blob: 4f6b20ed29dd7072ac676c8db67f881e16c5f391 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* Edirol UA-101/UA-1000 driver
* Copyright (c) Clemens Ladisch <clemens@ladisch.de>
*/
#include <linux/init.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/usb.h>
#include <linux/usb/audio.h>
#include <sound/core.h>
#include <sound/initval.h>
#include <sound/pcm.h>
#include <sound/pcm_params.h>
#include "../usbaudio.h"
#include "../midi.h"
MODULE_DESCRIPTION("Edirol UA-101/1000 driver");
MODULE_AUTHOR("Clemens Ladisch <clemens@ladisch.de>");
MODULE_LICENSE("GPL v2");
/*
* Should not be lower than the minimum scheduling delay of the host
* controller. Some Intel controllers need more than one frame; as long as
* that driver doesn't tell us about this, use 1.5 frames just to be sure.
*/
#define MIN_QUEUE_LENGTH 12
/* Somewhat random. */
#define MAX_QUEUE_LENGTH 30
/*
* This magic value optimizes memory usage efficiency for the UA-101's packet
* sizes at all sample rates, taking into account the stupid cache pool sizes
* that usb_alloc_coherent() uses.
*/
#define DEFAULT_QUEUE_LENGTH 21
#define MAX_PACKET_SIZE 672 /* hardware specific */
#define MAX_MEMORY_BUFFERS DIV_ROUND_UP(MAX_QUEUE_LENGTH, \
PAGE_SIZE / MAX_PACKET_SIZE)
static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX;
static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR;
static bool enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;
static unsigned int queue_length = 21;
module_param_array(index, int, NULL, 0444);
MODULE_PARM_DESC(index, "card index");
module_param_array(id, charp, NULL, 0444);
MODULE_PARM_DESC(id, "ID string");
module_param_array(enable, bool, NULL, 0444);
MODULE_PARM_DESC(enable, "enable card");
module_param(queue_length, uint, 0644);
MODULE_PARM_DESC(queue_length, "USB queue length in microframes, "
__stringify(MIN_QUEUE_LENGTH)"-"__stringify(MAX_QUEUE_LENGTH));
enum {
INTF_PLAYBACK,
INTF_CAPTURE,
INTF_MIDI,
INTF_COUNT
};
/* bits in struct ua101::states */
enum {
USB_CAPTURE_RUNNING,
USB_PLAYBACK_RUNNING,
ALSA_CAPTURE_OPEN,
ALSA_PLAYBACK_OPEN,
ALSA_CAPTURE_RUNNING,
ALSA_PLAYBACK_RUNNING,
CAPTURE_URB_COMPLETED,
PLAYBACK_URB_COMPLETED,
DISCONNECTED,
};
struct ua101 {
struct usb_device *dev;
struct snd_card *card;
struct usb_interface *intf[INTF_COUNT];
int card_index;
struct snd_pcm *pcm;
struct list_head midi_list;
u64 format_bit;
unsigned int rate;
unsigned int packets_per_second;
spinlock_t lock;
struct mutex mutex;
unsigned long states;
/* FIFO to synchronize playback rate to capture rate */
unsigned int rate_feedback_start;
unsigned int rate_feedback_count;
u8 rate_feedback[MAX_QUEUE_LENGTH];
struct list_head ready_playback_urbs;
struct work_struct playback_work;
wait_queue_head_t alsa_capture_wait;
wait_queue_head_t rate_feedback_wait;
wait_queue_head_t alsa_playback_wait;
struct ua101_stream {
struct snd_pcm_substream *substream;
unsigned int usb_pipe;
unsigned int channels;
unsigned int frame_bytes;
unsigned int max_packet_bytes;
unsigned int period_pos;
unsigned int buffer_pos;
unsigned int queue_length;
struct ua101_urb {
struct urb urb;
struct usb_iso_packet_descriptor iso_frame_desc[1];
struct list_head ready_list;
} *urbs[MAX_QUEUE_LENGTH];
struct {
unsigned int size;
void *addr;
dma_addr_t dma;
} buffers[MAX_MEMORY_BUFFERS];
} capture, playback;
};
static DEFINE_MUTEX(devices_mutex);
static unsigned int devices_used;
static struct usb_driver ua101_driver;
static void abort_alsa_playback(struct ua101 *ua);
static void abort_alsa_capture(struct ua101 *ua);
static const char *usb_error_string(int err)
{
switch (err) {
case -ENODEV:
return "no device";
case -ENOENT:
return "endpoint not enabled";
case -EPIPE:
return "endpoint stalled";
case -ENOSPC:
return "not enough bandwidth";
case -ESHUTDOWN:
return "device disabled";
case -EHOSTUNREACH:
return "device suspended";
case -EINVAL:
case -EAGAIN:
case -EFBIG:
case -EMSGSIZE:
return "internal error";
default:
return "unknown error";
}
}
static void abort_usb_capture(struct ua101 *ua)
{
if (test_and_clear_bit(USB_CAPTURE_RUNNING, &ua->states)) {
wake_up(&ua->alsa_capture_wait);
wake_up(&ua->rate_feedback_wait);
}
}
static void abort_usb_playback(struct ua101 *ua)
{
if (test_and_clear_bit(USB_PLAYBACK_RUNNING, &ua->states))
wake_up(&ua->alsa_playback_wait);
}
static void playback_urb_complete(struct urb *usb_urb)
{
struct ua101_urb *urb = (struct ua101_urb *)usb_urb;
struct ua101 *ua = urb->urb.context;
unsigned long flags;
if (unlikely(urb->urb.status == -ENOENT || /* unlinked */
urb->urb.status == -ENODEV || /* device removed */
urb->urb.status == -ECONNRESET || /* unlinked */
urb->urb.status == -ESHUTDOWN)) { /* device disabled */
abort_usb_playback(ua);
abort_alsa_playback(ua);
return;
}
if (test_bit(USB_PLAYBACK_RUNNING, &ua->states)) {
/* append URB to FIFO */
spin_lock_irqsave(&ua->lock, flags);
list_add_tail(&urb->ready_list, &ua->ready_playback_urbs);
if (ua->rate_feedback_count > 0)
queue_work(system_highpri_wq, &ua->playback_work);
ua->playback.substream->runtime->delay -=
urb->urb.iso_frame_desc[0].length /
ua->playback.frame_bytes;
spin_unlock_irqrestore(&ua->lock, flags);
}
}
static void first_playback_urb_complete(struct urb *urb)
{
struct ua101 *ua = urb->context;
urb->complete = playback_urb_complete;
playback_urb_complete(urb);
set_bit(PLAYBACK_URB_COMPLETED, &ua->states);
wake_up(&ua->alsa_playback_wait);
}
/* copy data from the ALSA ring buffer into the URB buffer */
static bool copy_playback_data(struct ua101_stream *stream, struct urb *urb,
unsigned int frames)
{
struct snd_pcm_runtime *runtime;
unsigned int frame_bytes, frames1;
const u8 *source;
runtime = stream->substream->runtime;
frame_bytes = stream->frame_bytes;
source = runtime->dma_area + stream->buffer_pos * frame_bytes;
if (stream->buffer_pos + frames <= runtime->buffer_size) {
memcpy(urb->transfer_buffer, source, frames * frame_bytes);
} else {
/* wrap around at end of ring buffer */
frames1 = runtime->buffer_size - stream->buffer_pos;
memcpy(urb->transfer_buffer, source, frames1 * frame_bytes);
memcpy(urb->transfer_buffer + frames1 * frame_bytes,
runtime->dma_area, (frames - frames1) * frame_bytes);
}
stream->buffer_pos += frames;
if (stream->buffer_pos >= runtime->buffer_size)
stream->buffer_pos -= runtime->buffer_size;
stream->period_pos += frames;
if (stream->period_pos >= runtime->period_size) {
stream->period_pos -= runtime->period_size;
return true;
}
return false;
}
static inline void add_with_wraparound(struct ua101 *ua,
unsigned int *value, unsigned int add)
{
*value += add;
if (*value >= ua->playback.queue_length)
*value -= ua->playback.queue_length;
}
static void playback_work(struct work_struct *work)
{
struct ua101 *ua = container_of(work, struct ua101, playback_work);
unsigned long flags;
unsigned int frames;
struct ua101_urb *urb;
bool do_period_elapsed = false;
int err;
if (unlikely(!test_bit(USB_PLAYBACK_RUNNING, &ua->states)))
return;
/*
* Synchronizing the playback rate to the capture rate is done by using
* the same sequence of packet sizes for both streams.
* Submitting a playback URB therefore requires both a ready URB and
* the size of the corresponding capture packet, i.e., both playback
* and capture URBs must have been completed. Since the USB core does
* not guarantee that playback and capture complete callbacks are
* called alternately, we use two FIFOs for packet sizes and read URBs;
* submitting playback URBs is possible as long as both FIFOs are
* nonempty.
*/
spin_lock_irqsave(&ua->lock, flags);
while (ua->rate_feedback_count > 0 &&
!list_empty(&ua->ready_playback_urbs)) {
/* take packet size out of FIFO */
frames = ua->rate_feedback[ua->rate_feedback_start];
add_with_wraparound(ua, &ua->rate_feedback_start, 1);
ua->rate_feedback_count--;
/* take URB out of FIFO */
urb = list_first_entry(&ua->ready_playback_urbs,
struct ua101_urb, ready_list);
list_del(&urb->ready_list);
/* fill packet with data or silence */
urb->urb.iso_frame_desc[0].length =
frames * ua->playback.frame_bytes;
if (test_bit(ALSA_PLAYBACK_RUNNING, &ua->states))
do_period_elapsed |= copy_playback_data(&ua->playback,
&urb->urb,
frames);
else
memset(urb->urb.transfer_buffer, 0,
urb->urb.iso_frame_desc[0].length);
/* and off you go ... */
err = usb_submit_urb(&urb->urb, GFP_ATOMIC);
if (unlikely(err < 0)) {
spin_unlock_irqrestore(&ua->lock, flags);
abort_usb_playback(ua);
abort_alsa_playback(ua);
dev_err(&ua->dev->dev, "USB request error %d: %s\n",
err, usb_error_string(err));
return;
}
ua->playback.substream->runtime->delay += frames;
}
spin_unlock_irqrestore(&ua->lock, flags);
if (do_period_elapsed)
snd_pcm_period_elapsed(ua->playback.substream);
}
/* copy data from the URB buffer into the ALSA ring buffer */
static bool copy_capture_data(struct ua101_stream *stream, struct urb *urb,
unsigned int frames)
{
struct snd_pcm_runtime *runtime;
unsigned int frame_bytes, frames1;
u8 *dest;
runtime = stream->substream->runtime;
frame_bytes = stream->frame_bytes;
dest = runtime->dma_area + stream->buffer_pos * frame_bytes;
if (stream->buffer_pos + frames <= runtime->buffer_size) {
memcpy(dest, urb->transfer_buffer, frames * frame_bytes);
} else {
/* wrap around at end of ring buffer */
frames1 = runtime->buffer_size - stream->buffer_pos;
memcpy(dest, urb->transfer_buffer, frames1 * frame_bytes);
memcpy(runtime->dma_area,
urb->transfer_buffer + frames1 * frame_bytes,
(frames - frames1) * frame_bytes);
}
stream->buffer_pos += frames;
if (stream->buffer_pos >= runtime->buffer_size)
stream->buffer_pos -= runtime->buffer_size;
stream->period_pos += frames;
if (stream->period_pos >= runtime->period_size) {
stream->period_pos -= runtime->period_size;
return true;
}
return false;
}
static void capture_urb_complete(struct urb *urb)
{
struct ua101 *ua = urb->context;
struct ua101_stream *stream = &ua->capture;
unsigned long flags;
unsigned int frames, write_ptr;
bool do_period_elapsed;
int err;
if (unlikely(urb->status == -ENOENT || /* unlinked */
urb->status == -ENODEV || /* device removed */
urb->status == -ECONNRESET || /* unlinked */
urb->status == -ESHUTDOWN)) /* device disabled */
goto stream_stopped;
if (urb->status >= 0 && urb->iso_frame_desc[0].status >= 0)
frames = urb->iso_frame_desc[0].actual_length /
stream->frame_bytes;
else
frames = 0;
spin_lock_irqsave(&ua->lock, flags);
if (frames > 0 && test_bit(ALSA_CAPTURE_RUNNING, &ua->states))
do_period_elapsed = copy_capture_data(stream, urb, frames);
else
do_period_elapsed = false;
if (test_bit(USB_CAPTURE_RUNNING, &ua->states)) {
err = usb_submit_urb(urb, GFP_ATOMIC);
if (unlikely(err < 0)) {
spin_unlock_irqrestore(&ua->lock, flags);
dev_err(&ua->dev->dev, "USB request error %d: %s\n",
err, usb_error_string(err));
goto stream_stopped;
}
/* append packet size to FIFO */
write_ptr = ua->rate_feedback_start;
add_with_wraparound(ua, &write_ptr, ua->rate_feedback_count);
ua->rate_feedback[write_ptr] = frames;
if (ua->rate_feedback_count < ua->playback.queue_length) {
ua->rate_feedback_count++;
if (ua->rate_feedback_count ==
ua->playback.queue_length)
wake_up(&ua->rate_feedback_wait);
} else {
/*
* Ring buffer overflow; this happens when the playback
* stream is not running. Throw away the oldest entry,
* so that the playback stream, when it starts, sees
* the most recent packet sizes.
*/
add_with_wraparound(ua, &ua->rate_feedback_start, 1);
}
if (test_bit(USB_PLAYBACK_RUNNING, &ua->states) &&
!list_empty(&ua->ready_playback_urbs))
queue_work(system_highpri_wq, &ua->playback_work);
}
spin_unlock_irqrestore(&ua->lock, flags);
if (do_period_elapsed)
snd_pcm_period_elapsed(stream->substream);
return;
stream_stopped:
abort_usb_playback(ua);
abort_usb_capture(ua);
abort_alsa_playback(ua);
abort_alsa_capture(ua);
}
static void first_capture_urb_complete(struct urb *urb)
{
struct ua101 *ua = urb->context;
urb->complete = capture_urb_complete;
capture_urb_complete(urb);
set_bit(CAPTURE_URB_COMPLETED, &ua->states);
wake_up(&ua->alsa_capture_wait);
}
static int submit_stream_urbs(struct ua101 *ua, struct ua101_stream *stream)
{
unsigned int i;
for (i = 0; i < stream->queue_length; ++i) {
int err = usb_submit_urb(&stream->urbs[i]->urb, GFP_KERNEL);
if (err < 0) {
dev_err(&ua->dev->dev, "USB request error %d: %s\n",
err, usb_error_string(err));
return err;
}
}
return 0;
}
static void kill_stream_urbs(struct ua101_stream *stream)
{
unsigned int i;
for (i = 0; i < stream->queue_length; ++i)
if (stream->urbs[i])
usb_kill_urb(&stream->urbs[i]->urb);
}
static int enable_iso_interface(struct ua101 *ua, unsigned int intf_index)
{
struct usb_host_interface *alts;
alts = ua->intf[intf_index]->cur_altsetting;
if (alts->desc.bAlternateSetting != 1) {
int err = usb_set_interface(ua->dev,
alts->desc.bInterfaceNumber, 1);
if (err < 0) {
dev_err(&ua->dev->dev,
"cannot initialize interface; error %d: %s\n",
err, usb_error_string(err));
return err;
}
}
return 0;
}
static void disable_iso_interface(struct ua101 *ua, unsigned int intf_index)
{
struct usb_host_interface *alts;
if (!ua->intf[intf_index])
return;
alts = ua->intf[intf_index]->cur_altsetting;
if (alts->desc.bAlternateSetting != 0) {
int err = usb_set_interface(ua->dev,
alts->desc.bInterfaceNumber, 0);
if (err < 0 && !test_bit(DISCONNECTED, &ua->states))
dev_warn(&ua->dev->dev,
"interface reset failed; error %d: %s\n",
err, usb_error_string(err));
}
}
static void stop_usb_capture(struct ua101 *ua)
{
clear_bit(USB_CAPTURE_RUNNING, &ua->states);
kill_stream_urbs(&ua->capture);
disable_iso_interface(ua, INTF_CAPTURE);
}
static int start_usb_capture(struct ua101 *ua)
{
int err;
if (test_bit(DISCONNECTED, &ua->states))
return -ENODEV;
if (test_bit(USB_CAPTURE_RUNNING, &ua->states))
return 0;
kill_stream_urbs(&ua->capture);
err = enable_iso_interface(ua, INTF_CAPTURE);
if (err < 0)
return err;
clear_bit(CAPTURE_URB_COMPLETED, &ua->states);
ua->capture.urbs[0]->urb.complete = first_capture_urb_complete;
ua->rate_feedback_start = 0;
ua->rate_feedback_count = 0;
set_bit(USB_CAPTURE_RUNNING, &ua->states);
err = submit_stream_urbs(ua, &ua->capture);
if (err < 0)
stop_usb_capture(ua);
return err;
}
static void stop_usb_playback(struct ua101 *ua)
{
clear_bit(USB_PLAYBACK_RUNNING, &ua->states);
kill_stream_urbs(&ua->playback);
cancel_work_sync(&ua->playback_work);
disable_iso_interface(ua, INTF_PLAYBACK);
}
static int start_usb_playback(struct ua101 *ua)
{
unsigned int i, frames;
struct urb *urb;
int err = 0;
if (test_bit(DISCONNECTED, &ua->states))
return -ENODEV;
if (test_bit(USB_PLAYBACK_RUNNING, &ua->states))
return 0;
kill_stream_urbs(&ua->playback);
cancel_work_sync(&ua->playback_work);
err = enable_iso_interface(ua, INTF_PLAYBACK);
if (err < 0)
return err;
clear_bit(PLAYBACK_URB_COMPLETED, &ua->states);
ua->playback.urbs[0]->urb.complete =
first_playback_urb_complete;
spin_lock_irq(&ua->lock);
INIT_LIST_HEAD(&ua->ready_playback_urbs);
spin_unlock_irq(&ua->lock);
/*
* We submit the initial URBs all at once, so we have to wait for the
* packet size FIFO to be full.
*/
wait_event(ua->rate_feedback_wait,
ua->rate_feedback_count >= ua->playback.queue_length ||
!test_bit(USB_CAPTURE_RUNNING, &ua->states) ||
test_bit(DISCONNECTED, &ua->states));
if (test_bit(DISCONNECTED, &ua->states)) {
stop_usb_playback(ua);
return -ENODEV;
}
if (!test_bit(USB_CAPTURE_RUNNING, &ua->states)) {
stop_usb_playback(ua);
return -EIO;
}
for (i = 0; i < ua->playback.queue_length; ++i) {
/* all initial URBs contain silence */
spin_lock_irq(&ua->lock);
frames = ua->rate_feedback[ua->rate_feedback_start];
add_with_wraparound(ua, &ua->rate_feedback_start, 1);
ua->rate_feedback_count--;
spin_unlock_irq(&ua->lock);
urb = &ua->playback.urbs[i]->urb;
urb->iso_frame_desc[0].length =
frames * ua->playback.frame_bytes;
memset(urb->transfer_buffer, 0,
urb->iso_frame_desc[0].length);
}
set_bit(USB_PLAYBACK_RUNNING, &ua->states);
err = submit_stream_urbs(ua, &ua->playback);
if (err < 0)
stop_usb_playback(ua);
return err;
}
static void abort_alsa_capture(struct ua101 *ua)
{
if (test_bit(ALSA_CAPTURE_RUNNING, &ua->states))
snd_pcm_stop_xrun(ua->capture.substream);
}
static void abort_alsa_playback(struct ua101 *ua)
{
if (test_bit(ALSA_PLAYBACK_RUNNING, &ua->states))
snd_pcm_stop_xrun(ua->playback.substream);
}
static int set_stream_hw(struct ua101 *ua, struct snd_pcm_substream *substream,
unsigned int channels)
{
int err;
substream->runtime->hw.info =
SNDRV_PCM_INFO_MMAP |
SNDRV_PCM_INFO_MMAP_VALID |
SNDRV_PCM_INFO_BATCH |
SNDRV_PCM_INFO_INTERLEAVED |
SNDRV_PCM_INFO_BLOCK_TRANSFER |
SNDRV_PCM_INFO_FIFO_IN_FRAMES;
substream->runtime->hw.formats = ua->format_bit;
substream->runtime->hw.rates = snd_pcm_rate_to_rate_bit(ua->rate);
substream->runtime->hw.rate_min = ua->rate;
substream->runtime->hw.rate_max = ua->rate;
substream->runtime->hw.channels_min = channels;
substream->runtime->hw.channels_max = channels;
substream->runtime->hw.buffer_bytes_max = 45000 * 1024;
substream->runtime->hw.period_bytes_min = 1;
substream->runtime->hw.period_bytes_max = UINT_MAX;
substream->runtime->hw.periods_min = 2;
substream->runtime->hw.periods_max = UINT_MAX;
err = snd_pcm_hw_constraint_minmax(substream->runtime,
SNDRV_PCM_HW_PARAM_PERIOD_TIME,
1500000 / ua->packets_per_second,
UINT_MAX);
if (err < 0)
return err;
err = snd_pcm_hw_constraint_msbits(substream->runtime, 0, 32, 24);
return err;
}
static int capture_pcm_open(struct snd_pcm_substream *substream)
{
struct ua101 *ua = substream->private_data;
int err;
ua->capture.substream = substream;
err = set_stream_hw(ua, substream, ua->capture.channels);
if (err < 0)
return err;
substream->runtime->hw.fifo_size =
DIV_ROUND_CLOSEST(ua->rate, ua->packets_per_second);
substream->runtime->delay = substream->runtime->hw.fifo_size;
mutex_lock(&ua->mutex);
err = start_usb_capture(ua);
if (err >= 0)
set_bit(ALSA_CAPTURE_OPEN, &ua->states);
mutex_unlock(&ua->mutex);
return err;
}
static int playback_pcm_open(struct snd_pcm_substream *substream)
{
struct ua101 *ua = substream->private_data;
int err;
ua->playback.substream = substream;
err = set_stream_hw(ua, substream, ua->playback.channels);
if (err < 0)
return err;
substream->runtime->hw.fifo_size =
DIV_ROUND_CLOSEST(ua->rate * ua->playback.queue_length,
ua->packets_per_second);
mutex_lock(&ua->mutex);
err = start_usb_capture(ua);
if (err < 0)
goto error;
err = start_usb_playback(ua);
if (err < 0) {
if (!test_bit(ALSA_CAPTURE_OPEN, &ua->states))
stop_usb_capture(ua);
goto error;
}
set_bit(ALSA_PLAYBACK_OPEN, &ua->states);
error:
mutex_unlock(&ua->mutex);
return err;
}
static int capture_pcm_close(struct snd_pcm_substream *substream)
{
struct ua101 *ua = substream->private_data;
mutex_lock(&ua->mutex);
clear_bit(ALSA_CAPTURE_OPEN, &ua->states);
if (!test_bit(ALSA_PLAYBACK_OPEN, &ua->states))
stop_usb_capture(ua);
mutex_unlock(&ua->mutex);
return 0;
}
static int playback_pcm_close(struct snd_pcm_substream *substream)
{
struct ua101 *ua = substream->private_data;
mutex_lock(&ua->mutex);
stop_usb_playback(ua);
clear_bit(ALSA_PLAYBACK_OPEN, &ua->states);
if (!test_bit(ALSA_CAPTURE_OPEN, &ua->states))
stop_usb_capture(ua);
mutex_unlock(&ua->mutex);
return 0;
}
static int capture_pcm_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *hw_params)
{
struct ua101 *ua = substream->private_data;
int err;
mutex_lock(&ua->mutex);
err = start_usb_capture(ua);
mutex_unlock(&ua->mutex);
return err;
}
static int playback_pcm_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *hw_params)
{
struct ua101 *ua = substream->private_data;
int err;
mutex_lock(&ua->mutex);
err = start_usb_capture(ua);
if (err >= 0)
err = start_usb_playback(ua);
mutex_unlock(&ua->mutex);
return err;
}
static int capture_pcm_prepare(struct snd_pcm_substream *substream)
{
struct ua101 *ua = substream->private_data;
int err;
mutex_lock(&ua->mutex);
err = start_usb_capture(ua);
mutex_unlock(&ua->mutex);
if (err < 0)
return err;
/*
* The EHCI driver schedules the first packet of an iso stream at 10 ms
* in the future, i.e., no data is actually captured for that long.
* Take the wait here so that the stream is known to be actually
* running when the start trigger has been called.
*/
wait_event(ua->alsa_capture_wait,
test_bit(CAPTURE_URB_COMPLETED, &ua->states) ||
!test_bit(USB_CAPTURE_RUNNING, &ua->states));
if (test_bit(DISCONNECTED, &ua->states))
return -ENODEV;
if (!test_bit(USB_CAPTURE_RUNNING, &ua->states))
return -EIO;
ua->capture.period_pos = 0;
ua->capture.buffer_pos = 0;
return 0;
}
static int playback_pcm_prepare(struct snd_pcm_substream *substream)
{
struct ua101 *ua = substream->private_data;
int err;
mutex_lock(&ua->mutex);
err = start_usb_capture(ua);
if (err >= 0)
err = start_usb_playback(ua);
mutex_unlock(&ua->mutex);
if (err < 0)
return err;
/* see the comment in capture_pcm_prepare() */
wait_event(ua->alsa_playback_wait,
test_bit(PLAYBACK_URB_COMPLETED, &ua->states) ||
!test_bit(USB_PLAYBACK_RUNNING, &ua->states));
if (test_bit(DISCONNECTED, &ua->states))
return -ENODEV;
if (!test_bit(USB_PLAYBACK_RUNNING, &ua->states))
return -EIO;
substream->runtime->delay = 0;
ua->playback.period_pos = 0;
ua->playback.buffer_pos = 0;
return 0;
}
static int capture_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
{
struct ua101 *ua = substream->private_data;
switch (cmd) {
case SNDRV_PCM_TRIGGER_START:
if (!test_bit(USB_CAPTURE_RUNNING, &ua->states))
return -EIO;
set_bit(ALSA_CAPTURE_RUNNING, &ua->states);
return 0;
case SNDRV_PCM_TRIGGER_STOP:
clear_bit(ALSA_CAPTURE_RUNNING, &ua->states);
return 0;
default:
return -EINVAL;
}
}
static int playback_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
{
struct ua101 *ua = substream->private_data;
switch (cmd) {
case SNDRV_PCM_TRIGGER_START:
if (!test_bit(USB_PLAYBACK_RUNNING, &ua->states))
return -EIO;
set_bit(ALSA_PLAYBACK_RUNNING, &ua->states);
return 0;
case SNDRV_PCM_TRIGGER_STOP:
clear_bit(ALSA_PLAYBACK_RUNNING, &ua->states);
return 0;
default:
return -EINVAL;
}
}
static inline snd_pcm_uframes_t ua101_pcm_pointer(struct ua101 *ua,
struct ua101_stream *stream)
{
unsigned long flags;
unsigned int pos;
spin_lock_irqsave(&ua->lock, flags);
pos = stream->buffer_pos;
spin_unlock_irqrestore(&ua->lock, flags);
return pos;
}
static snd_pcm_uframes_t capture_pcm_pointer(struct snd_pcm_substream *subs)
{
struct ua101 *ua = subs->private_data;
return ua101_pcm_pointer(ua, &ua->capture);
}
static snd_pcm_uframes_t playback_pcm_pointer(struct snd_pcm_substream *subs)
{
struct ua101 *ua = subs->private_data;
return ua101_pcm_pointer(ua, &ua->playback);
}
static const struct snd_pcm_ops capture_pcm_ops = {
.open = capture_pcm_open,
.close = capture_pcm_close,
.hw_params = capture_pcm_hw_params,
.prepare = capture_pcm_prepare,
.trigger = capture_pcm_trigger,
.pointer = capture_pcm_pointer,
};
static const struct snd_pcm_ops playback_pcm_ops = {
.open = playback_pcm_open,
.close = playback_pcm_close,
.hw_params = playback_pcm_hw_params,
.prepare = playback_pcm_prepare,
.trigger = playback_pcm_trigger,
.pointer = playback_pcm_pointer,
};
static const struct uac_format_type_i_discrete_descriptor *
find_format_descriptor(struct usb_interface *interface)
{
struct usb_host_interface *alt;
u8 *extra;
int extralen;
if (interface->num_altsetting != 2) {
dev_err(&interface->dev, "invalid num_altsetting\n");
return NULL;
}
alt = &interface->altsetting[0];
if (alt->desc.bNumEndpoints != 0) {
dev_err(&interface->dev, "invalid bNumEndpoints\n");
return NULL;
}
alt = &interface->altsetting[1];
if (alt->desc.bNumEndpoints != 1) {
dev_err(&interface->dev, "invalid bNumEndpoints\n");
return NULL;
}
extra = alt->extra;
extralen = alt->extralen;
while (extralen >= sizeof(struct usb_descriptor_header)) {
struct uac_format_type_i_discrete_descriptor *desc;
desc = (struct uac_format_type_i_discrete_descriptor *)extra;
if (desc->bLength > extralen) {
dev_err(&interface->dev, "descriptor overflow\n");
return NULL;
}
if (desc->bLength == UAC_FORMAT_TYPE_I_DISCRETE_DESC_SIZE(1) &&
desc->bDescriptorType == USB_DT_CS_INTERFACE &&
desc->bDescriptorSubtype == UAC_FORMAT_TYPE) {
if (desc->bFormatType != UAC_FORMAT_TYPE_I_PCM ||
desc->bSamFreqType != 1) {
dev_err(&interface->dev,
"invalid format type\n");
return NULL;
}
return desc;
}
extralen -= desc->bLength;
extra += desc->bLength;
}
dev_err(&interface->dev, "sample format descriptor not found\n");
return NULL;
}
static int detect_usb_format(struct ua101 *ua)
{
const struct uac_format_type_i_discrete_descriptor *fmt_capture;
const struct uac_format_type_i_discrete_descriptor *fmt_playback;
const struct usb_endpoint_descriptor *epd;
unsigned int rate2;
fmt_capture = find_format_descriptor(ua->intf[INTF_CAPTURE]);
fmt_playback = find_format_descriptor(ua->intf[INTF_PLAYBACK]);
if (!fmt_capture || !fmt_playback)
return -ENXIO;
switch (fmt_capture->bSubframeSize) {
case 3:
ua->format_bit = SNDRV_PCM_FMTBIT_S24_3LE;
break;
case 4:
ua->format_bit = SNDRV_PCM_FMTBIT_S32_LE;
break;
default:
dev_err(&ua->dev->dev, "sample width is not 24 or 32 bits\n");
return -ENXIO;
}
if (fmt_capture->bSubframeSize != fmt_playback->bSubframeSize) {
dev_err(&ua->dev->dev,
"playback/capture sample widths do not match\n");
return -ENXIO;
}
if (fmt_capture->bBitResolution != 24 ||
fmt_playback->bBitResolution != 24) {
dev_err(&ua->dev->dev, "sample width is not 24 bits\n");
return -ENXIO;
}
ua->rate = combine_triple(fmt_capture->tSamFreq[0]);
rate2 = combine_triple(fmt_playback->tSamFreq[0]);
if (ua->rate != rate2) {
dev_err(&ua->dev->dev,
"playback/capture rates do not match: %u/%u\n",
rate2, ua->rate);
return -ENXIO;
}
switch (ua->dev->speed) {
case USB_SPEED_FULL:
ua->packets_per_second = 1000;
break;
case USB_SPEED_HIGH:
ua->packets_per_second = 8000;
break;
default:
dev_err(&ua->dev->dev, "unknown device speed\n");
return -ENXIO;
}
ua->capture.channels = fmt_capture->bNrChannels;
ua->playback.channels = fmt_playback->bNrChannels;
ua->capture.frame_bytes =
fmt_capture->bSubframeSize * ua->capture.channels;
ua->playback.frame_bytes =
fmt_playback->bSubframeSize * ua->playback.channels;
epd = &ua->intf[INTF_CAPTURE]->altsetting[1].endpoint[0].desc;
if (!usb_endpoint_is_isoc_in(epd) || usb_endpoint_maxp(epd) == 0) {
dev_err(&ua->dev->dev, "invalid capture endpoint\n");
return -ENXIO;
}
ua->capture.usb_pipe = usb_rcvisocpipe(ua->dev, usb_endpoint_num(epd));
ua->capture.max_packet_bytes = usb_endpoint_maxp(epd);
epd = &ua->intf[INTF_PLAYBACK]->altsetting[1].endpoint[0].desc;
if (!usb_endpoint_is_isoc_out(epd) || usb_endpoint_maxp(epd) == 0) {
dev_err(&ua->dev->dev, "invalid playback endpoint\n");
return -ENXIO;
}
ua->playback.usb_pipe = usb_sndisocpipe(ua->dev, usb_endpoint_num(epd));
ua->playback.max_packet_bytes = usb_endpoint_maxp(epd);
return 0;
}
static int alloc_stream_buffers(struct ua101 *ua, struct ua101_stream *stream)
{
unsigned int remaining_packets, packets, packets_per_page, i;
size_t size;
stream->queue_length = queue_length;
stream->queue_length = max(stream->queue_length,
(unsigned int)MIN_QUEUE_LENGTH);
stream->queue_length = min(stream->queue_length,
(unsigned int)MAX_QUEUE_LENGTH);
/*
* The cache pool sizes used by usb_alloc_coherent() (128, 512, 2048) are
* quite bad when used with the packet sizes of this device (e.g. 280,
* 520, 624). Therefore, we allocate and subdivide entire pages, using
* a smaller buffer only for the last chunk.
*/
remaining_packets = stream->queue_length;
packets_per_page = PAGE_SIZE / stream->max_packet_bytes;
for (i = 0; i < ARRAY_SIZE(stream->buffers); ++i) {
packets = min(remaining_packets, packets_per_page);
size = packets * stream->max_packet_bytes;
stream->buffers[i].addr =
usb_alloc_coherent(ua->dev, size, GFP_KERNEL,
&stream->buffers[i].dma);
if (!stream->buffers[i].addr)
return -ENOMEM;
stream->buffers[i].size = size;
remaining_packets -= packets;
if (!remaining_packets)
break;
}
if (remaining_packets) {
dev_err(&ua->dev->dev, "too many packets\n");
return -ENXIO;
}
return 0;
}
static void free_stream_buffers(struct ua101 *ua, struct ua101_stream *stream)
{
unsigned int i;
for (i = 0; i < ARRAY_SIZE(stream->buffers); ++i)
usb_free_coherent(ua->dev,
stream->buffers[i].size,
stream->buffers[i].addr,
stream->buffers[i].dma);
}
static int alloc_stream_urbs(struct ua101 *ua, struct ua101_stream *stream,
void (*urb_complete)(struct urb *))
{
unsigned max_packet_size = stream->max_packet_bytes;
struct ua101_urb *urb;
unsigned int b, u = 0;
for (b = 0; b < ARRAY_SIZE(stream->buffers); ++b) {
unsigned int size = stream->buffers[b].size;
u8 *addr = stream->buffers[b].addr;
dma_addr_t dma = stream->buffers[b].dma;
while (size >= max_packet_size) {
if (u >= stream->queue_length)
goto bufsize_error;
urb = kmalloc(sizeof(*urb), GFP_KERNEL);
if (!urb)
return -ENOMEM;
usb_init_urb(&urb->urb);
urb->urb.dev = ua->dev;
urb->urb.pipe = stream->usb_pipe;
urb->urb.transfer_flags = URB_NO_TRANSFER_DMA_MAP;
urb->urb.transfer_buffer = addr;
urb->urb.transfer_dma = dma;
urb->urb.transfer_buffer_length = max_packet_size;
urb->urb.number_of_packets = 1;
urb->urb.interval = 1;
urb->urb.context = ua;
urb->urb.complete = urb_complete;
urb->urb.iso_frame_desc[0].offset = 0;
urb->urb.iso_frame_desc[0].length = max_packet_size;
stream->urbs[u++] = urb;
size -= max_packet_size;
addr += max_packet_size;
dma += max_packet_size;
}
}
if (u == stream->queue_length)
return 0;
bufsize_error:
dev_err(&ua->dev->dev, "internal buffer size error\n");
return -ENXIO;
}
static void free_stream_urbs(struct ua101_stream *stream)
{
unsigned int i;
for (i = 0; i < stream->queue_length; ++i) {
kfree(stream->urbs[i]);
stream->urbs[i] = NULL;
}
}
static void free_usb_related_resources(struct ua101 *ua,
struct usb_interface *interface)
{
unsigned int i;
struct usb_interface *intf;
mutex_lock(&ua->mutex);
free_stream_urbs(&ua->capture);
free_stream_urbs(&ua->playback);
mutex_unlock(&ua->mutex);
free_stream_buffers(ua, &ua->capture);
free_stream_buffers(ua, &ua->playback);
for (i = 0; i < ARRAY_SIZE(ua->intf); ++i) {
mutex_lock(&ua->mutex);
intf = ua->intf[i];
ua->intf[i] = NULL;
mutex_unlock(&ua->mutex);
if (intf) {
usb_set_intfdata(intf, NULL);
if (intf != interface)
usb_driver_release_interface(&ua101_driver,
intf);
}
}
}
static void ua101_card_free(struct snd_card *card)
{
struct ua101 *ua = card->private_data;
mutex_destroy(&ua->mutex);
}
static int ua101_probe(struct usb_interface *interface,
const struct usb_device_id *usb_id)
{
static const struct snd_usb_midi_endpoint_info midi_ep = {
.out_cables = 0x0001,
.in_cables = 0x0001
};
static const struct snd_usb_audio_quirk midi_quirk = {
.type = QUIRK_MIDI_FIXED_ENDPOINT,
.data = &midi_ep
};
static const int intf_numbers[2][3] = {
{ /* UA-101 */
[INTF_PLAYBACK] = 0,
[INTF_CAPTURE] = 1,
[INTF_MIDI] = 2,
},
{ /* UA-1000 */
[INTF_CAPTURE] = 1,
[INTF_PLAYBACK] = 2,
[INTF_MIDI] = 3,
},
};
struct snd_card *card;
struct ua101 *ua;
unsigned int card_index, i;
int is_ua1000;
const char *name;
char usb_path[32];
int err;
is_ua1000 = usb_id->idProduct == 0x0044;
if (interface->altsetting->desc.bInterfaceNumber !=
intf_numbers[is_ua1000][0])
return -ENODEV;
mutex_lock(&devices_mutex);
for (card_index = 0; card_index < SNDRV_CARDS; ++card_index)
if (enable[card_index] && !(devices_used & (1 << card_index)))
break;
if (card_index >= SNDRV_CARDS) {
mutex_unlock(&devices_mutex);
return -ENOENT;
}
err = snd_card_new(&interface->dev,
index[card_index], id[card_index], THIS_MODULE,
sizeof(*ua), &card);
if (err < 0) {
mutex_unlock(&devices_mutex);
return err;
}
card->private_free = ua101_card_free;
ua = card->private_data;
ua->dev = interface_to_usbdev(interface);
ua->card = card;
ua->card_index = card_index;
INIT_LIST_HEAD(&ua->midi_list);
spin_lock_init(&ua->lock);
mutex_init(&ua->mutex);
INIT_LIST_HEAD(&ua->ready_playback_urbs);
INIT_WORK(&ua->playback_work, playback_work);
init_waitqueue_head(&ua->alsa_capture_wait);
init_waitqueue_head(&ua->rate_feedback_wait);
init_waitqueue_head(&ua->alsa_playback_wait);
ua->intf[0] = interface;
for (i = 1; i < ARRAY_SIZE(ua->intf); ++i) {
ua->intf[i] = usb_ifnum_to_if(ua->dev,
intf_numbers[is_ua1000][i]);
if (!ua->intf[i]) {
dev_err(&ua->dev->dev, "interface %u not found\n",
intf_numbers[is_ua1000][i]);
err = -ENXIO;
goto probe_error;
}
err = usb_driver_claim_interface(&ua101_driver,
ua->intf[i], ua);
if (err < 0) {
ua->intf[i] = NULL;
err = -EBUSY;
goto probe_error;
}
}
err = detect_usb_format(ua);
if (err < 0)
goto probe_error;
name = usb_id->idProduct == 0x0044 ? "UA-1000" : "UA-101";
strcpy(card->driver, "UA-101");
strcpy(card->shortname, name);
usb_make_path(ua->dev, usb_path, sizeof(usb_path));
snprintf(ua->card->longname, sizeof(ua->card->longname),
"EDIROL %s (serial %s), %u Hz at %s, %s speed", name,
ua->dev->serial ? ua->dev->serial : "?", ua->rate, usb_path,
ua->dev->speed == USB_SPEED_HIGH ? "high" : "full");
err = alloc_stream_buffers(ua, &ua->capture);
if (err < 0)
goto probe_error;
err = alloc_stream_buffers(ua, &ua->playback);
if (err < 0)
goto probe_error;
err = alloc_stream_urbs(ua, &ua->capture, capture_urb_complete);
if (err < 0)
goto probe_error;
err = alloc_stream_urbs(ua, &ua->playback, playback_urb_complete);
if (err < 0)
goto probe_error;
err = snd_pcm_new(card, name, 0, 1, 1, &ua->pcm);
if (err < 0)
goto probe_error;
ua->pcm->private_data = ua;
strcpy(ua->pcm->name, name);
snd_pcm_set_ops(ua->pcm, SNDRV_PCM_STREAM_PLAYBACK, &playback_pcm_ops);
snd_pcm_set_ops(ua->pcm, SNDRV_PCM_STREAM_CAPTURE, &capture_pcm_ops);
snd_pcm_set_managed_buffer_all(ua->pcm, SNDRV_DMA_TYPE_VMALLOC,
NULL, 0, 0);
err = snd_usbmidi_create(card, ua->intf[INTF_MIDI],
&ua->midi_list, &midi_quirk);
if (err < 0)
goto probe_error;
err = snd_card_register(card);
if (err < 0)
goto probe_error;
usb_set_intfdata(interface, ua);
devices_used |= 1 << card_index;
mutex_unlock(&devices_mutex);
return 0;
probe_error:
free_usb_related_resources(ua, interface);
snd_card_free(card);
mutex_unlock(&devices_mutex);
return err;
}
static void ua101_disconnect(struct usb_interface *interface)
{
struct ua101 *ua = usb_get_intfdata(interface);
struct list_head *midi;
if (!ua)
return;
mutex_lock(&devices_mutex);
set_bit(DISCONNECTED, &ua->states);
wake_up(&ua->rate_feedback_wait);
/* make sure that userspace cannot create new requests */
snd_card_disconnect(ua->card);
/* make sure that there are no pending USB requests */
list_for_each(midi, &ua->midi_list)
snd_usbmidi_disconnect(midi);
abort_alsa_playback(ua);
abort_alsa_capture(ua);
mutex_lock(&ua->mutex);
stop_usb_playback(ua);
stop_usb_capture(ua);
mutex_unlock(&ua->mutex);
free_usb_related_resources(ua, interface);
devices_used &= ~(1 << ua->card_index);
snd_card_free_when_closed(ua->card);
mutex_unlock(&devices_mutex);
}
static const struct usb_device_id ua101_ids[] = {
{ USB_DEVICE(0x0582, 0x0044) }, /* UA-1000 high speed */
{ USB_DEVICE(0x0582, 0x007d) }, /* UA-101 high speed */
{ USB_DEVICE(0x0582, 0x008d) }, /* UA-101 full speed */
{ }
};
MODULE_DEVICE_TABLE(usb, ua101_ids);
static struct usb_driver ua101_driver = {
.name = "snd-ua101",
.id_table = ua101_ids,
.probe = ua101_probe,
.disconnect = ua101_disconnect,
#if 0
.suspend = ua101_suspend,
.resume = ua101_resume,
#endif
};
module_usb_driver(ua101_driver);