| /* |
| * |
| * Procedures for interfacing to the RTAS on CHRP machines. |
| * |
| * Peter Bergner, IBM March 2001. |
| * Copyright (C) 2001 IBM. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version |
| * 2 of the License, or (at your option) any later version. |
| */ |
| |
| #include <stdarg.h> |
| #include <linux/kernel.h> |
| #include <linux/types.h> |
| #include <linux/spinlock.h> |
| #include <linux/export.h> |
| #include <linux/init.h> |
| #include <linux/capability.h> |
| #include <linux/delay.h> |
| #include <linux/cpu.h> |
| #include <linux/smp.h> |
| #include <linux/completion.h> |
| #include <linux/cpumask.h> |
| #include <linux/memblock.h> |
| #include <linux/slab.h> |
| #include <linux/reboot.h> |
| #include <linux/syscalls.h> |
| |
| #include <asm/prom.h> |
| #include <asm/rtas.h> |
| #include <asm/hvcall.h> |
| #include <asm/machdep.h> |
| #include <asm/firmware.h> |
| #include <asm/page.h> |
| #include <asm/param.h> |
| #include <asm/delay.h> |
| #include <linux/uaccess.h> |
| #include <asm/udbg.h> |
| #include <asm/syscalls.h> |
| #include <asm/smp.h> |
| #include <linux/atomic.h> |
| #include <asm/time.h> |
| #include <asm/mmu.h> |
| #include <asm/topology.h> |
| |
| /* This is here deliberately so it's only used in this file */ |
| void enter_rtas(unsigned long); |
| |
| struct rtas_t rtas = { |
| .lock = __ARCH_SPIN_LOCK_UNLOCKED |
| }; |
| EXPORT_SYMBOL(rtas); |
| |
| DEFINE_SPINLOCK(rtas_data_buf_lock); |
| EXPORT_SYMBOL(rtas_data_buf_lock); |
| |
| char rtas_data_buf[RTAS_DATA_BUF_SIZE] __cacheline_aligned; |
| EXPORT_SYMBOL(rtas_data_buf); |
| |
| unsigned long rtas_rmo_buf; |
| |
| /* |
| * If non-NULL, this gets called when the kernel terminates. |
| * This is done like this so rtas_flash can be a module. |
| */ |
| void (*rtas_flash_term_hook)(int); |
| EXPORT_SYMBOL(rtas_flash_term_hook); |
| |
| /* RTAS use home made raw locking instead of spin_lock_irqsave |
| * because those can be called from within really nasty contexts |
| * such as having the timebase stopped which would lockup with |
| * normal locks and spinlock debugging enabled |
| */ |
| static unsigned long lock_rtas(void) |
| { |
| unsigned long flags; |
| |
| local_irq_save(flags); |
| preempt_disable(); |
| arch_spin_lock(&rtas.lock); |
| return flags; |
| } |
| |
| static void unlock_rtas(unsigned long flags) |
| { |
| arch_spin_unlock(&rtas.lock); |
| local_irq_restore(flags); |
| preempt_enable(); |
| } |
| |
| /* |
| * call_rtas_display_status and call_rtas_display_status_delay |
| * are designed only for very early low-level debugging, which |
| * is why the token is hard-coded to 10. |
| */ |
| static void call_rtas_display_status(unsigned char c) |
| { |
| unsigned long s; |
| |
| if (!rtas.base) |
| return; |
| |
| s = lock_rtas(); |
| rtas_call_unlocked(&rtas.args, 10, 1, 1, NULL, c); |
| unlock_rtas(s); |
| } |
| |
| static void call_rtas_display_status_delay(char c) |
| { |
| static int pending_newline = 0; /* did last write end with unprinted newline? */ |
| static int width = 16; |
| |
| if (c == '\n') { |
| while (width-- > 0) |
| call_rtas_display_status(' '); |
| width = 16; |
| mdelay(500); |
| pending_newline = 1; |
| } else { |
| if (pending_newline) { |
| call_rtas_display_status('\r'); |
| call_rtas_display_status('\n'); |
| } |
| pending_newline = 0; |
| if (width--) { |
| call_rtas_display_status(c); |
| udelay(10000); |
| } |
| } |
| } |
| |
| void __init udbg_init_rtas_panel(void) |
| { |
| udbg_putc = call_rtas_display_status_delay; |
| } |
| |
| #ifdef CONFIG_UDBG_RTAS_CONSOLE |
| |
| /* If you think you're dying before early_init_dt_scan_rtas() does its |
| * work, you can hard code the token values for your firmware here and |
| * hardcode rtas.base/entry etc. |
| */ |
| static unsigned int rtas_putchar_token = RTAS_UNKNOWN_SERVICE; |
| static unsigned int rtas_getchar_token = RTAS_UNKNOWN_SERVICE; |
| |
| static void udbg_rtascon_putc(char c) |
| { |
| int tries; |
| |
| if (!rtas.base) |
| return; |
| |
| /* Add CRs before LFs */ |
| if (c == '\n') |
| udbg_rtascon_putc('\r'); |
| |
| /* if there is more than one character to be displayed, wait a bit */ |
| for (tries = 0; tries < 16; tries++) { |
| if (rtas_call(rtas_putchar_token, 1, 1, NULL, c) == 0) |
| break; |
| udelay(1000); |
| } |
| } |
| |
| static int udbg_rtascon_getc_poll(void) |
| { |
| int c; |
| |
| if (!rtas.base) |
| return -1; |
| |
| if (rtas_call(rtas_getchar_token, 0, 2, &c)) |
| return -1; |
| |
| return c; |
| } |
| |
| static int udbg_rtascon_getc(void) |
| { |
| int c; |
| |
| while ((c = udbg_rtascon_getc_poll()) == -1) |
| ; |
| |
| return c; |
| } |
| |
| |
| void __init udbg_init_rtas_console(void) |
| { |
| udbg_putc = udbg_rtascon_putc; |
| udbg_getc = udbg_rtascon_getc; |
| udbg_getc_poll = udbg_rtascon_getc_poll; |
| } |
| #endif /* CONFIG_UDBG_RTAS_CONSOLE */ |
| |
| void rtas_progress(char *s, unsigned short hex) |
| { |
| struct device_node *root; |
| int width; |
| const __be32 *p; |
| char *os; |
| static int display_character, set_indicator; |
| static int display_width, display_lines, form_feed; |
| static const int *row_width; |
| static DEFINE_SPINLOCK(progress_lock); |
| static int current_line; |
| static int pending_newline = 0; /* did last write end with unprinted newline? */ |
| |
| if (!rtas.base) |
| return; |
| |
| if (display_width == 0) { |
| display_width = 0x10; |
| if ((root = of_find_node_by_path("/rtas"))) { |
| if ((p = of_get_property(root, |
| "ibm,display-line-length", NULL))) |
| display_width = be32_to_cpu(*p); |
| if ((p = of_get_property(root, |
| "ibm,form-feed", NULL))) |
| form_feed = be32_to_cpu(*p); |
| if ((p = of_get_property(root, |
| "ibm,display-number-of-lines", NULL))) |
| display_lines = be32_to_cpu(*p); |
| row_width = of_get_property(root, |
| "ibm,display-truncation-length", NULL); |
| of_node_put(root); |
| } |
| display_character = rtas_token("display-character"); |
| set_indicator = rtas_token("set-indicator"); |
| } |
| |
| if (display_character == RTAS_UNKNOWN_SERVICE) { |
| /* use hex display if available */ |
| if (set_indicator != RTAS_UNKNOWN_SERVICE) |
| rtas_call(set_indicator, 3, 1, NULL, 6, 0, hex); |
| return; |
| } |
| |
| spin_lock(&progress_lock); |
| |
| /* |
| * Last write ended with newline, but we didn't print it since |
| * it would just clear the bottom line of output. Print it now |
| * instead. |
| * |
| * If no newline is pending and form feed is supported, clear the |
| * display with a form feed; otherwise, print a CR to start output |
| * at the beginning of the line. |
| */ |
| if (pending_newline) { |
| rtas_call(display_character, 1, 1, NULL, '\r'); |
| rtas_call(display_character, 1, 1, NULL, '\n'); |
| pending_newline = 0; |
| } else { |
| current_line = 0; |
| if (form_feed) |
| rtas_call(display_character, 1, 1, NULL, |
| (char)form_feed); |
| else |
| rtas_call(display_character, 1, 1, NULL, '\r'); |
| } |
| |
| if (row_width) |
| width = row_width[current_line]; |
| else |
| width = display_width; |
| os = s; |
| while (*os) { |
| if (*os == '\n' || *os == '\r') { |
| /* If newline is the last character, save it |
| * until next call to avoid bumping up the |
| * display output. |
| */ |
| if (*os == '\n' && !os[1]) { |
| pending_newline = 1; |
| current_line++; |
| if (current_line > display_lines-1) |
| current_line = display_lines-1; |
| spin_unlock(&progress_lock); |
| return; |
| } |
| |
| /* RTAS wants CR-LF, not just LF */ |
| |
| if (*os == '\n') { |
| rtas_call(display_character, 1, 1, NULL, '\r'); |
| rtas_call(display_character, 1, 1, NULL, '\n'); |
| } else { |
| /* CR might be used to re-draw a line, so we'll |
| * leave it alone and not add LF. |
| */ |
| rtas_call(display_character, 1, 1, NULL, *os); |
| } |
| |
| if (row_width) |
| width = row_width[current_line]; |
| else |
| width = display_width; |
| } else { |
| width--; |
| rtas_call(display_character, 1, 1, NULL, *os); |
| } |
| |
| os++; |
| |
| /* if we overwrite the screen length */ |
| if (width <= 0) |
| while ((*os != 0) && (*os != '\n') && (*os != '\r')) |
| os++; |
| } |
| |
| spin_unlock(&progress_lock); |
| } |
| EXPORT_SYMBOL(rtas_progress); /* needed by rtas_flash module */ |
| |
| int rtas_token(const char *service) |
| { |
| const __be32 *tokp; |
| if (rtas.dev == NULL) |
| return RTAS_UNKNOWN_SERVICE; |
| tokp = of_get_property(rtas.dev, service, NULL); |
| return tokp ? be32_to_cpu(*tokp) : RTAS_UNKNOWN_SERVICE; |
| } |
| EXPORT_SYMBOL(rtas_token); |
| |
| int rtas_service_present(const char *service) |
| { |
| return rtas_token(service) != RTAS_UNKNOWN_SERVICE; |
| } |
| EXPORT_SYMBOL(rtas_service_present); |
| |
| #ifdef CONFIG_RTAS_ERROR_LOGGING |
| /* |
| * Return the firmware-specified size of the error log buffer |
| * for all rtas calls that require an error buffer argument. |
| * This includes 'check-exception' and 'rtas-last-error'. |
| */ |
| int rtas_get_error_log_max(void) |
| { |
| static int rtas_error_log_max; |
| if (rtas_error_log_max) |
| return rtas_error_log_max; |
| |
| rtas_error_log_max = rtas_token ("rtas-error-log-max"); |
| if ((rtas_error_log_max == RTAS_UNKNOWN_SERVICE) || |
| (rtas_error_log_max > RTAS_ERROR_LOG_MAX)) { |
| printk (KERN_WARNING "RTAS: bad log buffer size %d\n", |
| rtas_error_log_max); |
| rtas_error_log_max = RTAS_ERROR_LOG_MAX; |
| } |
| return rtas_error_log_max; |
| } |
| EXPORT_SYMBOL(rtas_get_error_log_max); |
| |
| |
| static char rtas_err_buf[RTAS_ERROR_LOG_MAX]; |
| static int rtas_last_error_token; |
| |
| /** Return a copy of the detailed error text associated with the |
| * most recent failed call to rtas. Because the error text |
| * might go stale if there are any other intervening rtas calls, |
| * this routine must be called atomically with whatever produced |
| * the error (i.e. with rtas.lock still held from the previous call). |
| */ |
| static char *__fetch_rtas_last_error(char *altbuf) |
| { |
| struct rtas_args err_args, save_args; |
| u32 bufsz; |
| char *buf = NULL; |
| |
| if (rtas_last_error_token == -1) |
| return NULL; |
| |
| bufsz = rtas_get_error_log_max(); |
| |
| err_args.token = cpu_to_be32(rtas_last_error_token); |
| err_args.nargs = cpu_to_be32(2); |
| err_args.nret = cpu_to_be32(1); |
| err_args.args[0] = cpu_to_be32(__pa(rtas_err_buf)); |
| err_args.args[1] = cpu_to_be32(bufsz); |
| err_args.args[2] = 0; |
| |
| save_args = rtas.args; |
| rtas.args = err_args; |
| |
| enter_rtas(__pa(&rtas.args)); |
| |
| err_args = rtas.args; |
| rtas.args = save_args; |
| |
| /* Log the error in the unlikely case that there was one. */ |
| if (unlikely(err_args.args[2] == 0)) { |
| if (altbuf) { |
| buf = altbuf; |
| } else { |
| buf = rtas_err_buf; |
| if (slab_is_available()) |
| buf = kmalloc(RTAS_ERROR_LOG_MAX, GFP_ATOMIC); |
| } |
| if (buf) |
| memcpy(buf, rtas_err_buf, RTAS_ERROR_LOG_MAX); |
| } |
| |
| return buf; |
| } |
| |
| #define get_errorlog_buffer() kmalloc(RTAS_ERROR_LOG_MAX, GFP_KERNEL) |
| |
| #else /* CONFIG_RTAS_ERROR_LOGGING */ |
| #define __fetch_rtas_last_error(x) NULL |
| #define get_errorlog_buffer() NULL |
| #endif |
| |
| |
| static void |
| va_rtas_call_unlocked(struct rtas_args *args, int token, int nargs, int nret, |
| va_list list) |
| { |
| int i; |
| |
| args->token = cpu_to_be32(token); |
| args->nargs = cpu_to_be32(nargs); |
| args->nret = cpu_to_be32(nret); |
| args->rets = &(args->args[nargs]); |
| |
| for (i = 0; i < nargs; ++i) |
| args->args[i] = cpu_to_be32(va_arg(list, __u32)); |
| |
| for (i = 0; i < nret; ++i) |
| args->rets[i] = 0; |
| |
| enter_rtas(__pa(args)); |
| } |
| |
| void rtas_call_unlocked(struct rtas_args *args, int token, int nargs, int nret, ...) |
| { |
| va_list list; |
| |
| va_start(list, nret); |
| va_rtas_call_unlocked(args, token, nargs, nret, list); |
| va_end(list); |
| } |
| |
| int rtas_call(int token, int nargs, int nret, int *outputs, ...) |
| { |
| va_list list; |
| int i; |
| unsigned long s; |
| struct rtas_args *rtas_args; |
| char *buff_copy = NULL; |
| int ret; |
| |
| if (!rtas.entry || token == RTAS_UNKNOWN_SERVICE) |
| return -1; |
| |
| s = lock_rtas(); |
| |
| /* We use the global rtas args buffer */ |
| rtas_args = &rtas.args; |
| |
| va_start(list, outputs); |
| va_rtas_call_unlocked(rtas_args, token, nargs, nret, list); |
| va_end(list); |
| |
| /* A -1 return code indicates that the last command couldn't |
| be completed due to a hardware error. */ |
| if (be32_to_cpu(rtas_args->rets[0]) == -1) |
| buff_copy = __fetch_rtas_last_error(NULL); |
| |
| if (nret > 1 && outputs != NULL) |
| for (i = 0; i < nret-1; ++i) |
| outputs[i] = be32_to_cpu(rtas_args->rets[i+1]); |
| ret = (nret > 0)? be32_to_cpu(rtas_args->rets[0]): 0; |
| |
| unlock_rtas(s); |
| |
| if (buff_copy) { |
| log_error(buff_copy, ERR_TYPE_RTAS_LOG, 0); |
| if (slab_is_available()) |
| kfree(buff_copy); |
| } |
| return ret; |
| } |
| EXPORT_SYMBOL(rtas_call); |
| |
| /* For RTAS_BUSY (-2), delay for 1 millisecond. For an extended busy status |
| * code of 990n, perform the hinted delay of 10^n (last digit) milliseconds. |
| */ |
| unsigned int rtas_busy_delay_time(int status) |
| { |
| int order; |
| unsigned int ms = 0; |
| |
| if (status == RTAS_BUSY) { |
| ms = 1; |
| } else if (status >= RTAS_EXTENDED_DELAY_MIN && |
| status <= RTAS_EXTENDED_DELAY_MAX) { |
| order = status - RTAS_EXTENDED_DELAY_MIN; |
| for (ms = 1; order > 0; order--) |
| ms *= 10; |
| } |
| |
| return ms; |
| } |
| EXPORT_SYMBOL(rtas_busy_delay_time); |
| |
| /* For an RTAS busy status code, perform the hinted delay. */ |
| unsigned int rtas_busy_delay(int status) |
| { |
| unsigned int ms; |
| |
| might_sleep(); |
| ms = rtas_busy_delay_time(status); |
| if (ms && need_resched()) |
| msleep(ms); |
| |
| return ms; |
| } |
| EXPORT_SYMBOL(rtas_busy_delay); |
| |
| static int rtas_error_rc(int rtas_rc) |
| { |
| int rc; |
| |
| switch (rtas_rc) { |
| case -1: /* Hardware Error */ |
| rc = -EIO; |
| break; |
| case -3: /* Bad indicator/domain/etc */ |
| rc = -EINVAL; |
| break; |
| case -9000: /* Isolation error */ |
| rc = -EFAULT; |
| break; |
| case -9001: /* Outstanding TCE/PTE */ |
| rc = -EEXIST; |
| break; |
| case -9002: /* No usable slot */ |
| rc = -ENODEV; |
| break; |
| default: |
| printk(KERN_ERR "%s: unexpected RTAS error %d\n", |
| __func__, rtas_rc); |
| rc = -ERANGE; |
| break; |
| } |
| return rc; |
| } |
| |
| int rtas_get_power_level(int powerdomain, int *level) |
| { |
| int token = rtas_token("get-power-level"); |
| int rc; |
| |
| if (token == RTAS_UNKNOWN_SERVICE) |
| return -ENOENT; |
| |
| while ((rc = rtas_call(token, 1, 2, level, powerdomain)) == RTAS_BUSY) |
| udelay(1); |
| |
| if (rc < 0) |
| return rtas_error_rc(rc); |
| return rc; |
| } |
| EXPORT_SYMBOL(rtas_get_power_level); |
| |
| int rtas_set_power_level(int powerdomain, int level, int *setlevel) |
| { |
| int token = rtas_token("set-power-level"); |
| int rc; |
| |
| if (token == RTAS_UNKNOWN_SERVICE) |
| return -ENOENT; |
| |
| do { |
| rc = rtas_call(token, 2, 2, setlevel, powerdomain, level); |
| } while (rtas_busy_delay(rc)); |
| |
| if (rc < 0) |
| return rtas_error_rc(rc); |
| return rc; |
| } |
| EXPORT_SYMBOL(rtas_set_power_level); |
| |
| int rtas_get_sensor(int sensor, int index, int *state) |
| { |
| int token = rtas_token("get-sensor-state"); |
| int rc; |
| |
| if (token == RTAS_UNKNOWN_SERVICE) |
| return -ENOENT; |
| |
| do { |
| rc = rtas_call(token, 2, 2, state, sensor, index); |
| } while (rtas_busy_delay(rc)); |
| |
| if (rc < 0) |
| return rtas_error_rc(rc); |
| return rc; |
| } |
| EXPORT_SYMBOL(rtas_get_sensor); |
| |
| int rtas_get_sensor_fast(int sensor, int index, int *state) |
| { |
| int token = rtas_token("get-sensor-state"); |
| int rc; |
| |
| if (token == RTAS_UNKNOWN_SERVICE) |
| return -ENOENT; |
| |
| rc = rtas_call(token, 2, 2, state, sensor, index); |
| WARN_ON(rc == RTAS_BUSY || (rc >= RTAS_EXTENDED_DELAY_MIN && |
| rc <= RTAS_EXTENDED_DELAY_MAX)); |
| |
| if (rc < 0) |
| return rtas_error_rc(rc); |
| return rc; |
| } |
| |
| bool rtas_indicator_present(int token, int *maxindex) |
| { |
| int proplen, count, i; |
| const struct indicator_elem { |
| __be32 token; |
| __be32 maxindex; |
| } *indicators; |
| |
| indicators = of_get_property(rtas.dev, "rtas-indicators", &proplen); |
| if (!indicators) |
| return false; |
| |
| count = proplen / sizeof(struct indicator_elem); |
| |
| for (i = 0; i < count; i++) { |
| if (__be32_to_cpu(indicators[i].token) != token) |
| continue; |
| if (maxindex) |
| *maxindex = __be32_to_cpu(indicators[i].maxindex); |
| return true; |
| } |
| |
| return false; |
| } |
| EXPORT_SYMBOL(rtas_indicator_present); |
| |
| int rtas_set_indicator(int indicator, int index, int new_value) |
| { |
| int token = rtas_token("set-indicator"); |
| int rc; |
| |
| if (token == RTAS_UNKNOWN_SERVICE) |
| return -ENOENT; |
| |
| do { |
| rc = rtas_call(token, 3, 1, NULL, indicator, index, new_value); |
| } while (rtas_busy_delay(rc)); |
| |
| if (rc < 0) |
| return rtas_error_rc(rc); |
| return rc; |
| } |
| EXPORT_SYMBOL(rtas_set_indicator); |
| |
| /* |
| * Ignoring RTAS extended delay |
| */ |
| int rtas_set_indicator_fast(int indicator, int index, int new_value) |
| { |
| int rc; |
| int token = rtas_token("set-indicator"); |
| |
| if (token == RTAS_UNKNOWN_SERVICE) |
| return -ENOENT; |
| |
| rc = rtas_call(token, 3, 1, NULL, indicator, index, new_value); |
| |
| WARN_ON(rc == RTAS_BUSY || (rc >= RTAS_EXTENDED_DELAY_MIN && |
| rc <= RTAS_EXTENDED_DELAY_MAX)); |
| |
| if (rc < 0) |
| return rtas_error_rc(rc); |
| |
| return rc; |
| } |
| |
| void __noreturn rtas_restart(char *cmd) |
| { |
| if (rtas_flash_term_hook) |
| rtas_flash_term_hook(SYS_RESTART); |
| printk("RTAS system-reboot returned %d\n", |
| rtas_call(rtas_token("system-reboot"), 0, 1, NULL)); |
| for (;;); |
| } |
| |
| void rtas_power_off(void) |
| { |
| if (rtas_flash_term_hook) |
| rtas_flash_term_hook(SYS_POWER_OFF); |
| /* allow power on only with power button press */ |
| printk("RTAS power-off returned %d\n", |
| rtas_call(rtas_token("power-off"), 2, 1, NULL, -1, -1)); |
| for (;;); |
| } |
| |
| void __noreturn rtas_halt(void) |
| { |
| if (rtas_flash_term_hook) |
| rtas_flash_term_hook(SYS_HALT); |
| /* allow power on only with power button press */ |
| printk("RTAS power-off returned %d\n", |
| rtas_call(rtas_token("power-off"), 2, 1, NULL, -1, -1)); |
| for (;;); |
| } |
| |
| /* Must be in the RMO region, so we place it here */ |
| static char rtas_os_term_buf[2048]; |
| |
| void rtas_os_term(char *str) |
| { |
| int status; |
| |
| /* |
| * Firmware with the ibm,extended-os-term property is guaranteed |
| * to always return from an ibm,os-term call. Earlier versions without |
| * this property may terminate the partition which we want to avoid |
| * since it interferes with panic_timeout. |
| */ |
| if (RTAS_UNKNOWN_SERVICE == rtas_token("ibm,os-term") || |
| RTAS_UNKNOWN_SERVICE == rtas_token("ibm,extended-os-term")) |
| return; |
| |
| snprintf(rtas_os_term_buf, 2048, "OS panic: %s", str); |
| |
| do { |
| status = rtas_call(rtas_token("ibm,os-term"), 1, 1, NULL, |
| __pa(rtas_os_term_buf)); |
| } while (rtas_busy_delay(status)); |
| |
| if (status != 0) |
| printk(KERN_EMERG "ibm,os-term call failed %d\n", status); |
| } |
| |
| static int ibm_suspend_me_token = RTAS_UNKNOWN_SERVICE; |
| #ifdef CONFIG_PPC_PSERIES |
| static int __rtas_suspend_last_cpu(struct rtas_suspend_me_data *data, int wake_when_done) |
| { |
| u16 slb_size = mmu_slb_size; |
| int rc = H_MULTI_THREADS_ACTIVE; |
| int cpu; |
| |
| slb_set_size(SLB_MIN_SIZE); |
| printk(KERN_DEBUG "calling ibm,suspend-me on cpu %i\n", smp_processor_id()); |
| |
| while (rc == H_MULTI_THREADS_ACTIVE && !atomic_read(&data->done) && |
| !atomic_read(&data->error)) |
| rc = rtas_call(data->token, 0, 1, NULL); |
| |
| if (rc || atomic_read(&data->error)) { |
| printk(KERN_DEBUG "ibm,suspend-me returned %d\n", rc); |
| slb_set_size(slb_size); |
| } |
| |
| if (atomic_read(&data->error)) |
| rc = atomic_read(&data->error); |
| |
| atomic_set(&data->error, rc); |
| pSeries_coalesce_init(); |
| |
| if (wake_when_done) { |
| atomic_set(&data->done, 1); |
| |
| for_each_online_cpu(cpu) |
| plpar_hcall_norets(H_PROD, get_hard_smp_processor_id(cpu)); |
| } |
| |
| if (atomic_dec_return(&data->working) == 0) |
| complete(data->complete); |
| |
| return rc; |
| } |
| |
| int rtas_suspend_last_cpu(struct rtas_suspend_me_data *data) |
| { |
| atomic_inc(&data->working); |
| return __rtas_suspend_last_cpu(data, 0); |
| } |
| |
| static int __rtas_suspend_cpu(struct rtas_suspend_me_data *data, int wake_when_done) |
| { |
| long rc = H_SUCCESS; |
| unsigned long msr_save; |
| int cpu; |
| |
| atomic_inc(&data->working); |
| |
| /* really need to ensure MSR.EE is off for H_JOIN */ |
| msr_save = mfmsr(); |
| mtmsr(msr_save & ~(MSR_EE)); |
| |
| while (rc == H_SUCCESS && !atomic_read(&data->done) && !atomic_read(&data->error)) |
| rc = plpar_hcall_norets(H_JOIN); |
| |
| mtmsr(msr_save); |
| |
| if (rc == H_SUCCESS) { |
| /* This cpu was prodded and the suspend is complete. */ |
| goto out; |
| } else if (rc == H_CONTINUE) { |
| /* All other cpus are in H_JOIN, this cpu does |
| * the suspend. |
| */ |
| return __rtas_suspend_last_cpu(data, wake_when_done); |
| } else { |
| printk(KERN_ERR "H_JOIN on cpu %i failed with rc = %ld\n", |
| smp_processor_id(), rc); |
| atomic_set(&data->error, rc); |
| } |
| |
| if (wake_when_done) { |
| atomic_set(&data->done, 1); |
| |
| /* This cpu did the suspend or got an error; in either case, |
| * we need to prod all other other cpus out of join state. |
| * Extra prods are harmless. |
| */ |
| for_each_online_cpu(cpu) |
| plpar_hcall_norets(H_PROD, get_hard_smp_processor_id(cpu)); |
| } |
| out: |
| if (atomic_dec_return(&data->working) == 0) |
| complete(data->complete); |
| return rc; |
| } |
| |
| int rtas_suspend_cpu(struct rtas_suspend_me_data *data) |
| { |
| return __rtas_suspend_cpu(data, 0); |
| } |
| |
| static void rtas_percpu_suspend_me(void *info) |
| { |
| __rtas_suspend_cpu((struct rtas_suspend_me_data *)info, 1); |
| } |
| |
| enum rtas_cpu_state { |
| DOWN, |
| UP, |
| }; |
| |
| #ifndef CONFIG_SMP |
| static int rtas_cpu_state_change_mask(enum rtas_cpu_state state, |
| cpumask_var_t cpus) |
| { |
| if (!cpumask_empty(cpus)) { |
| cpumask_clear(cpus); |
| return -EINVAL; |
| } else |
| return 0; |
| } |
| #else |
| /* On return cpumask will be altered to indicate CPUs changed. |
| * CPUs with states changed will be set in the mask, |
| * CPUs with status unchanged will be unset in the mask. */ |
| static int rtas_cpu_state_change_mask(enum rtas_cpu_state state, |
| cpumask_var_t cpus) |
| { |
| int cpu; |
| int cpuret = 0; |
| int ret = 0; |
| |
| if (cpumask_empty(cpus)) |
| return 0; |
| |
| for_each_cpu(cpu, cpus) { |
| switch (state) { |
| case DOWN: |
| cpuret = cpu_down(cpu); |
| break; |
| case UP: |
| cpuret = cpu_up(cpu); |
| break; |
| } |
| if (cpuret) { |
| pr_debug("%s: cpu_%s for cpu#%d returned %d.\n", |
| __func__, |
| ((state == UP) ? "up" : "down"), |
| cpu, cpuret); |
| if (!ret) |
| ret = cpuret; |
| if (state == UP) { |
| /* clear bits for unchanged cpus, return */ |
| cpumask_shift_right(cpus, cpus, cpu); |
| cpumask_shift_left(cpus, cpus, cpu); |
| break; |
| } else { |
| /* clear bit for unchanged cpu, continue */ |
| cpumask_clear_cpu(cpu, cpus); |
| } |
| } |
| } |
| |
| return ret; |
| } |
| #endif |
| |
| int rtas_online_cpus_mask(cpumask_var_t cpus) |
| { |
| int ret; |
| |
| ret = rtas_cpu_state_change_mask(UP, cpus); |
| |
| if (ret) { |
| cpumask_var_t tmp_mask; |
| |
| if (!alloc_cpumask_var(&tmp_mask, GFP_KERNEL)) |
| return ret; |
| |
| /* Use tmp_mask to preserve cpus mask from first failure */ |
| cpumask_copy(tmp_mask, cpus); |
| rtas_offline_cpus_mask(tmp_mask); |
| free_cpumask_var(tmp_mask); |
| } |
| |
| return ret; |
| } |
| EXPORT_SYMBOL(rtas_online_cpus_mask); |
| |
| int rtas_offline_cpus_mask(cpumask_var_t cpus) |
| { |
| return rtas_cpu_state_change_mask(DOWN, cpus); |
| } |
| EXPORT_SYMBOL(rtas_offline_cpus_mask); |
| |
| int rtas_ibm_suspend_me(u64 handle) |
| { |
| long state; |
| long rc; |
| unsigned long retbuf[PLPAR_HCALL_BUFSIZE]; |
| struct rtas_suspend_me_data data; |
| DECLARE_COMPLETION_ONSTACK(done); |
| cpumask_var_t offline_mask; |
| int cpuret; |
| |
| if (!rtas_service_present("ibm,suspend-me")) |
| return -ENOSYS; |
| |
| /* Make sure the state is valid */ |
| rc = plpar_hcall(H_VASI_STATE, retbuf, handle); |
| |
| state = retbuf[0]; |
| |
| if (rc) { |
| printk(KERN_ERR "rtas_ibm_suspend_me: vasi_state returned %ld\n",rc); |
| return rc; |
| } else if (state == H_VASI_ENABLED) { |
| return -EAGAIN; |
| } else if (state != H_VASI_SUSPENDING) { |
| printk(KERN_ERR "rtas_ibm_suspend_me: vasi_state returned state %ld\n", |
| state); |
| return -EIO; |
| } |
| |
| if (!alloc_cpumask_var(&offline_mask, GFP_KERNEL)) |
| return -ENOMEM; |
| |
| atomic_set(&data.working, 0); |
| atomic_set(&data.done, 0); |
| atomic_set(&data.error, 0); |
| data.token = rtas_token("ibm,suspend-me"); |
| data.complete = &done; |
| |
| /* All present CPUs must be online */ |
| cpumask_andnot(offline_mask, cpu_present_mask, cpu_online_mask); |
| cpuret = rtas_online_cpus_mask(offline_mask); |
| if (cpuret) { |
| pr_err("%s: Could not bring present CPUs online.\n", __func__); |
| atomic_set(&data.error, cpuret); |
| goto out; |
| } |
| |
| stop_topology_update(); |
| |
| /* Call function on all CPUs. One of us will make the |
| * rtas call |
| */ |
| if (on_each_cpu(rtas_percpu_suspend_me, &data, 0)) |
| atomic_set(&data.error, -EINVAL); |
| |
| wait_for_completion(&done); |
| |
| if (atomic_read(&data.error) != 0) |
| printk(KERN_ERR "Error doing global join\n"); |
| |
| start_topology_update(); |
| |
| /* Take down CPUs not online prior to suspend */ |
| cpuret = rtas_offline_cpus_mask(offline_mask); |
| if (cpuret) |
| pr_warn("%s: Could not restore CPUs to offline state.\n", |
| __func__); |
| |
| out: |
| free_cpumask_var(offline_mask); |
| return atomic_read(&data.error); |
| } |
| #else /* CONFIG_PPC_PSERIES */ |
| int rtas_ibm_suspend_me(u64 handle) |
| { |
| return -ENOSYS; |
| } |
| #endif |
| |
| /** |
| * Find a specific pseries error log in an RTAS extended event log. |
| * @log: RTAS error/event log |
| * @section_id: two character section identifier |
| * |
| * Returns a pointer to the specified errorlog or NULL if not found. |
| */ |
| struct pseries_errorlog *get_pseries_errorlog(struct rtas_error_log *log, |
| uint16_t section_id) |
| { |
| struct rtas_ext_event_log_v6 *ext_log = |
| (struct rtas_ext_event_log_v6 *)log->buffer; |
| struct pseries_errorlog *sect; |
| unsigned char *p, *log_end; |
| uint32_t ext_log_length = rtas_error_extended_log_length(log); |
| uint8_t log_format = rtas_ext_event_log_format(ext_log); |
| uint32_t company_id = rtas_ext_event_company_id(ext_log); |
| |
| /* Check that we understand the format */ |
| if (ext_log_length < sizeof(struct rtas_ext_event_log_v6) || |
| log_format != RTAS_V6EXT_LOG_FORMAT_EVENT_LOG || |
| company_id != RTAS_V6EXT_COMPANY_ID_IBM) |
| return NULL; |
| |
| log_end = log->buffer + ext_log_length; |
| p = ext_log->vendor_log; |
| |
| while (p < log_end) { |
| sect = (struct pseries_errorlog *)p; |
| if (pseries_errorlog_id(sect) == section_id) |
| return sect; |
| p += pseries_errorlog_length(sect); |
| } |
| |
| return NULL; |
| } |
| |
| /* We assume to be passed big endian arguments */ |
| #pragma GCC diagnostic push |
| #pragma GCC diagnostic ignored "-Wpragmas" |
| #pragma GCC diagnostic ignored "-Wattribute-alias" |
| SYSCALL_DEFINE1(rtas, struct rtas_args __user *, uargs) |
| { |
| struct rtas_args args; |
| unsigned long flags; |
| char *buff_copy, *errbuf = NULL; |
| int nargs, nret, token; |
| |
| if (!capable(CAP_SYS_ADMIN)) |
| return -EPERM; |
| |
| if (!rtas.entry) |
| return -EINVAL; |
| |
| if (copy_from_user(&args, uargs, 3 * sizeof(u32)) != 0) |
| return -EFAULT; |
| |
| nargs = be32_to_cpu(args.nargs); |
| nret = be32_to_cpu(args.nret); |
| token = be32_to_cpu(args.token); |
| |
| if (nargs >= ARRAY_SIZE(args.args) |
| || nret > ARRAY_SIZE(args.args) |
| || nargs + nret > ARRAY_SIZE(args.args)) |
| return -EINVAL; |
| |
| /* Copy in args. */ |
| if (copy_from_user(args.args, uargs->args, |
| nargs * sizeof(rtas_arg_t)) != 0) |
| return -EFAULT; |
| |
| if (token == RTAS_UNKNOWN_SERVICE) |
| return -EINVAL; |
| |
| args.rets = &args.args[nargs]; |
| memset(args.rets, 0, nret * sizeof(rtas_arg_t)); |
| |
| /* Need to handle ibm,suspend_me call specially */ |
| if (token == ibm_suspend_me_token) { |
| |
| /* |
| * rtas_ibm_suspend_me assumes the streamid handle is in cpu |
| * endian, or at least the hcall within it requires it. |
| */ |
| int rc = 0; |
| u64 handle = ((u64)be32_to_cpu(args.args[0]) << 32) |
| | be32_to_cpu(args.args[1]); |
| rc = rtas_ibm_suspend_me(handle); |
| if (rc == -EAGAIN) |
| args.rets[0] = cpu_to_be32(RTAS_NOT_SUSPENDABLE); |
| else if (rc == -EIO) |
| args.rets[0] = cpu_to_be32(-1); |
| else if (rc) |
| return rc; |
| goto copy_return; |
| } |
| |
| buff_copy = get_errorlog_buffer(); |
| |
| flags = lock_rtas(); |
| |
| rtas.args = args; |
| enter_rtas(__pa(&rtas.args)); |
| args = rtas.args; |
| |
| /* A -1 return code indicates that the last command couldn't |
| be completed due to a hardware error. */ |
| if (be32_to_cpu(args.rets[0]) == -1) |
| errbuf = __fetch_rtas_last_error(buff_copy); |
| |
| unlock_rtas(flags); |
| |
| if (buff_copy) { |
| if (errbuf) |
| log_error(errbuf, ERR_TYPE_RTAS_LOG, 0); |
| kfree(buff_copy); |
| } |
| |
| copy_return: |
| /* Copy out args. */ |
| if (copy_to_user(uargs->args + nargs, |
| args.args + nargs, |
| nret * sizeof(rtas_arg_t)) != 0) |
| return -EFAULT; |
| |
| return 0; |
| } |
| #pragma GCC diagnostic pop |
| |
| /* |
| * Call early during boot, before mem init, to retrieve the RTAS |
| * information from the device-tree and allocate the RMO buffer for userland |
| * accesses. |
| */ |
| void __init rtas_initialize(void) |
| { |
| unsigned long rtas_region = RTAS_INSTANTIATE_MAX; |
| u32 base, size, entry; |
| int no_base, no_size, no_entry; |
| |
| /* Get RTAS dev node and fill up our "rtas" structure with infos |
| * about it. |
| */ |
| rtas.dev = of_find_node_by_name(NULL, "rtas"); |
| if (!rtas.dev) |
| return; |
| |
| no_base = of_property_read_u32(rtas.dev, "linux,rtas-base", &base); |
| no_size = of_property_read_u32(rtas.dev, "rtas-size", &size); |
| if (no_base || no_size) { |
| of_node_put(rtas.dev); |
| rtas.dev = NULL; |
| return; |
| } |
| |
| rtas.base = base; |
| rtas.size = size; |
| no_entry = of_property_read_u32(rtas.dev, "linux,rtas-entry", &entry); |
| rtas.entry = no_entry ? rtas.base : entry; |
| |
| /* If RTAS was found, allocate the RMO buffer for it and look for |
| * the stop-self token if any |
| */ |
| #ifdef CONFIG_PPC64 |
| if (firmware_has_feature(FW_FEATURE_LPAR)) { |
| rtas_region = min(ppc64_rma_size, RTAS_INSTANTIATE_MAX); |
| ibm_suspend_me_token = rtas_token("ibm,suspend-me"); |
| } |
| #endif |
| rtas_rmo_buf = memblock_alloc_base(RTAS_RMOBUF_MAX, PAGE_SIZE, rtas_region); |
| |
| #ifdef CONFIG_RTAS_ERROR_LOGGING |
| rtas_last_error_token = rtas_token("rtas-last-error"); |
| #endif |
| } |
| |
| int __init early_init_dt_scan_rtas(unsigned long node, |
| const char *uname, int depth, void *data) |
| { |
| const u32 *basep, *entryp, *sizep; |
| |
| if (depth != 1 || strcmp(uname, "rtas") != 0) |
| return 0; |
| |
| basep = of_get_flat_dt_prop(node, "linux,rtas-base", NULL); |
| entryp = of_get_flat_dt_prop(node, "linux,rtas-entry", NULL); |
| sizep = of_get_flat_dt_prop(node, "rtas-size", NULL); |
| |
| if (basep && entryp && sizep) { |
| rtas.base = *basep; |
| rtas.entry = *entryp; |
| rtas.size = *sizep; |
| } |
| |
| #ifdef CONFIG_UDBG_RTAS_CONSOLE |
| basep = of_get_flat_dt_prop(node, "put-term-char", NULL); |
| if (basep) |
| rtas_putchar_token = *basep; |
| |
| basep = of_get_flat_dt_prop(node, "get-term-char", NULL); |
| if (basep) |
| rtas_getchar_token = *basep; |
| |
| if (rtas_putchar_token != RTAS_UNKNOWN_SERVICE && |
| rtas_getchar_token != RTAS_UNKNOWN_SERVICE) |
| udbg_init_rtas_console(); |
| |
| #endif |
| |
| /* break now */ |
| return 1; |
| } |
| |
| static arch_spinlock_t timebase_lock; |
| static u64 timebase = 0; |
| |
| void rtas_give_timebase(void) |
| { |
| unsigned long flags; |
| |
| local_irq_save(flags); |
| hard_irq_disable(); |
| arch_spin_lock(&timebase_lock); |
| rtas_call(rtas_token("freeze-time-base"), 0, 1, NULL); |
| timebase = get_tb(); |
| arch_spin_unlock(&timebase_lock); |
| |
| while (timebase) |
| barrier(); |
| rtas_call(rtas_token("thaw-time-base"), 0, 1, NULL); |
| local_irq_restore(flags); |
| } |
| |
| void rtas_take_timebase(void) |
| { |
| while (!timebase) |
| barrier(); |
| arch_spin_lock(&timebase_lock); |
| set_tb(timebase >> 32, timebase & 0xffffffff); |
| timebase = 0; |
| arch_spin_unlock(&timebase_lock); |
| } |