr, GFP_KERNEL); |
| if (!txq->tfds) |
| goto error; |
| |
| BUILD_BUG_ON(sizeof(*txq->first_tb_bufs) != IWL_FIRST_TB_SIZE_ALIGN); |
| |
| tb0_buf_sz = sizeof(*txq->first_tb_bufs) * slots_num; |
| |
| txq->first_tb_bufs = dma_alloc_coherent(trans->dev, tb0_buf_sz, |
| &txq->first_tb_dma, |
| GFP_KERNEL); |
| if (!txq->first_tb_bufs) |
| goto err_free_tfds; |
| |
| for (i = 0; i < num_entries; i++) { |
| void *tfd = iwl_txq_get_tfd(trans, txq, i); |
| |
| if (trans->trans_cfg->gen2) |
| iwl_txq_set_tfd_invalid_gen2(trans, tfd); |
| else |
| iwl_txq_set_tfd_invalid_gen1(trans, tfd); |
| } |
| |
| return 0; |
| err_free_tfds: |
| dma_free_coherent(trans->dev, tfd_sz, txq->tfds, txq->dma_addr); |
| txq->tfds = NULL; |
| error: |
| if (txq->entries && cmd_queue) |
| for (i = 0; i < slots_num; i++) |
| kfree(txq->entries[i].cmd); |
| kfree(txq->entries); |
| txq->entries = NULL; |
| |
| return -ENOMEM; |
| } |
| |
| static struct iwl_txq * |
| iwl_txq_dyn_alloc_dma(struct iwl_trans *trans, int size, unsigned int timeout) |
| { |
| size_t bc_tbl_size, bc_tbl_entries; |
| struct iwl_txq *txq; |
| int ret; |
| |
| WARN_ON(!trans->txqs.bc_tbl_size); |
| |
| bc_tbl_size = trans->txqs.bc_tbl_size; |
| bc_tbl_entries = bc_tbl_size / sizeof(u16); |
| |
| if (WARN_ON(size > bc_tbl_entries)) |
| return ERR_PTR(-EINVAL); |
| |
| txq = kzalloc(sizeof(*txq), GFP_KERNEL); |
| if (!txq) |
| return ERR_PTR(-ENOMEM); |
| |
| txq->bc_tbl.addr = dma_pool_alloc(trans->txqs.bc_pool, GFP_KERNEL, |
| &txq->bc_tbl.dma); |
| if (!txq->bc_tbl.addr) { |
| IWL_ERR(trans, "Scheduler BC Table allocation failed\n"); |
| kfree(txq); |
| return ERR_PTR(-ENOMEM); |
| } |
| |
| ret = iwl_txq_alloc(trans, txq, size, false); |
| if (ret) { |
| IWL_ERR(trans, "Tx queue alloc failed\n"); |
| goto error; |
| } |
| ret = iwl_txq_init(trans, txq, size, false); |
| if (ret) { |
| IWL_ERR(trans, "Tx queue init failed\n"); |
| goto error; |
| } |
| |
| txq->wd_timeout = msecs_to_jiffies(timeout); |
| |
| return txq; |
| |
| error: |
| iwl_txq_gen2_free_memory(trans, txq); |
| return ERR_PTR(ret); |
| } |
| |
| static int iwl_txq_alloc_response(struct iwl_trans *trans, struct iwl_txq *txq, |
| struct iwl_host_cmd *hcmd) |
| { |
| struct iwl_tx_queue_cfg_rsp *rsp; |
| int ret, qid; |
| u32 wr_ptr; |
| |
| if (WARN_ON(iwl_rx_packet_payload_len(hcmd->resp_pkt) != |
| sizeof(*rsp))) { |
| ret = -EINVAL; |
| goto error_free_resp; |
| } |
| |
| rsp = (void *)hcmd->resp_pkt->data; |
| qid = le16_to_cpu(rsp->queue_number); |
| wr_ptr = le16_to_cpu(rsp->write_pointer); |
| |
| if (qid >= ARRAY_SIZE(trans->txqs.txq)) { |
| WARN_ONCE(1, "queue index %d unsupported", qid); |
| ret = -EIO; |
| goto error_free_resp; |
| } |
| |
| if (test_and_set_bit(qid, trans->txqs.queue_used)) { |
| WARN_ONCE(1, "queue %d already used", qid); |
| ret = -EIO; |
| goto error_free_resp; |
| } |
| |
| if (WARN_ONCE(trans->txqs.txq[qid], |
| "queue %d already allocated\n", qid)) { |
| ret = -EIO; |
| goto error_free_resp; |
| } |
| |
| txq->id = qid; |
| trans->txqs.txq[qid] = txq; |
| wr_ptr &= (trans->trans_cfg->base_params->max_tfd_queue_size - 1); |
| |
| /* Place first TFD at index corresponding to start sequence number */ |
| txq->read_ptr = wr_ptr; |
| txq->write_ptr = wr_ptr; |
| |
| IWL_DEBUG_TX_QUEUES(trans, "Activate queue %d\n", qid); |
| |
| iwl_free_resp(hcmd); |
| return qid; |
| |
| error_free_resp: |
| iwl_free_resp(hcmd); |
| iwl_txq_gen2_free_memory(trans, txq); |
| return ret; |
| } |
| |
| int iwl_txq_dyn_alloc(struct iwl_trans *trans, u32 flags, u32 sta_mask, |
| u8 tid, int size, unsigned int timeout) |
| { |
| struct iwl_txq *txq; |
| union { |
| struct iwl_tx_queue_cfg_cmd old; |
| struct iwl_scd_queue_cfg_cmd new; |
| } cmd; |
| struct iwl_host_cmd hcmd = { |
| .flags = CMD_WANT_SKB, |
| }; |
| int ret; |
| |
| if (trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_BZ && |
| trans->hw_rev_step == SILICON_A_STEP) |
| size = 4096; |
| |
| txq = iwl_txq_dyn_alloc_dma(trans, size, timeout); |
| if (IS_ERR(txq)) |
| return PTR_ERR(txq); |
| |
| if (trans->txqs.queue_alloc_cmd_ver == 0) { |
| memset(&cmd.old, 0, sizeof(cmd.old)); |
| cmd.old.tfdq_addr = cpu_to_le64(txq->dma_addr); |
| cmd.old.byte_cnt_addr = cpu_to_le64(txq->bc_tbl.dma); |
| cmd.old.cb_size = cpu_to_le32(TFD_QUEUE_CB_SIZE(size)); |
| cmd.old.flags = cpu_to_le16(flags | TX_QUEUE_CFG_ENABLE_QUEUE); |
| cmd.old.tid = tid; |
| |
| if (hweight32(sta_mask) != 1) { |
| ret = -EINVAL; |
| goto error; |
| } |
| cmd.old.sta_id = ffs(sta_mask) - 1; |
| |
| hcmd.id = SCD_QUEUE_CFG; |
| hcmd.len[0] = sizeof(cmd.old); |
| hcmd.data[0] = &cmd.old; |
| } else if (trans->txqs.queue_alloc_cmd_ver == 3) { |
| memset(&cmd.new, 0, sizeof(cmd.new)); |
| cmd.new.operation = cpu_to_le32(IWL_SCD_QUEUE_ADD); |
| cmd.new.u.add.tfdq_dram_addr = cpu_to_le64(txq->dma_addr); |
| cmd.new.u.add.bc_dram_addr = cpu_to_le64(txq->bc_tbl.dma); |
| cmd.new.u.add.cb_size = cpu_to_le32(TFD_QUEUE_CB_SIZE(size)); |
| cmd.new.u.add.flags = cpu_to_le32(flags); |
| cmd.new.u.add.sta_mask = cpu_to_le32(sta_mask); |
| cmd.new.u.add.tid = tid; |
| |
| hcmd.id = WIDE_ID(DATA_PATH_GROUP, SCD_QUEUE_CONFIG_CMD); |
| hcmd.len[0] = sizeof(cmd.new); |
| hcmd.data[0] = &cmd.new; |
| } else { |
| ret = -EOPNOTSUPP; |
| goto error; |
| } |
| |
| ret = iwl_trans_send_cmd(trans, &hcmd); |
| if (ret) |
| goto error; |
| |
| return iwl_txq_alloc_response(trans, txq, &hcmd); |
| |
| error: |
| iwl_txq_gen2_free_memory(trans, txq); |
| return ret; |
| } |
| |
| void iwl_txq_dyn_free(struct iwl_trans *trans, int queue) |
| { |
| if (WARN(queue >= IWL_MAX_TVQM_QUEUES, |
| "queue %d out of range", queue)) |
| return; |
| |
| /* |
| * Upon HW Rfkill - we stop the device, and then stop the queues |
| * in the op_mode. Just for the sake of the simplicity of the op_mode, |
| * allow the op_mode to call txq_disable after it already called |
| * stop_device. |
| */ |
| if (!test_and_clear_bit(queue, trans->txqs.queue_used)) { |
| WARN_ONCE(test_bit(STATUS_DEVICE_ENABLED, &trans->status), |
| "queue %d not used", queue); |
| return; |
| } |
| |
| iwl_txq_gen2_free(trans, queue); |
| |
| IWL_DEBUG_TX_QUEUES(trans, "Deactivate queue %d\n", queue); |
| } |
| |
| void iwl_txq_gen2_tx_free(struct iwl_trans *trans) |
| { |
| int i; |
| |
| memset(trans->txqs.queue_used, 0, sizeof(trans->txqs.queue_used)); |
| |
| /* Free all TX queues */ |
| for (i = 0; i < ARRAY_SIZE(trans->txqs.txq); i++) { |
| if (!trans->txqs.txq[i]) |
| continue; |
| |
| iwl_txq_gen2_free(trans, i); |
| } |
| } |
| |
| int iwl_txq_gen2_init(struct iwl_trans *trans, int txq_id, int queue_size) |
| { |
| struct iwl_txq *queue; |
| int ret; |
| |
| /* alloc and init the tx queue */ |
| if (!trans->txqs.txq[txq_id]) { |
| queue = kzalloc(sizeof(*queue), GFP_KERNEL); |
| if (!queue) { |
| IWL_ERR(trans, "Not enough memory for tx queue\n"); |
| return -ENOMEM; |
| } |
| trans->txqs.txq[txq_id] = queue; |
| ret = iwl_txq_alloc(trans, queue, queue_size, true); |
| if (ret) { |
| IWL_ERR(trans, "Tx %d queue init failed\n", txq_id); |
| goto error; |
| } |
| } else { |
| queue = trans->txqs.txq[txq_id]; |
| } |
| |
| ret = iwl_txq_init(trans, queue, queue_size, |
| (txq_id == trans->txqs.cmd.q_id)); |
| if (ret) { |
| IWL_ERR(trans, "Tx %d queue alloc failed\n", txq_id); |
| goto error; |
| } |
| trans->txqs.txq[txq_id]->id = txq_id; |
| set_bit(txq_id, trans->txqs.queue_used); |
| |
| return 0; |
| |
| error: |
| iwl_txq_gen2_tx_free(trans); |
| return ret; |
| } |
| |
| static inline dma_addr_t iwl_txq_gen1_tfd_tb_get_addr(struct iwl_trans *trans, |
| struct iwl_tfd *tfd, u8 idx) |
| { |
| struct iwl_tfd_tb *tb = &tfd->tbs[idx]; |
| dma_addr_t addr; |
| dma_addr_t hi_len; |
| |
| addr = get_unaligned_le32(&tb->lo); |
| |
| if (sizeof(dma_addr_t) <= sizeof(u32)) |
| return addr; |
| |
| hi_len = le16_to_cpu(tb->hi_n_len) & 0xF; |
| |
| /* |
| * shift by 16 twice to avoid warnings on 32-bit |
| * (where this code never runs anyway due to the |
| * if statement above) |
| */ |
| return addr | ((hi_len << 16) << 16); |
| } |
| |
| void iwl_txq_gen1_tfd_unmap(struct iwl_trans *trans, |
| struct iwl_cmd_meta *meta, |
| struct iwl_txq *txq, int index) |
| { |
| int i, num_tbs; |
| struct iwl_tfd *tfd = iwl_txq_get_tfd(trans, txq, index); |
| |
| /* Sanity check on number of chunks */ |
| num_tbs = iwl_txq_gen1_tfd_get_num_tbs(trans, tfd); |
| |
| if (num_tbs > trans->txqs.tfd.max_tbs) { |
| IWL_ERR(trans, "Too many chunks: %i\n", num_tbs); |
| /* @todo issue fatal error, it is quite serious situation */ |
| return; |
| } |
| |
| /* first TB is never freed - it's the bidirectional DMA data */ |
| |
| for (i = 1; i < num_tbs; i++) { |
| if (meta->tbs & BIT(i)) |
| dma_unmap_page(trans->dev, |
| iwl_txq_gen1_tfd_tb_get_addr(trans, |
| tfd, i), |
| iwl_txq_gen1_tfd_tb_get_len(trans, |
| tfd, i), |
| DMA_TO_DEVICE); |
| else |
| dma_unmap_single(trans->dev, |
| iwl_txq_gen1_tfd_tb_get_addr(trans, |
| tfd, i), |
| iwl_txq_gen1_tfd_tb_get_len(trans, |
| tfd, i), |
| DMA_TO_DEVICE); |
| } |
| |
| meta->tbs = 0; |
| |
| iwl_txq_set_tfd_invalid_gen1(trans, tfd); |
| } |
| |
| #define IWL_TX_CRC_SIZE 4 |
| #define IWL_TX_DELIMITER_SIZE 4 |
| |
| /* |
| * iwl_txq_gen1_update_byte_cnt_tbl - Set up entry in Tx byte-count array |
| */ |
| void iwl_txq_gen1_update_byte_cnt_tbl(struct iwl_trans *trans, |
| struct iwl_txq *txq, u16 byte_cnt, |
| int num_tbs) |
| { |
| struct iwlagn_scd_bc_tbl *scd_bc_tbl; |
| int write_ptr = txq->write_ptr; |
| int txq_id = txq->id; |
| u8 sec_ctl = 0; |
| u16 len = byte_cnt + IWL_TX_CRC_SIZE + IWL_TX_DELIMITER_SIZE; |
| __le16 bc_ent; |
| struct iwl_device_tx_cmd *dev_cmd = txq->entries[txq->write_ptr].cmd; |
| struct iwl_tx_cmd *tx_cmd = (void *)dev_cmd->payload; |
| u8 sta_id = tx_cmd->sta_id; |
| |
| scd_bc_tbl = trans->txqs.scd_bc_tbls.addr; |
| |
| sec_ctl = tx_cmd->sec_ctl; |
| |
| switch (sec_ctl & TX_CMD_SEC_MSK) { |
| case TX_CMD_SEC_CCM: |
| len += IEEE80211_CCMP_MIC_LEN; |
| break; |
| case TX_CMD_SEC_TKIP: |
| len += IEEE80211_TKIP_ICV_LEN; |
| break; |
| case TX_CMD_SEC_WEP: |
| len += IEEE80211_WEP_IV_LEN + IEEE80211_WEP_ICV_LEN; |
| break; |
| } |
| if (trans->txqs.bc_table_dword) |
| len = DIV_ROUND_UP(len, 4); |
| |
| if (WARN_ON(len > 0xFFF || write_ptr >= TFD_QUEUE_SIZE_MAX)) |
| return; |
| |
| bc_ent = cpu_to_le16(len | (sta_id << 12)); |
| |
| scd_bc_tbl[txq_id].tfd_offset[write_ptr] = bc_ent; |
| |
| if (write_ptr < TFD_QUEUE_SIZE_BC_DUP) |
| scd_bc_tbl[txq_id].tfd_offset[TFD_QUEUE_SIZE_MAX + write_ptr] = |
| bc_ent; |
| } |
| |
| void iwl_txq_gen1_inval_byte_cnt_tbl(struct iwl_trans *trans, |
| struct iwl_txq *txq) |
| { |
| struct iwlagn_scd_bc_tbl *scd_bc_tbl = trans->txqs.scd_bc_tbls.addr; |
| int txq_id = txq->id; |
| int read_ptr = txq->read_ptr; |
| u8 sta_id = 0; |
| __le16 bc_ent; |
| struct iwl_device_tx_cmd *dev_cmd = txq->entries[read_ptr].cmd; |
| struct iwl_tx_cmd *tx_cmd = (void *)dev_cmd->payload; |
| |
| WARN_ON(read_ptr >= TFD_QUEUE_SIZE_MAX); |
| |
| if (txq_id != trans->txqs.cmd.q_id) |
| sta_id = tx_cmd->sta_id; |
| |
| bc_ent = cpu_to_le16(1 | (sta_id << 12)); |
| |
| scd_bc_tbl[txq_id].tfd_offset[read_ptr] = bc_ent; |
| |
| if (read_ptr < TFD_QUEUE_SIZE_BC_DUP) |
| scd_bc_tbl[txq_id].tfd_offset[TFD_QUEUE_SIZE_MAX + read_ptr] = |
| bc_ent; |
| } |
| |
| /* |
| * iwl_txq_free_tfd - Free all chunks referenced by TFD [txq->q.read_ptr] |
| * @trans - transport private data |
| * @txq - tx queue |
| * @dma_dir - the direction of the DMA mapping |
| * |
| * Does NOT advance any TFD circular buffer read/write indexes |
| * Does NOT free the TFD itself (which is within circular buffer) |
| */ |
| void iwl_txq_free_tfd(struct iwl_trans *trans, struct iwl_txq *txq) |
| { |
| /* rd_ptr is bounded by TFD_QUEUE_SIZE_MAX and |
| * idx is bounded by n_window |
| */ |
| int rd_ptr = txq->read_ptr; |
| int idx = iwl_txq_get_cmd_index(txq, rd_ptr); |
| struct sk_buff *skb; |
| |
| lockdep_assert_held(&txq->lock); |
| |
| if (!txq->entries) |
| return; |
| |
| /* We have only q->n_window txq->entries, but we use |
| * TFD_QUEUE_SIZE_MAX tfds |
| */ |
| if (trans->trans_cfg->gen2) |
| iwl_txq_gen2_tfd_unmap(trans, &txq->entries[idx].meta, |
| iwl_txq_get_tfd(trans, txq, rd_ptr)); |
| else |
| iwl_txq_gen1_tfd_unmap(trans, &txq->entries[idx].meta, |
| txq, rd_ptr); |
| |
| /* free SKB */ |
| skb = txq->entries[idx].skb; |
| |
| /* Can be called from irqs-disabled context |
| * If skb is not NULL, it means that the whole queue is being |
| * freed and that the queue is not empty - free the skb |
| */ |
| if (skb) { |
| iwl_op_mode_free_skb(trans->op_mode, skb); |
| txq->entries[idx].skb = NULL; |
| } |
| } |
| |
| void iwl_txq_progress(struct iwl_txq *txq) |
| { |
| lockdep_assert_held(&txq->lock); |
| |
| if (!txq->wd_timeout) |
| return; |
| |
| /* |
| * station is asleep and we send data - that must |
| * be uAPSD or PS-Poll. Don't rearm the timer. |
| */ |
| if (txq->frozen) |
| return; |
| |
| /* |
| * if empty delete timer, otherwise move timer forward |
| * since we're making progress on this queue |
| */ |
| if (txq->read_ptr == txq->write_ptr) |
| del_timer(&txq->stuck_timer); |
| else |
| mod_timer(&txq->stuck_timer, jiffies + txq->wd_timeout); |
| } |
| |
| /* Frees buffers until index _not_ inclusive */ |
| void iwl_txq_reclaim(struct iwl_trans *trans, int txq_id, int ssn, |
| struct sk_buff_head *skbs, bool is_flush) |
| { |
| struct iwl_txq *txq = trans->txqs.txq[txq_id]; |
| int tfd_num, read_ptr, last_to_free; |
| |
| /* This function is not meant to release cmd queue*/ |
| if (WARN_ON(txq_id == trans->txqs.cmd.q_id)) |
| return; |
| |
| if (WARN_ON(!txq)) |
| return; |
| |
| tfd_num = iwl_txq_get_cmd_index(txq, ssn); |
| read_ptr = iwl_txq_get_cmd_index(txq, txq->read_ptr); |
| |
| spin_lock_bh(&txq->lock); |
| |
| if (!test_bit(txq_id, trans->txqs.queue_used)) { |
| IWL_DEBUG_TX_QUEUES(trans, "Q %d inactive - ignoring idx %d\n", |
| txq_id, ssn); |
| goto out; |
| } |
| |
| if (read_ptr == tfd_num) |
| goto out; |
| |
| IWL_DEBUG_TX_REPLY(trans, "[Q %d] %d (%d) -> %d (%d)\n", |
| txq_id, read_ptr, txq->read_ptr, tfd_num, ssn); |
| |
| /*Since we free until index _not_ inclusive, the one before index is |
| * the last we will free. This one must be used */ |
| last_to_free = iwl_txq_dec_wrap(trans, tfd_num); |
| |
| if (!iwl_txq_used(txq, last_to_free)) { |
| IWL_ERR(trans, |
| "%s: Read index for txq id (%d), last_to_free %d is out of range [0-%d] %d %d.\n", |
| __func__, txq_id, last_to_free, |
| trans->trans_cfg->base_params->max_tfd_queue_size, |
| txq->write_ptr, txq->read_ptr); |
| |
| iwl_op_mode_time_point(trans->op_mode, |
| IWL_FW_INI_TIME_POINT_FAKE_TX, |
| NULL); |
| goto out; |
| } |
| |
| if (WARN_ON(!skb_queue_empty(skbs))) |
| goto out; |
| |
| for (; |
| read_ptr != tfd_num; |
| txq->read_ptr = iwl_txq_inc_wrap(trans, txq->read_ptr), |
| read_ptr = iwl_txq_get_cmd_index(txq, txq->read_ptr)) { |
| struct sk_buff *skb = txq->entries[read_ptr].skb; |
| |
| if (WARN_ONCE(!skb, "no SKB at %d (%d) on queue %d\n", |
| read_ptr, txq->read_ptr, txq_id)) |
| continue; |
| |
| iwl_txq_free_tso_page(trans, skb); |
| |
| __skb_queue_tail(skbs, skb); |
| |
| txq->entries[read_ptr].skb = NULL; |
| |
| if (!trans->trans_cfg->gen2) |
| iwl_txq_gen1_inval_byte_cnt_tbl(trans, txq); |
| |
| iwl_txq_free_tfd(trans, txq); |
| } |
| |
| iwl_txq_progress(txq); |
| |
| if (iwl_txq_space(trans, txq) > txq->low_mark && |
| test_bit(txq_id, trans->txqs.queue_stopped)) { |
| struct sk_buff_head overflow_skbs; |
| struct sk_buff *skb; |
| |
| __skb_queue_head_init(&overflow_skbs); |
| skb_queue_splice_init(&txq->overflow_q, |
| is_flush ? skbs : &overflow_skbs); |
| |
| /* |
| * We are going to transmit from the overflow queue. |
| * Remember this state so that wait_for_txq_empty will know we |
| * are adding more packets to the TFD queue. It cannot rely on |
| * the state of &txq->overflow_q, as we just emptied it, but |
| * haven't TXed the content yet. |
| */ |
| txq->overflow_tx = true; |
| |
| /* |
| * This is tricky: we are in reclaim path which is non |
| * re-entrant, so noone will try to take the access the |
| * txq data from that path. We stopped tx, so we can't |
| * have tx as well. Bottom line, we can unlock and re-lock |
| * later. |
| */ |
| spin_unlock_bh(&txq->lock); |
| |
| while ((skb = __skb_dequeue(&overflow_skbs))) { |
| struct iwl_device_tx_cmd *dev_cmd_ptr; |
| |
| dev_cmd_ptr = *(void **)((u8 *)skb->cb + |
| trans->txqs.dev_cmd_offs); |
| |
| /* |
| * Note that we can very well be overflowing again. |
| * In that case, iwl_txq_space will be small again |
| * and we won't wake mac80211's queue. |
| */ |
| iwl_trans_tx(trans, skb, dev_cmd_ptr, txq_id); |
| } |
| |
| if (iwl_txq_space(trans, txq) > txq->low_mark) |
| iwl_wake_queue(trans, txq); |
| |
| spin_lock_bh(&txq->lock); |
| txq->overflow_tx = false; |
| } |
| |
| out: |
| spin_unlock_bh(&txq->lock); |
| } |
| |
| /* Set wr_ptr of specific device and txq */ |
| void iwl_txq_set_q_ptrs(struct iwl_trans *trans, int txq_id, int ptr) |
| { |
| struct iwl_txq *txq = trans->txqs.txq[txq_id]; |
| |
| spin_lock_bh(&txq->lock); |
| |
| txq->write_ptr = ptr; |
| txq->read_ptr = txq->write_ptr; |
| |
| spin_unlock_bh(&txq->lock); |
| } |
| |
| void iwl_trans_txq_freeze_timer(struct iwl_trans *trans, unsigned long txqs, |
| bool freeze) |
| { |
| int queue; |
| |
| for_each_set_bit(queue, &txqs, BITS_PER_LONG) { |
| struct iwl_txq *txq = trans->txqs.txq[queue]; |
| unsigned long now; |
| |
| spin_lock_bh(&txq->lock); |
| |
| now = jiffies; |
| |
| if (txq->frozen == freeze) |
| goto next_queue; |
| |
| IWL_DEBUG_TX_QUEUES(trans, "%s TXQ %d\n", |
| freeze ? "Freezing" : "Waking", queue); |
| |
| txq->frozen = freeze; |
| |
| if (txq->read_ptr == txq->write_ptr) |
| goto next_queue; |
| |
| if (freeze) { |
| if (unlikely(time_after(now, |
| txq->stuck_timer.expires))) { |
| /* |
| * The timer should have fired, maybe it is |
| * spinning right now on the lock. |
| */ |
| goto next_queue; |
| } |
| /* remember how long until the timer fires */ |
| txq->frozen_expiry_remainder = |
| txq->stuck_timer.expires - now; |
| del_timer(&txq->stuck_timer); |
| goto next_queue; |
| } |
| |
| /* |
| * Wake a non-empty queue -> arm timer with the |
| * remainder before it froze |
| */ |
| mod_timer(&txq->stuck_timer, |
| now + txq->frozen_expiry_remainder); |
| |
| next_queue: |
| spin_unlock_bh(&txq->lock); |
| } |
| } |
| |
| #define HOST_COMPLETE_TIMEOUT (2 * HZ) |
| |
| static int iwl_trans_txq_send_hcmd_sync(struct iwl_trans *trans, |
| struct iwl_host_cmd *cmd) |
| { |
| const char *cmd_str = iwl_get_cmd_string(trans, cmd->id); |
| struct iwl_txq *txq = trans->txqs.txq[trans->txqs.cmd.q_id]; |
| int cmd_idx; |
| int ret; |
| |
| IWL_DEBUG_INFO(trans, "Attempting to send sync command %s\n", cmd_str); |
| |
| if (WARN(test_and_set_bit(STATUS_SYNC_HCMD_ACTIVE, |
| &trans->status), |
| "Command %s: a command is already active!\n", cmd_str)) |
| return -EIO; |
| |
| IWL_DEBUG_INFO(trans, "Setting HCMD_ACTIVE for command %s\n", cmd_str); |
| |
| cmd_idx = trans->ops->send_cmd(trans, cmd); |
| if (cmd_idx < 0) { |
| ret = cmd_idx; |
| clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status); |
| IWL_ERR(trans, "Error sending %s: enqueue_hcmd failed: %d\n", |
| cmd_str, ret); |
| return ret; |
| } |
| |
| ret = wait_event_timeout(trans->wait_command_queue, |
| !test_bit(STATUS_SYNC_HCMD_ACTIVE, |
| &trans->status), |
| HOST_COMPLETE_TIMEOUT); |
| if (!ret) { |
| IWL_ERR(trans, "Error sending %s: time out after %dms.\n", |
| cmd_str, jiffies_to_msecs(HOST_COMPLETE_TIMEOUT)); |
| |
| IWL_ERR(trans, "Current CMD queue read_ptr %d write_ptr %d\n", |
| txq->read_ptr, txq->write_ptr); |
| |
| clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status); |
| IWL_DEBUG_INFO(trans, "Clearing HCMD_ACTIVE for command %s\n", |
| cmd_str); |
| ret = -ETIMEDOUT; |
| |
| iwl_trans_sync_nmi(trans); |
| goto cancel; |
| } |
| |
| if (test_bit(STATUS_FW_ERROR, &trans->status)) { |
| if (!test_and_clear_bit(STATUS_SUPPRESS_CMD_ERROR_ONCE, |
| &trans->status)) { |
| IWL_ERR(trans, "FW error in SYNC CMD %s\n", cmd_str); |
| dump_stack(); |
| } |
| ret = -EIO; |
| goto cancel; |
| } |
| |
| if (!(cmd->flags & CMD_SEND_IN_RFKILL) && |
| test_bit(STATUS_RFKILL_OPMODE, &trans->status)) { |
| IWL_DEBUG_RF_KILL(trans, "RFKILL in SYNC CMD... no rsp\n"); |
| ret = -ERFKILL; |
| goto cancel; |
| } |
| |
| if ((cmd->flags & CMD_WANT_SKB) && !cmd->resp_pkt) { |
| IWL_ERR(trans, "Error: Response NULL in '%s'\n", cmd_str); |
| ret = -EIO; |
| goto cancel; |
| } |
| |
| return 0; |
| |
| cancel: |
| if (cmd->flags & CMD_WANT_SKB) { |
| /* |
| * Cancel the CMD_WANT_SKB flag for the cmd in the |
| * TX cmd queue. Otherwise in case the cmd comes |
| * in later, it will possibly set an invalid |
| * address (cmd->meta.source). |
| */ |
| txq->entries[cmd_idx].meta.flags &= ~CMD_WANT_SKB; |
| } |
| |
| if (cmd->resp_pkt) { |
| iwl_free_resp(cmd); |
| cmd->resp_pkt = NULL; |
| } |
| |
| return ret; |
| } |
| |
| int iwl_trans_txq_send_hcmd(struct iwl_trans *trans, |
| struct iwl_host_cmd *cmd) |
| { |
| /* Make sure the NIC is still alive in the bus */ |
| if (test_bit(STATUS_TRANS_DEAD, &trans->status)) |
| return -ENODEV; |
| |
| if (!(cmd->flags & CMD_SEND_IN_RFKILL) && |
| test_bit(STATUS_RFKILL_OPMODE, &trans->status)) { |
| IWL_DEBUG_RF_KILL(trans, "Dropping CMD 0x%x: RF KILL\n", |
| cmd->id); |
| return -ERFKILL; |
| } |
| |
| if (unlikely(trans->system_pm_mode == IWL_PLAT_PM_MODE_D3 && |
| !(cmd->flags & CMD_SEND_IN_D3))) { |
| IWL_DEBUG_WOWLAN(trans, "Dropping CMD 0x%x: D3\n", cmd->id); |
| return -EHOSTDOWN; |
| } |
| |
| if (cmd->flags & CMD_ASYNC) { |
| int ret; |
| |
| /* An asynchronous command can not expect an SKB to be set. */ |
| if (WARN_ON(cmd->flags & CMD_WANT_SKB)) |
| return -EINVAL; |
| |
| ret = trans->ops->send_cmd(trans, cmd); |
| if (ret < 0) { |
| IWL_ERR(trans, |
| "Error sending %s: enqueue_hcmd failed: %d\n", |
| iwl_get_cmd_string(trans, cmd->id), ret); |
| return ret; |
| } |
| return 0; |
| } |
| |
| return iwl_trans_txq_send_hcmd_sync(trans, cmd); |
| } |
| |