| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * kernel/sched/core.c |
| * |
| * Core kernel scheduler code and related syscalls |
| * |
| * Copyright (C) 1991-2002 Linus Torvalds |
| */ |
| #include <linux/highmem.h> |
| #include <linux/hrtimer_api.h> |
| #include <linux/ktime_api.h> |
| #include <linux/sched/signal.h> |
| #include <linux/syscalls_api.h> |
| #include <linux/debug_locks.h> |
| #include <linux/prefetch.h> |
| #include <linux/capability.h> |
| #include <linux/pgtable_api.h> |
| #include <linux/wait_bit.h> |
| #include <linux/jiffies.h> |
| #include <linux/spinlock_api.h> |
| #include <linux/cpumask_api.h> |
| #include <linux/lockdep_api.h> |
| #include <linux/hardirq.h> |
| #include <linux/softirq.h> |
| #include <linux/refcount_api.h> |
| #include <linux/topology.h> |
| #include <linux/sched/clock.h> |
| #include <linux/sched/cond_resched.h> |
| #include <linux/sched/cputime.h> |
| #include <linux/sched/debug.h> |
| #include <linux/sched/hotplug.h> |
| #include <linux/sched/init.h> |
| #include <linux/sched/isolation.h> |
| #include <linux/sched/loadavg.h> |
| #include <linux/sched/mm.h> |
| #include <linux/sched/nohz.h> |
| #include <linux/sched/rseq_api.h> |
| #include <linux/sched/rt.h> |
| |
| #include <linux/blkdev.h> |
| #include <linux/context_tracking.h> |
| #include <linux/cpuset.h> |
| #include <linux/delayacct.h> |
| #include <linux/init_task.h> |
| #include <linux/interrupt.h> |
| #include <linux/ioprio.h> |
| #include <linux/kallsyms.h> |
| #include <linux/kcov.h> |
| #include <linux/kprobes.h> |
| #include <linux/llist_api.h> |
| #include <linux/mmu_context.h> |
| #include <linux/mmzone.h> |
| #include <linux/mutex_api.h> |
| #include <linux/nmi.h> |
| #include <linux/nospec.h> |
| #include <linux/perf_event_api.h> |
| #include <linux/profile.h> |
| #include <linux/psi.h> |
| #include <linux/rcuwait_api.h> |
| #include <linux/rseq.h> |
| #include <linux/sched/wake_q.h> |
| #include <linux/scs.h> |
| #include <linux/slab.h> |
| #include <linux/syscalls.h> |
| #include <linux/vtime.h> |
| #include <linux/wait_api.h> |
| #include <linux/workqueue_api.h> |
| |
| #ifdef CONFIG_PREEMPT_DYNAMIC |
| # ifdef CONFIG_GENERIC_ENTRY |
| # include <linux/entry-common.h> |
| # endif |
| #endif |
| |
| #include <uapi/linux/sched/types.h> |
| |
| #include <asm/irq_regs.h> |
| #include <asm/switch_to.h> |
| #include <asm/tlb.h> |
| |
| #define CREATE_TRACE_POINTS |
| #include <linux/sched/rseq_api.h> |
| #include <trace/events/sched.h> |
| #include <trace/events/ipi.h> |
| #undef CREATE_TRACE_POINTS |
| |
| #include "sched.h" |
| #include "stats.h" |
| |
| #include "autogroup.h" |
| #include "pelt.h" |
| #include "smp.h" |
| #include "stats.h" |
| |
| #include "../workqueue_internal.h" |
| #include "../../io_uring/io-wq.h" |
| #include "../smpboot.h" |
| |
| EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpu); |
| EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpumask); |
| |
| /* |
| * Export tracepoints that act as a bare tracehook (ie: have no trace event |
| * associated with them) to allow external modules to probe them. |
| */ |
| EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp); |
| EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp); |
| EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp); |
| EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp); |
| EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp); |
| EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_hw_tp); |
| EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp); |
| EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp); |
| EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp); |
| EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp); |
| EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp); |
| EXPORT_TRACEPOINT_SYMBOL_GPL(sched_compute_energy_tp); |
| |
| DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); |
| |
| #ifdef CONFIG_SCHED_DEBUG |
| /* |
| * Debugging: various feature bits |
| * |
| * If SCHED_DEBUG is disabled, each compilation unit has its own copy of |
| * sysctl_sched_features, defined in sched.h, to allow constants propagation |
| * at compile time and compiler optimization based on features default. |
| */ |
| #define SCHED_FEAT(name, enabled) \ |
| (1UL << __SCHED_FEAT_##name) * enabled | |
| const_debug unsigned int sysctl_sched_features = |
| #include "features.h" |
| 0; |
| #undef SCHED_FEAT |
| |
| /* |
| * Print a warning if need_resched is set for the given duration (if |
| * LATENCY_WARN is enabled). |
| * |
| * If sysctl_resched_latency_warn_once is set, only one warning will be shown |
| * per boot. |
| */ |
| __read_mostly int sysctl_resched_latency_warn_ms = 100; |
| __read_mostly int sysctl_resched_latency_warn_once = 1; |
| #endif /* CONFIG_SCHED_DEBUG */ |
| |
| /* |
| * Number of tasks to iterate in a single balance run. |
| * Limited because this is done with IRQs disabled. |
| */ |
| const_debug unsigned int sysctl_sched_nr_migrate = SCHED_NR_MIGRATE_BREAK; |
| |
| __read_mostly int scheduler_running; |
| |
| #ifdef CONFIG_SCHED_CORE |
| |
| DEFINE_STATIC_KEY_FALSE(__sched_core_enabled); |
| |
| /* kernel prio, less is more */ |
| static inline int __task_prio(const struct task_struct *p) |
| { |
| if (p->sched_class == &stop_sched_class) /* trumps deadline */ |
| return -2; |
| |
| if (rt_prio(p->prio)) /* includes deadline */ |
| return p->prio; /* [-1, 99] */ |
| |
| if (p->sched_class == &idle_sched_class) |
| return MAX_RT_PRIO + NICE_WIDTH; /* 140 */ |
| |
| return MAX_RT_PRIO + MAX_NICE; /* 120, squash fair */ |
| } |
| |
| /* |
| * l(a,b) |
| * le(a,b) := !l(b,a) |
| * g(a,b) := l(b,a) |
| * ge(a,b) := !l(a,b) |
| */ |
| |
| /* real prio, less is less */ |
| static inline bool prio_less(const struct task_struct *a, |
| const struct task_struct *b, bool in_fi) |
| { |
| |
| int pa = __task_prio(a), pb = __task_prio(b); |
| |
| if (-pa < -pb) |
| return true; |
| |
| if (-pb < -pa) |
| return false; |
| |
| if (pa == -1) /* dl_prio() doesn't work because of stop_class above */ |
| return !dl_time_before(a->dl.deadline, b->dl.deadline); |
| |
| if (pa == MAX_RT_PRIO + MAX_NICE) /* fair */ |
| return cfs_prio_less(a, b, in_fi); |
| |
| return false; |
| } |
| |
| static inline bool __sched_core_less(const struct task_struct *a, |
| const struct task_struct *b) |
| { |
| if (a->core_cookie < b->core_cookie) |
| return true; |
| |
| if (a->core_cookie > b->core_cookie) |
| return false; |
| |
| /* flip prio, so high prio is leftmost */ |
| if (prio_less(b, a, !!task_rq(a)->core->core_forceidle_count)) |
| return true; |
| |
| return false; |
| } |
| |
| #define __node_2_sc(node) rb_entry((node), struct task_struct, core_node) |
| |
| static inline bool rb_sched_core_less(struct rb_node *a, const struct rb_node *b) |
| { |
| return __sched_core_less(__node_2_sc(a), __node_2_sc(b)); |
| } |
| |
| static inline int rb_sched_core_cmp(const void *key, const struct rb_node *node) |
| { |
| const struct task_struct *p = __node_2_sc(node); |
| unsigned long cookie = (unsigned long)key; |
| |
| if (cookie < p->core_cookie) |
| return -1; |
| |
| if (cookie > p->core_cookie) |
| return 1; |
| |
| return 0; |
| } |
| |
| void sched_core_enqueue(struct rq *rq, struct task_struct *p) |
| { |
| rq->core->core_task_seq++; |
| |
| if (!p->core_cookie) |
| return; |
| |
| rb_add(&p->core_node, &rq->core_tree, rb_sched_core_less); |
| } |
| |
| void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) |
| { |
| rq->core->core_task_seq++; |
| |
| if (sched_core_enqueued(p)) { |
| rb_erase(&p->core_node, &rq->core_tree); |
| RB_CLEAR_NODE(&p->core_node); |
| } |
| |
| /* |
| * Migrating the last task off the cpu, with the cpu in forced idle |
| * state. Reschedule to create an accounting edge for forced idle, |
| * and re-examine whether the core is still in forced idle state. |
| */ |
| if (!(flags & DEQUEUE_SAVE) && rq->nr_running == 1 && |
| rq->core->core_forceidle_count && rq->curr == rq->idle) |
| resched_curr(rq); |
| } |
| |
| static int sched_task_is_throttled(struct task_struct *p, int cpu) |
| { |
| if (p->sched_class->task_is_throttled) |
| return p->sched_class->task_is_throttled(p, cpu); |
| |
| return 0; |
| } |
| |
| static struct task_struct *sched_core_next(struct task_struct *p, unsigned long cookie) |
| { |
| struct rb_node *node = &p->core_node; |
| int cpu = task_cpu(p); |
| |
| do { |
| node = rb_next(node); |
| if (!node) |
| return NULL; |
| |
| p = __node_2_sc(node); |
| if (p->core_cookie != cookie) |
| return NULL; |
| |
| } while (sched_task_is_throttled(p, cpu)); |
| |
| return p; |
| } |
| |
| /* |
| * Find left-most (aka, highest priority) and unthrottled task matching @cookie. |
| * If no suitable task is found, NULL will be returned. |
| */ |
| static struct task_struct *sched_core_find(struct rq *rq, unsigned long cookie) |
| { |
| struct task_struct *p; |
| struct rb_node *node; |
| |
| node = rb_find_first((void *)cookie, &rq->core_tree, rb_sched_core_cmp); |
| if (!node) |
| return NULL; |
| |
| p = __node_2_sc(node); |
| if (!sched_task_is_throttled(p, rq->cpu)) |
| return p; |
| |
| return sched_core_next(p, cookie); |
| } |
| |
| /* |
| * Magic required such that: |
| * |
| * raw_spin_rq_lock(rq); |
| * ... |
| * raw_spin_rq_unlock(rq); |
| * |
| * ends up locking and unlocking the _same_ lock, and all CPUs |
| * always agree on what rq has what lock. |
| * |
| * XXX entirely possible to selectively enable cores, don't bother for now. |
| */ |
| |
| static DEFINE_MUTEX(sched_core_mutex); |
| static atomic_t sched_core_count; |
| static struct cpumask sched_core_mask; |
| |
| static void sched_core_lock(int cpu, unsigned long *flags) |
| { |
| const struct cpumask *smt_mask = cpu_smt_mask(cpu); |
| int t, i = 0; |
| |
| local_irq_save(*flags); |
| for_each_cpu(t, smt_mask) |
| raw_spin_lock_nested(&cpu_rq(t)->__lock, i++); |
| } |
| |
| static void sched_core_unlock(int cpu, unsigned long *flags) |
| { |
| const struct cpumask *smt_mask = cpu_smt_mask(cpu); |
| int t; |
| |
| for_each_cpu(t, smt_mask) |
| raw_spin_unlock(&cpu_rq(t)->__lock); |
| local_irq_restore(*flags); |
| } |
| |
| static void __sched_core_flip(bool enabled) |
| { |
| unsigned long flags; |
| int cpu, t; |
| |
| cpus_read_lock(); |
| |
| /* |
| * Toggle the online cores, one by one. |
| */ |
| cpumask_copy(&sched_core_mask, cpu_online_mask); |
| for_each_cpu(cpu, &sched_core_mask) { |
| const struct cpumask *smt_mask = cpu_smt_mask(cpu); |
| |
| sched_core_lock(cpu, &flags); |
| |
| for_each_cpu(t, smt_mask) |
| cpu_rq(t)->core_enabled = enabled; |
| |
| cpu_rq(cpu)->core->core_forceidle_start = 0; |
| |
| sched_core_unlock(cpu, &flags); |
| |
| cpumask_andnot(&sched_core_mask, &sched_core_mask, smt_mask); |
| } |
| |
| /* |
| * Toggle the offline CPUs. |
| */ |
| for_each_cpu_andnot(cpu, cpu_possible_mask, cpu_online_mask) |
| cpu_rq(cpu)->core_enabled = enabled; |
| |
| cpus_read_unlock(); |
| } |
| |
| static void sched_core_assert_empty(void) |
| { |
| int cpu; |
| |
| for_each_possible_cpu(cpu) |
| WARN_ON_ONCE(!RB_EMPTY_ROOT(&cpu_rq(cpu)->core_tree)); |
| } |
| |
| static void __sched_core_enable(void) |
| { |
| static_branch_enable(&__sched_core_enabled); |
| /* |
| * Ensure all previous instances of raw_spin_rq_*lock() have finished |
| * and future ones will observe !sched_core_disabled(). |
| */ |
| synchronize_rcu(); |
| __sched_core_flip(true); |
| sched_core_assert_empty(); |
| } |
| |
| static void __sched_core_disable(void) |
| { |
| sched_core_assert_empty(); |
| __sched_core_flip(false); |
| static_branch_disable(&__sched_core_enabled); |
| } |
| |
| void sched_core_get(void) |
| { |
| if (atomic_inc_not_zero(&sched_core_count)) |
| return; |
| |
| mutex_lock(&sched_core_mutex); |
| if (!atomic_read(&sched_core_count)) |
| __sched_core_enable(); |
| |
| smp_mb__before_atomic(); |
| atomic_inc(&sched_core_count); |
| mutex_unlock(&sched_core_mutex); |
| } |
| |
| static void __sched_core_put(struct work_struct *work) |
| { |
| if (atomic_dec_and_mutex_lock(&sched_core_count, &sched_core_mutex)) { |
| __sched_core_disable(); |
| mutex_unlock(&sched_core_mutex); |
| } |
| } |
| |
| void sched_core_put(void) |
| { |
| static DECLARE_WORK(_work, __sched_core_put); |
| |
| /* |
| * "There can be only one" |
| * |
| * Either this is the last one, or we don't actually need to do any |
| * 'work'. If it is the last *again*, we rely on |
| * WORK_STRUCT_PENDING_BIT. |
| */ |
| if (!atomic_add_unless(&sched_core_count, -1, 1)) |
| schedule_work(&_work); |
| } |
| |
| #else /* !CONFIG_SCHED_CORE */ |
| |
| static inline void sched_core_enqueue(struct rq *rq, struct task_struct *p) { } |
| static inline void |
| sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) { } |
| |
| #endif /* CONFIG_SCHED_CORE */ |
| |
| /* |
| * Serialization rules: |
| * |
| * Lock order: |
| * |
| * p->pi_lock |
| * rq->lock |
| * hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls) |
| * |
| * rq1->lock |
| * rq2->lock where: rq1 < rq2 |
| * |
| * Regular state: |
| * |
| * Normal scheduling state is serialized by rq->lock. __schedule() takes the |
| * local CPU's rq->lock, it optionally removes the task from the runqueue and |
| * always looks at the local rq data structures to find the most eligible task |
| * to run next. |
| * |
| * Task enqueue is also under rq->lock, possibly taken from another CPU. |
| * Wakeups from another LLC domain might use an IPI to transfer the enqueue to |
| * the local CPU to avoid bouncing the runqueue state around [ see |
| * ttwu_queue_wakelist() ] |
| * |
| * Task wakeup, specifically wakeups that involve migration, are horribly |
| * complicated to avoid having to take two rq->locks. |
| * |
| * Special state: |
| * |
| * System-calls and anything external will use task_rq_lock() which acquires |
| * both p->pi_lock and rq->lock. As a consequence the state they change is |
| * stable while holding either lock: |
| * |
| * - sched_setaffinity()/ |
| * set_cpus_allowed_ptr(): p->cpus_ptr, p->nr_cpus_allowed |
| * - set_user_nice(): p->se.load, p->*prio |
| * - __sched_setscheduler(): p->sched_class, p->policy, p->*prio, |
| * p->se.load, p->rt_priority, |
| * p->dl.dl_{runtime, deadline, period, flags, bw, density} |
| * - sched_setnuma(): p->numa_preferred_nid |
| * - sched_move_task(): p->sched_task_group |
| * - uclamp_update_active() p->uclamp* |
| * |
| * p->state <- TASK_*: |
| * |
| * is changed locklessly using set_current_state(), __set_current_state() or |
| * set_special_state(), see their respective comments, or by |
| * try_to_wake_up(). This latter uses p->pi_lock to serialize against |
| * concurrent self. |
| * |
| * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }: |
| * |
| * is set by activate_task() and cleared by deactivate_task(), under |
| * rq->lock. Non-zero indicates the task is runnable, the special |
| * ON_RQ_MIGRATING state is used for migration without holding both |
| * rq->locks. It indicates task_cpu() is not stable, see task_rq_lock(). |
| * |
| * p->on_cpu <- { 0, 1 }: |
| * |
| * is set by prepare_task() and cleared by finish_task() such that it will be |
| * set before p is scheduled-in and cleared after p is scheduled-out, both |
| * under rq->lock. Non-zero indicates the task is running on its CPU. |
| * |
| * [ The astute reader will observe that it is possible for two tasks on one |
| * CPU to have ->on_cpu = 1 at the same time. ] |
| * |
| * task_cpu(p): is changed by set_task_cpu(), the rules are: |
| * |
| * - Don't call set_task_cpu() on a blocked task: |
| * |
| * We don't care what CPU we're not running on, this simplifies hotplug, |
| * the CPU assignment of blocked tasks isn't required to be valid. |
| * |
| * - for try_to_wake_up(), called under p->pi_lock: |
| * |
| * This allows try_to_wake_up() to only take one rq->lock, see its comment. |
| * |
| * - for migration called under rq->lock: |
| * [ see task_on_rq_migrating() in task_rq_lock() ] |
| * |
| * o move_queued_task() |
| * o detach_task() |
| * |
| * - for migration called under double_rq_lock(): |
| * |
| * o __migrate_swap_task() |
| * o push_rt_task() / pull_rt_task() |
| * o push_dl_task() / pull_dl_task() |
| * o dl_task_offline_migration() |
| * |
| */ |
| |
| void raw_spin_rq_lock_nested(struct rq *rq, int subclass) |
| { |
| raw_spinlock_t *lock; |
| |
| /* Matches synchronize_rcu() in __sched_core_enable() */ |
| preempt_disable(); |
| if (sched_core_disabled()) { |
| raw_spin_lock_nested(&rq->__lock, subclass); |
| /* preempt_count *MUST* be > 1 */ |
| preempt_enable_no_resched(); |
| return; |
| } |
| |
| for (;;) { |
| lock = __rq_lockp(rq); |
| raw_spin_lock_nested(lock, subclass); |
| if (likely(lock == __rq_lockp(rq))) { |
| /* preempt_count *MUST* be > 1 */ |
| preempt_enable_no_resched(); |
| return; |
| } |
| raw_spin_unlock(lock); |
| } |
| } |
| |
| bool raw_spin_rq_trylock(struct rq *rq) |
| { |
| raw_spinlock_t *lock; |
| bool ret; |
| |
| /* Matches synchronize_rcu() in __sched_core_enable() */ |
| preempt_disable(); |
| if (sched_core_disabled()) { |
| ret = raw_spin_trylock(&rq->__lock); |
| preempt_enable(); |
| return ret; |
| } |
| |
| for (;;) { |
| lock = __rq_lockp(rq); |
| ret = raw_spin_trylock(lock); |
| if (!ret || (likely(lock == __rq_lockp(rq)))) { |
| preempt_enable(); |
| return ret; |
| } |
| raw_spin_unlock(lock); |
| } |
| } |
| |
| void raw_spin_rq_unlock(struct rq *rq) |
| { |
| raw_spin_unlock(rq_lockp(rq)); |
| } |
| |
| #ifdef CONFIG_SMP |
| /* |
| * double_rq_lock - safely lock two runqueues |
| */ |
| void double_rq_lock(struct rq *rq1, struct rq *rq2) |
| { |
| lockdep_assert_irqs_disabled(); |
| |
| if (rq_order_less(rq2, rq1)) |
| swap(rq1, rq2); |
| |
| raw_spin_rq_lock(rq1); |
| if (__rq_lockp(rq1) != __rq_lockp(rq2)) |
| raw_spin_rq_lock_nested(rq2, SINGLE_DEPTH_NESTING); |
| |
| double_rq_clock_clear_update(rq1, rq2); |
| } |
| #endif |
| |
| /* |
| * __task_rq_lock - lock the rq @p resides on. |
| */ |
| struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf) |
| __acquires(rq->lock) |
| { |
| struct rq *rq; |
| |
| lockdep_assert_held(&p->pi_lock); |
| |
| for (;;) { |
| rq = task_rq(p); |
| raw_spin_rq_lock(rq); |
| if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { |
| rq_pin_lock(rq, rf); |
| return rq; |
| } |
| raw_spin_rq_unlock(rq); |
| |
| while (unlikely(task_on_rq_migrating(p))) |
| cpu_relax(); |
| } |
| } |
| |
| /* |
| * task_rq_lock - lock p->pi_lock and lock the rq @p resides on. |
| */ |
| struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf) |
| __acquires(p->pi_lock) |
| __acquires(rq->lock) |
| { |
| struct rq *rq; |
| |
| for (;;) { |
| raw_spin_lock_irqsave(&p->pi_lock, rf->flags); |
| rq = task_rq(p); |
| raw_spin_rq_lock(rq); |
| /* |
| * move_queued_task() task_rq_lock() |
| * |
| * ACQUIRE (rq->lock) |
| * [S] ->on_rq = MIGRATING [L] rq = task_rq() |
| * WMB (__set_task_cpu()) ACQUIRE (rq->lock); |
| * [S] ->cpu = new_cpu [L] task_rq() |
| * [L] ->on_rq |
| * RELEASE (rq->lock) |
| * |
| * If we observe the old CPU in task_rq_lock(), the acquire of |
| * the old rq->lock will fully serialize against the stores. |
| * |
| * If we observe the new CPU in task_rq_lock(), the address |
| * dependency headed by '[L] rq = task_rq()' and the acquire |
| * will pair with the WMB to ensure we then also see migrating. |
| */ |
| if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { |
| rq_pin_lock(rq, rf); |
| return rq; |
| } |
| raw_spin_rq_unlock(rq); |
| raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags); |
| |
| while (unlikely(task_on_rq_migrating(p))) |
| cpu_relax(); |
| } |
| } |
| |
| /* |
| * RQ-clock updating methods: |
| */ |
| |
| static void update_rq_clock_task(struct rq *rq, s64 delta) |
| { |
| /* |
| * In theory, the compile should just see 0 here, and optimize out the call |
| * to sched_rt_avg_update. But I don't trust it... |
| */ |
| s64 __maybe_unused steal = 0, irq_delta = 0; |
| |
| #ifdef CONFIG_IRQ_TIME_ACCOUNTING |
| irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time; |
| |
| /* |
| * Since irq_time is only updated on {soft,}irq_exit, we might run into |
| * this case when a previous update_rq_clock() happened inside a |
| * {soft,}irq region. |
| * |
| * When this happens, we stop ->clock_task and only update the |
| * prev_irq_time stamp to account for the part that fit, so that a next |
| * update will consume the rest. This ensures ->clock_task is |
| * monotonic. |
| * |
| * It does however cause some slight miss-attribution of {soft,}irq |
| * time, a more accurate solution would be to update the irq_time using |
| * the current rq->clock timestamp, except that would require using |
| * atomic ops. |
| */ |
| if (irq_delta > delta) |
| irq_delta = delta; |
| |
| rq->prev_irq_time += irq_delta; |
| delta -= irq_delta; |
| psi_account_irqtime(rq->curr, irq_delta); |
| delayacct_irq(rq->curr, irq_delta); |
| #endif |
| #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING |
| if (static_key_false((¶virt_steal_rq_enabled))) { |
| steal = paravirt_steal_clock(cpu_of(rq)); |
| steal -= rq->prev_steal_time_rq; |
| |
| if (unlikely(steal > delta)) |
| steal = delta; |
| |
| rq->prev_steal_time_rq += steal; |
| delta -= steal; |
| } |
| #endif |
| |
| rq->clock_task += delta; |
| |
| #ifdef CONFIG_HAVE_SCHED_AVG_IRQ |
| if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY)) |
| update_irq_load_avg(rq, irq_delta + steal); |
| #endif |
| update_rq_clock_pelt(rq, delta); |
| } |
| |
| void update_rq_clock(struct rq *rq) |
| { |
| s64 delta; |
| |
| lockdep_assert_rq_held(rq); |
| |
| if (rq->clock_update_flags & RQCF_ACT_SKIP) |
| return; |
| |
| #ifdef CONFIG_SCHED_DEBUG |
| if (sched_feat(WARN_DOUBLE_CLOCK)) |
| SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED); |
| rq->clock_update_flags |= RQCF_UPDATED; |
| #endif |
| |
| delta = sched_clock_cpu(cpu_of(rq)) - rq->clock; |
| if (delta < 0) |
| return; |
| rq->clock += delta; |
| update_rq_clock_task(rq, delta); |
| } |
| |
| #ifdef CONFIG_SCHED_HRTICK |
| /* |
| * Use HR-timers to deliver accurate preemption points. |
| */ |
| |
| static void hrtick_clear(struct rq *rq) |
| { |
| if (hrtimer_active(&rq->hrtick_timer)) |
| hrtimer_cancel(&rq->hrtick_timer); |
| } |
| |
| /* |
| * High-resolution timer tick. |
| * Runs from hardirq context with interrupts disabled. |
| */ |
| static enum hrtimer_restart hrtick(struct hrtimer *timer) |
| { |
| struct rq *rq = container_of(timer, struct rq, hrtick_timer); |
| struct rq_flags rf; |
| |
| WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); |
| |
| rq_lock(rq, &rf); |
| update_rq_clock(rq); |
| rq->curr->sched_class->task_tick(rq, rq->curr, 1); |
| rq_unlock(rq, &rf); |
| |
| return HRTIMER_NORESTART; |
| } |
| |
| #ifdef CONFIG_SMP |
| |
| static void __hrtick_restart(struct rq *rq) |
| { |
| struct hrtimer *timer = &rq->hrtick_timer; |
| ktime_t time = rq->hrtick_time; |
| |
| hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD); |
| } |
| |
| /* |
| * called from hardirq (IPI) context |
| */ |
| static void __hrtick_start(void *arg) |
| { |
| struct rq *rq = arg; |
| struct rq_flags rf; |
| |
| rq_lock(rq, &rf); |
| __hrtick_restart(rq); |
| rq_unlock(rq, &rf); |
| } |
| |
| /* |
| * Called to set the hrtick timer state. |
| * |
| * called with rq->lock held and irqs disabled |
| */ |
| void hrtick_start(struct rq *rq, u64 delay) |
| { |
| struct hrtimer *timer = &rq->hrtick_timer; |
| s64 delta; |
| |
| /* |
| * Don't schedule slices shorter than 10000ns, that just |
| * doesn't make sense and can cause timer DoS. |
| */ |
| delta = max_t(s64, delay, 10000LL); |
| rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta); |
| |
| if (rq == this_rq()) |
| __hrtick_restart(rq); |
| else |
| smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd); |
| } |
| |
| #else |
| /* |
| * Called to set the hrtick timer state. |
| * |
| * called with rq->lock held and irqs disabled |
| */ |
| void hrtick_start(struct rq *rq, u64 delay) |
| { |
| /* |
| * Don't schedule slices shorter than 10000ns, that just |
| * doesn't make sense. Rely on vruntime for fairness. |
| */ |
| delay = max_t(u64, delay, 10000LL); |
| hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), |
| HRTIMER_MODE_REL_PINNED_HARD); |
| } |
| |
| #endif /* CONFIG_SMP */ |
| |
| static void hrtick_rq_init(struct rq *rq) |
| { |
| #ifdef CONFIG_SMP |
| INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq); |
| #endif |
| hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); |
| rq->hrtick_timer.function = hrtick; |
| } |
| #else /* CONFIG_SCHED_HRTICK */ |
| static inline void hrtick_clear(struct rq *rq) |
| { |
| } |
| |
| static inline void hrtick_rq_init(struct rq *rq) |
| { |
| } |
| #endif /* CONFIG_SCHED_HRTICK */ |
| |
| /* |
| * cmpxchg based fetch_or, macro so it works for different integer types |
| */ |
| #define fetch_or(ptr, mask) \ |
| ({ \ |
| typeof(ptr) _ptr = (ptr); \ |
| typeof(mask) _mask = (mask); \ |
| typeof(*_ptr) _val = *_ptr; \ |
| \ |
| do { \ |
| } while (!try_cmpxchg(_ptr, &_val, _val | _mask)); \ |
| _val; \ |
| }) |
| |
| #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG) |
| /* |
| * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG, |
| * this avoids any races wrt polling state changes and thereby avoids |
| * spurious IPIs. |
| */ |
| static inline bool set_nr_and_not_polling(struct task_struct *p) |
| { |
| struct thread_info *ti = task_thread_info(p); |
| return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG); |
| } |
| |
| /* |
| * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set. |
| * |
| * If this returns true, then the idle task promises to call |
| * sched_ttwu_pending() and reschedule soon. |
| */ |
| static bool set_nr_if_polling(struct task_struct *p) |
| { |
| struct thread_info *ti = task_thread_info(p); |
| typeof(ti->flags) val = READ_ONCE(ti->flags); |
| |
| do { |
| if (!(val & _TIF_POLLING_NRFLAG)) |
| return false; |
| if (val & _TIF_NEED_RESCHED) |
| return true; |
| } while (!try_cmpxchg(&ti->flags, &val, val | _TIF_NEED_RESCHED)); |
| |
| return true; |
| } |
| |
| #else |
| static inline bool set_nr_and_not_polling(struct task_struct *p) |
| { |
| set_tsk_need_resched(p); |
| return true; |
| } |
| |
| #ifdef CONFIG_SMP |
| static inline bool set_nr_if_polling(struct task_struct *p) |
| { |
| return false; |
| } |
| #endif |
| #endif |
| |
| static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task) |
| { |
| struct wake_q_node *node = &task->wake_q; |
| |
| /* |
| * Atomically grab the task, if ->wake_q is !nil already it means |
| * it's already queued (either by us or someone else) and will get the |
| * wakeup due to that. |
| * |
| * In order to ensure that a pending wakeup will observe our pending |
| * state, even in the failed case, an explicit smp_mb() must be used. |
| */ |
| smp_mb__before_atomic(); |
| if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL))) |
| return false; |
| |
| /* |
| * The head is context local, there can be no concurrency. |
| */ |
| *head->lastp = node; |
| head->lastp = &node->next; |
| return true; |
| } |
| |
| /** |
| * wake_q_add() - queue a wakeup for 'later' waking. |
| * @head: the wake_q_head to add @task to |
| * @task: the task to queue for 'later' wakeup |
| * |
| * Queue a task for later wakeup, most likely by the wake_up_q() call in the |
| * same context, _HOWEVER_ this is not guaranteed, the wakeup can come |
| * instantly. |
| * |
| * This function must be used as-if it were wake_up_process(); IOW the task |
| * must be ready to be woken at this location. |
| */ |
| void wake_q_add(struct wake_q_head *head, struct task_struct *task) |
| { |
| if (__wake_q_add(head, task)) |
| get_task_struct(task); |
| } |
| |
| /** |
| * wake_q_add_safe() - safely queue a wakeup for 'later' waking. |
| * @head: the wake_q_head to add @task to |
| * @task: the task to queue for 'later' wakeup |
| * |
| * Queue a task for later wakeup, most likely by the wake_up_q() call in the |
| * same context, _HOWEVER_ this is not guaranteed, the wakeup can come |
| * instantly. |
| * |
| * This function must be used as-if it were wake_up_process(); IOW the task |
| * must be ready to be woken at this location. |
| * |
| * This function is essentially a task-safe equivalent to wake_q_add(). Callers |
| * that already hold reference to @task can call the 'safe' version and trust |
| * wake_q to do the right thing depending whether or not the @task is already |
| * queued for wakeup. |
| */ |
| void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task) |
| { |
| if (!__wake_q_add(head, task)) |
| put_task_struct(task); |
| } |
| |
| void wake_up_q(struct wake_q_head *head) |
| { |
| struct wake_q_node *node = head->first; |
| |
| while (node != WAKE_Q_TAIL) { |
| struct task_struct *task; |
| |
| task = container_of(node, struct task_struct, wake_q); |
| /* Task can safely be re-inserted now: */ |
| node = node->next; |
| task->wake_q.next = NULL; |
| |
| /* |
| * wake_up_process() executes a full barrier, which pairs with |
| * the queueing in wake_q_add() so as not to miss wakeups. |
| */ |
| wake_up_process(task); |
| put_task_struct(task); |
| } |
| } |
| |
| /* |
| * resched_curr - mark rq's current task 'to be rescheduled now'. |
| * |
| * On UP this means the setting of the need_resched flag, on SMP it |
| * might also involve a cross-CPU call to trigger the scheduler on |
| * the target CPU. |
| */ |
| void resched_curr(struct rq *rq) |
| { |
| struct task_struct *curr = rq->curr; |
| int cpu; |
| |
| lockdep_assert_rq_held(rq); |
| |
| if (test_tsk_need_resched(curr)) |
| return; |
| |
| cpu = cpu_of(rq); |
| |
| if (cpu == smp_processor_id()) { |
| set_tsk_need_resched(curr); |
| set_preempt_need_resched(); |
| return; |
| } |
| |
| if (set_nr_and_not_polling(curr)) |
| smp_send_reschedule(cpu); |
| else |
| trace_sched_wake_idle_without_ipi(cpu); |
| } |
| |
| void resched_cpu(int cpu) |
| { |
| struct rq *rq = cpu_rq(cpu); |
| unsigned long flags; |
| |
| raw_spin_rq_lock_irqsave(rq, flags); |
| if (cpu_online(cpu) || cpu == smp_processor_id()) |
| resched_curr(rq); |
| raw_spin_rq_unlock_irqrestore(rq, flags); |
| } |
| |
| #ifdef CONFIG_SMP |
| #ifdef CONFIG_NO_HZ_COMMON |
| /* |
| * In the semi idle case, use the nearest busy CPU for migrating timers |
| * from an idle CPU. This is good for power-savings. |
| * |
| * We don't do similar optimization for completely idle system, as |
| * selecting an idle CPU will add more delays to the timers than intended |
| * (as that CPU's timer base may not be uptodate wrt jiffies etc). |
| */ |
| int get_nohz_timer_target(void) |
| { |
| int i, cpu = smp_processor_id(), default_cpu = -1; |
| struct sched_domain *sd; |
| const struct cpumask *hk_mask; |
| |
| if (housekeeping_cpu(cpu, HK_TYPE_TIMER)) { |
| if (!idle_cpu(cpu)) |
| return cpu; |
| default_cpu = cpu; |
| } |
| |
| hk_mask = housekeeping_cpumask(HK_TYPE_TIMER); |
| |
| guard(rcu)(); |
| |
| for_each_domain(cpu, sd) { |
| for_each_cpu_and(i, sched_domain_span(sd), hk_mask) { |
| if (cpu == i) |
| continue; |
| |
| if (!idle_cpu(i)) |
| return i; |
| } |
| } |
| |
| if (default_cpu == -1) |
| default_cpu = housekeeping_any_cpu(HK_TYPE_TIMER); |
| |
| return default_cpu; |
| } |
| |
| /* |
| * When add_timer_on() enqueues a timer into the timer wheel of an |
| * idle CPU then this timer might expire before the next timer event |
| * which is scheduled to wake up that CPU. In case of a completely |
| * idle system the next event might even be infinite time into the |
| * future. wake_up_idle_cpu() ensures that the CPU is woken up and |
| * leaves the inner idle loop so the newly added timer is taken into |
| * account when the CPU goes back to idle and evaluates the timer |
| * wheel for the next timer event. |
| */ |
| static void wake_up_idle_cpu(int cpu) |
| { |
| struct rq *rq = cpu_rq(cpu); |
| |
| if (cpu == smp_processor_id()) |
| return; |
| |
| /* |
| * Set TIF_NEED_RESCHED and send an IPI if in the non-polling |
| * part of the idle loop. This forces an exit from the idle loop |
| * and a round trip to schedule(). Now this could be optimized |
| * because a simple new idle loop iteration is enough to |
| * re-evaluate the next tick. Provided some re-ordering of tick |
| * nohz functions that would need to follow TIF_NR_POLLING |
| * clearing: |
| * |
| * - On most archs, a simple fetch_or on ti::flags with a |
| * "0" value would be enough to know if an IPI needs to be sent. |
| * |
| * - x86 needs to perform a last need_resched() check between |
| * monitor and mwait which doesn't take timers into account. |
| * There a dedicated TIF_TIMER flag would be required to |
| * fetch_or here and be checked along with TIF_NEED_RESCHED |
| * before mwait(). |
| * |
| * However, remote timer enqueue is not such a frequent event |
| * and testing of the above solutions didn't appear to report |
| * much benefits. |
| */ |
| if (set_nr_and_not_polling(rq->idle)) |
| smp_send_reschedule(cpu); |
| else |
| trace_sched_wake_idle_without_ipi(cpu); |
| } |
| |
| static bool wake_up_full_nohz_cpu(int cpu) |
| { |
| /* |
| * We just need the target to call irq_exit() and re-evaluate |
| * the next tick. The nohz full kick at least implies that. |
| * If needed we can still optimize that later with an |
| * empty IRQ. |
| */ |
| if (cpu_is_offline(cpu)) |
| return true; /* Don't try to wake offline CPUs. */ |
| if (tick_nohz_full_cpu(cpu)) { |
| if (cpu != smp_processor_id() || |
| tick_nohz_tick_stopped()) |
| tick_nohz_full_kick_cpu(cpu); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /* |
| * Wake up the specified CPU. If the CPU is going offline, it is the |
| * caller's responsibility to deal with the lost wakeup, for example, |
| * by hooking into the CPU_DEAD notifier like timers and hrtimers do. |
| */ |
| void wake_up_nohz_cpu(int cpu) |
| { |
| if (!wake_up_full_nohz_cpu(cpu)) |
| wake_up_idle_cpu(cpu); |
| } |
| |
| static void nohz_csd_func(void *info) |
| { |
| struct rq *rq = info; |
| int cpu = cpu_of(rq); |
| unsigned int flags; |
| |
| /* |
| * Release the rq::nohz_csd. |
| */ |
| flags = atomic_fetch_andnot(NOHZ_KICK_MASK | NOHZ_NEWILB_KICK, nohz_flags(cpu)); |
| WARN_ON(!(flags & NOHZ_KICK_MASK)); |
| |
| rq->idle_balance = idle_cpu(cpu); |
| if (rq->idle_balance && !need_resched()) { |
| rq->nohz_idle_balance = flags; |
| raise_softirq_irqoff(SCHED_SOFTIRQ); |
| } |
| } |
| |
| #endif /* CONFIG_NO_HZ_COMMON */ |
| |
| #ifdef CONFIG_NO_HZ_FULL |
| static inline bool __need_bw_check(struct rq *rq, struct task_struct *p) |
| { |
| if (rq->nr_running != 1) |
| return false; |
| |
| if (p->sched_class != &fair_sched_class) |
| return false; |
| |
| if (!task_on_rq_queued(p)) |
| return false; |
| |
| return true; |
| } |
| |
| bool sched_can_stop_tick(struct rq *rq) |
| { |
| int fifo_nr_running; |
| |
| /* Deadline tasks, even if single, need the tick */ |
| if (rq->dl.dl_nr_running) |
| return false; |
| |
| /* |
| * If there are more than one RR tasks, we need the tick to affect the |
| * actual RR behaviour. |
| */ |
| if (rq->rt.rr_nr_running) { |
| if (rq->rt.rr_nr_running == 1) |
| return true; |
| else |
| return false; |
| } |
| |
| /* |
| * If there's no RR tasks, but FIFO tasks, we can skip the tick, no |
| * forced preemption between FIFO tasks. |
| */ |
| fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running; |
| if (fifo_nr_running) |
| return true; |
| |
| /* |
| * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left; |
| * if there's more than one we need the tick for involuntary |
| * preemption. |
| */ |
| if (rq->nr_running > 1) |
| return false; |
| |
| /* |
| * If there is one task and it has CFS runtime bandwidth constraints |
| * and it's on the cpu now we don't want to stop the tick. |
| * This check prevents clearing the bit if a newly enqueued task here is |
| * dequeued by migrating while the constrained task continues to run. |
| * E.g. going from 2->1 without going through pick_next_task(). |
| */ |
| if (sched_feat(HZ_BW) && __need_bw_check(rq, rq->curr)) { |
| if (cfs_task_bw_constrained(rq->curr)) |
| return false; |
| } |
| |
| return true; |
| } |
| #endif /* CONFIG_NO_HZ_FULL */ |
| #endif /* CONFIG_SMP */ |
| |
| #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \ |
| (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH))) |
| /* |
| * Iterate task_group tree rooted at *from, calling @down when first entering a |
| * node and @up when leaving it for the final time. |
| * |
| * Caller must hold rcu_lock or sufficient equivalent. |
| */ |
| int walk_tg_tree_from(struct task_group *from, |
| tg_visitor down, tg_visitor up, void *data) |
| { |
| struct task_group *parent, *child; |
| int ret; |
| |
| parent = from; |
| |
| down: |
| ret = (*down)(parent, data); |
| if (ret) |
| goto out; |
| list_for_each_entry_rcu(child, &parent->children, siblings) { |
| parent = child; |
| goto down; |
| |
| up: |
| continue; |
| } |
| ret = (*up)(parent, data); |
| if (ret || parent == from) |
| goto out; |
| |
| child = parent; |
| parent = parent->parent; |
| if (parent) |
| goto up; |
| out: |
| return ret; |
| } |
| |
| int tg_nop(struct task_group *tg, void *data) |
| { |
| return 0; |
| } |
| #endif |
| |
| static void set_load_weight(struct task_struct *p, bool update_load) |
| { |
| int prio = p->static_prio - MAX_RT_PRIO; |
| struct load_weight *load = &p->se.load; |
| |
| /* |
| * SCHED_IDLE tasks get minimal weight: |
| */ |
| if (task_has_idle_policy(p)) { |
| load->weight = scale_load(WEIGHT_IDLEPRIO); |
| load->inv_weight = WMULT_IDLEPRIO; |
| return; |
| } |
| |
| /* |
| * SCHED_OTHER tasks have to update their load when changing their |
| * weight |
| */ |
| if (update_load && p->sched_class == &fair_sched_class) { |
| reweight_task(p, prio); |
| } else { |
| load->weight = scale_load(sched_prio_to_weight[prio]); |
| load->inv_weight = sched_prio_to_wmult[prio]; |
| } |
| } |
| |
| #ifdef CONFIG_UCLAMP_TASK |
| /* |
| * Serializes updates of utilization clamp values |
| * |
| * The (slow-path) user-space triggers utilization clamp value updates which |
| * can require updates on (fast-path) scheduler's data structures used to |
| * support enqueue/dequeue operations. |
| * While the per-CPU rq lock protects fast-path update operations, user-space |
| * requests are serialized using a mutex to reduce the risk of conflicting |
| * updates or API abuses. |
| */ |
| static DEFINE_MUTEX(uclamp_mutex); |
| |
| /* Max allowed minimum utilization */ |
| static unsigned int __maybe_unused sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE; |
| |
| /* Max allowed maximum utilization */ |
| static unsigned int __maybe_unused sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE; |
| |
| /* |
| * By default RT tasks run at the maximum performance point/capacity of the |
| * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to |
| * SCHED_CAPACITY_SCALE. |
| * |
| * This knob allows admins to change the default behavior when uclamp is being |
| * used. In battery powered devices, particularly, running at the maximum |
| * capacity and frequency will increase energy consumption and shorten the |
| * battery life. |
| * |
| * This knob only affects RT tasks that their uclamp_se->user_defined == false. |
| * |
| * This knob will not override the system default sched_util_clamp_min defined |
| * above. |
| */ |
| static unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE; |
| |
| /* All clamps are required to be less or equal than these values */ |
| static struct uclamp_se uclamp_default[UCLAMP_CNT]; |
| |
| /* |
| * This static key is used to reduce the uclamp overhead in the fast path. It |
| * primarily disables the call to uclamp_rq_{inc, dec}() in |
| * enqueue/dequeue_task(). |
| * |
| * This allows users to continue to enable uclamp in their kernel config with |
| * minimum uclamp overhead in the fast path. |
| * |
| * As soon as userspace modifies any of the uclamp knobs, the static key is |
| * enabled, since we have an actual users that make use of uclamp |
| * functionality. |
| * |
| * The knobs that would enable this static key are: |
| * |
| * * A task modifying its uclamp value with sched_setattr(). |
| * * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs. |
| * * An admin modifying the cgroup cpu.uclamp.{min, max} |
| */ |
| DEFINE_STATIC_KEY_FALSE(sched_uclamp_used); |
| |
| /* Integer rounded range for each bucket */ |
| #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS) |
| |
| #define for_each_clamp_id(clamp_id) \ |
| for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++) |
| |
| static inline unsigned int uclamp_bucket_id(unsigned int clamp_value) |
| { |
| return min_t(unsigned int, clamp_value / UCLAMP_BUCKET_DELTA, UCLAMP_BUCKETS - 1); |
| } |
| |
| static inline unsigned int uclamp_none(enum uclamp_id clamp_id) |
| { |
| if (clamp_id == UCLAMP_MIN) |
| return 0; |
| return SCHED_CAPACITY_SCALE; |
| } |
| |
| static inline void uclamp_se_set(struct uclamp_se *uc_se, |
| unsigned int value, bool user_defined) |
| { |
| uc_se->value = value; |
| uc_se->bucket_id = uclamp_bucket_id(value); |
| uc_se->user_defined = user_defined; |
| } |
| |
| static inline unsigned int |
| uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id, |
| unsigned int clamp_value) |
| { |
| /* |
| * Avoid blocked utilization pushing up the frequency when we go |
| * idle (which drops the max-clamp) by retaining the last known |
| * max-clamp. |
| */ |
| if (clamp_id == UCLAMP_MAX) { |
| rq->uclamp_flags |= UCLAMP_FLAG_IDLE; |
| return clamp_value; |
| } |
| |
| return uclamp_none(UCLAMP_MIN); |
| } |
| |
| static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id, |
| unsigned int clamp_value) |
| { |
| /* Reset max-clamp retention only on idle exit */ |
| if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE)) |
| return; |
| |
| uclamp_rq_set(rq, clamp_id, clamp_value); |
| } |
| |
| static inline |
| unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id, |
| unsigned int clamp_value) |
| { |
| struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket; |
| int bucket_id = UCLAMP_BUCKETS - 1; |
| |
| /* |
| * Since both min and max clamps are max aggregated, find the |
| * top most bucket with tasks in. |
| */ |
| for ( ; bucket_id >= 0; bucket_id--) { |
| if (!bucket[bucket_id].tasks) |
| continue; |
| return bucket[bucket_id].value; |
| } |
| |
| /* No tasks -- default clamp values */ |
| return uclamp_idle_value(rq, clamp_id, clamp_value); |
| } |
| |
| static void __uclamp_update_util_min_rt_default(struct task_struct *p) |
| { |
| unsigned int default_util_min; |
| struct uclamp_se *uc_se; |
| |
| lockdep_assert_held(&p->pi_lock); |
| |
| uc_se = &p->uclamp_req[UCLAMP_MIN]; |
| |
| /* Only sync if user didn't override the default */ |
| if (uc_se->user_defined) |
| return; |
| |
| default_util_min = sysctl_sched_uclamp_util_min_rt_default; |
| uclamp_se_set(uc_se, default_util_min, false); |
| } |
| |
| static void uclamp_update_util_min_rt_default(struct task_struct *p) |
| { |
| if (!rt_task(p)) |
| return; |
| |
| /* Protect updates to p->uclamp_* */ |
| guard(task_rq_lock)(p); |
| __uclamp_update_util_min_rt_default(p); |
| } |
| |
| static inline struct uclamp_se |
| uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id) |
| { |
| /* Copy by value as we could modify it */ |
| struct uclamp_se uc_req = p->uclamp_req[clamp_id]; |
| #ifdef CONFIG_UCLAMP_TASK_GROUP |
| unsigned int tg_min, tg_max, value; |
| |
| /* |
| * Tasks in autogroups or root task group will be |
| * restricted by system defaults. |
| */ |
| if (task_group_is_autogroup(task_group(p))) |
| return uc_req; |
| if (task_group(p) == &root_task_group) |
| return uc_req; |
| |
| tg_min = task_group(p)->uclamp[UCLAMP_MIN].value; |
| tg_max = task_group(p)->uclamp[UCLAMP_MAX].value; |
| value = uc_req.value; |
| value = clamp(value, tg_min, tg_max); |
| uclamp_se_set(&uc_req, value, false); |
| #endif |
| |
| return uc_req; |
| } |
| |
| /* |
| * The effective clamp bucket index of a task depends on, by increasing |
| * priority: |
| * - the task specific clamp value, when explicitly requested from userspace |
| * - the task group effective clamp value, for tasks not either in the root |
| * group or in an autogroup |
| * - the system default clamp value, defined by the sysadmin |
| */ |
| static inline struct uclamp_se |
| uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id) |
| { |
| struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id); |
| struct uclamp_se uc_max = uclamp_default[clamp_id]; |
| |
| /* System default restrictions always apply */ |
| if (unlikely(uc_req.value > uc_max.value)) |
| return uc_max; |
| |
| return uc_req; |
| } |
| |
| unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id) |
| { |
| struct uclamp_se uc_eff; |
| |
| /* Task currently refcounted: use back-annotated (effective) value */ |
| if (p->uclamp[clamp_id].active) |
| return (unsigned long)p->uclamp[clamp_id].value; |
| |
| uc_eff = uclamp_eff_get(p, clamp_id); |
| |
| return (unsigned long)uc_eff.value; |
| } |
| |
| /* |
| * When a task is enqueued on a rq, the clamp bucket currently defined by the |
| * task's uclamp::bucket_id is refcounted on that rq. This also immediately |
| * updates the rq's clamp value if required. |
| * |
| * Tasks can have a task-specific value requested from user-space, track |
| * within each bucket the maximum value for tasks refcounted in it. |
| * This "local max aggregation" allows to track the exact "requested" value |
| * for each bucket when all its RUNNABLE tasks require the same clamp. |
| */ |
| static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p, |
| enum uclamp_id clamp_id) |
| { |
| struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id]; |
| struct uclamp_se *uc_se = &p->uclamp[clamp_id]; |
| struct uclamp_bucket *bucket; |
| |
| lockdep_assert_rq_held(rq); |
| |
| /* Update task effective clamp */ |
| p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id); |
| |
| bucket = &uc_rq->bucket[uc_se->bucket_id]; |
| bucket->tasks++; |
| uc_se->active = true; |
| |
| uclamp_idle_reset(rq, clamp_id, uc_se->value); |
| |
| /* |
| * Local max aggregation: rq buckets always track the max |
| * "requested" clamp value of its RUNNABLE tasks. |
| */ |
| if (bucket->tasks == 1 || uc_se->value > bucket->value) |
| bucket->value = uc_se->value; |
| |
| if (uc_se->value > uclamp_rq_get(rq, clamp_id)) |
| uclamp_rq_set(rq, clamp_id, uc_se->value); |
| } |
| |
| /* |
| * When a task is dequeued from a rq, the clamp bucket refcounted by the task |
| * is released. If this is the last task reference counting the rq's max |
| * active clamp value, then the rq's clamp value is updated. |
| * |
| * Both refcounted tasks and rq's cached clamp values are expected to be |
| * always valid. If it's detected they are not, as defensive programming, |
| * enforce the expected state and warn. |
| */ |
| static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p, |
| enum uclamp_id clamp_id) |
| { |
| struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id]; |
| struct uclamp_se *uc_se = &p->uclamp[clamp_id]; |
| struct uclamp_bucket *bucket; |
| unsigned int bkt_clamp; |
| unsigned int rq_clamp; |
| |
| lockdep_assert_rq_held(rq); |
| |
| /* |
| * If sched_uclamp_used was enabled after task @p was enqueued, |
| * we could end up with unbalanced call to uclamp_rq_dec_id(). |
| * |
| * In this case the uc_se->active flag should be false since no uclamp |
| * accounting was performed at enqueue time and we can just return |
| * here. |
| * |
| * Need to be careful of the following enqueue/dequeue ordering |
| * problem too |
| * |
| * enqueue(taskA) |
| * // sched_uclamp_used gets enabled |
| * enqueue(taskB) |
| * dequeue(taskA) |
| * // Must not decrement bucket->tasks here |
| * dequeue(taskB) |
| * |
| * where we could end up with stale data in uc_se and |
| * bucket[uc_se->bucket_id]. |
| * |
| * The following check here eliminates the possibility of such race. |
| */ |
| if (unlikely(!uc_se->active)) |
| return; |
| |
| bucket = &uc_rq->bucket[uc_se->bucket_id]; |
| |
| SCHED_WARN_ON(!bucket->tasks); |
| if (likely(bucket->tasks)) |
| bucket->tasks--; |
| |
| uc_se->active = false; |
| |
| /* |
| * Keep "local max aggregation" simple and accept to (possibly) |
| * overboost some RUNNABLE tasks in the same bucket. |
| * The rq clamp bucket value is reset to its base value whenever |
| * there are no more RUNNABLE tasks refcounting it. |
| */ |
| if (likely(bucket->tasks)) |
| return; |
| |
| rq_clamp = uclamp_rq_get(rq, clamp_id); |
| /* |
| * Defensive programming: this should never happen. If it happens, |
| * e.g. due to future modification, warn and fixup the expected value. |
| */ |
| SCHED_WARN_ON(bucket->value > rq_clamp); |
| if (bucket->value >= rq_clamp) { |
| bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value); |
| uclamp_rq_set(rq, clamp_id, bkt_clamp); |
| } |
| } |
| |
| static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) |
| { |
| enum uclamp_id clamp_id; |
| |
| /* |
| * Avoid any overhead until uclamp is actually used by the userspace. |
| * |
| * The condition is constructed such that a NOP is generated when |
| * sched_uclamp_used is disabled. |
| */ |
| if (!static_branch_unlikely(&sched_uclamp_used)) |
| return; |
| |
| if (unlikely(!p->sched_class->uclamp_enabled)) |
| return; |
| |
| for_each_clamp_id(clamp_id) |
| uclamp_rq_inc_id(rq, p, clamp_id); |
| |
| /* Reset clamp idle holding when there is one RUNNABLE task */ |
| if (rq->uclamp_flags & UCLAMP_FLAG_IDLE) |
| rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE; |
| } |
| |
| static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) |
| { |
| enum uclamp_id clamp_id; |
| |
| /* |
| * Avoid any overhead until uclamp is actually used by the userspace. |
| * |
| * The condition is constructed such that a NOP is generated when |
| * sched_uclamp_used is disabled. |
| */ |
| if (!static_branch_unlikely(&sched_uclamp_used)) |
| return; |
| |
| if (unlikely(!p->sched_class->uclamp_enabled)) |
| return; |
| |
| for_each_clamp_id(clamp_id) |
| uclamp_rq_dec_id(rq, p, clamp_id); |
| } |
| |
| static inline void uclamp_rq_reinc_id(struct rq *rq, struct task_struct *p, |
| enum uclamp_id clamp_id) |
| { |
| if (!p->uclamp[clamp_id].active) |
| return; |
| |
| uclamp_rq_dec_id(rq, p, clamp_id); |
| uclamp_rq_inc_id(rq, p, clamp_id); |
| |
| /* |
| * Make sure to clear the idle flag if we've transiently reached 0 |
| * active tasks on rq. |
| */ |
| if (clamp_id == UCLAMP_MAX && (rq->uclamp_flags & UCLAMP_FLAG_IDLE)) |
| rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE; |
| } |
| |
| static inline void |
| uclamp_update_active(struct task_struct *p) |
| { |
| enum uclamp_id clamp_id; |
| struct rq_flags rf; |
| struct rq *rq; |
| |
| /* |
| * Lock the task and the rq where the task is (or was) queued. |
| * |
| * We might lock the (previous) rq of a !RUNNABLE task, but that's the |
| * price to pay to safely serialize util_{min,max} updates with |
| * enqueues, dequeues and migration operations. |
| * This is the same locking schema used by __set_cpus_allowed_ptr(). |
| */ |
| rq = task_rq_lock(p, &rf); |
| |
| /* |
| * Setting the clamp bucket is serialized by task_rq_lock(). |
| * If the task is not yet RUNNABLE and its task_struct is not |
| * affecting a valid clamp bucket, the next time it's enqueued, |
| * it will already see the updated clamp bucket value. |
| */ |
| for_each_clamp_id(clamp_id) |
| uclamp_rq_reinc_id(rq, p, clamp_id); |
| |
| task_rq_unlock(rq, p, &rf); |
| } |
| |
| #ifdef CONFIG_UCLAMP_TASK_GROUP |
| static inline void |
| uclamp_update_active_tasks(struct cgroup_subsys_state *css) |
| { |
| struct css_task_iter it; |
| struct task_struct *p; |
| |
| css_task_iter_start(css, 0, &it); |
| while ((p = css_task_iter_next(&it))) |
| uclamp_update_active(p); |
| css_task_iter_end(&it); |
| } |
| |
| static void cpu_util_update_eff(struct cgroup_subsys_state *css); |
| #endif |
| |
| #ifdef CONFIG_SYSCTL |
| #ifdef CONFIG_UCLAMP_TASK_GROUP |
| static void uclamp_update_root_tg(void) |
| { |
| struct task_group *tg = &root_task_group; |
| |
| uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN], |
| sysctl_sched_uclamp_util_min, false); |
| uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX], |
| sysctl_sched_uclamp_util_max, false); |
| |
| guard(rcu)(); |
| cpu_util_update_eff(&root_task_group.css); |
| } |
| #else |
| static void uclamp_update_root_tg(void) { } |
| #endif |
| |
| static void uclamp_sync_util_min_rt_default(void) |
| { |
| struct task_struct *g, *p; |
| |
| /* |
| * copy_process() sysctl_uclamp |
| * uclamp_min_rt = X; |
| * write_lock(&tasklist_lock) read_lock(&tasklist_lock) |
| * // link thread smp_mb__after_spinlock() |
| * write_unlock(&tasklist_lock) read_unlock(&tasklist_lock); |
| * sched_post_fork() for_each_process_thread() |
| * __uclamp_sync_rt() __uclamp_sync_rt() |
| * |
| * Ensures that either sched_post_fork() will observe the new |
| * uclamp_min_rt or for_each_process_thread() will observe the new |
| * task. |
| */ |
| read_lock(&tasklist_lock); |
| smp_mb__after_spinlock(); |
| read_unlock(&tasklist_lock); |
| |
| guard(rcu)(); |
| for_each_process_thread(g, p) |
| uclamp_update_util_min_rt_default(p); |
| } |
| |
| static int sysctl_sched_uclamp_handler(struct ctl_table *table, int write, |
| void *buffer, size_t *lenp, loff_t *ppos) |
| { |
| bool update_root_tg = false; |
| int old_min, old_max, old_min_rt; |
| int result; |
| |
| guard(mutex)(&uclamp_mutex); |
| |
| old_min = sysctl_sched_uclamp_util_min; |
| old_max = sysctl_sched_uclamp_util_max; |
| old_min_rt = sysctl_sched_uclamp_util_min_rt_default; |
| |
| result = proc_dointvec(table, write, buffer, lenp, ppos); |
| if (result) |
| goto undo; |
| if (!write) |
| return 0; |
| |
| if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max || |
| sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE || |
| sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) { |
| |
| result = -EINVAL; |
| goto undo; |
| } |
| |
| if (old_min != sysctl_sched_uclamp_util_min) { |
| uclamp_se_set(&uclamp_default[UCLAMP_MIN], |
| sysctl_sched_uclamp_util_min, false); |
| update_root_tg = true; |
| } |
| if (old_max != sysctl_sched_uclamp_util_max) { |
| uclamp_se_set(&uclamp_default[UCLAMP_MAX], |
| sysctl_sched_uclamp_util_max, false); |
| update_root_tg = true; |
| } |
| |
| if (update_root_tg) { |
| static_branch_enable(&sched_uclamp_used); |
| uclamp_update_root_tg(); |
| } |
| |
| if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) { |
| static_branch_enable(&sched_uclamp_used); |
| uclamp_sync_util_min_rt_default(); |
| } |
| |
| /* |
| * We update all RUNNABLE tasks only when task groups are in use. |
| * Otherwise, keep it simple and do just a lazy update at each next |
| * task enqueue time. |
| */ |
| return 0; |
| |
| undo: |
| sysctl_sched_uclamp_util_min = old_min; |
| sysctl_sched_uclamp_util_max = old_max; |
| sysctl_sched_uclamp_util_min_rt_default = old_min_rt; |
| return result; |
| } |
| #endif |
| |
| static int uclamp_validate(struct task_struct *p, |
| const struct sched_attr *attr) |
| { |
| int util_min = p->uclamp_req[UCLAMP_MIN].value; |
| int util_max = p->uclamp_req[UCLAMP_MAX].value; |
| |
| if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) { |
| util_min = attr->sched_util_min; |
| |
| if (util_min + 1 > SCHED_CAPACITY_SCALE + 1) |
| return -EINVAL; |
| } |
| |
| if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) { |
| util_max = attr->sched_util_max; |
| |
| if (util_max + 1 > SCHED_CAPACITY_SCALE + 1) |
| return -EINVAL; |
| } |
| |
| if (util_min != -1 && util_max != -1 && util_min > util_max) |
| return -EINVAL; |
| |
| /* |
| * We have valid uclamp attributes; make sure uclamp is enabled. |
| * |
| * We need to do that here, because enabling static branches is a |
| * blocking operation which obviously cannot be done while holding |
| * scheduler locks. |
| */ |
| static_branch_enable(&sched_uclamp_used); |
| |
| return 0; |
| } |
| |
| static bool uclamp_reset(const struct sched_attr *attr, |
| enum uclamp_id clamp_id, |
| struct uclamp_se *uc_se) |
| { |
| /* Reset on sched class change for a non user-defined clamp value. */ |
| if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)) && |
| !uc_se->user_defined) |
| return true; |
| |
| /* Reset on sched_util_{min,max} == -1. */ |
| if (clamp_id == UCLAMP_MIN && |
| attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN && |
| attr->sched_util_min == -1) { |
| return true; |
| } |
| |
| if (clamp_id == UCLAMP_MAX && |
| attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX && |
| attr->sched_util_max == -1) { |
| return true; |
| } |
| |
| return false; |
| } |
| |
| static void __setscheduler_uclamp(struct task_struct *p, |
| const struct sched_attr *attr) |
| { |
| enum uclamp_id clamp_id; |
| |
| for_each_clamp_id(clamp_id) { |
| struct uclamp_se *uc_se = &p->uclamp_req[clamp_id]; |
| unsigned int value; |
| |
| if (!uclamp_reset(attr, clamp_id, uc_se)) |
| continue; |
| |
| /* |
| * RT by default have a 100% boost value that could be modified |
| * at runtime. |
| */ |
| if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN)) |
| value = sysctl_sched_uclamp_util_min_rt_default; |
| else |
| value = uclamp_none(clamp_id); |
| |
| uclamp_se_set(uc_se, value, false); |
| |
| } |
| |
| if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP))) |
| return; |
| |
| if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN && |
| attr->sched_util_min != -1) { |
| uclamp_se_set(&p->uclamp_req[UCLAMP_MIN], |
| attr->sched_util_min, true); |
| } |
| |
| if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX && |
| attr->sched_util_max != -1) { |
| uclamp_se_set(&p->uclamp_req[UCLAMP_MAX], |
| attr->sched_util_max, true); |
| } |
| } |
| |
| static void uclamp_fork(struct task_struct *p) |
| { |
| enum uclamp_id clamp_id; |
| |
| /* |
| * We don't need to hold task_rq_lock() when updating p->uclamp_* here |
| * as the task is still at its early fork stages. |
| */ |
| for_each_clamp_id(clamp_id) |
| p->uclamp[clamp_id].active = false; |
| |
| if (likely(!p->sched_reset_on_fork)) |
| return; |
| |
| for_each_clamp_id(clamp_id) { |
| uclamp_se_set(&p->uclamp_req[clamp_id], |
| uclamp_none(clamp_id), false); |
| } |
| } |
| |
| static void uclamp_post_fork(struct task_struct *p) |
| { |
| uclamp_update_util_min_rt_default(p); |
| } |
| |
| static void __init init_uclamp_rq(struct rq *rq) |
| { |
| enum uclamp_id clamp_id; |
| struct uclamp_rq *uc_rq = rq->uclamp; |
| |
| for_each_clamp_id(clamp_id) { |
| uc_rq[clamp_id] = (struct uclamp_rq) { |
| .value = uclamp_none(clamp_id) |
| }; |
| } |
| |
| rq->uclamp_flags = UCLAMP_FLAG_IDLE; |
| } |
| |
| static void __init init_uclamp(void) |
| { |
| struct uclamp_se uc_max = {}; |
| enum uclamp_id clamp_id; |
| int cpu; |
| |
| for_each_possible_cpu(cpu) |
| init_uclamp_rq(cpu_rq(cpu)); |
| |
| for_each_clamp_id(clamp_id) { |
| uclamp_se_set(&init_task.uclamp_req[clamp_id], |
| uclamp_none(clamp_id), false); |
| } |
| |
| /* System defaults allow max clamp values for both indexes */ |
| uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false); |
| for_each_clamp_id(clamp_id) { |
| uclamp_default[clamp_id] = uc_max; |
| #ifdef CONFIG_UCLAMP_TASK_GROUP |
| root_task_group.uclamp_req[clamp_id] = uc_max; |
| root_task_group.uclamp[clamp_id] = uc_max; |
| #endif |
| } |
| } |
| |
| #else /* !CONFIG_UCLAMP_TASK */ |
| static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { } |
| static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { } |
| static inline int uclamp_validate(struct task_struct *p, |
| const struct sched_attr *attr) |
| { |
| return -EOPNOTSUPP; |
| } |
| static void __setscheduler_uclamp(struct task_struct *p, |
| const struct sched_attr *attr) { } |
| static inline void uclamp_fork(struct task_struct *p) { } |
| static inline void uclamp_post_fork(struct task_struct *p) { } |
| static inline void init_uclamp(void) { } |
| #endif /* CONFIG_UCLAMP_TASK */ |
| |
| bool sched_task_on_rq(struct task_struct *p) |
| { |
| return task_on_rq_queued(p); |
| } |
| |
| unsigned long get_wchan(struct task_struct *p) |
| { |
| unsigned long ip = 0; |
| unsigned int state; |
| |
| if (!p || p == current) |
| return 0; |
| |
| /* Only get wchan if task is blocked and we can keep it that way. */ |
| raw_spin_lock_irq(&p->pi_lock); |
| state = READ_ONCE(p->__state); |
| smp_rmb(); /* see try_to_wake_up() */ |
| if (state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq) |
| ip = __get_wchan(p); |
| raw_spin_unlock_irq(&p->pi_lock); |
| |
| return ip; |
| } |
| |
| static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags) |
| { |
| if (!(flags & ENQUEUE_NOCLOCK)) |
| update_rq_clock(rq); |
| |
| if (!(flags & ENQUEUE_RESTORE)) { |
| sched_info_enqueue(rq, p); |
| psi_enqueue(p, (flags & ENQUEUE_WAKEUP) && !(flags & ENQUEUE_MIGRATED)); |
| } |
| |
| uclamp_rq_inc(rq, p); |
| p->sched_class->enqueue_task(rq, p, flags); |
| |
| if (sched_core_enabled(rq)) |
| sched_core_enqueue(rq, p); |
| } |
| |
| static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags) |
| { |
| if (sched_core_enabled(rq)) |
| sched_core_dequeue(rq, p, flags); |
| |
| if (!(flags & DEQUEUE_NOCLOCK)) |
| update_rq_clock(rq); |
| |
| if (!(flags & DEQUEUE_SAVE)) { |
| sched_info_dequeue(rq, p); |
| psi_dequeue(p, flags & DEQUEUE_SLEEP); |
| } |
| |
| uclamp_rq_dec(rq, p); |
| p->sched_class->dequeue_task(rq, p, flags); |
| } |
| |
| void activate_task(struct rq *rq, struct task_struct *p, int flags) |
| { |
| if (task_on_rq_migrating(p)) |
| flags |= ENQUEUE_MIGRATED; |
| if (flags & ENQUEUE_MIGRATED) |
| sched_mm_cid_migrate_to(rq, p); |
| |
| enqueue_task(rq, p, flags); |
| |
| WRITE_ONCE(p->on_rq, TASK_ON_RQ_QUEUED); |
| ASSERT_EXCLUSIVE_WRITER(p->on_rq); |
| } |
| |
| void deactivate_task(struct rq *rq, struct task_struct *p, int flags) |
| { |
| WRITE_ONCE(p->on_rq, (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING); |
| ASSERT_EXCLUSIVE_WRITER(p->on_rq); |
| |
| dequeue_task(rq, p, flags); |
| } |
| |
| static inline int __normal_prio(int policy, int rt_prio, int nice) |
| { |
| int prio; |
| |
| if (dl_policy(policy)) |
| prio = MAX_DL_PRIO - 1; |
| else if (rt_policy(policy)) |
| prio = MAX_RT_PRIO - 1 - rt_prio; |
| else |
| prio = NICE_TO_PRIO(nice); |
| |
| return prio; |
| } |
| |
| /* |
| * Calculate the expected normal priority: i.e. priority |
| * without taking RT-inheritance into account. Might be |
| * boosted by interactivity modifiers. Changes upon fork, |
| * setprio syscalls, and whenever the interactivity |
| * estimator recalculates. |
| */ |
| static inline int normal_prio(struct task_struct *p) |
| { |
| return __normal_prio(p->policy, p->rt_priority, PRIO_TO_NICE(p->static_prio)); |
| } |
| |
| /* |
| * Calculate the current priority, i.e. the priority |
| * taken into account by the scheduler. This value might |
| * be boosted by RT tasks, or might be boosted by |
| * interactivity modifiers. Will be RT if the task got |
| * RT-boosted. If not then it returns p->normal_prio. |
| */ |
| static int effective_prio(struct task_struct *p) |
| { |
| p->normal_prio = normal_prio(p); |
| /* |
| * If we are RT tasks or we were boosted to RT priority, |
| * keep the priority unchanged. Otherwise, update priority |
| * to the normal priority: |
| */ |
| if (!rt_prio(p->prio)) |
| return p->normal_prio; |
| return p->prio; |
| } |
| |
| /** |
| * task_curr - is this task currently executing on a CPU? |
| * @p: the task in question. |
| * |
| * Return: 1 if the task is currently executing. 0 otherwise. |
| */ |
| inline int task_curr(const struct task_struct *p) |
| { |
| return cpu_curr(task_cpu(p)) == p; |
| } |
| |
| /* |
| * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock, |
| * use the balance_callback list if you want balancing. |
| * |
| * this means any call to check_class_changed() must be followed by a call to |
| * balance_callback(). |
| */ |
| static inline void check_class_changed(struct rq *rq, struct task_struct *p, |
| const struct sched_class *prev_class, |
| int oldprio) |
| { |
| if (prev_class != p->sched_class) { |
| if (prev_class->switched_from) |
| prev_class->switched_from(rq, p); |
| |
| p->sched_class->switched_to(rq, p); |
| } else if (oldprio != p->prio || dl_task(p)) |
| p->sched_class->prio_changed(rq, p, oldprio); |
| } |
| |
| void wakeup_preempt(struct rq *rq, struct task_struct *p, int flags) |
| { |
| if (p->sched_class == rq->curr->sched_class) |
| rq->curr->sched_class->wakeup_preempt(rq, p, flags); |
| else if (sched_class_above(p->sched_class, rq->curr->sched_class)) |
| resched_curr(rq); |
| |
| /* |
| * A queue event has occurred, and we're going to schedule. In |
| * this case, we can save a useless back to back clock update. |
| */ |
| if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr)) |
| rq_clock_skip_update(rq); |
| } |
| |
| static __always_inline |
| int __task_state_match(struct task_struct *p, unsigned int state) |
| { |
| if (READ_ONCE(p->__state) & state) |
| return 1; |
| |
| if (READ_ONCE(p->saved_state) & state) |
| return -1; |
| |
| return 0; |
| } |
| |
| static __always_inline |
| int task_state_match(struct task_struct *p, unsigned int state) |
| { |
| /* |
| * Serialize against current_save_and_set_rtlock_wait_state(), |
| * current_restore_rtlock_saved_state(), and __refrigerator(). |
| */ |
| guard(raw_spinlock_irq)(&p->pi_lock); |
| return __task_state_match(p, state); |
| } |
| |
| /* |
| * wait_task_inactive - wait for a thread to unschedule. |
| * |
| * Wait for the thread to block in any of the states set in @match_state. |
| * If it changes, i.e. @p might have woken up, then return zero. When we |
| * succeed in waiting for @p to be off its CPU, we return a positive number |
| * (its total switch count). If a second call a short while later returns the |
| * same number, the caller can be sure that @p has remained unscheduled the |
| * whole time. |
| * |
| * The caller must ensure that the task *will* unschedule sometime soon, |
| * else this function might spin for a *long* time. This function can't |
| * be called with interrupts off, or it may introduce deadlock with |
| * smp_call_function() if an IPI is sent by the same process we are |
| * waiting to become inactive. |
| */ |
| unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state) |
| { |
| int running, queued, match; |
| struct rq_flags rf; |
| unsigned long ncsw; |
| struct rq *rq; |
| |
| for (;;) { |
| /* |
| * We do the initial early heuristics without holding |
| * any task-queue locks at all. We'll only try to get |
| * the runqueue lock when things look like they will |
| * work out! |
| */ |
| rq = task_rq(p); |
| |
| /* |
| * If the task is actively running on another CPU |
| * still, just relax and busy-wait without holding |
| * any locks. |
| * |
| * NOTE! Since we don't hold any locks, it's not |
| * even sure that "rq" stays as the right runqueue! |
| * But we don't care, since "task_on_cpu()" will |
| * return false if the runqueue has changed and p |
| * is actually now running somewhere else! |
| */ |
| while (task_on_cpu(rq, p)) { |
| if (!task_state_match(p, match_state)) |
| return 0; |
| cpu_relax(); |
| } |
| |
| /* |
| * Ok, time to look more closely! We need the rq |
| * lock now, to be *sure*. If we're wrong, we'll |
| * just go back and repeat. |
| */ |
| rq = task_rq_lock(p, &rf); |
| trace_sched_wait_task(p); |
| running = task_on_cpu(rq, p); |
| queued = task_on_rq_queued(p); |
| ncsw = 0; |
| if ((match = __task_state_match(p, match_state))) { |
| /* |
| * When matching on p->saved_state, consider this task |
| * still queued so it will wait. |
| */ |
| if (match < 0) |
| queued = 1; |
| ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ |
| } |
| task_rq_unlock(rq, p, &rf); |
| |
| /* |
| * If it changed from the expected state, bail out now. |
| */ |
| if (unlikely(!ncsw)) |
| break; |
| |
| /* |
| * Was it really running after all now that we |
| * checked with the proper locks actually held? |
| * |
| * Oops. Go back and try again.. |
| */ |
| if (unlikely(running)) { |
| cpu_relax(); |
| continue; |
| } |
| |
| /* |
| * It's not enough that it's not actively running, |
| * it must be off the runqueue _entirely_, and not |
| * preempted! |
| * |
| * So if it was still runnable (but just not actively |
| * running right now), it's preempted, and we should |
| * yield - it could be a while. |
| */ |
| if (unlikely(queued)) { |
| ktime_t to = NSEC_PER_SEC / HZ; |
| |
| set_current_state(TASK_UNINTERRUPTIBLE); |
| schedule_hrtimeout(&to, HRTIMER_MODE_REL_HARD); |
| continue; |
| } |
| |
| /* |
| * Ahh, all good. It wasn't running, and it wasn't |
| * runnable, which means that it will never become |
| * running in the future either. We're all done! |
| */ |
| break; |
| } |
| |
| return ncsw; |
| } |
| |
| #ifdef CONFIG_SMP |
| |
| static void |
| __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx); |
| |
| static int __set_cpus_allowed_ptr(struct task_struct *p, |
| struct affinity_context *ctx); |
| |
| static void migrate_disable_switch(struct rq *rq, struct task_struct *p) |
| { |
| struct affinity_context ac = { |
| .new_mask = cpumask_of(rq->cpu), |
| .flags = SCA_MIGRATE_DISABLE, |
| }; |
| |
| if (likely(!p->migration_disabled)) |
| return; |
| |
| if (p->cpus_ptr != &p->cpus_mask) |
| return; |
| |
| /* |
| * Violates locking rules! see comment in __do_set_cpus_allowed(). |
| */ |
| __do_set_cpus_allowed(p, &ac); |
| } |
| |
| void migrate_disable(void) |
| { |
| struct task_struct *p = current; |
| |
| if (p->migration_disabled) { |
| p->migration_disabled++; |
| return; |
| } |
| |
| guard(preempt)(); |
| this_rq()->nr_pinned++; |
| p->migration_disabled = 1; |
| } |
| EXPORT_SYMBOL_GPL(migrate_disable); |
| |
| void migrate_enable(void) |
| { |
| struct task_struct *p = current; |
| struct affinity_context ac = { |
| .new_mask = &p->cpus_mask, |
| .flags = SCA_MIGRATE_ENABLE, |
| }; |
| |
| if (p->migration_disabled > 1) { |
| p->migration_disabled--; |
| return; |
| } |
| |
| if (WARN_ON_ONCE(!p->migration_disabled)) |
| return; |
| |
| /* |
| * Ensure stop_task runs either before or after this, and that |
| * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule(). |
| */ |
| guard(preempt)(); |
| if (p->cpus_ptr != &p->cpus_mask) |
| __set_cpus_allowed_ptr(p, &ac); |
| /* |
| * Mustn't clear migration_disabled() until cpus_ptr points back at the |
| * regular cpus_mask, otherwise things that race (eg. |
| * select_fallback_rq) get confused. |
| */ |
| barrier(); |
| p->migration_disabled = 0; |
| this_rq()->nr_pinned--; |
| } |
| EXPORT_SYMBOL_GPL(migrate_enable); |
| |
| static inline bool rq_has_pinned_tasks(struct rq *rq) |
| { |
| return rq->nr_pinned; |
| } |
| |
| /* |
| * Per-CPU kthreads are allowed to run on !active && online CPUs, see |
| * __set_cpus_allowed_ptr() and select_fallback_rq(). |
| */ |
| static inline bool is_cpu_allowed(struct task_struct *p, int cpu) |
| { |
| /* When not in the task's cpumask, no point in looking further. */ |
| if (!cpumask_test_cpu(cpu, p->cpus_ptr)) |
| return false; |
| |
| /* migrate_disabled() must be allowed to finish. */ |
| if (is_migration_disabled(p)) |
| return cpu_online(cpu); |
| |
| /* Non kernel threads are not allowed during either online or offline. */ |
| if (!(p->flags & PF_KTHREAD)) |
| return cpu_active(cpu) && task_cpu_possible(cpu, p); |
| |
| /* KTHREAD_IS_PER_CPU is always allowed. */ |
| if (kthread_is_per_cpu(p)) |
| return cpu_online(cpu); |
| |
| /* Regular kernel threads don't get to stay during offline. */ |
| if (cpu_dying(cpu)) |
| return false; |
| |
| /* But are allowed during online. */ |
| return cpu_online(cpu); |
| } |
| |
| /* |
| * This is how migration works: |
| * |
| * 1) we invoke migration_cpu_stop() on the target CPU using |
| * stop_one_cpu(). |
| * 2) stopper starts to run (implicitly forcing the migrated thread |
| * off the CPU) |
| * 3) it checks whether the migrated task is still in the wrong runqueue. |
| * 4) if it's in the wrong runqueue then the migration thread removes |
| * it and puts it into the right queue. |
| * 5) stopper completes and stop_one_cpu() returns and the migration |
| * is done. |
| */ |
| |
| /* |
| * move_queued_task - move a queued task to new rq. |
| * |
| * Returns (locked) new rq. Old rq's lock is released. |
| */ |
| static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf, |
| struct task_struct *p, int new_cpu) |
| { |
| lockdep_assert_rq_held(rq); |
| |
| deactivate_task(rq, p, DEQUEUE_NOCLOCK); |
| set_task_cpu(p, new_cpu); |
| rq_unlock(rq, rf); |
| |
| rq = cpu_rq(new_cpu); |
| |
| rq_lock(rq, rf); |
| WARN_ON_ONCE(task_cpu(p) != new_cpu); |
| activate_task(rq, p, 0); |
| wakeup_preempt(rq, p, 0); |
| |
| return rq; |
| } |
| |
| struct migration_arg { |
| struct task_struct *task; |
| int dest_cpu; |
| struct set_affinity_pending *pending; |
| }; |
| |
| /* |
| * @refs: number of wait_for_completion() |
| * @stop_pending: is @stop_work in use |
| */ |
| struct set_affinity_pending { |
| refcount_t refs; |
| unsigned int stop_pending; |
| struct completion done; |
| struct cpu_stop_work stop_work; |
| struct migration_arg arg; |
| }; |
| |
| /* |
| * Move (not current) task off this CPU, onto the destination CPU. We're doing |
| * this because either it can't run here any more (set_cpus_allowed() |
| * away from this CPU, or CPU going down), or because we're |
| * attempting to rebalance this task on exec (sched_exec). |
| * |
| * So we race with normal scheduler movements, but that's OK, as long |
| * as the task is no longer on this CPU. |
| */ |
| static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf, |
| struct task_struct *p, int dest_cpu) |
| { |
| /* Affinity changed (again). */ |
| if (!is_cpu_allowed(p, dest_cpu)) |
| return rq; |
| |
| rq = move_queued_task(rq, rf, p, dest_cpu); |
| |
| return rq; |
| } |
| |
| /* |
| * migration_cpu_stop - this will be executed by a highprio stopper thread |
| * and performs thread migration by bumping thread off CPU then |
| * 'pushing' onto another runqueue. |
| */ |
| static int migration_cpu_stop(void *data) |
| { |
| struct migration_arg *arg = data; |
| struct set_affinity_pending *pending = arg->pending; |
| struct task_struct *p = arg->task; |
| struct rq *rq = this_rq(); |
| bool complete = false; |
| struct rq_flags rf; |
| |
| /* |
| * The original target CPU might have gone down and we might |
| * be on another CPU but it doesn't matter. |
| */ |
| local_irq_save(rf.flags); |
| /* |
| * We need to explicitly wake pending tasks before running |
| * __migrate_task() such that we will not miss enforcing cpus_ptr |
| * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test. |
| */ |
| flush_smp_call_function_queue(); |
| |
| raw_spin_lock(&p->pi_lock); |
| rq_lock(rq, &rf); |
| |
| /* |
| * If we were passed a pending, then ->stop_pending was set, thus |
| * p->migration_pending must have remained stable. |
| */ |
| WARN_ON_ONCE(pending && pending != p->migration_pending); |
| |
| /* |
| * If task_rq(p) != rq, it cannot be migrated here, because we're |
| * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because |
| * we're holding p->pi_lock. |
| */ |
| if (task_rq(p) == rq) { |
| if (is_migration_disabled(p)) |
| goto out; |
| |
| if (pending) { |
| p->migration_pending = NULL; |
| complete = true; |
| |
| if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) |
| goto out; |
| } |
| |
| if (task_on_rq_queued(p)) { |
| update_rq_clock(rq); |
| rq = __migrate_task(rq, &rf, p, arg->dest_cpu); |
| } else { |
| p->wake_cpu = arg->dest_cpu; |
| } |
| |
| /* |
| * XXX __migrate_task() can fail, at which point we might end |
| * up running on a dodgy CPU, AFAICT this can only happen |
| * during CPU hotplug, at which point we'll get pushed out |
| * anyway, so it's probably not a big deal. |
| */ |
| |
| } else if (pending) { |
| /* |
| * This happens when we get migrated between migrate_enable()'s |
| * preempt_enable() and scheduling the stopper task. At that |
| * point we're a regular task again and not current anymore. |
| * |
| * A !PREEMPT kernel has a giant hole here, which makes it far |
| * more likely. |
| */ |
| |
| /* |
| * The task moved before the stopper got to run. We're holding |
| * ->pi_lock, so the allowed mask is stable - if it got |
| * somewhere allowed, we're done. |
| */ |
| if (cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) { |
| p->migration_pending = NULL; |
| complete = true; |
| goto out; |
| } |
| |
| /* |
| * When migrate_enable() hits a rq mis-match we can't reliably |
| * determine is_migration_disabled() and so have to chase after |
| * it. |
| */ |
| WARN_ON_ONCE(!pending->stop_pending); |
| preempt_disable(); |
| task_rq_unlock(rq, p, &rf); |
| stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop, |
| &pending->arg, &pending->stop_work); |
| preempt_enable(); |
| return 0; |
| } |
| out: |
| if (pending) |
| pending->stop_pending = false; |
| task_rq_unlock(rq, p, &rf); |
| |
| if (complete) |
| complete_all(&pending->done); |
| |
| return 0; |
| } |
| |
| int push_cpu_stop(void *arg) |
| { |
| struct rq *lowest_rq = NULL, *rq = this_rq(); |
| struct task_struct *p = arg; |
| |
| raw_spin_lock_irq(&p->pi_lock); |
| raw_spin_rq_lock(rq); |
| |
| if (task_rq(p) != rq) |
| goto out_unlock; |
| |
| if (is_migration_disabled(p)) { |
| p->migration_flags |= MDF_PUSH; |
| goto out_unlock; |
| } |
| |
| p->migration_flags &= ~MDF_PUSH; |
| |
| if (p->sched_class->find_lock_rq) |
| lowest_rq = p->sched_class->find_lock_rq(p, rq); |
| |
| if (!lowest_rq) |
| goto out_unlock; |
| |
| // XXX validate p is still the highest prio task |
| if (task_rq(p) == rq) { |
| deactivate_task(rq, p, 0); |
| set_task_cpu(p, lowest_rq->cpu); |
| activate_task(lowest_rq, p, 0); |
| resched_curr(lowest_rq); |
| } |
| |
| double_unlock_balance(rq, lowest_rq); |
| |
| out_unlock: |
| rq->push_busy = false; |
| raw_spin_rq_unlock(rq); |
| raw_spin_unlock_irq(&p->pi_lock); |
| |
| put_task_struct(p); |
| return 0; |
| } |
| |
| /* |
| * sched_class::set_cpus_allowed must do the below, but is not required to |
| * actually call this function. |
| */ |
| void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx) |
| { |
| if (ctx->flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) { |
| p->cpus_ptr = ctx->new_mask; |
| return; |
| } |
| |
| cpumask_copy(&p->cpus_mask, ctx->new_mask); |
| p->nr_cpus_allowed = cpumask_weight(ctx->new_mask); |
| |
| /* |
| * Swap in a new user_cpus_ptr if SCA_USER flag set |
| */ |
| if (ctx->flags & SCA_USER) |
| swap(p->user_cpus_ptr, ctx->user_mask); |
| } |
| |
| static void |
| __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx) |
| { |
| struct rq *rq = task_rq(p); |
| bool queued, running; |
| |
| /* |
| * This here violates the locking rules for affinity, since we're only |
| * supposed to change these variables while holding both rq->lock and |
| * p->pi_lock. |
| * |
| * HOWEVER, it magically works, because ttwu() is the only code that |
| * accesses these variables under p->pi_lock and only does so after |
| * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule() |
| * before finish_task(). |
| * |
| * XXX do further audits, this smells like something putrid. |
| */ |
| if (ctx->flags & SCA_MIGRATE_DISABLE) |
| SCHED_WARN_ON(!p->on_cpu); |
| else |
| lockdep_assert_held(&p->pi_lock); |
| |
| queued = task_on_rq_queued(p); |
| running = task_current(rq, p); |
| |
| if (queued) { |
| /* |
| * Because __kthread_bind() calls this on blocked tasks without |
| * holding rq->lock. |
| */ |
| lockdep_assert_rq_held(rq); |
| dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK); |
| } |
| if (running) |
| put_prev_task(rq, p); |
| |
| p->sched_class->set_cpus_allowed(p, ctx); |
| |
| if (queued) |
| enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); |
| if (running) |
| set_next_task(rq, p); |
| } |
| |
| /* |
| * Used for kthread_bind() and select_fallback_rq(), in both cases the user |
| * affinity (if any) should be destroyed too. |
| */ |
| void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) |
| { |
| struct affinity_context ac = { |
| .new_mask = new_mask, |
| .user_mask = NULL, |
| .flags = SCA_USER, /* clear the user requested mask */ |
| }; |
| union cpumask_rcuhead { |
| cpumask_t cpumask; |
| struct rcu_head rcu; |
| }; |
| |
| __do_set_cpus_allowed(p, &ac); |
| |
| /* |
| * Because this is called with p->pi_lock held, it is not possible |
| * to use kfree() here (when PREEMPT_RT=y), therefore punt to using |
| * kfree_rcu(). |
| */ |
| kfree_rcu((union cpumask_rcuhead *)ac.user_mask, rcu); |
| } |
| |
| static cpumask_t *alloc_user_cpus_ptr(int node) |
| { |
| /* |
| * See do_set_cpus_allowed() above for the rcu_head usage. |
| */ |
| int size = max_t(int, cpumask_size(), sizeof(struct rcu_head)); |
| |
| return kmalloc_node(size, GFP_KERNEL, node); |
| } |
| |
| int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, |
| int node) |
| { |
| cpumask_t *user_mask; |
| unsigned long flags; |
| |
| /* |
| * Always clear dst->user_cpus_ptr first as their user_cpus_ptr's |
| * may differ by now due to racing. |
| */ |
| dst->user_cpus_ptr = NULL; |
| |
| /* |
| * This check is racy and losing the race is a valid situation. |
| * It is not worth the extra overhead of taking the pi_lock on |
| * every fork/clone. |
| */ |
| if (data_race(!src->user_cpus_ptr)) |
| return 0; |
| |
| user_mask = alloc_user_cpus_ptr(node); |
| if (!user_mask) |
| return -ENOMEM; |
| |
| /* |
| * Use pi_lock to protect content of user_cpus_ptr |
| * |
| * Though unlikely, user_cpus_ptr can be reset to NULL by a concurrent |
| * do_set_cpus_allowed(). |
| */ |
| raw_spin_lock_irqsave(&src->pi_lock, flags); |
| if (src->user_cpus_ptr) { |
| swap(dst->user_cpus_ptr, user_mask); |
| cpumask_copy(dst->user_cpus_ptr, src->user_cpus_ptr); |
| } |
| raw_spin_unlock_irqrestore(&src->pi_lock, flags); |
| |
| if (unlikely(user_mask)) |
| kfree(user_mask); |
| |
| return 0; |
| } |
| |
| static inline struct cpumask *clear_user_cpus_ptr(struct task_struct *p) |
| { |
| struct cpumask *user_mask = NULL; |
| |
| swap(p->user_cpus_ptr, user_mask); |
| |
| return user_mask; |
| } |
| |
| void release_user_cpus_ptr(struct task_struct *p) |
| { |
| kfree(clear_user_cpus_ptr(p)); |
| } |
| |
| /* |
| * This function is wildly self concurrent; here be dragons. |
| * |
| * |
| * When given a valid mask, __set_cpus_allowed_ptr() must block until the |
| * designated task is enqueued on an allowed CPU. If that task is currently |
| * running, we have to kick it out using the CPU stopper. |
| * |
| * Migrate-Disable comes along and tramples all over our nice sandcastle. |
| * Consider: |
| * |
| * Initial conditions: P0->cpus_mask = [0, 1] |
| * |
| * P0@CPU0 P1 |
| * |
| * migrate_disable(); |
| * <preempted> |
| * set_cpus_allowed_ptr(P0, [1]); |
| * |
| * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes |
| * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region). |
| * This means we need the following scheme: |
| * |
| * P0@CPU0 P1 |
| * |
| * migrate_disable(); |
| * <preempted> |
| * set_cpus_allowed_ptr(P0, [1]); |
| * <blocks> |
| * <resumes> |
| * migrate_enable(); |
| * __set_cpus_allowed_ptr(); |
| * <wakes local stopper> |
| * `--> <woken on migration completion> |
| * |
| * Now the fun stuff: there may be several P1-like tasks, i.e. multiple |
| * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any |
| * task p are serialized by p->pi_lock, which we can leverage: the one that |
| * should come into effect at the end of the Migrate-Disable region is the last |
| * one. This means we only need to track a single cpumask (i.e. p->cpus_mask), |
| * but we still need to properly signal those waiting tasks at the appropriate |
| * moment. |
| * |
| * This is implemented using struct set_affinity_pending. The first |
| * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will |
| * setup an instance of that struct and install it on the targeted task_struct. |
| * Any and all further callers will reuse that instance. Those then wait for |
| * a completion signaled at the tail of the CPU stopper callback (1), triggered |
| * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()). |
| * |
| * |
| * (1) In the cases covered above. There is one more where the completion is |
| * signaled within affine_move_task() itself: when a subsequent affinity request |
| * occurs after the stopper bailed out due to the targeted task still being |
| * Migrate-Disable. Consider: |
| * |
| * Initial conditions: P0->cpus_mask = [0, 1] |
| * |
| * CPU0 P1 P2 |
| * <P0> |
| * migrate_disable(); |
| * <preempted> |
| * set_cpus_allowed_ptr(P0, [1]); |
| * <blocks> |
| * <migration/0> |
| * migration_cpu_stop() |
| * is_migration_disabled() |
| * <bails> |
| * set_cpus_allowed_ptr(P0, [0, 1]); |
| * <signal completion> |
| * <awakes> |
| * |
| * Note that the above is safe vs a concurrent migrate_enable(), as any |
| * pending affinity completion is preceded by an uninstallation of |
| * p->migration_pending done with p->pi_lock held. |
| */ |
| static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf, |
| int dest_cpu, unsigned int flags) |
| __releases(rq->lock) |
| __releases(p->pi_lock) |
| { |
| struct set_affinity_pending my_pending = { }, *pending = NULL; |
| bool stop_pending, complete = false; |
| |
| /* Can the task run on the task's current CPU? If so, we're done */ |
| if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) { |
| struct task_struct *push_task = NULL; |
| |
| if ((flags & SCA_MIGRATE_ENABLE) && |
| (p->migration_flags & MDF_PUSH) && !rq->push_busy) { |
| rq->push_busy = true; |
| push_task = get_task_struct(p); |
| } |
| |
| /* |
| * If there are pending waiters, but no pending stop_work, |
| * then complete now. |
| */ |
| pending = p->migration_pending; |
| if (pending && !pending->stop_pending) { |
| p->migration_pending = NULL; |
| complete = true; |
| } |
| |
| preempt_disable(); |
| task_rq_unlock(rq, p, rf); |
| if (push_task) { |
| stop_one_cpu_nowait(rq->cpu, push_cpu_stop, |
| p, &rq->push_work); |
| } |
| preempt_enable(); |
| |
| if (complete) |
| complete_all(&pending->done); |
| |
| return 0; |
| } |
| |
| if (!(flags & SCA_MIGRATE_ENABLE)) { |
| /* serialized by p->pi_lock */ |
| if (!p->migration_pending) { |
| /* Install the request */ |
| refcount_set(&my_pending.refs, 1); |
| init_completion(&my_pending.done); |
| my_pending.arg = (struct migration_arg) { |
| .task = p, |
| .dest_cpu = dest_cpu, |
| .pending = &my_pending, |
| }; |
| |
| p->migration_pending = &my_pending; |
| } else { |
| pending = p->migration_pending; |
| refcount_inc(&pending->refs); |
| /* |
| * Affinity has changed, but we've already installed a |
| * pending. migration_cpu_stop() *must* see this, else |
| * we risk a completion of the pending despite having a |
| * task on a disallowed CPU. |
| * |
| * Serialized by p->pi_lock, so this is safe. |
| */ |
| pending->arg.dest_cpu = dest_cpu; |
| } |
| } |
| pending = p->migration_pending; |
| /* |
| * - !MIGRATE_ENABLE: |
| * we'll have installed a pending if there wasn't one already. |
| * |
| * - MIGRATE_ENABLE: |
| * we're here because the current CPU isn't matching anymore, |
| * the only way that can happen is because of a concurrent |
| * set_cpus_allowed_ptr() call, which should then still be |
| * pending completion. |
| * |
| * Either way, we really should have a @pending here. |
| */ |
| if (WARN_ON_ONCE(!pending)) { |
| task_rq_unlock(rq, p, rf); |
| return -EINVAL; |
| } |
| |
| if (task_on_cpu(rq, p) || READ_ONCE(p->__state) == TASK_WAKING) { |
| /* |
| * MIGRATE_ENABLE gets here because 'p == current', but for |
| * anything else we cannot do is_migration_disabled(), punt |
| * and have the stopper function handle it all race-free. |
| */ |
| stop_pending = pending->stop_pending; |
| if (!stop_pending) |
| pending->stop_pending = true; |
| |
| if (flags & SCA_MIGRATE_ENABLE) |
| p->migration_flags &= ~MDF_PUSH; |
| |
| preempt_disable(); |
| task_rq_unlock(rq, p, rf); |
| if (!stop_pending) { |
| stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop, |
| &pending->arg, &pending->stop_work); |
| } |
| preempt_enable(); |
| |
| if (flags & SCA_MIGRATE_ENABLE) |
| return 0; |
| } else { |
| |
| if (!is_migration_disabled(p)) { |
| if (task_on_rq_queued(p)) |
| rq = move_queued_task(rq, rf, p, dest_cpu); |
| |
| if (!pending->stop_pending) { |
| p->migration_pending = NULL; |
| complete = true; |
| } |
| } |
| task_rq_unlock(rq, p, rf); |
| |
| if (complete) |
| complete_all(&pending->done); |
| } |
| |
| wait_for_completion(&pending->done); |
| |
| if (refcount_dec_and_test(&pending->refs)) |
| wake_up_var(&pending->refs); /* No UaF, just an address */ |
| |
| /* |
| * Block the original owner of &pending until all subsequent callers |
| * have seen the completion and decremented the refcount |
| */ |
| wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs)); |
| |
| /* ARGH */ |
| WARN_ON_ONCE(my_pending.stop_pending); |
| |
| return 0; |
| } |
| |
| /* |
| * Called with both p->pi_lock and rq->lock held; drops both before returning. |
| */ |
| static int __set_cpus_allowed_ptr_locked(struct task_struct *p, |
| struct affinity_context *ctx, |
| struct rq *rq, |
| struct rq_flags *rf) |
| __releases(rq->lock) |
| __releases(p->pi_lock) |
| { |
| const struct cpumask *cpu_allowed_mask = task_cpu_possible_mask(p); |
| const struct cpumask *cpu_valid_mask = cpu_active_mask; |
| bool kthread = p->flags & PF_KTHREAD; |
| unsigned int dest_cpu; |
| int ret = 0; |
| |
| update_rq_clock(rq); |
| |
| if (kthread || is_migration_disabled(p)) { |
| /* |
| * Kernel threads are allowed on online && !active CPUs, |
| * however, during cpu-hot-unplug, even these might get pushed |
| * away if not KTHREAD_IS_PER_CPU. |
| * |
| * Specifically, migration_disabled() tasks must not fail the |
| * cpumask_any_and_distribute() pick below, esp. so on |
| * SCA_MIGRATE_ENABLE, otherwise we'll not call |
| * set_cpus_allowed_common() and actually reset p->cpus_ptr. |
| */ |
| cpu_valid_mask = cpu_online_mask; |
| } |
| |
| if (!kthread && !cpumask_subset(ctx->new_mask, cpu_allowed_mask)) { |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| /* |
| * Must re-check here, to close a race against __kthread_bind(), |
| * sched_setaffinity() is not guaranteed to observe the flag. |
| */ |
| if ((ctx->flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) { |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| if (!(ctx->flags & SCA_MIGRATE_ENABLE)) { |
| if (cpumask_equal(&p->cpus_mask, ctx->new_mask)) { |
| if (ctx->flags & SCA_USER) |
| swap(p->user_cpus_ptr, ctx->user_mask); |
| goto out; |
| } |
| |
| if (WARN_ON_ONCE(p == current && |
| is_migration_disabled(p) && |
| !cpumask_test_cpu(task_cpu(p), ctx->new_mask))) { |
| ret = -EBUSY; |
| goto out; |
| } |
| } |
| |
| /* |
| * Picking a ~random cpu helps in cases where we are changing affinity |
| * for groups of tasks (ie. cpuset), so that load balancing is not |
| * immediately required to distribute the tasks within their new mask. |
| */ |
| dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, ctx->new_mask); |
| if (dest_cpu >= nr_cpu_ids) { |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| __do_set_cpus_allowed(p, ctx); |
| |
| return affine_move_task(rq, p, rf, dest_cpu, ctx->flags); |
| |
| out: |
| task_rq_unlock(rq, p, rf); |
| |
| return ret; |
| } |
| |
| /* |
| * Change a given task's CPU affinity. Migrate the thread to a |
| * proper CPU and schedule it away if the CPU it's executing on |
| * is removed from the allowed bitmask. |
| * |
| * NOTE: the caller must have a valid reference to the task, the |
| * task must not exit() & deallocate itself prematurely. The |
| * call is not atomic; no spinlocks may be held. |
| */ |
| static int __set_cpus_allowed_ptr(struct task_struct *p, |
| struct affinity_context *ctx) |
| { |
| struct rq_flags rf; |
| struct rq *rq; |
| |
| rq = task_rq_lock(p, &rf); |
| /* |
| * Masking should be skipped if SCA_USER or any of the SCA_MIGRATE_* |
| * flags are set. |
| */ |
| if (p->user_cpus_ptr && |
| !(ctx->flags & (SCA_USER | SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) && |
| cpumask_and(rq->scratch_mask, ctx->new_mask, p->user_cpus_ptr)) |
| ctx->new_mask = rq->scratch_mask; |
| |
| return __set_cpus_allowed_ptr_locked(p, ctx, rq, &rf); |
| } |
| |
| int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) |
| { |
| struct affinity_context ac = { |
| .new_mask = new_mask, |
| .flags = 0, |
| }; |
| |
| return __set_cpus_allowed_ptr(p, &ac); |
| } |
| EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); |
| |
| /* |
| * Change a given task's CPU affinity to the intersection of its current |
| * affinity mask and @subset_mask, writing the resulting mask to @new_mask. |
| * If user_cpus_ptr is defined, use it as the basis for restricting CPU |
| * affinity or use cpu_online_mask instead. |
| * |
| * If the resulting mask is empty, leave the affinity unchanged and return |
| * -EINVAL. |
| */ |
| static int restrict_cpus_allowed_ptr(struct task_struct *p, |
| struct cpumask *new_mask, |
| const struct cpumask *subset_mask) |
| { |
| struct affinity_context ac = { |
| .new_mask = new_mask, |
| .flags = 0, |
| }; |
| struct rq_flags rf; |
| struct rq *rq; |
| int err; |
| |
| rq = task_rq_lock(p, &rf); |
| |
| /* |
| * Forcefully restricting the affinity of a deadline task is |
| * likely to cause problems, so fail and noisily override the |
| * mask entirely. |
| */ |
| if (task_has_dl_policy(p) && dl_bandwidth_enabled()) { |
| err = -EPERM; |
| goto err_unlock; |
| } |
| |
| if (!cpumask_and(new_mask, task_user_cpus(p), subset_mask)) { |
| err = -EINVAL; |
| goto err_unlock; |
| } |
| |
| return __set_cpus_allowed_ptr_locked(p, &ac, rq, &rf); |
| |
| err_unlock: |
| task_rq_unlock(rq, p, &rf); |
| return err; |
| } |
| |
| /* |
| * Restrict the CPU affinity of task @p so that it is a subset of |
| * task_cpu_possible_mask() and point @p->user_cpus_ptr to a copy of the |
| * old affinity mask. If the resulting mask is empty, we warn and walk |
| * up the cpuset hierarchy until we find a suitable mask. |
| */ |
| void force_compatible_cpus_allowed_ptr(struct task_struct *p) |
| { |
| cpumask_var_t new_mask; |
| const struct cpumask *override_mask = task_cpu_possible_mask(p); |
| |
| alloc_cpumask_var(&new_mask, GFP_KERNEL); |
| |
| /* |
| * __migrate_task() can fail silently in the face of concurrent |
| * offlining of the chosen destination CPU, so take the hotplug |
| * lock to ensure that the migration succeeds. |
| */ |
| cpus_read_lock(); |
| if (!cpumask_available(new_mask)) |
| goto out_set_mask; |
| |
| if (!restrict_cpus_allowed_ptr(p, new_mask, override_mask)) |
| goto out_free_mask; |
| |
| /* |
| * We failed to find a valid subset of the affinity mask for the |
| * task, so override it based on its cpuset hierarchy. |
| */ |
| cpuset_cpus_allowed(p, new_mask); |
| override_mask = new_mask; |
| |
| out_set_mask: |
| if (printk_ratelimit()) { |
| printk_deferred("Overriding affinity for process %d (%s) to CPUs %*pbl\n", |
| task_pid_nr(p), p->comm, |
| cpumask_pr_args(override_mask)); |
| } |
| |
| WARN_ON(set_cpus_allowed_ptr(p, override_mask)); |
| out_free_mask: |
| cpus_read_unlock(); |
| free_cpumask_var(new_mask); |
| } |
| |
| static int |
| __sched_setaffinity(struct task_struct *p, struct affinity_context *ctx); |
| |
| /* |
| * Restore the affinity of a task @p which was previously restricted by a |
| * call to force_compatible_cpus_allowed_ptr(). |
| * |
| * It is the caller's responsibility to serialise this with any calls to |
| * force_compatible_cpus_allowed_ptr(@p). |
| */ |
| void relax_compatible_cpus_allowed_ptr(struct task_struct *p) |
| { |
| struct affinity_context ac = { |
| .new_mask = task_user_cpus(p), |
| .flags = 0, |
| }; |
| int ret; |
| |
| /* |
| * Try to restore the old affinity mask with __sched_setaffinity(). |
| * Cpuset masking will be done there too. |
| */ |
| ret = __sched_setaffinity(p, &ac); |
| WARN_ON_ONCE(ret); |
| } |
| |
| void set_task_cpu(struct task_struct *p, unsigned int new_cpu) |
| { |
| #ifdef CONFIG_SCHED_DEBUG |
| unsigned int state = READ_ONCE(p->__state); |
| |
| /* |
| * We should never call set_task_cpu() on a blocked task, |
| * ttwu() will sort out the placement. |
| */ |
| WARN_ON_ONCE(state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq); |
| |
| /* |
| * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING, |
| * because schedstat_wait_{start,end} rebase migrating task's wait_start |
| * time relying on p->on_rq. |
| */ |
| WARN_ON_ONCE(state == TASK_RUNNING && |
| p->sched_class == &fair_sched_class && |
| (p->on_rq && !task_on_rq_migrating(p))); |
| |
| #ifdef CONFIG_LOCKDEP |
| /* |
| * The caller should hold either p->pi_lock or rq->lock, when changing |
| * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks. |
| * |
| * sched_move_task() holds both and thus holding either pins the cgroup, |
| * see task_group(). |
| * |
| * Furthermore, all task_rq users should acquire both locks, see |
| * task_rq_lock(). |
| */ |
| WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) || |
| lockdep_is_held(__rq_lockp(task_rq(p))))); |
| #endif |
| /* |
| * Clearly, migrating tasks to offline CPUs is a fairly daft thing. |
| */ |
| WARN_ON_ONCE(!cpu_online(new_cpu)); |
| |
| WARN_ON_ONCE(is_migration_disabled(p)); |
| #endif |
| |
| trace_sched_migrate_task(p, new_cpu); |
| |
| if (task_cpu(p) != new_cpu) { |
| if (p->sched_class->migrate_task_rq) |
| p->sched_class->migrate_task_rq(p, new_cpu); |
| p->se.nr_migrations++; |
| rseq_migrate(p); |
| sched_mm_cid_migrate_from(p); |
| perf_event_task_migrate(p); |
| } |
| |
| __set_task_cpu(p, new_cpu); |
| } |
| |
| #ifdef CONFIG_NUMA_BALANCING |
| static void __migrate_swap_task(struct task_struct *p, int cpu) |
| { |
| if (task_on_rq_queued(p)) { |
| struct rq *src_rq, *dst_rq; |
| struct rq_flags srf, drf; |
| |
| src_rq = task_rq(p); |
| dst_rq = cpu_rq(cpu); |
| |
| rq_pin_lock(src_rq, &srf); |
| rq_pin_lock(dst_rq, &drf); |
| |
| deactivate_task(src_rq, p, 0); |
| set_task_cpu(p, cpu); |
| activate_task(dst_rq, p, 0); |
| wakeup_preempt(dst_rq, p, 0); |
| |
| rq_unpin_lock(dst_rq, &drf); |
| rq_unpin_lock(src_rq, &srf); |
| |
| } else { |
| /* |
| * Task isn't running anymore; make it appear like we migrated |
| * it before it went to sleep. This means on wakeup we make the |
| * previous CPU our target instead of where it really is. |
| */ |
| p->wake_cpu = cpu; |
| } |
| } |
| |
| struct migration_swap_arg { |
| struct task_struct *src_task, *dst_task; |
| int src_cpu, dst_cpu; |
| }; |
| |
| static int migrate_swap_stop(void *data) |
| { |
| struct migration_swap_arg *arg = data; |
| struct rq *src_rq, *dst_rq; |
| |
| if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu)) |
| return -EAGAIN; |
| |
| src_rq = cpu_rq(arg->src_cpu); |
| dst_rq = cpu_rq(arg->dst_cpu); |
| |
| guard(double_raw_spinlock)(&arg->src_task->pi_lock, &arg->dst_task->pi_lock); |
| guard(double_rq_lock)(src_rq, dst_rq); |
| |
| if (task_cpu(arg->dst_task) != arg->dst_cpu) |
| return -EAGAIN; |
| |
| if (task_cpu(arg->src_task) != arg->src_cpu) |
| return -EAGAIN; |
| |
| if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr)) |
| return -EAGAIN; |
| |
| if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr)) |
| return -EAGAIN; |
| |
| __migrate_swap_task(arg->src_task, arg->dst_cpu); |
| __migrate_swap_task(arg->dst_task, arg->src_cpu); |
| |
| return 0; |
| } |
| |
| /* |
| * Cross migrate two tasks |
| */ |
| int migrate_swap(struct task_struct *cur, struct task_struct *p, |
| int target_cpu, int curr_cpu) |
| { |
| struct migration_swap_arg arg; |
| int ret = -EINVAL; |
| |
| arg = (struct migration_swap_arg){ |
| .src_task = cur, |
| .src_cpu = curr_cpu, |
| .dst_task = p, |
| .dst_cpu = target_cpu, |
| }; |
| |
| if (arg.src_cpu == arg.dst_cpu) |
| goto out; |
| |
| /* |
| * These three tests are all lockless; this is OK since all of them |
| * will be re-checked with proper locks held further down the line. |
| */ |
| if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu)) |
| goto out; |
| |
| if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr)) |
| goto out; |
| |
| if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr)) |
| goto out; |
| |
| trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu); |
| ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg); |
| |
| out: |
| return ret; |
| } |
| #endif /* CONFIG_NUMA_BALANCING */ |
| |
| /*** |
| * kick_process - kick a running thread to enter/exit the kernel |
| * @p: the to-be-kicked thread |
| * |
| * Cause a process which is running on another CPU to enter |
| * kernel-mode, without any delay. (to get signals handled.) |
| * |
| * NOTE: this function doesn't have to take the runqueue lock, |
| * because all it wants to ensure is that the remote task enters |
| * the kernel. If the IPI races and the task has been migrated |
| * to another CPU then no harm is done and the purpose has been |
| * achieved as well. |
| */ |
| void kick_process(struct task_struct *p) |
| { |
| guard(preempt)(); |
| int cpu = task_cpu(p); |
| |
| if ((cpu != smp_processor_id()) && task_curr(p)) |
| smp_send_reschedule(cpu); |
| } |
| EXPORT_SYMBOL_GPL(kick_process); |
| |
| /* |
| * ->cpus_ptr is protected by both rq->lock and p->pi_lock |
| * |
| * A few notes on cpu_active vs cpu_online: |
| * |
| * - cpu_active must be a subset of cpu_online |
| * |
| * - on CPU-up we allow per-CPU kthreads on the online && !active CPU, |
| * see __set_cpus_allowed_ptr(). At this point the newly online |
| * CPU isn't yet part of the sched domains, and balancing will not |
| * see it. |
| * |
| * - on CPU-down we clear cpu_active() to mask the sched domains and |
| * avoid the load balancer to place new tasks on the to be removed |
| * CPU. Existing tasks will remain running there and will be taken |
| * off. |
| * |
| * This means that fallback selection must not select !active CPUs. |
| * And can assume that any active CPU must be online. Conversely |
| * select_task_rq() below may allow selection of !active CPUs in order |
| * to satisfy the above rules. |
| */ |
| static int select_fallback_rq(int cpu, struct task_struct *p) |
| { |
| int nid = cpu_to_node(cpu); |
| const struct cpumask *nodemask = NULL; |
| enum { cpuset, possible, fail } state = cpuset; |
| int dest_cpu; |
| |
| /* |
| * If the node that the CPU is on has been offlined, cpu_to_node() |
| * will return -1. There is no CPU on the node, and we should |
| * select the CPU on the other node. |
| */ |
| if (nid != -1) { |
| nodemask = cpumask_of_node(nid); |
| |
| /* Look for allowed, online CPU in same node. */ |
| for_each_cpu(dest_cpu, nodemask) { |
| if (is_cpu_allowed(p, dest_cpu)) |
| return dest_cpu; |
| } |
| } |
| |
| for (;;) { |
| /* Any allowed, online CPU? */ |
| for_each_cpu(dest_cpu, p->cpus_ptr) { |
| if (!is_cpu_allowed(p, dest_cpu)) |
| continue; |
| |
| goto out; |
| } |
| |
| /* No more Mr. Nice Guy. */ |
| switch (state) { |
| case cpuset: |
| if (cpuset_cpus_allowed_fallback(p)) { |
| state = possible; |
| break; |
| } |
| fallthrough; |
| case possible: |
| /* |
| * XXX When called from select_task_rq() we only |
| * hold p->pi_lock and again violate locking order. |
| * |
| * More yuck to audit. |
| */ |
| do_set_cpus_allowed(p, task_cpu_possible_mask(p)); |
| state = fail; |
| break; |
| case fail: |
| BUG(); |
| break; |
| } |
| } |
| |
| out: |
| if (state != cpuset) { |
| /* |
| * Don't tell them about moving exiting tasks or |
| * kernel threads (both mm NULL), since they never |
| * leave kernel. |
| */ |
| if (p->mm && printk_ratelimit()) { |
| printk_deferred("process %d (%s) no longer affine to cpu%d\n", |
| task_pid_nr(p), p->comm, cpu); |
| } |
| } |
| |
| return dest_cpu; |
| } |
| |
| /* |
| * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable. |
| */ |
| static inline |
| int select_task_rq(struct task_struct *p, int cpu, int wake_flags) |
| { |
| lockdep_assert_held(&p->pi_lock); |
| |
| if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p)) |
| cpu = p->sched_class->select_task_rq(p, cpu, wake_flags); |
| else |
| cpu = cpumask_any(p->cpus_ptr); |
| |
| /* |
| * In order not to call set_task_cpu() on a blocking task we need |
| * to rely on ttwu() to place the task on a valid ->cpus_ptr |
| * CPU. |
| * |
| * Since this is common to all placement strategies, this lives here. |
| * |
| * [ this allows ->select_task() to simply return task_cpu(p) and |
| * not worry about this generic constraint ] |
| */ |
| if (unlikely(!is_cpu_allowed(p, cpu))) |
| cpu = select_fallback_rq(task_cpu(p), p); |
| |
| return cpu; |
| } |
| |
| void sched_set_stop_task(int cpu, struct task_struct *stop) |
| { |
| static struct lock_class_key stop_pi_lock; |
| struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; |
| struct task_struct *old_stop = cpu_rq(cpu)->stop; |
| |
| if (stop) { |
| /* |
| * Make it appear like a SCHED_FIFO task, its something |
| * userspace knows about and won't get confused about. |
| * |
| * Also, it will make PI more or less work without too |
| * much confusion -- but then, stop work should not |
| * rely on PI working anyway. |
| */ |
| sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m); |
| |
| stop->sched_class = &stop_sched_class; |
| |
| /* |
| * The PI code calls rt_mutex_setprio() with ->pi_lock held to |
| * adjust the effective priority of a task. As a result, |
| * rt_mutex_setprio() can trigger (RT) balancing operations, |
| * which can then trigger wakeups of the stop thread to push |
| * around the current task. |
| * |
| * The stop task itself will never be part of the PI-chain, it |
| * never blocks, therefore that ->pi_lock recursion is safe. |
| * Tell lockdep about this by placing the stop->pi_lock in its |
| * own class. |
| */ |
| lockdep_set_class(&stop->pi_lock, &stop_pi_lock); |
| } |
| |
| cpu_rq(cpu)->stop = stop; |
| |
| if (old_stop) { |
| /* |
| * Reset it back to a normal scheduling class so that |
| * it can die in pieces. |
| */ |
| old_stop->sched_class = &rt_sched_class; |
| } |
| } |
| |
| #else /* CONFIG_SMP */ |
| |
| static inline int __set_cpus_allowed_ptr(struct task_struct *p, |
| struct affinity_context *ctx) |
| { |
| return set_cpus_allowed_ptr(p, ctx->new_mask); |
| } |
| |
| static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { } |
| |
| static inline bool rq_has_pinned_tasks(struct rq *rq) |
| { |
| return false; |
| } |
| |
| static inline cpumask_t *alloc_user_cpus_ptr(int node) |
| { |
| return NULL; |
| } |
| |
| #endif /* !CONFIG_SMP */ |
| |
| static void |
| ttwu_stat(struct task_struct *p, int cpu, int wake_flags) |
| { |
| struct rq *rq; |
| |
| if (!schedstat_enabled()) |
| return; |
| |
| rq = this_rq(); |
| |
| #ifdef CONFIG_SMP |
| if (cpu == rq->cpu) { |
| __schedstat_inc(rq->ttwu_local); |
| __schedstat_inc(p->stats.nr_wakeups_local); |
| } else { |
| struct sched_domain *sd; |
| |
| __schedstat_inc(p->stats.nr_wakeups_remote); |
| |
| guard(rcu)(); |
| for_each_domain(rq->cpu, sd) { |
| if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { |
| __schedstat_inc(sd->ttwu_wake_remote); |
| break; |
| } |
| } |
| } |
| |
| if (wake_flags & WF_MIGRATED) |
| __schedstat_inc(p->stats.nr_wakeups_migrate); |
| #endif /* CONFIG_SMP */ |
| |
| __schedstat_inc(rq->ttwu_count); |
| __schedstat_inc(p->stats.nr_wakeups); |
| |
| if (wake_flags & WF_SYNC) |
| __schedstat_inc(p->stats.nr_wakeups_sync); |
| } |
| |
| /* |
| * Mark the task runnable. |
| */ |
| static inline void ttwu_do_wakeup(struct task_struct *p) |
| { |
| WRITE_ONCE(p->__state, TASK_RUNNING); |
| trace_sched_wakeup(p); |
| } |
| |
| static void |
| ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags, |
| struct rq_flags *rf) |
| { |
| int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK; |
| |
| lockdep_assert_rq_held(rq); |
| |
| if (p->sched_contributes_to_load) |
| rq->nr_uninterruptible--; |
| |
| #ifdef CONFIG_SMP |
| if (wake_flags & WF_MIGRATED) |
| en_flags |= ENQUEUE_MIGRATED; |
| else |
| #endif |
| if (p->in_iowait) { |
| delayacct_blkio_end(p); |
| atomic_dec(&task_rq(p)->nr_iowait); |
| } |
| |
| activate_task(rq, p, en_flags); |
| wakeup_preempt(rq, p, wake_flags); |
| |
| ttwu_do_wakeup(p); |
| |
| #ifdef CONFIG_SMP |
| if (p->sched_class->task_woken) { |
| /* |
| * Our task @p is fully woken up and running; so it's safe to |
| * drop the rq->lock, hereafter rq is only used for statistics. |
| */ |
| rq_unpin_lock(rq, rf); |
| p->sched_class->task_woken(rq, p); |
| rq_repin_lock(rq, rf); |
| } |
| |
| if (rq->idle_stamp) { |
| u64 delta = rq_clock(rq) - rq->idle_stamp; |
| u64 max = 2*rq->max_idle_balance_cost; |
| |
| update_avg(&rq->avg_idle, delta); |
| |
| if (rq->avg_idle > max) |
| rq->avg_idle = max; |
| |
| rq->idle_stamp = 0; |
| } |
| #endif |
| |
| p->dl_server = NULL; |
| } |
| |
| /* |
| * Consider @p being inside a wait loop: |
| * |
| * for (;;) { |
| * set_current_state(TASK_UNINTERRUPTIBLE); |
| * |
| * if (CONDITION) |
| * break; |
| * |
| * schedule(); |
| * } |
| * __set_current_state(TASK_RUNNING); |
| * |
| * between set_current_state() and schedule(). In this case @p is still |
| * runnable, so all that needs doing is change p->state back to TASK_RUNNING in |
| * an atomic manner. |
| * |
| * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq |
| * then schedule() must still happen and p->state can be changed to |
| * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we |
| * need to do a full wakeup with enqueue. |
| * |
| * Returns: %true when the wakeup is done, |
| * %false otherwise. |
| */ |
| static int ttwu_runnable(struct task_struct *p, int wake_flags) |
| { |
| struct rq_flags rf; |
| struct rq *rq; |
| int ret = 0; |
| |
| rq = __task_rq_lock(p, &rf); |
| if (task_on_rq_queued(p)) { |
| if (!task_on_cpu(rq, p)) { |
| /* |
| * When on_rq && !on_cpu the task is preempted, see if |
| * it should preempt the task that is current now. |
| */ |
| update_rq_clock(rq); |
| wakeup_preempt(rq, p, wake_flags); |
| } |
| ttwu_do_wakeup(p); |
| ret = 1; |
| } |
| __task_rq_unlock(rq, &rf); |
| |
| return ret; |
| } |
| |
| #ifdef CONFIG_SMP |
| void sched_ttwu_pending(void *arg) |
| { |
| struct llist_node *llist = arg; |
| struct rq *rq = this_rq(); |
| struct task_struct *p, *t; |
| struct rq_flags rf; |
| |
| if (!llist) |
| return; |
| |
| rq_lock_irqsave(rq, &rf); |
| update_rq_clock(rq); |
| |
| llist_for_each_entry_safe(p, t, llist, wake_entry.llist) { |
| if (WARN_ON_ONCE(p->on_cpu)) |
| smp_cond_load_acquire(&p->on_cpu, !VAL); |
| |
| if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq))) |
| set_task_cpu(p, cpu_of(rq)); |
| |
| ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf); |
| } |
| |
| /* |
| * Must be after enqueueing at least once task such that |
| * idle_cpu() does not observe a false-negative -- if it does, |
| * it is possible for select_idle_siblings() to stack a number |
| * of tasks on this CPU during that window. |
| * |
| * It is ok to clear ttwu_pending when another task pending. |
| * We will receive IPI after local irq enabled and then enqueue it. |
| * Since now nr_running > 0, idle_cpu() will always get correct result. |
| */ |
| WRITE_ONCE(rq->ttwu_pending, 0); |
| rq_unlock_irqrestore(rq, &rf); |
| } |
| |
| /* |
| * Prepare the scene for sending an IPI for a remote smp_call |
| * |
| * Returns true if the caller can proceed with sending the IPI. |
| * Returns false otherwise. |
| */ |
| bool call_function_single_prep_ipi(int cpu) |
| { |
| if (set_nr_if_polling(cpu_rq(cpu)->idle)) { |
| trace_sched_wake_idle_without_ipi(cpu); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| /* |
| * Queue a task on the target CPUs wake_list and wake the CPU via IPI if |
| * necessary. The wakee CPU on receipt of the IPI will queue the task |
| * via sched_ttwu_wakeup() for activation so the wakee incurs the cost |
| * of the wakeup instead of the waker. |
| */ |
| static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) |
| { |
| struct rq *rq = cpu_rq(cpu); |
| |
| p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED); |
| |
| WRITE_ONCE(rq->ttwu_pending, 1); |
| __smp_call_single_queue(cpu, &p->wake_entry.llist); |
| } |
| |
| void wake_up_if_idle(int cpu) |
| { |
| struct rq *rq = cpu_rq(cpu); |
| |
| guard(rcu)(); |
| if (is_idle_task(rcu_dereference(rq->curr))) { |
| guard(rq_lock_irqsave)(rq); |
| if (is_idle_task(rq->curr)) |
| resched_curr(rq); |
| } |
| } |
| |
| bool cpus_equal_capacity(int this_cpu, int that_cpu) |
| { |
| if (!sched_asym_cpucap_active()) |
| return true; |
| |
| if (this_cpu == that_cpu) |
| return true; |
| |
| return arch_scale_cpu_capacity(this_cpu) == arch_scale_cpu_capacity(that_cpu); |
| } |
| |
| bool cpus_share_cache(int this_cpu, int that_cpu) |
| { |
| if (this_cpu == that_cpu) |
| return true; |
| |
| return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu); |
| } |
| |
| /* |
| * Whether CPUs are share cache resources, which means LLC on non-cluster |
| * machines and LLC tag or L2 on machines with clusters. |
| */ |
| bool cpus_share_resources(int this_cpu, int that_cpu) |
| { |
| if (this_cpu == that_cpu) |
| return true; |
| |
| return per_cpu(sd_share_id, this_cpu) == per_cpu(sd_share_id, that_cpu); |
| } |
| |
| static inline bool ttwu_queue_cond(struct task_struct *p, int cpu) |
| { |
| /* |
| * Do not complicate things with the async wake_list while the CPU is |
| * in hotplug state. |
| */ |
| if (!cpu_active(cpu)) |
| return false; |
| |
| /* Ensure the task will still be allowed to run on the CPU. */ |
| if (!cpumask_test_cpu(cpu, p->cpus_ptr)) |
| return false; |
| |
| /* |
| * If the CPU does not share cache, then queue the task on the |
| * remote rqs wakelist to avoid accessing remote data. |
| */ |
| if (!cpus_share_cache(smp_processor_id(), cpu)) |
| return true; |
| |
| if (cpu == smp_processor_id()) |
| return false; |
| |
| /* |
| * If the wakee cpu is idle, or the task is descheduling and the |
| * only running task on the CPU, then use the wakelist to offload |
| * the task activation to the idle (or soon-to-be-idle) CPU as |
| * the current CPU is likely busy. nr_running is checked to |
| * avoid unnecessary task stacking. |
| * |
| * Note that we can only get here with (wakee) p->on_rq=0, |
| * p->on_cpu can be whatever, we've done the dequeue, so |
| * the wakee has been accounted out of ->nr_running. |
| */ |
| if (!cpu_rq(cpu)->nr_running) |
| return true; |
| |
| return false; |
| } |
| |
| static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) |
| { |
| if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(p, cpu)) { |
| sched_clock_cpu(cpu); /* Sync clocks across CPUs */ |
| __ttwu_queue_wakelist(p, cpu, wake_flags); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| #else /* !CONFIG_SMP */ |
| |
| static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) |
| { |
| return false; |
| } |
| |
| #endif /* CONFIG_SMP */ |
| |
| static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags) |
| { |
| struct rq *rq = cpu_rq(cpu); |
| struct rq_flags rf; |
| |
| if (ttwu_queue_wakelist(p, cpu, wake_flags)) |
| return; |
| |
| rq_lock(rq, &rf); |
| update_rq_clock(rq); |
| ttwu_do_activate(rq, p, wake_flags, &rf); |
| rq_unlock(rq, &rf); |
| } |
| |
| /* |
| * Invoked from try_to_wake_up() to check whether the task can be woken up. |
| * |
| * The caller holds p::pi_lock if p != current or has preemption |
| * disabled when p == current. |
| * |
| * The rules of saved_state: |
| * |
| * The related locking code always holds p::pi_lock when updating |
| * p::saved_state, which means the code is fully serialized in both cases. |
| * |
| * For PREEMPT_RT, the lock wait and lock wakeups happen via TASK_RTLOCK_WAIT. |
| * No other bits set. This allows to distinguish all wakeup scenarios. |
| * |
| * For FREEZER, the wakeup happens via TASK_FROZEN. No other bits set. This |
| * allows us to prevent early wakeup of tasks before they can be run on |
| * asymmetric ISA architectures (eg ARMv9). |
| */ |
| static __always_inline |
| bool ttwu_state_match(struct task_struct *p, unsigned int state, int *success) |
| { |
| int match; |
| |
| if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) { |
| WARN_ON_ONCE((state & TASK_RTLOCK_WAIT) && |
| state != TASK_RTLOCK_WAIT); |
| } |
| |
| *success = !!(match = __task_state_match(p, state)); |
| |
| /* |
| * Saved state preserves the task state across blocking on |
| * an RT lock or TASK_FREEZABLE tasks. If the state matches, |
| * set p::saved_state to TASK_RUNNING, but do not wake the task |
| * because it waits for a lock wakeup or __thaw_task(). Also |
| * indicate success because from the regular waker's point of |
| * view this has succeeded. |
| * |
| * After acquiring the lock the task will restore p::__state |
| * from p::saved_state which ensures that the regular |
| * wakeup is not lost. The restore will also set |
| * p::saved_state to TASK_RUNNING so any further tests will |
| * not result in false positives vs. @success |
| */ |
| if (match < 0) |
| p->saved_state = TASK_RUNNING; |
| |
| return match > 0; |
| } |
| |
| /* |
| * Notes on Program-Order guarantees on SMP systems. |
| * |
| * MIGRATION |
| * |
| * The basic program-order guarantee on SMP systems is that when a task [t] |
| * migrates, all its activity on its old CPU [c0] happens-before any subsequent |
| * execution on its new CPU [c1]. |
| * |
| * For migration (of runnable tasks) this is provided by the following means: |
| * |
| * A) UNLOCK of the rq(c0)->lock scheduling out task t |
| * B) migration for t is required to synchronize *both* rq(c0)->lock and |
| * rq(c1)->lock (if not at the same time, then in that order). |
| * C) LOCK of the rq(c1)->lock scheduling in task |
| * |
| * Release/acquire chaining guarantees that B happens after A and C after B. |
| * Note: the CPU doing B need not be c0 or c1 |
| * |
| * Example: |
| * |
| * CPU0 CPU1 CPU2 |
| * |
| * LOCK rq(0)->lock |
| * sched-out X |
| * sched-in Y |
| * UNLOCK rq(0)->lock |
| * |
| * LOCK rq(0)->lock // orders against CPU0 |
| * dequeue X |
| * UNLOCK rq(0)->lock |
| * |
| * LOCK rq(1)->lock |
| * enqueue X |
| * UNLOCK rq(1)->lock |
| * |
| * LOCK rq(1)->lock // orders against CPU2 |
| * sched-out Z |
| * sched-in X |
| * UNLOCK rq(1)->lock |
| * |
| * |
| * BLOCKING -- aka. SLEEP + WAKEUP |
| * |
| * For blocking we (obviously) need to provide the same guarantee as for |
| * migration. However the means are completely different as there is no lock |
| * chain to provide order. Instead we do: |
| * |
| * 1) smp_store_release(X->on_cpu, 0) -- finish_task() |
| * 2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up() |
| * |
| * Example: |
| * |
| * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule) |
| * |
| * LOCK rq(0)->lock LOCK X->pi_lock |
| * dequeue X |
| * sched-out X |
| * smp_store_release(X->on_cpu, 0); |
| * |
| * smp_cond_load_acquire(&X->on_cpu, !VAL); |
| * X->state = WAKING |
| * set_task_cpu(X,2) |
| * |
| * LOCK rq(2)->lock |
| * enqueue X |
| * X->state = RUNNING |
| * UNLOCK rq(2)->lock |
| * |
| * LOCK rq(2)->lock // orders against CPU1 |
| * sched-out Z |
| * sched-in X |
| * UNLOCK rq(2)->lock |
| * |
| * UNLOCK X->pi_lock |
| * UNLOCK rq(0)->lock |
| * |
| * |
| * However, for wakeups there is a second guarantee we must provide, namely we |
| * must ensure that CONDITION=1 done by the caller can not be reordered with |
| * accesses to the task state; see try_to_wake_up() and set_current_state(). |
| */ |
| |
| /** |
| * try_to_wake_up - wake up a thread |
| * @p: the thread to be awakened |
| * @state: the mask of task states that can be woken |
| * @wake_flags: wake modifier flags (WF_*) |
| * |
| * Conceptually does: |
| * |
| * If (@state & @p->state) @p->state = TASK_RUNNING. |
| * |
| * If the task was not queued/runnable, also place it back on a runqueue. |
| * |
| * This function is atomic against schedule() which would dequeue the task. |
| * |
| * It issues a full memory barrier before accessing @p->state, see the comment |
| * with set_current_state(). |
| * |
| * Uses p->pi_lock to serialize against concurrent wake-ups. |
| * |
| * Relies on p->pi_lock stabilizing: |
| * - p->sched_class |
| * - p->cpus_ptr |
| * - p->sched_task_group |
| * in order to do migration, see its use of select_task_rq()/set_task_cpu(). |
| * |
| * Tries really hard to only take one task_rq(p)->lock for performance. |
| * Takes rq->lock in: |
| * - ttwu_runnable() -- old rq, unavoidable, see comment there; |
| * - ttwu_queue() -- new rq, for enqueue of the task; |
| * - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us. |
| * |
| * As a consequence we race really badly with just about everything. See the |
| * many memory barriers and their comments for details. |
| * |
| * Return: %true if @p->state changes (an actual wakeup was done), |
| * %false otherwise. |
| */ |
| int try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags) |
| { |
| guard(preempt)(); |
| int cpu, success = 0; |
| |
| if (p == current) { |
| /* |
| * We're waking current, this means 'p->on_rq' and 'task_cpu(p) |
| * == smp_processor_id()'. Together this means we can special |
| * case the whole 'p->on_rq && ttwu_runnable()' case below |
| * without taking any locks. |
| * |
| * In particular: |
| * - we rely on Program-Order guarantees for all the ordering, |
| * - we're serialized against set_special_state() by virtue of |
| * it disabling IRQs (this allows not taking ->pi_lock). |
| */ |
| if (!ttwu_state_match(p, state, &success)) |
| goto out; |
| |
| trace_sched_waking(p); |
| ttwu_do_wakeup(p); |
| goto out; |
| } |
| |
| /* |
| * If we are going to wake up a thread waiting for CONDITION we |
| * need to ensure that CONDITION=1 done by the caller can not be |
| * reordered with p->state check below. This pairs with smp_store_mb() |
| * in set_current_state() that the waiting thread does. |
| */ |
| scoped_guard (raw_spinlock_irqsave, &p->pi_lock) { |
| smp_mb__after_spinlock(); |
| if (!ttwu_state_match(p, state, &success)) |
| break; |
| |
| trace_sched_waking(p); |
| |
| /* |
| * Ensure we load p->on_rq _after_ p->state, otherwise it would |
| * be possible to, falsely, observe p->on_rq == 0 and get stuck |
| * in smp_cond_load_acquire() below. |
| * |
| * sched_ttwu_pending() try_to_wake_up() |
| * STORE p->on_rq = 1 LOAD p->state |
| * UNLOCK rq->lock |
| * |
| * __schedule() (switch to task 'p') |
| * LOCK rq->lock smp_rmb(); |
| * smp_mb__after_spinlock(); |
| * UNLOCK rq->lock |
| * |
| * [task p] |
| * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq |
| * |
| * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in |
| * __schedule(). See the comment for smp_mb__after_spinlock(). |
| * |
| * A similar smp_rmb() lives in __task_needs_rq_lock(). |
| */ |
| smp_rmb(); |
| if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags)) |
| break; |
| |
| #ifdef CONFIG_SMP |
| /* |
| * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be |
| * possible to, falsely, observe p->on_cpu == 0. |
| * |
| * One must be running (->on_cpu == 1) in order to remove oneself |
| * from the runqueue. |
| * |
| * __schedule() (switch to task 'p') try_to_wake_up() |
| * STORE p->on_cpu = 1 LOAD p->on_rq |
| * UNLOCK rq->lock |
| * |
| * __schedule() (put 'p' to sleep) |
| * LOCK rq->lock smp_rmb(); |
| * smp_mb__after_spinlock(); |
| * STORE p->on_rq = 0 LOAD p->on_cpu |
| * |
| * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in |
| * __schedule(). See the comment for smp_mb__after_spinlock(). |
| * |
| * Form a control-dep-acquire with p->on_rq == 0 above, to ensure |
| * schedule()'s deactivate_task() has 'happened' and p will no longer |
| * care about it's own p->state. See the comment in __schedule(). |
| */ |
| smp_acquire__after_ctrl_dep(); |
| |
| /* |
| * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq |
| * == 0), which means we need to do an enqueue, change p->state to |
| * TASK_WAKING such that we can unlock p->pi_lock before doing the |
| * enqueue, such as ttwu_queue_wakelist(). |
| */ |
| WRITE_ONCE(p->__state, TASK_WAKING); |
| |
| /* |
| * If the owning (remote) CPU is still in the middle of schedule() with |
| * this task as prev, considering queueing p on the remote CPUs wake_list |
| * which potentially sends an IPI instead of spinning on p->on_cpu to |
| * let the waker make forward progress. This is safe because IRQs are |
| * disabled and the IPI will deliver after on_cpu is cleared. |
| * |
| * Ensure we load task_cpu(p) after p->on_cpu: |
| * |
| * set_task_cpu(p, cpu); |
| * STORE p->cpu = @cpu |
| * __schedule() (switch to task 'p') |
| * LOCK rq->lock |
| * smp_mb__after_spin_lock() smp_cond_load_acquire(&p->on_cpu) |
| * STORE p->on_cpu = 1 LOAD p->cpu |
| * |
| * to ensure we observe the correct CPU on which the task is currently |
| * scheduling. |
| */ |
| if (smp_load_acquire(&p->on_cpu) && |
| ttwu_queue_wakelist(p, task_cpu(p), wake_flags)) |
| break; |
| |
| /* |
| * If the owning (remote) CPU is still in the middle of schedule() with |
| * this task as prev, wait until it's done referencing the task. |
| * |
| * Pairs with the smp_store_release() in finish_task(). |
| * |
| * This ensures that tasks getting woken will be fully ordered against |
| * their previous state and preserve Program Order. |
| */ |
| smp_cond_load_acquire(&p->on_cpu, !VAL); |
| |
| cpu = select_task_rq(p, p->wake_cpu, wake_flags | WF_TTWU); |
| if (task_cpu(p) != cpu) { |
| if (p->in_iowait) { |
| delayacct_blkio_end(p); |
| atomic_dec(&task_rq(p)->nr_iowait); |
| } |
| |
| wake_flags |= WF_MIGRATED; |
| psi_ttwu_dequeue(p); |
| set_task_cpu(p, cpu); |
| } |
| #else |
| cpu = task_cpu(p); |
| #endif /* CONFIG_SMP */ |
| |
| ttwu_queue(p, cpu, wake_flags); |
| } |
| out: |
| if (success) |
| ttwu_stat(p, task_cpu(p), wake_flags); |
| |
| return success; |
| } |
| |
| static bool __task_needs_rq_lock(struct task_struct *p) |
| { |
| unsigned int state = READ_ONCE(p->__state); |
| |
| /* |
| * Since pi->lock blocks try_to_wake_up(), we don't need rq->lock when |
| * the task is blocked. Make sure to check @state since ttwu() can drop |
| * locks at the end, see ttwu_queue_wakelist(). |
| */ |
| if (state == TASK_RUNNING || state == TASK_WAKING) |
| return true; |
| |
| /* |
| * Ensure we load p->on_rq after p->__state, otherwise it would be |
| * possible to, falsely, observe p->on_rq == 0. |
| * |
| * See try_to_wake_up() for a longer comment. |
| */ |
| smp_rmb(); |
| if (p->on_rq) |
| return true; |
| |
| #ifdef CONFIG_SMP |
| /* |
| * Ensure the task has finished __schedule() and will not be referenced |
| * anymore. Again, see try_to_wake_up() for a longer comment. |
| */ |
| smp_rmb(); |
| smp_cond_load_acquire(&p->on_cpu, !VAL); |
| #endif |
| |
| return false; |
| } |
| |
| /** |
| * task_call_func - Invoke a function on task in fixed state |
| * @p: Process for which the function is to be invoked, can be @current. |
| * @func: Function to invoke. |
| * @arg: Argument to function. |
| * |
| * Fix the task in it's current state by avoiding wakeups and or rq operations |
| * and call @func(@arg) on it. This function can use ->on_rq and task_curr() |
| * to work out what the state is, if required. Given that @func can be invoked |
| * with a runqueue lock held, it had better be quite lightweight. |
| * |
| * Returns: |
| * Whatever @func returns |
| */ |
| int task_call_func(struct task_struct *p, task_call_f func, void *arg) |
| { |
| struct rq *rq = NULL; |
| struct rq_flags rf; |
| int ret; |
| |
| raw_spin_lock_irqsave(&p->pi_lock, rf.flags); |
| |
| if (__task_needs_rq_lock(p)) |
| rq = __task_rq_lock(p, &rf); |
| |
| /* |
| * At this point the task is pinned; either: |
| * - blocked and we're holding off wakeups (pi->lock) |
| * - woken, and we're holding off enqueue (rq->lock) |
| * - queued, and we're holding off schedule (rq->lock) |
| * - running, and we're holding off de-schedule (rq->lock) |
| * |
| * The called function (@func) can use: task_curr(), p->on_rq and |
| * p->__state to differentiate between these states. |
| */ |
| ret = func(p, arg); |
| |
| if (rq) |
| rq_unlock(rq, &rf); |
| |
| raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags); |
| return ret; |
| } |
| |
| /** |
| * cpu_curr_snapshot - Return a snapshot of the currently running task |
| * @cpu: The CPU on which to snapshot the task. |
| * |
| * Returns the task_struct pointer of the task "currently" running on |
| * the specified CPU. If the same task is running on that CPU throughout, |
| * the return value will be a pointer to that task's task_struct structure. |
| * If the CPU did any context switches even vaguely concurrently with the |
| * execution of this function, the return value will be a pointer to the |
| * task_struct structure of a randomly chosen task that was running on |
| * that CPU somewhere around the time that this function was executing. |
| * |
| * If the specified CPU was offline, the return value is whatever it |
| * is, perhaps a pointer to the task_struct structure of that CPU's idle |
| * task, but there is no guarantee. Callers wishing a useful return |
| * value must take some action to ensure that the specified CPU remains |
| * online throughout. |
| * |
| * This function executes full memory barriers before and after fetching |
| * the pointer, which permits the caller to confine this function's fetch |
| * with respect to the caller's accesses to other shared variables. |
| */ |
| struct task_struct *cpu_curr_snapshot(int cpu) |
| { |
| struct task_struct *t; |
| |
| smp_mb(); /* Pairing determined by caller's synchronization design. */ |
| t = rcu_dereference(cpu_curr(cpu)); |
| smp_mb(); /* Pairing determined by caller's synchronization design. */ |
| return t; |
| } |
| |
| /** |
| * wake_up_process - Wake up a specific process |
| * @p: The process to be woken up. |
| * |
| * Attempt to wake up the nominated process and move it to the set of runnable |
| * processes. |
| * |
| * Return: 1 if the process was woken up, 0 if it was already running. |
| * |
| * This function executes a full memory barrier before accessing the task state. |
| */ |
| int wake_up_process(struct task_struct *p) |
| { |
| return try_to_wake_up(p, TASK_NORMAL, 0); |
| } |
| EXPORT_SYMBOL(wake_up_process); |
| |
| int wake_up_state(struct task_struct *p, unsigned int state) |
| { |
| return try_to_wake_up(p, state, 0); |
| } |
| |
| /* |
| * Perform scheduler related setup for a newly forked process p. |
| * p is forked by current. |
| * |
| * __sched_fork() is basic setup used by init_idle() too: |
| */ |
| static void __sched_fork(unsigned long clone_flags, struct task_struct *p) |
| { |
| p->on_rq = 0; |
| |
| p->se.on_rq = 0; |
| p->se.exec_start = 0; |
| p->se.sum_exec_runtime = 0; |
| p->se.prev_sum_exec_runtime = 0; |
| p->se.nr_migrations = 0; |
| p->se.vruntime = 0; |
| p->se.vlag = 0; |
| p->se.slice = sysctl_sched_base_slice; |
| INIT_LIST_HEAD(&p->se.group_node); |
| |
| #ifdef CONFIG_FAIR_GROUP_SCHED |
| p->se.cfs_rq = NULL; |
| #endif |
| |
| #ifdef CONFIG_SCHEDSTATS |
| /* Even if schedstat is disabled, there should not be garbage */ |
| memset(&p->stats, 0, sizeof(p->stats)); |
| #endif |
| |
| init_dl_entity(&p->dl); |
| |
| INIT_LIST_HEAD(&p->rt.run_list); |
| p->rt.timeout = 0; |
| p->rt.time_slice = sched_rr_timeslice; |
| p->rt.on_rq = 0; |
| p->rt.on_list = 0; |
| |
| #ifdef CONFIG_PREEMPT_NOTIFIERS |
| INIT_HLIST_HEAD(&p->preempt_notifiers); |
| #endif |
| |
| #ifdef CONFIG_COMPACTION |
| p->capture_control = NULL; |
| #endif |
| init_numa_balancing(clone_flags, p); |
| #ifdef CONFIG_SMP |
| p->wake_entry.u_flags = CSD_TYPE_TTWU; |
| p->migration_pending = NULL; |
| #endif |
| init_sched_mm_cid(p); |
| } |
| |
| DEFINE_STATIC_KEY_FALSE(sched_numa_balancing); |
| |
| #ifdef CONFIG_NUMA_BALANCING |
| |
| int sysctl_numa_balancing_mode; |
| |
| static void __set_numabalancing_state(bool enabled) |
| { |
| if (enabled) |
| static_branch_enable(&sched_numa_balancing); |
| else |
| static_branch_disable(&sched_numa_balancing); |
| } |
| |
| void set_numabalancing_state(bool enabled) |
| { |
| if (enabled) |
| sysctl_numa_balancing_mode = NUMA_BALANCING_NORMAL; |
| else |
| sysctl_numa_balancing_mode = NUMA_BALANCING_DISABLED; |
| __set_numabalancing_state(enabled); |
| } |
| |
| #ifdef CONFIG_PROC_SYSCTL |
| static void reset_memory_tiering(void) |
| { |
| struct pglist_data *pgdat; |
| |
| for_each_online_pgdat(pgdat) { |
| pgdat->nbp_threshold = 0; |
| pgdat->nbp_th_nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE); |
| pgdat->nbp_th_start = jiffies_to_msecs(jiffies); |
| } |
| } |
| |
| static int sysctl_numa_balancing(struct ctl_table *table, int write, |
| void *buffer, size_t *lenp, loff_t *ppos) |
| { |
| struct ctl_table t; |
| int err; |
| int state = sysctl_numa_balancing_mode; |
| |
| if (write && !capable(CAP_SYS_ADMIN)) |
| return -EPERM; |
| |
| t = *table; |
| t.data = &state; |
| err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); |
| if (err < 0) |
| return err; |
| if (write) { |
| if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) && |
| (state & NUMA_BALANCING_MEMORY_TIERING)) |
| reset_memory_tiering(); |
| sysctl_numa_balancing_mode = state; |
| __set_numabalancing_state(state); |
| } |
| return err; |
| } |
| #endif |
| #endif |
| |
| #ifdef CONFIG_SCHEDSTATS |
| |
| DEFINE_STATIC_KEY_FALSE(sched_schedstats); |
| |
| static void set_schedstats(bool enabled) |
| { |
| if (enabled) |
| static_branch_enable(&sched_schedstats); |
| else |
| static_branch_disable(&sched_schedstats); |
| } |
| |
| void force_schedstat_enabled(void) |
| { |
| if (!schedstat_enabled()) { |
| pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n"); |
| static_branch_enable(&sched_schedstats); |
| } |
| } |
| |
| static int __init setup_schedstats(char *str) |
| { |
| int ret = 0; |
| if (!str) |
| goto out; |
| |
| if (!strcmp(str, "enable")) { |
| set_schedstats(true); |
| ret = 1; |
| } else if (!strcmp(str, "disable")) { |
| set_schedstats(false); |
| ret = 1; |
| } |
| out: |
| if (!ret) |
| pr_warn("Unable to parse schedstats=\n"); |
| |
| return ret; |
| } |
| __setup("schedstats=", setup_schedstats); |
| |
| #ifdef CONFIG_PROC_SYSCTL |
| static int sysctl_schedstats(struct ctl_table *table, int write, void *buffer, |
| size_t *lenp, loff_t *ppos) |
| { |
| struct ctl_table t; |
| int err; |
| int state = static_branch_likely(&sched_schedstats); |
| |
| if (write && !capable(CAP_SYS_ADMIN)) |
| return -EPERM; |
| |
| t = *table; |
| t.data = &state; |
| err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); |
| if (err < 0) |
| return err; |
| if (write) |
| set_schedstats(state); |
| return err; |
| } |
| #endif /* CONFIG_PROC_SYSCTL */ |
| #endif /* CONFIG_SCHEDSTATS */ |
| |
| #ifdef CONFIG_SYSCTL |
| static struct ctl_table sched_core_sysctls[] = { |
| #ifdef CONFIG_SCHEDSTATS |
| { |
| .procname = "sched_schedstats", |
| .data = NULL, |
| .maxlen = sizeof(unsigned int), |
| .mode = 0644, |
| .proc_handler = sysctl_schedstats, |
| .extra1 = SYSCTL_ZERO, |
| .extra2 = SYSCTL_ONE, |
| }, |
| #endif /* CONFIG_SCHEDSTATS */ |
| #ifdef CONFIG_UCLAMP_TASK |
| { |
| .procname = "sched_util_clamp_min", |
| .data = &sysctl_sched_uclamp_util_min, |
| .maxlen = sizeof(unsigned int), |
| .mode = 0644, |
| .proc_handler = sysctl_sched_uclamp_handler, |
| }, |
| { |
| .procname = "sched_util_clamp_max", |
| .data = &sysctl_sched_uclamp_util_max, |
| .maxlen = sizeof(unsigned int), |
| .mode = 0644, |
| .proc_handler = sysctl_sched_uclamp_handler, |
| }, |
| { |
| .procname = "sched_util_clamp_min_rt_default", |
| .data = &sysctl_sched_uclamp_util_min_rt_default, |
| .maxlen = sizeof(unsigned int), |
| .mode = 0644, |
| .proc_handler = sysctl_sched_uclamp_handler, |
| }, |
| #endif /* CONFIG_UCLAMP_TASK */ |
| #ifdef CONFIG_NUMA_BALANCING |
| { |
| .procname = "numa_balancing", |
| .data = NULL, /* filled in by handler */ |
| .maxlen = sizeof(unsigned int), |
| .mode = 0644, |
| .proc_handler = sysctl_numa_balancing, |
| .extra1 = SYSCTL_ZERO, |
| .extra2 = SYSCTL_FOUR, |
| }, |
| #endif /* CONFIG_NUMA_BALANCING */ |
| }; |
| static int __init sched_core_sysctl_init(void) |
| { |
| register_sysctl_init("kernel", sched_core_sysctls); |
| return 0; |
| } |
| late_initcall(sched_core_sysctl_init); |
| #endif /* CONFIG_SYSCTL */ |
| |
| /* |
| * fork()/clone()-time setup: |
| */ |
| int sched_fork(unsigned long clone_flags, struct task_struct *p) |
| { |
| __sched_fork(clone_flags, p); |
| /* |
| * We mark the process as NEW here. This guarantees that |
| * nobody will actually run it, and a signal or other external |
| * event cannot wake it up and insert it on the runqueue either. |
| */ |
| p->__state = TASK_NEW; |
| |
| /* |
| * Make sure we do not leak PI boosting priority to the child. |
| */ |
| p->prio = current->normal_prio; |
| |
| uclamp_fork(p); |
| |
| /* |
| * Revert to default priority/policy on fork if requested. |
| */ |
| if (unlikely(p->sched_reset_on_fork)) { |
| if (task_has_dl_policy(p) || task_has_rt_policy(p)) { |
| p->policy = SCHED_NORMAL; |
| p->static_prio = NICE_TO_PRIO(0); |
| p->rt_priority = 0; |
| } else if (PRIO_TO_NICE(p->static_prio) < 0) |
| p->static_prio = NICE_TO_PRIO(0); |
| |
| p->prio = p->normal_prio = p->static_prio; |
| set_load_weight(p, false); |
| |
| /* |
| * We don't need the reset flag anymore after the fork. It has |
| * fulfilled its duty: |
| */ |
| p->sched_reset_on_fork = 0; |
| } |
| |
| if (dl_prio(p->prio)) |
| return -EAGAIN; |
| else if (rt_prio(p->prio)) |
| p->sched_class = &rt_sched_class; |
| else |
| p->sched_class = &fair_sched_class; |
| |
| init_entity_runnable_average(&p->se); |
| |
| |
| #ifdef CONFIG_SCHED_INFO |
| if (likely(sched_info_on())) |
| memset(&p->sched_info, 0, sizeof(p->sched_info)); |
| #endif |
| #if defined(CONFIG_SMP) |
| p->on_cpu = 0; |
| #endif |
| init_task_preempt_count(p); |
| #ifdef CONFIG_SMP |
| plist_node_init(&p->pushable_tasks, MAX_PRIO); |
| RB_CLEAR_NODE(&p->pushable_dl_tasks); |
| #endif |
| return 0; |
| } |
| |
| void sched_cgroup_fork(struct task_struct *p, struct kernel_clone_args *kargs) |
| { |
| unsigned long flags; |
| |
| /* |
| * Because we're not yet on the pid-hash, p->pi_lock isn't strictly |
| * required yet, but lockdep gets upset if rules are violated. |
| */ |
| raw_spin_lock_irqsave(&p->pi_lock, flags); |
| #ifdef CONFIG_CGROUP_SCHED |
| if (1) { |
| struct task_group *tg; |
| tg = container_of(kargs->cset->subsys[cpu_cgrp_id], |
| struct task_group, css); |
| tg = autogroup_task_group(p, tg); |
| p->sched_task_group = tg; |
| } |
| #endif |
| rseq_migrate(p); |
| /* |
| * We're setting the CPU for the first time, we don't migrate, |
| * so use __set_task_cpu(). |
| */ |
| __set_task_cpu(p, smp_processor_id()); |
| if (p->sched_class->task_fork) |
| p->sched_class->task_fork(p); |
| raw_spin_unlock_irqrestore(&p->pi_lock, flags); |
| } |
| |
| void sched_post_fork(struct task_struct *p) |
| { |
| uclamp_post_fork(p); |
| } |
| |
| unsigned long to_ratio(u64 period, u64 runtime) |
| { |
| if (runtime == RUNTIME_INF) |
| return BW_UNIT; |
| |
| /* |
| * Doing this here saves a lot of checks in all |
| * the calling paths, and returning zero seems |
| * safe for them anyway. |
| */ |
| if (period == 0) |
| return 0; |
| |
| return div64_u64(runtime << BW_SHIFT, period); |
| } |
| |
| /* |
| * wake_up_new_task - wake up a newly created task for the first time. |
| * |
| * This function will do some initial scheduler statistics housekeeping |
| * that must be done for every newly created context, then puts the task |
| * on the runqueue and wakes it. |
| */ |
| void wake_up_new_task(struct task_struct *p) |
| { |
| struct rq_flags rf; |
| struct rq *rq; |
| |
| raw_spin_lock_irqsave(&p->pi_lock, rf.flags); |
| WRITE_ONCE(p->__state, TASK_RUNNING); |
| #ifdef CONFIG_SMP |
| /* |
| * Fork balancing, do it here and not earlier because: |
| * - cpus_ptr can change in the fork path |
| * - any previously selected CPU might disappear through hotplug |
| * |
| * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq, |
| * as we're not fully set-up yet. |
| */ |
| p->recent_used_cpu = task_cpu(p); |
| rseq_migrate(p); |
| __set_task_cpu(p, select_task_rq(p, task_cpu(p), WF_FORK)); |
| #endif |
| rq = __task_rq_lock(p, &rf); |
| update_rq_clock(rq); |
| post_init_entity_util_avg(p); |
| |
| activate_task(rq, p, ENQUEUE_NOCLOCK); |
| trace_sched_wakeup_new(p); |
| wakeup_preempt(rq, p, WF_FORK); |
| #ifdef CONFIG_SMP |
| if (p->sched_class->task_woken) { |
| /* |
| * Nothing relies on rq->lock after this, so it's fine to |
| * drop it. |
| */ |
| rq_unpin_lock(rq, &rf); |
| p->sched_class->task_woken(rq, p); |
| rq_repin_lock(rq, &rf); |
| } |
| #endif |
| task_rq_unlock(rq, p, &rf); |
| } |
| |
| #ifdef CONFIG_PREEMPT_NOTIFIERS |
| |
| static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key); |
| |
| void preempt_notifier_inc(void) |
| { |
| static_branch_inc(&preempt_notifier_key); |
| } |
| EXPORT_SYMBOL_GPL(preempt_notifier_inc); |
| |
| void preempt_notifier_dec(void) |
| { |
| static_branch_dec(&preempt_notifier_key); |
| } |
| EXPORT_SYMBOL_GPL(preempt_notifier_dec); |
| |
| /** |
| * preempt_notifier_register - tell me when current is being preempted & rescheduled |
| * @notifier: notifier struct to register |
| */ |
| void preempt_notifier_register(struct preempt_notifier *notifier) |
| { |
| if (!static_branch_unlikely(&preempt_notifier_key)) |
| WARN(1, "registering preempt_notifier while notifiers disabled\n"); |
| |
| hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); |
| } |
| EXPORT_SYMBOL_GPL(preempt_notifier_register); |
| |
| /** |
| * preempt_notifier_unregister - no longer interested in preemption notifications |
| * @notifier: notifier struct to unregister |
| * |
| * This is *not* safe to call from within a preemption notifier. |
| */ |
| void preempt_notifier_unregister(struct preempt_notifier *notifier) |
| { |
| hlist_del(¬ifier->link); |
| } |
| EXPORT_SYMBOL_GPL(preempt_notifier_unregister); |
| |
| static void __fire_sched_in_preempt_notifiers(struct task_struct *curr) |
| { |
| struct preempt_notifier *notifier; |
| |
| hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) |
| notifier->ops->sched_in(notifier, raw_smp_processor_id()); |
| } |
| |
| static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) |
| { |
| if (static_branch_unlikely(&preempt_notifier_key)) |
| __fire_sched_in_preempt_notifiers(curr); |
| } |
| |
| static void |
| __fire_sched_out_preempt_notifiers(struct task_struct *curr, |
| struct task_struct *next) |
| { |
| struct preempt_notifier *notifier; |
| |
| hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) |
| notifier->ops->sched_out(notifier, next); |
| } |
| |
| static __always_inline void |
| fire_sched_out_preempt_notifiers(struct task_struct *curr, |
| struct task_struct *next) |
| { |
| if (static_branch_unlikely(&preempt_notifier_key)) |
| __fire_sched_out_preempt_notifiers(curr, next); |
| } |
| |
| #else /* !CONFIG_PREEMPT_NOTIFIERS */ |
| |
| static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) |
| { |
| } |
| |
| static inline void |
| fire_sched_out_preempt_notifiers(struct task_struct *curr, |
| struct task_struct *next) |
| { |
| } |
| |
| #endif /* CONFIG_PREEMPT_NOTIFIERS */ |
| |
| static inline void prepare_task(struct task_struct *next) |
| { |
| #ifdef CONFIG_SMP |
| /* |
| * Claim the task as running, we do this before switching to it |
| * such that any running task will have this set. |
| * |
| * See the smp_load_acquire(&p->on_cpu) case in ttwu() and |
| * its ordering comment. |
| */ |
| WRITE_ONCE(next->on_cpu, 1); |
| #endif |
| } |
| |
| static inline void finish_task(struct task_struct *prev) |
| { |
| #ifdef CONFIG_SMP |
| /* |
| * This must be the very last reference to @prev from this CPU. After |
| * p->on_cpu is cleared, the task can be moved to a different CPU. We |
| * must ensure this doesn't happen until the switch is completely |
| * finished. |
| * |
| * In particular, the load of prev->state in finish_task_switch() must |
| * happen before this. |
| * |
| * Pairs with the smp_cond_load_acquire() in try_to_wake_up(). |
| */ |
| smp_store_release(&prev->on_cpu, 0); |
| #endif |
| } |
| |
| #ifdef CONFIG_SMP |
| |
| static void do_balance_callbacks(struct rq *rq, struct balance_callback *head) |
| { |
| void (*func)(struct rq *rq); |
| struct balance_callback *next; |
| |
| lockdep_assert_rq_held(rq); |
| |
| while (head) { |
| func = (void (*)(struct rq *))head->func; |
| next = head->next; |
| head->next = NULL; |
| head = next; |
| |
| func(rq); |
| } |
| } |
| |
| static void balance_push(struct rq *rq); |
| |
| /* |
| * balance_push_callback is a right abuse of the callback interface and plays |
| * by significantly different rules. |
| * |
| * Where the normal balance_callback's purpose is to be ran in the same context |
| * that queued it (only later, when it's safe to drop rq->lock again), |
| * balance_push_callback is specifically targeted at __schedule(). |
| * |
| * This abuse is tolerated because it places all the unlikely/odd cases behind |
| * a single test, namely: rq->balance_callback == NULL. |
| */ |
| struct balance_callback balance_push_callback = { |
| .next = NULL, |
| .func = balance_push, |
| }; |
| |
| static inline struct balance_callback * |
| __splice_balance_callbacks(struct rq *rq, bool split) |
| { |
| struct balance_callback *head = rq->balance_callback; |
| |
| if (likely(!head)) |
| return NULL; |
| |
| lockdep_assert_rq_held(rq); |
| /* |
| * Must not take balance_push_callback off the list when |
| * splice_balance_callbacks() and balance_callbacks() are not |
| * in the same rq->lock section. |
| * |
| * In that case it would be possible for __schedule() to interleave |
| * and observe the list empty. |
| */ |
| if (split && head == &balance_push_callback) |
| head = NULL; |
| else |
| rq->balance_callback = NULL; |
| |
| return head; |
| } |
| |
| static inline struct balance_callback *splice_balance_callbacks(struct rq *rq) |
| { |
| return __splice_balance_callbacks(rq, true); |
| } |
| |
| static void __balance_callbacks(struct rq *rq) |
| { |
| do_balance_callbacks(rq, __splice_balance_callbacks(rq, false)); |
| } |
| |
| static inline void balance_callbacks(struct rq *rq, struct balance_callback *head) |
| { |
| unsigned long flags; |
| |
| if (unlikely(head)) { |
| raw_spin_rq_lock_irqsave(rq, flags); |
| do_balance_callbacks(rq, head); |
| raw_spin_rq_unlock_irqrestore(rq, flags); |
| } |
| } |
| |
| #else |
| |
| static inline void __balance_callbacks(struct rq *rq) |
| { |
| } |
| |
| static inline struct balance_callback *splice_balance_callbacks(struct rq *rq) |
| { |
| return NULL; |
| } |
| |
| static inline void balance_callbacks(struct rq *rq, struct balance_callback *head) |
| { |
| } |
| |
| #endif |
| |
| static inline void |
| prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf) |
| { |
| /* |
| * Since the runqueue lock will be released by the next |
| * task (which is an invalid locking op but in the case |
| * of the scheduler it's an obvious special-case), so we |
| * do an early lockdep release here: |
| */ |
| rq_unpin_lock(rq, rf); |
| spin_release(&__rq_lockp(rq)->dep_map, _THIS_IP_); |
| #ifdef CONFIG_DEBUG_SPINLOCK |
| /* this is a valid case when another task releases the spinlock */ |
| rq_lockp(rq)->owner = next; |
| #endif |
| } |
| |
| static inline void finish_lock_switch(struct rq *rq) |
| { |
| /* |
| * If we are tracking spinlock dependencies then we have to |
| * fix up the runqueue lock - which gets 'carried over' from |
| * prev into current: |
| */ |
| spin_acquire(&__rq_lockp(rq)->dep_map, 0, 0, _THIS_IP_); |
| __balance_callbacks(rq); |
| raw_spin_rq_unlock_irq(rq); |
| } |
| |
| /* |
| * NOP if the arch has not defined these: |
| */ |
| |
| #ifndef prepare_arch_switch |
| # define prepare_arch_switch(next) do { } while (0) |
| #endif |
| |
| #ifndef finish_arch_post_lock_switch |
| # define finish_arch_post_lock_switch() do { } while (0) |
| #endif |
| |
| static inline void kmap_local_sched_out(void) |
| { |
| #ifdef CONFIG_KMAP_LOCAL |
| if (unlikely(current->kmap_ctrl.idx)) |
| __kmap_local_sched_out(); |
| #endif |
| } |
| |
| static inline void kmap_local_sched_in(void) |
| { |
| #ifdef CONFIG_KMAP_LOCAL |
| if (unlikely(current->kmap_ctrl.idx)) |
| __kmap_local_sched_in(); |
| #endif |
| } |
| |
| /** |
| * prepare_task_switch - prepare to switch tasks |
| * @rq: the runqueue preparing to switch |
| * @prev: the current task that is being switched out |
| * @next: the task we are going to switch to. |
| * |
| * This is called with the rq lock held and interrupts off. It must |
| * be paired with a subsequent finish_task_switch after the context |
| * switch. |
| * |
| * prepare_task_switch sets up locking and calls architecture specific |
| * hooks. |
| */ |
| static inline void |
| prepare_task_switch(struct rq *rq, struct task_struct *prev, |
| struct task_struct *next) |
| { |
| kcov_prepare_switch(prev); |
| sched_info_switch(rq, prev, next); |
| perf_event_task_sched_out(prev, next); |
| rseq_preempt(prev); |
| fire_sched_out_preempt_notifiers(prev, next); |
| kmap_local_sched_out(); |
| prepare_task(next); |
| prepare_arch_switch(next); |
| } |
| |
| /** |
| * finish_task_switch - clean up after a task-switch |
| * @prev: the thread we just switched away from. |
| * |
| * finish_task_switch must be called after the context switch, paired |
| * with a prepare_task_switch call before the context switch. |
| * finish_task_switch will reconcile locking set up by prepare_task_switch, |
| * and do any other architecture-specific cleanup actions. |
| * |
| * Note that we may have delayed dropping an mm in context_switch(). If |
| * so, we finish that here outside of the runqueue lock. (Doing it |
| * with the lock held can cause deadlocks; see schedule() for |
| * details.) |
| * |
| * The context switch have flipped the stack from under us and restored the |
| * local variables which were saved when this task called schedule() in the |
| * past. prev == current is still correct but we need to recalculate this_rq |
| * because prev may have moved to another CPU. |
| */ |
| static struct rq *finish_task_switch(struct task_struct *prev) |
| __releases(rq->lock) |
| { |
| struct rq *rq = this_rq(); |
| struct mm_struct *mm = rq->prev_mm; |
| unsigned int prev_state; |
| |
| /* |
| * The previous task will have left us with a preempt_count of 2 |
| * because it left us after: |
| * |
| * schedule() |
| * preempt_disable(); // 1 |
| * __schedule() |
| * raw_spin_lock_irq(&rq->lock) // 2 |
| * |
| * Also, see FORK_PREEMPT_COUNT. |
| */ |
| if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET, |
| "corrupted preempt_count: %s/%d/0x%x\n", |
| current->comm, current->pid, preempt_count())) |
| preempt_count_set(FORK_PREEMPT_COUNT); |
| |
| rq->prev_mm = NULL; |
| |
| /* |
| * A task struct has one reference for the use as "current". |
| * If a task dies, then it sets TASK_DEAD in tsk->state and calls |
| * schedule one last time. The schedule call will never return, and |
| * the scheduled task must drop that reference. |
| * |
| * We must observe prev->state before clearing prev->on_cpu (in |
| * finish_task), otherwise a concurrent wakeup can get prev |
| * running on another CPU and we could rave with its RUNNING -> DEAD |
| * transition, resulting in a double drop. |
| */ |
| prev_state = READ_ONCE(prev->__state); |
| vtime_task_switch(prev); |
| perf_event_task_sched_in(prev, current); |
| finish_task(prev); |
| tick_nohz_task_switch(); |
| finish_lock_switch(rq); |
| finish_arch_post_lock_switch(); |
| kcov_finish_switch(current); |
| /* |
| * kmap_local_sched_out() is invoked with rq::lock held and |
| * interrupts disabled. There is no requirement for that, but the |
| * sched out code does not have an interrupt enabled section. |
| * Restoring the maps on sched in does not require interrupts being |
| * disabled either. |
| */ |
| kmap_local_sched_in(); |
| |
| fire_sched_in_preempt_notifiers(current); |
| /* |
| * When switching through a kernel thread, the loop in |
| * membarrier_{private,global}_expedited() may have observed that |
| * kernel thread and not issued an IPI. It is therefore possible to |
| * schedule between user->kernel->user threads without passing though |
| * switch_mm(). Membarrier requires a barrier after storing to |
| * rq->curr, before returning to userspace, so provide them here: |
| * |
| * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly |
| * provided by mmdrop_lazy_tlb(), |
| * - a sync_core for SYNC_CORE. |
| */ |
| if (mm) { |
| membarrier_mm_sync_core_before_usermode(mm); |
| mmdrop_lazy_tlb_sched(mm); |
| } |
| |
| if (unlikely(prev_state == TASK_DEAD)) { |
| if (prev->sched_class->task_dead) |
| prev->sched_class->task_dead(prev); |
| |
| /* Task is done with its stack. */ |
| put_task_stack(prev); |
| |
| put_task_struct_rcu_user(prev); |
| } |
| |
| return rq; |
| } |
| |
| /** |
| * schedule_tail - first thing a freshly forked thread must call. |
| * @prev: the thread we just switched away from. |
| */ |
| asmlinkage __visible void schedule_tail(struct task_struct *prev) |
| __releases(rq->lock) |
| { |
| /* |
| * New tasks start with FORK_PREEMPT_COUNT, see there and |
| * finish_task_switch() for details. |
| * |
| * finish_task_switch() will drop rq->lock() and lower preempt_count |
| * and the preempt_enable() will end up enabling preemption (on |
| * PREEMPT_COUNT kernels). |
| */ |
| |
| finish_task_switch(prev); |
| preempt_enable(); |
| |
| if (current->set_child_tid) |
| put_user(task_pid_vnr(current), current->set_child_tid); |
| |
| calculate_sigpending(); |
| } |
| |
| /* |
| * context_switch - switch to the new MM and the new thread's register state. |
| */ |
| static __always_inline struct rq * |
| context_switch(struct rq *rq, struct task_struct *prev, |
| struct task_struct *next, struct rq_flags *rf) |
| { |
| prepare_task_switch(rq, prev, next); |
| |
| /* |
| * For paravirt, this is coupled with an exit in switch_to to |
| * combine the page table reload and the switch backend into |
| * one hypercall. |
| */ |
| arch_start_context_switch(prev); |
| |
| /* |
| * kernel -> kernel lazy + transfer active |
| * user -> kernel lazy + mmgrab_lazy_tlb() active |
| * |
| * kernel -> user switch + mmdrop_lazy_tlb() active |
| * user -> user switch |
| * |
| * switch_mm_cid() needs to be updated if the barriers provided |
| * by context_switch() are modified. |
| */ |
| if (!next->mm) { // to kernel |
| enter_lazy_tlb(prev->active_mm, next); |
| |
| next->active_mm = prev->active_mm; |
| if (prev->mm) // from user |
| mmgrab_lazy_tlb(prev->active_mm); |
| else |
| prev->active_mm = NULL; |
| } else { // to user |
| membarrier_switch_mm(rq, prev->active_mm, next->mm); |
| /* |
| * sys_membarrier() requires an smp_mb() between setting |
| * rq->curr / membarrier_switch_mm() and returning to userspace. |
| * |
| * The below provides this either through switch_mm(), or in |
| * case 'prev->active_mm == next->mm' through |
| * finish_task_switch()'s mmdrop(). |
| */ |
| switch_mm_irqs_off(prev->active_mm, next->mm, next); |
| lru_gen_use_mm(next->mm); |
| |
| if (!prev->mm) { // from kernel |
| /* will mmdrop_lazy_tlb() in finish_task_switch(). */ |
| rq->prev_mm = prev->active_mm; |
| prev->active_mm = NULL; |
| } |
| } |
| |
| /* switch_mm_cid() requires the memory barriers above. */ |
| switch_mm_cid(rq, prev, next); |
| |
| prepare_lock_switch(rq, next, rf); |
| |
| /* Here we just switch the register state and the stack. */ |
| switch_to(prev, next, prev); |
| barrier(); |
| |
| return finish_task_switch(prev); |
| } |
| |
| /* |
| * nr_running and nr_context_switches: |
| * |
| * externally visible scheduler statistics: current number of runnable |
| * threads, total number of context switches performed since bootup. |
| */ |
| unsigned int nr_running(void) |
| { |
| unsigned int i, sum = 0; |
| |
| for_each_online_cpu(i) |
| sum += cpu_rq(i)->nr_running; |
| |
| return sum; |
| } |
| |
| /* |
| * Check if only the current task is running on the CPU. |
| * |
| * Caution: this function does not check that the caller has disabled |
| * preemption, thus the result might have a time-of-check-to-time-of-use |
| * race. The caller is responsible to use it correctly, for example: |
| * |
| * - from a non-preemptible section (of course) |
| * |
| * - from a thread that is bound to a single CPU |
| * |
| * - in a loop with very short iterations (e.g. a polling loop) |
| */ |
| bool single_task_running(void) |
| { |
| return raw_rq()->nr_running == 1; |
| } |
| EXPORT_SYMBOL(single_task_running); |
| |
| unsigned long long nr_context_switches_cpu(int cpu) |
| { |
| return cpu_rq(cpu)->nr_switches; |
| } |
| |
| unsigned long long nr_context_switches(void) |
| { |
| int i; |
| unsigned long long sum = 0; |
| |
| for_each_possible_cpu(i) |
| sum += cpu_rq(i)->nr_switches; |
| |
| return sum; |
| } |
| |
| /* |
| * Consumers of these two interfaces, like for example the cpuidle menu |
| * governor, are using nonsensical data. Preferring shallow idle state selection |
| * for a CPU that has IO-wait which might not even end up running the task when |
| * it does become runnable. |
| */ |
| |
| unsigned int nr_iowait_cpu(int cpu) |
| { |
| return atomic_read(&cpu_rq(cpu)->nr_iowait); |
| } |
| |
| /* |
| * IO-wait accounting, and how it's mostly bollocks (on SMP). |
| * |
| * The idea behind IO-wait account is to account the idle time that we could |
| * have spend running if it were not for IO. That is, if we were to improve the |
| * storage performance, we'd have a proportional reduction in IO-wait time. |
| * |
| * This all works nicely on UP, where, when a task blocks on IO, we account |
| * idle time as IO-wait, because if the storage were faster, it could've been |
| * running and we'd not be idle. |
| * |
| * This has been extended to SMP, by doing the same for each CPU. This however |
| * is broken. |
| * |
| * Imagine for instance the case where two tasks block on one CPU, only the one |
| * CPU will have IO-wait accounted, while the other has regular idle. Even |
| * though, if the storage were faster, both could've ran at the same time, |
| * utilising both CPUs. |
| * |
| * This means, that when looking globally, the current IO-wait accounting on |
| * SMP is a lower bound, by reason of under accounting. |
| * |
| * Worse, since the numbers are provided per CPU, they are sometimes |
| * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly |
| * associated with any one particular CPU, it can wake to another CPU than it |
| * blocked on. This means the per CPU IO-wait number is meaningless. |
| * |
| * Task CPU affinities can make all that even more 'interesting'. |
| */ |
| |
| unsigned int nr_iowait(void) |
| { |
| unsigned int i, sum = 0; |
| |
| for_each_possible_cpu(i) |
| sum += nr_iowait_cpu(i); |
| |
| return sum; |
| } |
| |
| #ifdef CONFIG_SMP |
| |
| /* |
| * sched_exec - execve() is a valuable balancing opportunity, because at |
| * this point the task has the smallest effective memory and cache footprint. |
| */ |
| void sched_exec(void) |
| { |
| struct task_struct *p = current; |
| struct migration_arg arg; |
| int dest_cpu; |
| |
| scoped_guard (raw_spinlock_irqsave, &p->pi_lock) { |
| dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC); |
| if (dest_cpu == smp_processor_id()) |
| return; |
| |
| if (unlikely(!cpu_active(dest_cpu))) |
| return; |
| |
| arg = (struct migration_arg){ p, dest_cpu }; |
| } |
| stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg); |
| } |
| |
| #endif |
| |
| DEFINE_PER_CPU(struct kernel_stat, kstat); |
| DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat); |
| |
| EXPORT_PER_CPU_SYMBOL(kstat); |
| EXPORT_PER_CPU_SYMBOL(kernel_cpustat); |
| |
| /* |
| * The function fair_sched_class.update_curr accesses the struct curr |
| * and its field curr->exec_start; when called from task_sched_runtime(), |
| * we observe a high rate of cache misses in practice. |
| * Prefetching this data results in improved performance. |
| */ |
| static inline void prefetch_curr_exec_start(struct task_struct *p) |
| { |
| #ifdef CONFIG_FAIR_GROUP_SCHED |
| struct sched_entity *curr = (&p->se)->cfs_rq->curr; |
| #else |
| struct sched_entity *curr = (&task_rq(p)->cfs)->curr; |
| #endif |
| prefetch(curr); |
| prefetch(&curr->exec_start); |
| } |
| |
| /* |
| * Return accounted runtime for the task. |
| * In case the task is currently running, return the runtime plus current's |
| * pending runtime that have not been accounted yet. |
| */ |
| unsigned long long task_sched_runtime(struct task_struct *p) |
| { |
| struct rq_flags rf; |
| struct rq *rq; |
| u64 ns; |
| |
| #if defined(CONFIG_64BIT) && defined(CONFIG_SMP) |
| /* |
| * 64-bit doesn't need locks to atomically read a 64-bit value. |
| * So we have a optimization chance when the task's delta_exec is 0. |
| * Reading ->on_cpu is racy, but this is ok. |
| * |
| * If we race with it leaving CPU, we'll take a lock. So we're correct. |
| * If we race with it entering CPU, unaccounted time is 0. This is |
| * indistinguishable from the read occurring a few cycles earlier. |
| * If we see ->on_cpu without ->on_rq, the task is leaving, and has |
| * been accounted, so we're correct here as well. |
| */ |
| if (!p->on_cpu || !task_on_rq_queued(p)) |
| return p->se.sum_exec_runtime; |
| #endif |
| |
| rq = task_rq_lock(p, &rf); |
| /* |
| * Must be ->curr _and_ ->on_rq. If dequeued, we would |
| * project cycles that may never be accounted to this |
| * thread, breaking clock_gettime(). |
| */ |
| if (task_current(rq, p) && task_on_rq_queued(p)) { |
| prefetch_curr_exec_start(p); |
| update_rq_clock(rq); |
| p->sched_class->update_curr(rq); |
| } |
| ns = p->se.sum_exec_runtime; |
| task_rq_unlock(rq, p, &rf); |
| |
| return ns; |
| } |
| |
| #ifdef CONFIG_SCHED_DEBUG |
| static u64 cpu_resched_latency(struct rq *rq) |
| { |
| int latency_warn_ms = READ_ONCE(sysctl_resched_latency_warn_ms); |
| u64 resched_latency, now = rq_clock(rq); |
| static bool warned_once; |
| |
| if (sysctl_resched_latency_warn_once && warned_once) |
| return 0; |
| |
| if (!need_resched() || !latency_warn_ms) |
| return 0; |
| |
| if (system_state == SYSTEM_BOOTING) |
| return 0; |
| |
| if (!rq->last_seen_need_resched_ns) { |
| rq->last_seen_need_resched_ns = now; |
| rq->ticks_without_resched = 0; |
| return 0; |
| } |
| |
| rq->ticks_without_resched++; |
| resched_latency = now - rq->last_seen_need_resched_ns; |
| if (resched_latency <= latency_warn_ms * NSEC_PER_MSEC) |
| return 0; |
| |
| warned_once = true; |
| |
| return resched_latency; |
| } |
| |
| static int __init setup_resched_latency_warn_ms(char *str) |
| { |
| long val; |
| |
| if ((kstrtol(str, 0, &val))) { |
| pr_warn("Unable to set resched_latency_warn_ms\n"); |
| return 1; |
| } |
| |
| sysctl_resched_latency_warn_ms = val; |
| return 1; |
| } |
| __setup("resched_latency_warn_ms=", setup_resched_latency_warn_ms); |
| #else |
| static inline u64 cpu_resched_latency(struct rq *rq) { return 0; } |
| #endif /* CONFIG_SCHED_DEBUG */ |
| |
| /* |
| * This function gets called by the timer code, with HZ frequency. |
| * We call it with interrupts disabled. |
| */ |
| void sched_tick(void) |
| { |
| int cpu = smp_processor_id(); |
| struct rq *rq = cpu_rq(cpu); |
| struct task_struct *curr = rq->curr; |
| struct rq_flags rf; |
| unsigned long hw_pressure; |
| u64 resched_latency; |
| |
| if (housekeeping_cpu(cpu, HK_TYPE_TICK)) |
| arch_scale_freq_tick(); |
| |
| sched_clock_tick(); |
| |
| rq_lock(rq, &rf); |
| |
| update_rq_clock(rq); |
| hw_pressure = arch_scale_hw_pressure(cpu_of(rq)); |
| update_hw_load_avg(rq_clock_task(rq), rq, hw_pressure); |
| curr->sched_class->task_tick(rq, curr, 0); |
| if (sched_feat(LATENCY_WARN)) |
| resched_latency = cpu_resched_latency(rq); |
| calc_global_load_tick(rq); |
| sched_core_tick(rq); |
| task_tick_mm_cid(rq, curr); |
| |
| rq_unlock(rq, &rf); |
| |
| if (sched_feat(LATENCY_WARN) && resched_latency) |
| resched_latency_warn(cpu, resched_latency); |
| |
| perf_event_task_tick(); |
| |
| if (curr->flags & PF_WQ_WORKER) |
| wq_worker_tick(curr); |
| |
| #ifdef CONFIG_SMP |
| rq->idle_balance = idle_cpu(cpu); |
| sched_balance_trigger(rq); |
| #endif |
| } |
| |
| #ifdef CONFIG_NO_HZ_FULL |
| |
| struct tick_work { |
| int cpu; |
| atomic_t state; |
| struct delayed_work work; |
| }; |
| /* Values for ->state, see diagram below. */ |
| #define TICK_SCHED_REMOTE_OFFLINE 0 |
| #define TICK_SCHED_REMOTE_OFFLINING 1 |
| #define TICK_SCHED_REMOTE_RUNNING 2 |
| |
| /* |
| * State diagram for ->state: |
| * |
| * |
| * TICK_SCHED_REMOTE_OFFLINE |
| * | ^ |
| * | | |
| * | | sched_tick_remote() |
| * | | |
| * | | |
| * +--TICK_SCHED_REMOTE_OFFLINING |
| * | ^ |
| * | | |
| * sched_tick_start() | | sched_tick_stop() |
| * | | |
| * V | |
| * TICK_SCHED_REMOTE_RUNNING |
| * |
| * |
| * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote() |
| * and sched_tick_start() are happy to leave the state in RUNNING. |
| */ |
| |
| static struct tick_work __percpu *tick_work_cpu; |
| |
| static void sched_tick_remote(struct work_struct *work) |
| { |
| struct delayed_work *dwork = to_delayed_work(work); |
| struct tick_work *twork = container_of(dwork, struct tick_work, work); |
| int cpu = twork->cpu; |
| struct rq *rq = cpu_rq(cpu); |
| int os; |
| |
| /* |
| * Handle the tick only if it appears the remote CPU is running in full |
| * dynticks mode. The check is racy by nature, but missing a tick or |
| * having one too much is no big deal because the scheduler tick updates |
| * statistics and checks timeslices in a time-independent way, regardless |
| * of when exactly it is running. |
| */ |
| if (tick_nohz_tick_stopped_cpu(cpu)) { |
| guard(rq_lock_irq)(rq); |
| struct task_struct *curr = rq->curr; |
| |
| if (cpu_online(cpu)) { |
| update_rq_clock(rq); |
| |
| if (!is_idle_task(curr)) { |
| /* |
| * Make sure the next tick runs within a |
| * reasonable amount of time. |
| */ |
| u64 delta = rq_clock_task(rq) - curr->se.exec_start; |
| WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3); |
| } |
| curr->sched_class->task_tick(rq, curr, 0); |
| |
| calc_load_nohz_remote(rq); |
| } |
| } |
| |
| /* |
| * Run the remote tick once per second (1Hz). This arbitrary |
| * frequency is large enough to avoid overload but short enough |
| * to keep scheduler internal stats reasonably up to date. But |
| * first update state to reflect hotplug activity if required. |
| */ |
| os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING); |
| WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE); |
| if (os == TICK_SCHED_REMOTE_RUNNING) |
| queue_delayed_work(system_unbound_wq, dwork, HZ); |
| } |
| |
| static void sched_tick_start(int cpu) |
| { |
| int os; |
| struct tick_work *twork; |
| |
| if (housekeeping_cpu(cpu, HK_TYPE_TICK)) |
| return; |
| |
| WARN_ON_ONCE(!tick_work_cpu); |
| |
| twork = per_cpu_ptr(tick_work_cpu, cpu); |
| os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING); |
| WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING); |
| if (os == TICK_SCHED_REMOTE_OFFLINE) { |
| twork->cpu = cpu; |
| INIT_DELAYED_WORK(&twork->work, sched_tick_remote); |
| queue_delayed_work(system_unbound_wq, &twork->work, HZ); |
| } |
| } |
| |
| #ifdef CONFIG_HOTPLUG_CPU |
| static void sched_tick_stop(int cpu) |
| { |
| struct tick_work *twork; |
| int os; |
| |
| if (housekeeping_cpu(cpu, HK_TYPE_TICK)) |
| return; |
| |
| WARN_ON_ONCE(!tick_work_cpu); |
| |
| twork = per_cpu_ptr(tick_work_cpu, cpu); |
| /* There cannot be competing actions, but don't rely on stop-machine. */ |
| os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING); |
| WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING); |
| /* Don't cancel, as this would mess up the state machine. */ |
| } |
| #endif /* CONFIG_HOTPLUG_CPU */ |
| |
| int __init sched_tick_offload_init(void) |
| { |
| tick_work_cpu = alloc_percpu(struct tick_work); |
| BUG_ON(!tick_work_cpu); |
| return 0; |
| } |
| |
| #else /* !CONFIG_NO_HZ_FULL */ |
| static inline void sched_tick_start(int cpu) { } |
| static inline void sched_tick_stop(int cpu) { } |
| #endif |
| |
| #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \ |
| defined(CONFIG_TRACE_PREEMPT_TOGGLE)) |
| /* |
| * If the value passed in is equal to the current preempt count |
| * then we just disabled preemption. Start timing the latency. |
| */ |
| static inline void preempt_latency_start(int val) |
| { |
| if (preempt_count() == val) { |
| unsigned long ip = get_lock_parent_ip(); |
| #ifdef CONFIG_DEBUG_PREEMPT |
| current->preempt_disable_ip = ip; |
| #endif |
| trace_preempt_off(CALLER_ADDR0, ip); |
| } |
| } |
| |
| void preempt_count_add(int val) |
| { |
| #ifdef CONFIG_DEBUG_PREEMPT |
| /* |
| * Underflow? |
| */ |
| if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) |
| return; |
| #endif |
| __preempt_count_add(val); |
| #ifdef CONFIG_DEBUG_PREEMPT |
| /* |
| * Spinlock count overflowing soon? |
| */ |
| DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= |
| PREEMPT_MASK - 10); |
| #endif |
| preempt_latency_start(val); |
| } |
| EXPORT_SYMBOL(preempt_count_add); |
| NOKPROBE_SYMBOL(preempt_count_add); |
| |
| /* |
| * If the value passed in equals to the current preempt count |
| * then we just enabled preemption. Stop timing the latency. |
| */ |
| static inline void preempt_latency_stop(int val) |
| { |
| if (preempt_count() == val) |
| trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip()); |
| } |
| |
| void preempt_count_sub(int val) |
| { |
| #ifdef CONFIG_DEBUG_PREEMPT |
| /* |
| * Underflow? |
| */ |
| if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) |
| return; |
| /* |
| * Is the spinlock portion underflowing? |
| */ |
| if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && |
| !(preempt_count() & PREEMPT_MASK))) |
| return; |
| #endif |
| |
| preempt_latency_stop(val); |
| __preempt_count_sub(val); |
| } |
| EXPORT_SYMBOL(preempt_count_sub); |
| NOKPROBE_SYMBOL(preempt_count_sub); |
| |
| #else |
| static inline void preempt_latency_start(int val) { } |
| static inline void preempt_latency_stop(int val) { } |
| #endif |
| |
| static inline unsigned long get_preempt_disable_ip(struct task_struct *p) |
| { |
| #ifdef CONFIG_DEBUG_PREEMPT |
| return p->preempt_disable_ip; |
| #else |
| return 0; |
| #endif |
| } |
| |
| /* |
| * Print scheduling while atomic bug: |
| */ |
| static noinline void __schedule_bug(struct task_struct *prev) |
| { |
| /* Save this before calling printk(), since that will clobber it */ |
| unsigned long preempt_disable_ip = get_preempt_disable_ip(current); |
| |
| if (oops_in_progress) |
| return; |
| |
| printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", |
| prev->comm, prev->pid, preempt_count()); |
| |
| debug_show_held_locks(prev); |
| print_modules(); |
| if (irqs_disabled()) |
| print_irqtrace_events(prev); |
| if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) { |
| pr_err("Preemption disabled at:"); |
| print_ip_sym(KERN_ERR, preempt_disable_ip); |
| } |
| check_panic_on_warn("scheduling while atomic"); |
| |
| dump_stack(); |
| add_taint(TAINT_WARN, LOCKDEP_STILL_OK); |
| } |
| |
| /* |
| * Various schedule()-time debugging checks and statistics: |
| */ |
| static inline void schedule_debug(struct task_struct *prev, bool preempt) |
| { |
| #ifdef CONFIG_SCHED_STACK_END_CHECK |
| if (task_stack_end_corrupted(prev)) |
| panic("corrupted stack end detected inside scheduler\n"); |
| |
| if (task_scs_end_corrupted(prev)) |
| panic("corrupted shadow stack detected inside scheduler\n"); |
| #endif |
| |
| #ifdef CONFIG_DEBUG_ATOMIC_SLEEP |
| if (!preempt && READ_ONCE(prev->__state) && prev->non_block_count) { |
| printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n", |
| prev->comm, prev->pid, prev->non_block_count); |
| dump_stack(); |
| add_taint(TAINT_WARN, LOCKDEP_STILL_OK); |
| } |
| #endif |
| |
| if (unlikely(in_atomic_preempt_off())) { |
| __schedule_bug(prev); |
| preempt_count_set(PREEMPT_DISABLED); |
| } |
| rcu_sleep_check(); |
| SCHED_WARN_ON(ct_state() == CONTEXT_USER); |
| |
| profile_hit(SCHED_PROFILING, __builtin_return_address(0)); |
| |
| schedstat_inc(this_rq()->sched_count); |
| } |
| |
| static void put_prev_task_balance(struct rq *rq, struct task_struct *prev, |
| struct rq_flags *rf) |
| { |
| #ifdef CONFIG_SMP |
| const struct sched_class *class; |
| /* |
| * We must do the balancing pass before put_prev_task(), such |
| * that when we release the rq->lock the task is in the same |
| * state as before we took rq->lock. |
| * |
| * We can terminate the balance pass as soon as we know there is |
| * a runnable task of @class priority or higher. |
| */ |
| for_class_range(class, prev->sched_class, &idle_sched_class) { |
| if (class->balance(rq, prev, rf)) |
| break; |
| } |
| #endif |
| |
| put_prev_task(rq, prev); |
| } |
| |
| /* |
| * Pick up the highest-prio task: |
| */ |
| static inline struct task_struct * |
| __pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) |
| { |
| const struct sched_class *class; |
| struct task_struct *p; |
| |
| /* |
| * Optimization: we know that if all tasks are in the fair class we can |
| * call that function directly, but only if the @prev task wasn't of a |
| * higher scheduling class, because otherwise those lose the |
| * opportunity to pull in more work from other CPUs. |
| */ |
| if (likely(!sched_class_above(prev->sched_class, &fair_sched_class) && |
| rq->nr_running == rq->cfs.h_nr_running)) { |
| |
| p = pick_next_task_fair(rq, prev, rf); |
| if (unlikely(p == RETRY_TASK)) |
| goto restart; |
| |
| /* Assume the next prioritized class is idle_sched_class */ |
| if (!p) { |
| put_prev_task(rq, prev); |
| p = pick_next_task_idle(rq); |
| } |
| |
| /* |
| * This is the fast path; it cannot be a DL server pick; |
| * therefore even if @p == @prev, ->dl_server must be NULL. |
| */ |
| if (p->dl_server) |
| p->dl_server = NULL; |
| |
| return p; |
| } |
| |
| restart: |
| put_prev_task_balance(rq, prev, rf); |
| |
| /* |
| * We've updated @prev and no longer need the server link, clear it. |
| * Must be done before ->pick_next_task() because that can (re)set |
| * ->dl_server. |
| */ |
| if (prev->dl_server) |
| prev->dl_server = NULL; |
| |
| for_each_class(class) { |
| p = class->pick_next_task(rq); |
| if (p) |
| return p; |
| } |
| |
| BUG(); /* The idle class should always have a runnable task. */ |
| } |
| |
| #ifdef CONFIG_SCHED_CORE |
| static inline bool is_task_rq_idle(struct task_struct *t) |
| { |
| return (task_rq(t)->idle == t); |
| } |
| |
| static inline bool cookie_equals(struct task_struct *a, unsigned long cookie) |
| { |
| return is_task_rq_idle(a) || (a->core_cookie == cookie); |
| } |
| |
| static inline bool cookie_match(struct task_struct *a, struct task_struct *b) |
| { |
| if (is_task_rq_idle(a) || is_task_rq_idle(b)) |
| return true; |
| |
| return a->core_cookie == b->core_cookie; |
| } |
| |
| static inline struct task_struct *pick_task(struct rq *rq) |
| { |
| const struct sched_class *class; |
| struct task_struct *p; |
| |
| for_each_class(class) { |
| p = class->pick_task(rq); |
| if (p) |
| return p; |
| } |
| |
| BUG(); /* The idle class should always have a runnable task. */ |
| } |
| |
| extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi); |
| |
| static void queue_core_balance(struct rq *rq); |
| |
| static struct task_struct * |
| pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) |
| { |
| struct task_struct *next, *p, *max = NULL; |
| const struct cpumask *smt_mask; |
| bool fi_before = false; |
| bool core_clock_updated = (rq == rq->core); |
| unsigned long cookie; |
| int i, cpu, occ = 0; |
| struct rq *rq_i; |
| bool need_sync; |
| |
| if (!sched_core_enabled(rq)) |
| return __pick_next_task(rq, prev, rf); |
| |
| cpu = cpu_of(rq); |
| |
| /* Stopper task is switching into idle, no need core-wide selection. */ |
| if (cpu_is_offline(cpu)) { |
| /* |
| * Reset core_pick so that we don't enter the fastpath when |
| * coming online. core_pick would already be migrated to |
| * another cpu during offline. |
| */ |
| rq->core_pick = NULL; |
| return __pick_next_task(rq, prev, rf); |
| } |
| |
| /* |
| * If there were no {en,de}queues since we picked (IOW, the task |
| * pointers are all still valid), and we haven't scheduled the last |
| * pick yet, do so now. |
| * |
| * rq->core_pick can be NULL if no selection was made for a CPU because |
| * it was either offline or went offline during a sibling's core-wide |
| * selection. In this case, do a core-wide selection. |
| */ |
| if (rq->core->core_pick_seq == rq->core->core_task_seq && |
| rq->core->core_pick_seq != rq->core_sched_seq && |
| rq->core_pick) { |
| WRITE_ONCE(rq->core_sched_seq, rq->core->core_pick_seq); |
| |
| next = rq->core_pick; |
| if (next != prev) { |
| put_prev_task(rq, prev); |
| set_next_task(rq, next); |
| } |
| |
| rq->core_pick = NULL; |
| goto out; |
| } |
| |
| put_prev_task_balance(rq, prev, rf); |
| |
| smt_mask = cpu_smt_mask(cpu); |
| need_sync = !!rq->core->core_cookie; |
| |
| /* reset state */ |
| rq->core->core_cookie = 0UL; |
| if (rq->core->core_forceidle_count) { |
| if (!core_clock_updated) { |
| update_rq_clock(rq->core); |
| core_clock_updated = true; |
| } |
| sched_core_account_forceidle(rq); |
| /* reset after accounting force idle */ |
| rq->core->core_forceidle_start = 0; |
| rq->core->core_forceidle_count = 0; |
| rq->core->core_forceidle_occupation = 0; |
| need_sync = true; |
| fi_before = true; |
| } |
| |
| /* |
| * core->core_task_seq, core->core_pick_seq, rq->core_sched_seq |
| * |
| * @task_seq guards the task state ({en,de}queues) |
| * @pick_seq is the @task_seq we did a selection on |
| * @sched_seq is the @pick_seq we scheduled |
| * |
| * However, preemptions can cause multiple picks on the same task set. |
| * 'Fix' this by also increasing @task_seq for every pick. |
| */ |
| rq->core->core_task_seq++; |
| |
| /* |
| * Optimize for common case where this CPU has no cookies |
| * and there are no cookied tasks running on siblings. |
| */ |
| if (!need_sync) { |
| next = pick_task(rq); |
| if (!next->core_cookie) { |
| rq->core_pick = NULL; |
| /* |
| * For robustness, update the min_vruntime_fi for |
| * unconstrained picks as well. |
| */ |
| WARN_ON_ONCE(fi_before); |
| task_vruntime_update(rq, next, false); |
| goto out_set_next; |
| } |
| } |
| |
| /* |
| * For each thread: do the regular task pick and find the max prio task |
| * amongst them. |
| * |
| * Tie-break prio towards the current CPU |
| */ |
| for_each_cpu_wrap(i, smt_mask, cpu) { |
| rq_i = cpu_rq(i); |
| |
| /* |
| * Current cpu always has its clock updated on entrance to |
| * pick_next_task(). If the current cpu is not the core, |
| * the core may also have been updated above. |
| */ |
| if (i != cpu && (rq_i != rq->core || !core_clock_updated)) |
| update_rq_clock(rq_i); |
| |
| p = rq_i->core_pick = pick_task(rq_i); |
| if (!max || prio_less(max, p, fi_before)) |
| max = p; |
| } |
| |
| cookie = rq->core->core_cookie = max->core_cookie; |
| |
| /* |
| * For each thread: try and find a runnable task that matches @max or |
| * force idle. |
| */ |
| for_each_cpu(i, smt_mask) { |
| rq_i = cpu_rq(i); |
| p = rq_i->core_pick; |
| |
| if (!cookie_equals(p, cookie)) { |
| p = NULL; |
| if (cookie) |
| p = sched_core_find(rq_i, cookie); |
| if (!p) |
| p = idle_sched_class.pick_task(rq_i); |
| } |
| |
| rq_i->core_pick = p; |
| |
| if (p == rq_i->idle) { |
| if (rq_i->nr_running) { |
| rq->core->core_forceidle_count++; |
| if (!fi_before) |
| rq->core->core_forceidle_seq++; |
| } |
| } else { |
| occ++; |
| } |
| } |
| |
| if (schedstat_enabled() && rq->core->core_forceidle_count) { |
| rq->core->core_forceidle_start = rq_clock(rq->core); |
| rq->core->core_forceidle_occupation = occ; |
| } |
| |
| rq->core->core_pick_seq = rq->core->core_task_seq; |
| next = rq->core_pick; |
| rq->core_sched_seq = rq->core->core_pick_seq; |
| |
| /* Something should have been selected for current CPU */ |
| WARN_ON_ONCE(!next); |
| |
| /* |
| * Reschedule siblings |
| * |
| * NOTE: L1TF -- at this point we're no longer running the old task and |
| * sending an IPI (below) ensures the sibling will no longer be running |
| * their task. This ensures there is no inter-sibling overlap between |
| * non-matching user state. |
| */ |
| for_each_cpu(i, smt_mask) { |
| rq_i = cpu_rq(i); |
| |
| /* |
| * An online sibling might have gone offline before a task |
| * could be picked for it, or it might be offline but later |
| * happen to come online, but its too late and nothing was |
| * picked for it. That's Ok - it will pick tasks for itself, |
| * so ignore it. |
| */ |
| if (!rq_i->core_pick) |
| continue; |
| |
| /* |
| * Update for new !FI->FI transitions, or if continuing to be in !FI: |
| * fi_before fi update? |
| * 0 0 1 |
| * 0 1 1 |
| * 1 0 1 |
| * 1 1 0 |
| */ |
| if (!(fi_before && rq->core->core_forceidle_count)) |
| task_vruntime_update(rq_i, rq_i->core_pick, !!rq->core->core_forceidle_count); |
| |
| rq_i->core_pick->core_occupation = occ; |
| |
| if (i == cpu) { |
| rq_i->core_pick = NULL; |
| continue; |
| } |
| |
| /* Did we break L1TF mitigation requirements? */ |
| WARN_ON_ONCE(!cookie_match(next, rq_i->core_pick)); |
| |
| if (rq_i->curr == rq_i->core_pick) { |
| rq_i->core_pick = NULL; |
| continue; |
| } |
| |
| resched_curr(rq_i); |
| } |
| |
| out_set_next: |
| set_next_task(rq, next); |
| out: |
| if (rq->core->core_forceidle_count && next == rq->idle) |
| queue_core_balance(rq); |
| |
| return next; |
| } |
| |
| static bool try_steal_cookie(int this, int that) |
| { |
| struct rq *dst = cpu_rq(this), *src = cpu_rq(that); |
| struct task_struct *p; |
| unsigned long cookie; |
| bool success = false; |
| |
| guard(irq)(); |
| guard(double_rq_lock)(dst, src); |
| |
| cookie = dst->core->core_cookie; |
| if (!cookie) |
| return false; |
| |
| if (dst->curr != dst->idle) |
| return false; |
| |
| p = sched_core_find(src, cookie); |
| if (!p) |
| return false; |
| |
| do { |
| if (p == src->core_pick || p == src->curr) |
| goto next; |
| |
| if (!is_cpu_allowed(p, this)) |
| goto next; |
| |
| if (p->core_occupation > dst->idle->core_occupation) |
| goto next; |
| /* |
| * sched_core_find() and sched_core_next() will ensure |
| * that task @p is not throttled now, we also need to |
| * check whether the runqueue of the destination CPU is |
| * being throttled. |
| */ |
| if (sched_task_is_throttled(p, this)) |
| goto next; |
| |
| deactivate_task(src, p, 0); |
| set_task_cpu(p, this); |
| activate_task(dst, p, 0); |
| |
| resched_curr(dst); |
| |
| success = true; |
| break; |
| |
| next: |
| p = sched_core_next(p, cookie); |
| } while (p); |
| |
| return success; |
| } |
| |
| static bool steal_cookie_task(int cpu, struct sched_domain *sd) |
| { |
| int i; |
| |
| for_each_cpu_wrap(i, sched_domain_span(sd), cpu + 1) { |
| if (i == cpu) |
| continue; |
| |
| if (need_resched()) |
| break; |
| |
| if (try_steal_cookie(cpu, i)) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| static void sched_core_balance(struct rq *rq) |
| { |
| struct sched_domain *sd; |
| int cpu = cpu_of(rq); |
| |
| guard(preempt)(); |
| guard(rcu)(); |
| |
| raw_spin_rq_unlock_irq(rq); |
| for_each_domain(cpu, sd) { |
| if (need_resched()) |
| break; |
| |
| if (steal_cookie_task(cpu, sd)) |
| break; |
| } |
| raw_spin_rq_lock_irq(rq); |
| } |
| |
| static DEFINE_PER_CPU(struct balance_callback, core_balance_head); |
| |
| static void queue_core_balance(struct rq *rq) |
| { |
| if (!sched_core_enabled(rq)) |
| return; |
| |
| if (!rq->core->core_cookie) |
| return; |
| |
| if (!rq->nr_running) /* not forced idle */ |
| return; |
| |
| queue_balance_callback(rq, &per_cpu(core_balance_head, rq->cpu), sched_core_balance); |
| } |
| |
| DEFINE_LOCK_GUARD_1(core_lock, int, |
| sched_core_lock(*_T->lock, &_T->flags), |
| sched_core_unlock(*_T->lock, &_T->flags), |
| unsigned long flags) |
| |
| static void sched_core_cpu_starting(unsigned int cpu) |
| { |
| const struct cpumask *smt_mask = cpu_smt_mask(cpu); |
| struct rq *rq = cpu_rq(cpu), *core_rq = NULL; |
| int t; |
| |
| guard(core_lock)(&cpu); |
| |
| WARN_ON_ONCE(rq->core != rq); |
| |
| /* if we're the first, we'll be our own leader */ |
| if (cpumask_weight(smt_mask) == 1) |
| return; |
| |
| /* find the leader */ |
| for_each_cpu(t, smt_mask) { |
| if (t == cpu) |
| continue; |
| rq = cpu_rq(t); |
| if (rq->core == rq) { |
| core_rq = rq; |
| break; |
| } |
| } |
| |
| if (WARN_ON_ONCE(!core_rq)) /* whoopsie */ |
| return; |
| |
| /* install and validate core_rq */ |
| for_each_cpu(t, smt_mask) { |
| rq = cpu_rq(t); |
| |
| if (t == cpu) |
| rq->core = core_rq; |
| |
| WARN_ON_ONCE(rq->core != core_rq); |
| } |
| } |
| |
| static void sched_core_cpu_deactivate(unsigned int cpu) |
| { |
| const struct cpumask *smt_mask = cpu_smt_mask(cpu); |
| struct rq *rq = cpu_rq(cpu), *core_rq = NULL; |
| int t; |
| |
| guard(core_lock)(&cpu); |
| |
| /* if we're the last man standing, nothing to do */ |
| if (cpumask_weight(smt_mask) == 1) { |
| WARN_ON_ONCE(rq->core != rq); |
| return; |
| } |
| |
| /* if we're not the leader, nothing to do */ |
| if (rq->core != rq) |
| return; |
| |
| /* find a new leader */ |
| for_each_cpu(t, smt_mask) { |
| if (t == cpu) |
| continue; |
| core_rq = cpu_rq(t); |
| break; |
| } |
| |
| if (WARN_ON_ONCE(!core_rq)) /* impossible */ |
| return; |
| |
| /* copy the shared state to the new leader */ |
| core_rq->core_task_seq = rq->core_task_seq; |
| core_rq->core_pick_seq = rq->core_pick_seq; |
| core_rq->core_cookie = rq->core_cookie; |
| core_rq->core_forceidle_count = rq->core_forceidle_count; |
| core_rq->core_forceidle_seq = rq->core_forceidle_seq; |
| core_rq->core_forceidle_occupation = rq->core_forceidle_occupation; |
| |
| /* |
| * Accounting edge for forced idle is handled in pick_next_task(). |
| * Don't need another one here, since the hotplug thread shouldn't |
| * have a cookie. |
| */ |
| core_rq->core_forceidle_start = 0; |
| |
| /* install new leader */ |
| for_each_cpu(t, smt_mask) { |
| rq = cpu_rq(t); |
| rq->core = core_rq; |
| } |
| } |
| |
| static inline void sched_core_cpu_dying(unsigned int cpu) |
| { |
| struct rq *rq = cpu_rq(cpu); |
| |
| if (rq->core != rq) |
| rq->core = rq; |
| } |
| |
| #else /* !CONFIG_SCHED_CORE */ |
| |
| static inline void sched_core_cpu_starting(unsigned int cpu) {} |
| static inline void sched_core_cpu_deactivate(unsigned int cpu) {} |
| static inline void sched_core_cpu_dying(unsigned int cpu) {} |
| |
| static struct task_struct * |
| pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) |
| { |
| return __pick_next_task(rq, prev, rf); |
| } |
| |
| #endif /* CONFIG_SCHED_CORE */ |
| |
| /* |
| * Constants for the sched_mode argument of __schedule(). |
| * |
| * The mode argument allows RT enabled kernels to differentiate a |
| * preemption from blocking on an 'sleeping' spin/rwlock. Note that |
| * SM_MASK_PREEMPT for !RT has all bits set, which allows the compiler to |
| * optimize the AND operation out and just check for zero. |
| */ |
| #define SM_NONE 0x0 |
| #define SM_PREEMPT 0x1 |
| #define SM_RTLOCK_WAIT 0x2 |
| |
| #ifndef CONFIG_PREEMPT_RT |
| # define SM_MASK_PREEMPT (~0U) |
| #else |
| # define SM_MASK_PREEMPT SM_PREEMPT |
| #endif |
| |
| /* |
| * __schedule() is the main scheduler function. |
| * |
| * The main means of driving the scheduler and thus entering this function are: |
| * |
| * 1. Explicit blocking: mutex, semaphore, waitqueue, etc. |
| * |
| * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return |
| * paths. For example, see arch/x86/entry_64.S. |
| * |
| * To drive preemption between tasks, the scheduler sets the flag in timer |
| * interrupt handler sched_tick(). |
| * |
| * 3. Wakeups don't really cause entry into schedule(). They add a |
| * task to the run-queue and that's it. |
| * |
| * Now, if the new task added to the run-queue preempts the current |
| * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets |
| * called on the nearest possible occasion: |
| * |
| * - If the kernel is preemptible (CONFIG_PREEMPTION=y): |
| * |
| * - in syscall or exception context, at the next outmost |
| * preempt_enable(). (this might be as soon as the wake_up()'s |
| * spin_unlock()!) |
| * |
| * - in IRQ context, return from interrupt-handler to |
| * preemptible context |
| * |
| * - If the kernel is not preemptible (CONFIG_PREEMPTION is not set) |
| * then at the next: |
| * |
| * - cond_resched() call |
| * - explicit schedule() call |
| * - return from syscall or exception to user-space |
| * - return from interrupt-handler to user-space |
| * |
| * WARNING: must be called with preemption disabled! |
| */ |
| static void __sched notrace __schedule(unsigned int sched_mode) |
| { |
| struct task_struct *prev, *next; |
| unsigned long *switch_count; |
| unsigned long prev_state; |
| struct rq_flags rf; |
| struct rq *rq; |
| int cpu; |
| |
| cpu = smp_processor_id(); |
| rq = cpu_rq(cpu); |
| prev = rq->curr; |
| |
| schedule_debug(prev, !!sched_mode); |
| |
| if (sched_feat(HRTICK) || sched_feat(HRTICK_DL)) |
| hrtick_clear(rq); |
| |
| local_irq_disable(); |
| rcu_note_context_switch(!!sched_mode); |
| |
| /* |
| * Make sure that signal_pending_state()->signal_pending() below |
| * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE) |
| * done by the caller to avoid the race with signal_wake_up(): |
| * |
| * __set_current_state(@state) signal_wake_up() |
| * schedule() set_tsk_thread_flag(p, TIF_SIGPENDING) |
| * wake_up_state(p, state) |
| * LOCK rq->lock LOCK p->pi_state |
| * smp_mb__after_spinlock() smp_mb__after_spinlock() |
| * if (signal_pending_state()) if (p->state & @state) |
| * |
| * Also, the membarrier system call requires a full memory barrier |
| * after coming from user-space, before storing to rq->curr; this |
| * barrier matches a full barrier in the proximity of the membarrier |
| * system call exit. |
| */ |
| rq_lock(rq, &rf); |
| smp_mb__after_spinlock(); |
| |
| /* Promote REQ to ACT */ |
| rq->clock_update_flags <<= 1; |
| update_rq_clock(rq); |
| rq->clock_update_flags = RQCF_UPDATED; |
| |
| switch_count = &prev->nivcsw; |
| |
| /* |
| * We must load prev->state once (task_struct::state is volatile), such |
| * that we form a control dependency vs deactivate_task() below. |
| */ |
| prev_state = READ_ONCE(prev->__state); |
| if (!(sched_mode & SM_MASK_PREEMPT) && prev_state) { |
| if (signal_pending_state(prev_state, prev)) { |
| WRITE_ONCE(prev->__state, TASK_RUNNING); |
| } else { |
| prev->sched_contributes_to_load = |
| (prev_state & TASK_UNINTERRUPTIBLE) && |
| !(prev_state & TASK_NOLOAD) && |
| !(prev_state & TASK_FROZEN); |
| |
| if (prev->sched_contributes_to_load) |
| rq->nr_uninterruptible++; |
| |
| /* |
| * __schedule() ttwu() |
| * prev_state = prev->state; if (p->on_rq && ...) |
| * if (prev_state) goto out; |
| * p->on_rq = 0; smp_acquire__after_ctrl_dep(); |
| * p->state = TASK_WAKING |
| * |
| * Where __schedule() and ttwu() have matching control dependencies. |
| * |
| * After this, schedule() must not care about p->state any more. |
| */ |
| deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK); |
| |
| if (prev->in_iowait) { |
| atomic_inc(&rq->nr_iowait); |
| delayacct_blkio_start(); |
| } |
| } |
| switch_count = &prev->nvcsw; |
| } |
| |
| next = pick_next_task(rq, prev, &rf); |
| clear_tsk_need_resched(prev); |
| clear_preempt_need_resched(); |
| #ifdef CONFIG_SCHED_DEBUG |
| rq->last_seen_need_resched_ns = 0; |
| #endif |
| |
| if (likely(prev != next)) { |
| rq->nr_switches++; |
| /* |
| * RCU users of rcu_dereference(rq->curr) may not see |
| * changes to task_struct made by pick_next_task(). |
| */ |
| RCU_INIT_POINTER(rq->curr, next); |
| /* |
| * The membarrier system call requires each architecture |
| * to have a full memory barrier after updating |
| * rq->curr, before returning to user-space. |
| * |
| * Here are the schemes providing that barrier on the |
| * various architectures: |
| * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC, |
| * RISC-V. switch_mm() relies on membarrier_arch_switch_mm() |
| * on PowerPC and on RISC-V. |
| * - finish_lock_switch() for weakly-ordered |
| * architectures where spin_unlock is a full barrier, |
| * - switch_to() for arm64 (weakly-ordered, spin_unlock |
| * is a RELEASE barrier), |
| * |
| * The barrier matches a full barrier in the proximity of |
| * the membarrier system call entry. |
| * |
| * On RISC-V, this barrier pairing is also needed for the |
| * SYNC_CORE command when switching between processes, cf. |
| * the inline comments in membarrier_arch_switch_mm(). |
| */ |
| ++*switch_count; |
| |
| migrate_disable_switch(rq, prev); |
| psi_sched_switch(prev, next, !task_on_rq_queued(prev)); |
| |
| trace_sched_switch(sched_mode & SM_MASK_PREEMPT, prev, next, prev_state); |
| |
| /* Also unlocks the rq: */ |
| rq = context_switch(rq, prev, next, &rf); |
| } else { |
| rq_unpin_lock(rq, &rf); |
| __balance_callbacks(rq); |
| raw_spin_rq_unlock_irq(rq); |
| } |
| } |
| |
| void __noreturn do_task_dead(void) |
| { |
| /* Causes final put_task_struct in finish_task_switch(): */ |
| set_special_state(TASK_DEAD); |
| |
| /* Tell freezer to ignore us: */ |
| current->flags |= PF_NOFREEZE; |
| |
| __schedule(SM_NONE); |
| BUG(); |
| |
| /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */ |
| for (;;) |
| cpu_relax(); |
| } |
| |
| static inline void sched_submit_work(struct task_struct *tsk) |
| { |
| static DEFINE_WAIT_OVERRIDE_MAP(sched_map, LD_WAIT_CONFIG); |
| unsigned int task_flags; |
| |
| /* |
| * Establish LD_WAIT_CONFIG context to ensure none of the code called |
| * will use a blocking primitive -- which would lead to recursion. |
| */ |
| lock_map_acquire_try(&sched_map); |
| |
| task_flags = tsk->flags; |
| /* |
| * If a worker goes to sleep, notify and ask workqueue whether it |
| * wants to wake up a task to maintain concurrency. |
| */ |
| if (task_flags & PF_WQ_WORKER) |
| wq_worker_sleeping(tsk); |
| else if (task_flags & PF_IO_WORKER) |
| io_wq_worker_sleeping(tsk); |
| |
| /* |
| * spinlock and rwlock must not flush block requests. This will |
| * deadlock if the callback attempts to acquire a lock which is |
| * already acquired. |
| */ |
| SCHED_WARN_ON(current->__state & TASK_RTLOCK_WAIT); |
| |
| /* |
| * If we are going to sleep and we have plugged IO queued, |
| * make sure to submit it to avoid deadlocks. |
| */ |
| blk_flush_plug(tsk->plug, true); |
| |
| lock_map_release(&sched_map); |
| } |
| |
| static void sched_update_worker(struct task_struct *tsk) |
| { |
| if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER | PF_BLOCK_TS)) { |
| if (tsk->flags & PF_BLOCK_TS) |
| blk_plug_invalidate_ts(tsk); |
| if (tsk->flags & PF_WQ_WORKER) |
| wq_worker_running(tsk); |
| else if (tsk->flags & PF_IO_WORKER) |
| io_wq_worker_running(tsk); |
| } |
| } |
| |
| static __always_inline void __schedule_loop(unsigned int sched_mode) |
| { |
| do { |
| preempt_disable(); |
| __schedule(sched_mode); |
| sched_preempt_enable_no_resched(); |
| } while (need_resched()); |
| } |
| |
| asmlinkage __visible void __sched schedule(void) |
| { |
| struct task_struct *tsk = current; |
| |
| #ifdef CONFIG_RT_MUTEXES |
| lockdep_assert(!tsk->sched_rt_mutex); |
| #endif |
| |
| if (!task_is_running(tsk)) |
| sched_submit_work(tsk); |
| __schedule_loop(SM_NONE); |
| sched_update_worker(tsk); |
| } |
| EXPORT_SYMBOL(schedule); |
| |
| /* |
| * synchronize_rcu_tasks() makes sure that no task is stuck in preempted |
| * state (have scheduled out non-voluntarily) by making sure that all |
| * tasks have either left the run queue or have gone into user space. |
| * As idle tasks do not do either, they must not ever be preempted |
| * (schedule out non-voluntarily). |
| * |
| * schedule_idle() is similar to schedule_preempt_disable() except that it |
| * never enables preemption because it does not call sched_submit_work(). |
| */ |
| void __sched schedule_idle(void) |
| { |
| /* |
| * As this skips calling sched_submit_work(), which the idle task does |
| * regardless because that function is a nop when the task is in a |
| * TASK_RUNNING state, make sure this isn't used someplace that the |
| * current task can be in any other state. Note, idle is always in the |
| * TASK_RUNNING state. |
| */ |
| WARN_ON_ONCE(current->__state); |
| do { |
| __schedule(SM_NONE); |
| } while (need_resched()); |
| } |
| |
| #if defined(CONFIG_CONTEXT_TRACKING_USER) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_USER_OFFSTACK) |
| asmlinkage __visible void __sched schedule_user(void) |
| { |
| /* |
| * If we come here after a random call to set_need_resched(), |
| * or we have been woken up remotely but the IPI has not yet arrived, |
| * we haven't yet exited the RCU idle mode. Do it here manually until |
| * we find a better solution. |
| * |
| * NB: There are buggy callers of this function. Ideally we |
| * should warn if prev_state != CONTEXT_USER, but that will trigger |
| * too frequently to make sense yet. |
| */ |
| enum ctx_state prev_state = exception_enter(); |
| schedule(); |
| exception_exit(prev_state); |
| } |
| #endif |
| |
| /** |
| * schedule_preempt_disabled - called with preemption disabled |
| * |
| * Returns with preemption disabled. Note: preempt_count must be 1 |
| */ |
| void __sched schedule_preempt_disabled(void) |
| { |
| sched_preempt_enable_no_resched(); |
| schedule(); |
| preempt_disable(); |
| } |
| |
| #ifdef CONFIG_PREEMPT_RT |
| void __sched notrace schedule_rtlock(void) |
| { |
| __schedule_loop(SM_RTLOCK_WAIT); |
| } |
| NOKPROBE_SYMBOL(schedule_rtlock); |
| #endif |
| |
| static void __sched notrace preempt_schedule_common(void) |
| { |
| do { |
| /* |
| * Because the function tracer can trace preempt_count_sub() |
| * and it also uses preempt_enable/disable_notrace(), if |
| * NEED_RESCHED is set, the preempt_enable_notrace() called |
| * by the function tracer will call this function again and |
| * cause infinite recursion. |
| * |
| * Preemption must be disabled here before the function |
| * tracer can trace. Break up preempt_disable() into two |
| * calls. One to disable preemption without fear of being |
| * traced. The other to still record the preemption latency, |
| * which can also be traced by the function tracer. |
| */ |
| preempt_disable_notrace(); |
| preempt_latency_start(1); |
| __schedule(SM_PREEMPT); |
| preempt_latency_stop(1); |
| preempt_enable_no_resched_notrace(); |
| |
| /* |
| * Check again in case we missed a preemption opportunity |
| * between schedule and now. |
| */ |
| } while (need_resched()); |
| } |
| |
| #ifdef CONFIG_PREEMPTION |
| /* |
| * This is the entry point to schedule() from in-kernel preemption |
| * off of preempt_enable. |
| */ |
| asmlinkage __visible void __sched notrace preempt_schedule(void) |
| { |
| /* |
| * If there is a non-zero preempt_count or interrupts are disabled, |
| * we do not want to preempt the current task. Just return.. |
| */ |
| if (likely(!preemptible())) |
| return; |
| preempt_schedule_common(); |
| } |
| NOKPROBE_SYMBOL(preempt_schedule); |
| EXPORT_SYMBOL(preempt_schedule); |
| |
| #ifdef CONFIG_PREEMPT_DYNAMIC |
| #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) |
| #ifndef preempt_schedule_dynamic_enabled |
| #define preempt_schedule_dynamic_enabled preempt_schedule |
| #define preempt_schedule_dynamic_disabled NULL |
| #endif |
| DEFINE_STATIC_CALL(preempt_schedule, preempt_schedule_dynamic_enabled); |
| EXPORT_STATIC_CALL_TRAMP(preempt_schedule); |
| #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) |
| static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule); |
| void __sched notrace dynamic_preempt_schedule(void) |
| { |
| if (!static_branch_unlikely(&sk_dynamic_preempt_schedule)) |
| return; |
| preempt_schedule(); |
| } |
| NOKPROBE_SYMBOL(dynamic_preempt_schedule); |
| EXPORT_SYMBOL(dynamic_preempt_schedule); |
| #endif |
| #endif |
| |
| /** |
| * preempt_schedule_notrace - preempt_schedule called by tracing |
| * |
| * The tracing infrastructure uses preempt_enable_notrace to prevent |
| * recursion and tracing preempt enabling caused by the tracing |
| * infrastructure itself. But as tracing can happen in areas coming |
| * from userspace or just about to enter userspace, a preempt enable |
| * can occur before user_exit() is called. This will cause the scheduler |
| * to be called when the system is still in usermode. |
| * |
| * To prevent this, the preempt_enable_notrace will use this function |
| * instead of preempt_schedule() to exit user context if needed before |
| * calling the scheduler. |
| */ |
| asmlinkage __visible void __sched notrace preempt_schedule_notrace(void) |
| { |
| enum ctx_state prev_ctx; |
| |
| if (likely(!preemptible())) |
| return; |
| |
| do { |
| /* |
| * Because the function tracer can trace preempt_count_sub() |
| * and it also uses preempt_enable/disable_notrace(), if |
| * NEED_RESCHED is set, the preempt_enable_notrace() called |
| * by the function tracer will call this function again and |
| * cause infinite recursion. |
| * |
| * Preemption must be disabled here before the function |
| * tracer can trace. Break up preempt_disable() into two |
| * calls. One to disable preemption without fear of being |
| * traced. The other to still record the preemption latency, |
| * which can also be traced by the function tracer. |
| */ |
| preempt_disable_notrace(); |
| preempt_latency_start(1); |
| /* |
| * Needs preempt disabled in case user_exit() is traced |
| * and the tracer calls preempt_enable_notrace() causing |
| * an infinite recursion. |
| */ |
| prev_ctx = exception_enter(); |
| __schedule(SM_PREEMPT); |
| exception_exit(prev_ctx); |
| |
| preempt_latency_stop(1); |
| preempt_enable_no_resched_notrace(); |
| } while (need_resched()); |
| } |
| EXPORT_SYMBOL_GPL(preempt_schedule_notrace); |
| |
| #ifdef CONFIG_PREEMPT_DYNAMIC |
| #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) |
| #ifndef preempt_schedule_notrace_dynamic_enabled |
| #define preempt_schedule_notrace_dynamic_enabled preempt_schedule_notrace |
| #define preempt_schedule_notrace_dynamic_disabled NULL |
| #endif |
| DEFINE_STATIC_CALL(preempt_schedule_notrace, preempt_schedule_notrace_dynamic_enabled); |
| EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace); |
| #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) |
| static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule_notrace); |
| void __sched notrace dynamic_preempt_schedule_notrace(void) |
| { |
| if (!static_branch_unlikely(&sk_dynamic_preempt_schedule_notrace)) |
| return; |
| preempt_schedule_notrace(); |
| } |
| NOKPROBE_SYMBOL(dynamic_preempt_schedule_notrace); |
| EXPORT_SYMBOL(dynamic_preempt_schedule_notrace); |
| #endif |
| #endif |
| |
| #endif /* CONFIG_PREEMPTION */ |
| |
| /* |
| * This is the entry point to schedule() from kernel preemption |
| * off of irq context. |
| * Note, that this is called and return with irqs disabled. This will |
| * protect us against recursive calling from irq. |
| */ |
| asmlinkage __visible void __sched preempt_schedule_irq(void) |
| { |
| enum ctx_state prev_state; |
| |
| /* Catch callers which need to be fixed */ |
| BUG_ON(preempt_count() || !irqs_disabled()); |
| |
| prev_state = exception_enter(); |
| |
| do { |
| preempt_disable(); |
| local_irq_enable(); |
| __schedule(SM_PREEMPT); |
| local_irq_disable(); |
| sched_preempt_enable_no_resched(); |
| } while (need_resched()); |
| |
| exception_exit(prev_state); |
| } |
| |
| int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags, |
| void *key) |
| { |
| WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~(WF_SYNC|WF_CURRENT_CPU)); |
| return try_to_wake_up(curr->private, mode, wake_flags); |
| } |
| EXPORT_SYMBOL(default_wake_function); |
| |
| static void __setscheduler_prio(struct task_struct *p, int prio) |
| { |
| if (dl_prio(prio)) |
| p->sched_class = &dl_sched_class; |
| else if (rt_prio(prio)) |
| p->sched_class = &rt_sched_class; |
| else |
| p->sched_class = &fair_sched_class; |
| |
| p->prio = prio; |
| } |
| |
| #ifdef CONFIG_RT_MUTEXES |
| |
| /* |
| * Would be more useful with typeof()/auto_type but they don't mix with |
| * bit-fields. Since it's a local thing, use int. Keep the generic sounding |
| * name such that if someone were to implement this function we get to compare |
| * notes. |
| */ |
| #define fetch_and_set(x, v) ({ int _x = (x); (x) = (v); _x; }) |
| |
| void rt_mutex_pre_schedule(void) |
| { |
| lockdep_assert(!fetch_and_set(current->sched_rt_mutex, 1)); |
| sched_submit_work(current); |
| } |
| |
| void rt_mutex_schedule(void) |
| { |
| lockdep_assert(current->sched_rt_mutex); |
| __schedule_loop(SM_NONE); |
| } |
| |
| void rt_mutex_post_schedule(void) |
| { |
| sched_update_worker(current); |
| lockdep_assert(fetch_and_set(current->sched_rt_mutex, 0)); |
| } |
| |
| static inline int __rt_effective_prio(struct task_struct *pi_task, int prio) |
| { |
| if (pi_task) |
| prio = min(prio, pi_task->prio); |
| |
| return prio; |
| } |
| |
| static inline int rt_effective_prio(struct task_struct *p, int prio) |
| { |
| struct task_struct *pi_task = rt_mutex_get_top_task(p); |
| |
| return __rt_effective_prio(pi_task, prio); |
| } |
| |
| /* |
| * rt_mutex_setprio - set the current priority of a task |
| * @p: task to boost |
| * @pi_task: donor task |
| * |
| * This function changes the 'effective' priority of a task. It does |
| * not touch ->normal_prio like __setscheduler(). |
| * |
| * Used by the rt_mutex code to implement priority inheritance |
| * logic. Call site only calls if the priority of the task changed. |
| */ |
| void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task) |
| { |
| int prio, oldprio, queued, running, queue_flag = |
| DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; |
| const struct sched_class *prev_class; |
| struct rq_flags rf; |
| struct rq *rq; |
| |
| /* XXX used to be waiter->prio, not waiter->task->prio */ |
| prio = __rt_effective_prio(pi_task, p->normal_prio); |
| |
| /* |
| * If nothing changed; bail early. |
| */ |
| if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio)) |
| return; |
| |
| rq = __task_rq_lock(p, &rf); |
| update_rq_clock(rq); |
| /* |
| * Set under pi_lock && rq->lock, such that the value can be used under |
| * either lock. |
| * |
| * Note that there is loads of tricky to make this pointer cache work |
| * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to |
| * ensure a task is de-boosted (pi_task is set to NULL) before the |
| * task is allowed to run again (and can exit). This ensures the pointer |
| * points to a blocked task -- which guarantees the task is present. |
| */ |
| p->pi_top_task = pi_task; |
| |
| /* |
| * For FIFO/RR we only need to set prio, if that matches we're done. |
| */ |
| if (prio == p->prio && !dl_prio(prio)) |
| goto out_unlock; |
| |
| /* |
| * Idle task boosting is a nono in general. There is one |
| * exception, when PREEMPT_RT and NOHZ is active: |
| * |
| * The idle task calls get_next_timer_interrupt() and holds |
| * the timer wheel base->lock on the CPU and another CPU wants |
| * to access the timer (probably to cancel it). We can safely |
| * ignore the boosting request, as the idle CPU runs this code |
| * with interrupts disabled and will complete the lock |
| * protected section without being interrupted. So there is no |
| * real need to boost. |
| */ |
| if (unlikely(p == rq->idle)) { |
| WARN_ON(p != rq->curr); |
| WARN_ON(p->pi_blocked_on); |
| goto out_unlock; |
| } |
| |
| trace_sched_pi_setprio(p, pi_task); |
| oldprio = p->prio; |
| |
| if (oldprio == prio) |
| queue_flag &= ~DEQUEUE_MOVE; |
| |
| prev_class = p->sched_class; |
| queued = task_on_rq_queued(p); |
| running = task_current(rq, p); |
| if (queued) |
| dequeue_task(rq, p, queue_flag); |
| if (running) |
| put_prev_task(rq, p); |
| |
| /* |
| * Boosting condition are: |
| * 1. -rt task is running and holds mutex A |
| * --> -dl task blocks on mutex A |
| * |
| * 2. -dl task is running and holds mutex A |
| * --> -dl task blocks on mutex A and could preempt the |
| * running task |
| */ |
| if (dl_prio(prio)) { |
| if (!dl_prio(p->normal_prio) || |
| (pi_task && dl_prio(pi_task->prio) && |
| dl_entity_preempt(&pi_task->dl, &p->dl))) { |
| p->dl.pi_se = pi_task->dl.pi_se; |
| queue_flag |= ENQUEUE_REPLENISH; |
| } else { |
| p->dl.pi_se = &p->dl; |
| } |
| } else if (rt_prio(prio)) { |
| if (dl_prio(oldprio)) |
| p->dl.pi_se = &p->dl; |
| if (oldprio < prio) |
| queue_flag |= ENQUEUE_HEAD; |
| } else { |
| if (dl_prio(oldprio)) |
| p->dl.pi_se = &p->dl; |
| if (rt_prio(oldprio)) |
| p->rt.timeout = 0; |
| } |
| |
| __setscheduler_prio(p, prio); |
| |
| if (queued) |
| enqueue_task(rq, p, queue_flag); |
| if (running) |
| set_next_task(rq, p); |
| |
| check_class_changed(rq, p, prev_class, oldprio); |
| out_unlock: |
| /* Avoid rq from going away on us: */ |
| preempt_disable(); |
| |
| rq_unpin_lock(rq, &rf); |
| __balance_callbacks(rq); |
| raw_spin_rq_unlock(rq); |
| |
| preempt_enable(); |
| } |
| #else |
| static inline int rt_effective_prio(struct task_struct *p, int prio) |
| { |
| return prio; |
| } |
| #endif |
| |
| void set_user_nice(struct task_struct *p, long nice) |
| { |
| bool queued, running; |
| struct rq *rq; |
| int old_prio; |
| |
| if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE) |
| return; |
| /* |
| * We have to be careful, if called from sys_setpriority(), |
| * the task might be in the middle of scheduling on another CPU. |
| */ |
| CLASS(task_rq_lock, rq_guard)(p); |
| rq = rq_guard.rq; |
| |
| update_rq_clock(rq); |
| |
| /* |
| * The RT priorities are set via sched_setscheduler(), but we still |
| * allow the 'normal' nice value to be set - but as expected |
| * it won't have any effect on scheduling until the task is |
| * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR: |
| */ |
| if (task_has_dl_policy(p) || task_has_rt_policy(p)) { |
| p->static_prio = NICE_TO_PRIO(nice); |
| return; |
| } |
| |
| queued = task_on_rq_queued(p); |
| running = task_current(rq, p); |
| if (queued) |
| dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK); |
| if (running) |
| put_prev_task(rq, p); |
| |
| p->static_prio = NICE_TO_PRIO(nice); |
| set_load_weight(p, true); |
| old_prio = p->prio; |
| p->prio = effective_prio(p); |
| |
| if (queued) |
| enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); |
| if (running) |
| set_next_task(rq, p); |
| |
| /* |
| * If the task increased its priority or is running and |
| * lowered its priority, then reschedule its CPU: |
| */ |
| p->sched_class->prio_changed(rq, p, old_prio); |
| } |
| EXPORT_SYMBOL(set_user_nice); |
| |
| /* |
| * is_nice_reduction - check if nice value is an actual reduction |
| * |
| * Similar to can_nice() but does not perform a capability check. |
| * |
| * @p: task |
| * @nice: nice value |
| */ |
| static bool is_nice_reduction(const struct task_struct *p, const int nice) |
| { |
| /* Convert nice value [19,-20] to rlimit style value [1,40]: */ |
| int nice_rlim = nice_to_rlimit(nice); |
| |
| return (nice_rlim <= task_rlimit(p, RLIMIT_NICE)); |
| } |
| |
| /* |
| * can_nice - check if a task can reduce its nice value |
| * @p: task |
| * @nice: nice value |
| */ |
| int can_nice(const struct task_struct *p, const int nice) |
| { |
| return is_nice_reduction(p, nice) || capable(CAP_SYS_NICE); |
| } |
| |
| #ifdef __ARCH_WANT_SYS_NICE |
| |
| /* |
| * sys_nice - change the priority of the current process. |
| * @increment: priority increment |
| * |
| * sys_setpriority is a more generic, but much slower function that |
| * does similar things. |
| */ |
| SYSCALL_DEFINE1(nice, int, increment) |
| { |
| long nice, retval; |
| |
| /* |
| * Setpriority might change our priority at the same moment. |
| * We don't have to worry. Conceptually one call occurs first |
| * and we have a single winner. |
| */ |
| increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH); |
| nice = task_nice(current) + increment; |
| |
| nice = clamp_val(nice, MIN_NICE, MAX_NICE); |
| if (increment < 0 && !can_nice(current, nice)) |
| return -EPERM; |
| |
| retval = security_task_setnice(current, nice); |
| if (retval) |
| return retval; |
| |
| set_user_nice(current, nice); |
| return 0; |
| } |
| |
| #endif |
| |
| /** |
| * task_prio - return the priority value of a given task. |
| * @p: the task in question. |
| * |
| * Return: The priority value as seen by users in /proc. |
| * |
| * sched policy return value kernel prio user prio/nice |
| * |
| * normal, batch, idle [0 ... 39] [100 ... 139] 0/[-20 ... 19] |
| * fifo, rr [-2 ... -100] [98 ... 0] [1 ... 99] |
| * deadline -101 -1 0 |
| */ |
| int task_prio(const struct task_struct *p) |
| { |
| return p->prio - MAX_RT_PRIO; |
| } |
| |
| /** |
| * idle_cpu - is a given CPU idle currently? |
| * @cpu: the processor in question. |
| * |
| * Return: 1 if the CPU is currently idle. 0 otherwise. |
| */ |
| int idle_cpu(int cpu) |
| { |
| struct rq *rq = cpu_rq(cpu); |
| |
| if (rq->curr != rq->idle) |
| return 0; |
| |
| if (rq->nr_running) |
| return 0; |
| |
| #ifdef CONFIG_SMP |
| if (rq->ttwu_pending) |
| return 0; |
| #endif |
| |
| return 1; |
| } |
| |
| /** |
| * available_idle_cpu - is a given CPU idle for enqueuing work. |
| * @cpu: the CPU in question. |
| * |
| * Return: 1 if the CPU is currently idle. 0 otherwise. |
| */ |
| int available_idle_cpu(int cpu) |
| { |
| if (!idle_cpu(cpu)) |
| return 0; |
| |
| if (vcpu_is_preempted(cpu)) |
| return 0; |
| |
| return 1; |
| } |
| |
| /** |
| * idle_task - return the idle task for a given CPU. |
| * @cpu: the processor in question. |
| * |
| * Return: The idle task for the CPU @cpu. |
| */ |
| struct task_struct *idle_task(int cpu) |
| { |
| return cpu_rq(cpu)->idle; |
| } |
| |
| #ifdef CONFIG_SCHED_CORE |
| int sched_core_idle_cpu(int cpu) |
| { |
| struct rq *rq = cpu_rq(cpu); |
| |
| if (sched_core_enabled(rq) && rq->curr == rq->idle) |
| return 1; |
| |
| return idle_cpu(cpu); |
| } |
| |
| #endif |
| |
| #ifdef CONFIG_SMP |
| /* |
| * This function computes an effective utilization for the given CPU, to be |
| * used for frequency selection given the linear relation: f = u * f_max. |
| * |
| * The scheduler tracks the following metrics: |
| * |
| * cpu_util_{cfs,rt,dl,irq}() |
| * cpu_bw_dl() |
| * |
| * Where the cfs,rt and dl util numbers are tracked with the same metric and |
| * synchronized windows and are thus directly comparable. |
| * |
| * The cfs,rt,dl utilization are the running times measured with rq->clock_task |
| * which excludes things like IRQ and steal-time. These latter are then accrued |
| * in the irq utilization. |
| * |
| * The DL bandwidth number otoh is not a measured metric but a value computed |
| * based on the task model parameters and gives the minimal utilization |
| * required to meet deadlines. |
| */ |
| unsigned long effective_cpu_util(int cpu, unsigned long util_cfs, |
| unsigned long *min, |
| unsigned long *max) |
| { |
| unsigned long util, irq, scale; |
| struct rq *rq = cpu_rq(cpu); |
| |
| scale = arch_scale_cpu_capacity(cpu); |
| |
| /* |
| * Early check to see if IRQ/steal time saturates the CPU, can be |
| * because of inaccuracies in how we track these -- see |
| * update_irq_load_avg(). |
| */ |
| irq = cpu_util_irq(rq); |
| if (unlikely(irq >= scale)) { |
| if (min) |
| *min = scale; |
| if (max) |
| *max = scale; |
| return scale; |
| } |
| |
| if (min) { |
| /* |
| * The minimum utilization returns the highest level between: |
| * - the computed DL bandwidth needed with the IRQ pressure which |
| * steals time to the deadline task. |
| * - The minimum performance requirement for CFS and/or RT. |
| */ |
| *min = max(irq + cpu_bw_dl(rq), uclamp_rq_get(rq, UCLAMP_MIN)); |
| |
| /* |
| * When an RT task is runnable and uclamp is not used, we must |
| * ensure that the task will run at maximum compute capacity. |
| */ |
| if (!uclamp_is_used() && rt_rq_is_runnable(&rq->rt)) |
| *min = max(*min, scale); |
| } |
| |
| /* |
| * Because the time spend on RT/DL tasks is visible as 'lost' time to |
| * CFS tasks and we use the same metric to track the effective |
| * utilization (PELT windows are synchronized) we can directly add them |
| * to obtain the CPU's actual utilization. |
| */ |
| util = util_cfs + cpu_util_rt(rq); |
| util += cpu_util_dl(rq); |
| |
| /* |
| * The maximum hint is a soft bandwidth requirement, which can be lower |
| * than the actual utilization because of uclamp_max requirements. |
| */ |
| if (max) |
| *max = min(scale, uclamp_rq_get(rq, UCLAMP_MAX)); |
| |
| if (util >= scale) |
| return scale; |
| |
| /* |
| * There is still idle time; further improve the number by using the |
| * irq metric. Because IRQ/steal time is hidden from the task clock we |
| * need to scale the task numbers: |
| * |
| * max - irq |
| * U' = irq + --------- * U |
| * max |
| */ |
| util = scale_irq_capacity(util, irq, scale); |
| util += irq; |
| |
| return min(scale, util); |
| } |
| |
| unsigned long sched_cpu_util(int cpu) |
| { |
| return effective_cpu_util(cpu, cpu_util_cfs(cpu), NULL, NULL); |
| } |
| #endif /* CONFIG_SMP */ |
| |
| /** |
| * find_process_by_pid - find a process with a matching PID value. |
| * @pid: the pid in question. |
| * |
| * The task of @pid, if found. %NULL otherwise. |
| */ |
| static struct task_struct *find_process_by_pid(pid_t pid) |
| { |
| return pid ? find_task_by_vpid(pid) : current; |
| } |
| |
| static struct task_struct *find_get_task(pid_t pid) |
| { |
| struct task_struct *p; |
| guard(rcu)(); |
| |
| p = find_process_by_pid(pid); |
| if (likely(p)) |
| get_task_struct(p); |
| |
| return p; |
| } |
| |
| DEFINE_CLASS(find_get_task, struct task_struct *, if (_T) put_task_struct(_T), |
| find_get_task(pid), pid_t pid) |
| |
| /* |
| * sched_setparam() passes in -1 for its policy, to let the functions |
| * it calls know not to change it. |
| */ |
| #define SETPARAM_POLICY -1 |
| |
| static void __setscheduler_params(struct task_struct *p, |
| const struct sched_attr *attr) |
| { |
| int policy = attr->sched_policy; |
| |
| if (policy == SETPARAM_POLICY) |
| policy = p->policy; |
| |
| p->policy = policy; |
| |
| if (dl_policy(policy)) |
| __setparam_dl(p, attr); |
| else if (fair_policy(policy)) |
| p->static_prio = NICE_TO_PRIO(attr->sched_nice); |
| |
| /* |
| * __sched_setscheduler() ensures attr->sched_priority == 0 when |
| * !rt_policy. Always setting this ensures that things like |
| * getparam()/getattr() don't report silly values for !rt tasks. |
| */ |
| p->rt_priority = attr->sched_priority; |
| p->normal_prio = normal_prio(p); |
| set_load_weight(p, true); |
| } |
| |
| /* |
| * Check the target process has a UID that matches the current process's: |
| */ |
| static bool check_same_owner(struct task_struct *p) |
| { |
| const struct cred *cred = current_cred(), *pcred; |
| guard(rcu)(); |
| |
| pcred = __task_cred(p); |
| return (uid_eq(cred->euid, pcred->euid) || |
| uid_eq(cred->euid, pcred->uid)); |
| } |
| |
| /* |
| * Allow unprivileged RT tasks to decrease priority. |
| * Only issue a capable test if needed and only once to avoid an audit |
| * event on permitted non-privileged operations: |
| */ |
| static int user_check_sched_setscheduler(struct task_struct *p, |
| const struct sched_attr *attr, |
| int policy, int reset_on_fork) |
| { |
| if (fair_policy(policy)) { |
| if (attr->sched_nice < task_nice(p) && |
| !is_nice_reduction(p, attr->sched_nice)) |
| goto req_priv; |
| } |
| |
| if (rt_policy(policy)) { |
| unsigned long rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO); |
| |
| /* Can't set/change the rt policy: */ |
| if (policy != p->policy && !rlim_rtprio) |
| goto req_priv; |
| |
| /* Can't increase priority: */ |
| if (attr->sched_priority > p->rt_priority && |
| attr->sched_priority > rlim_rtprio) |
| goto req_priv; |
| } |
| |
| /* |
| * Can't set/change SCHED_DEADLINE policy at all for now |
| * (safest behavior); in the future we would like to allow |
| * unprivileged DL tasks to increase their relative deadline |
| * or reduce their runtime (both ways reducing utilization) |
| */ |
| if (dl_policy(policy)) |
| goto req_priv; |
| |
| /* |
| * Treat SCHED_IDLE as nice 20. Only allow a switch to |
| * SCHED_NORMAL if the RLIMIT_NICE would normally permit it. |
| */ |
| if (task_has_idle_policy(p) && !idle_policy(policy)) { |
| if (!is_nice_reduction(p, task_nice(p))) |
| goto req_priv; |
| } |
| |
| /* Can't change other user's priorities: */ |
| if (!check_same_owner(p)) |
| goto req_priv; |
| |
| /* Normal users shall not reset the sched_reset_on_fork flag: */ |
| if (p->sched_reset_on_fork && !reset_on_fork) |
| goto req_priv; |
| |
| return 0; |
| |
| req_priv: |
| if (!capable(CAP_SYS_NICE)) |
| return -EPERM; |
| |
| return 0; |
| } |
| |
| static int __sched_setscheduler(struct task_struct *p, |
| const struct sched_attr *attr, |
| bool user, bool pi) |
| { |
| int oldpolicy = -1, policy = attr->sched_policy; |
| int retval, oldprio, newprio, queued, running; |
| const struct sched_class *prev_class; |
| struct balance_callback *head; |
| struct rq_flags rf; |
| int reset_on_fork; |
| int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; |
| struct rq *rq; |
| bool cpuset_locked = false; |
| |
| /* The pi code expects interrupts enabled */ |
| BUG_ON(pi && in_interrupt()); |
| recheck: |
| /* Double check policy once rq lock held: */ |
| if (policy < 0) { |
| reset_on_fork = p->sched_reset_on_fork; |
| policy = oldpolicy = p->policy; |
| } else { |
| reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK); |
| |
| if (!valid_policy(policy)) |
| return -EINVAL; |
| } |
| |
| if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV)) |
| return -EINVAL; |
| |
| /* |
| * Valid priorities for SCHED_FIFO and SCHED_RR are |
| * 1..MAX_RT_PRIO-1, valid priority for SCHED_NORMAL, |
| * SCHED_BATCH and SCHED_IDLE is 0. |
| */ |
| if (attr->sched_priority > MAX_RT_PRIO-1) |
| return -EINVAL; |
| if ((dl_policy(policy) && !__checkparam_dl(attr)) || |
| (rt_policy(policy) != (attr->sched_priority != 0))) |
| return -EINVAL; |
| |
| if (user) { |
| retval = user_check_sched_setscheduler(p, attr, policy, reset_on_fork); |
| if (retval) |
| return retval; |
| |
| if (attr->sched_flags & SCHED_FLAG_SUGOV) |
| return -EINVAL; |
| |
| retval = security_task_setscheduler(p); |
| if (retval) |
| return retval; |
| } |
| |
| /* Update task specific "requested" clamps */ |
| if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) { |
| retval = uclamp_validate(p, attr); |
| if (retval) |
| return retval; |
| } |
| |
| /* |
| * SCHED_DEADLINE bandwidth accounting relies on stable cpusets |
| * information. |
| */ |
| if (dl_policy(policy) || dl_policy(p->policy)) { |
| cpuset_locked = true; |
| cpuset_lock(); |
| } |
| |
| /* |
| * Make sure no PI-waiters arrive (or leave) while we are |
| * changing the priority of the task: |
| * |
| * To be able to change p->policy safely, the appropriate |
| * runqueue lock must be held. |
| */ |
| rq = task_rq_lock(p, &rf); |
| update_rq_clock(rq); |
| |
| /* |
| * Changing the policy of the stop threads its a very bad idea: |
| */ |
| if (p == rq->stop) { |
| retval = -EINVAL; |
| goto unlock; |
| } |
| |
| /* |
| * If not changing anything there's no need to proceed further, |
| * but store a possible modification of reset_on_fork. |
| */ |
| if (unlikely(policy == p->policy)) { |
| if (fair_policy(policy) && attr->sched_nice != task_nice(p)) |
| goto change; |
| if (rt_policy(policy) && attr->sched_priority != p->rt_priority) |
| goto change; |
| if (dl_policy(policy) && dl_param_changed(p, attr)) |
| goto change; |
| if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) |
| goto change; |
| |
| p->sched_reset_on_fork = reset_on_fork; |
| retval = 0; |
| goto unlock; |
| } |
| change: |
| |
| if (user) { |
| #ifdef CONFIG_RT_GROUP_SCHED |
| /* |
| * Do not allow realtime tasks into groups that have no runtime |
| * assigned. |
| */ |
| if (rt_bandwidth_enabled() && rt_policy(policy) && |
| task_group(p)->rt_bandwidth.rt_runtime == 0 && |
| !task_group_is_autogroup(task_group(p))) { |
| retval = -EPERM; |
| goto unlock; |
| } |
| #endif |
| #ifdef CONFIG_SMP |
| if (dl_bandwidth_enabled() && dl_policy(policy) && |
| !(attr->sched_flags & SCHED_FLAG_SUGOV)) { |
| cpumask_t *span = rq->rd->span; |
| |
| /* |
| * Don't allow tasks with an affinity mask smaller than |
| * the entire root_domain to become SCHED_DEADLINE. We |
| * will also fail if there's no bandwidth available. |
| */ |
| if (!cpumask_subset(span, p->cpus_ptr) || |
| rq->rd->dl_bw.bw == 0) { |
| retval = -EPERM; |
| goto unlock; |
| } |
| } |
| #endif |
| } |
| |
| /* Re-check policy now with rq lock held: */ |
| if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { |
| policy = oldpolicy = -1; |
| task_rq_unlock(rq, p, &rf); |
| if (cpuset_locked) |
| cpuset_unlock(); |
| goto recheck; |
| } |
| |
| /* |
| * If setscheduling to SCHED_DEADLINE (or changing the parameters |
| * of a SCHED_DEADLINE task) we need to check if enough bandwidth |
| * is available. |
| */ |
| if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) { |
| retval = -EBUSY; |
| goto unlock; |
| } |
| |
| p->sched_reset_on_fork = reset_on_fork; |
| oldprio = p->prio; |
| |
| newprio = __normal_prio(policy, attr->sched_priority, attr->sched_nice); |
| if (pi) { |
| /* |
| * Take priority boosted tasks into account. If the new |
| * effective priority is unchanged, we just store the new |
| * normal parameters and do not touch the scheduler class and |
| * the runqueue. This will be done when the task deboost |
| * itself. |
| */ |
| newprio = rt_effective_prio(p, newprio); |
| if (newprio == oldprio) |
| queue_flags &= ~DEQUEUE_MOVE; |
| } |
| |
| queued = task_on_rq_queued(p); |
| running = task_current(rq, p); |
| if (queued) |
| dequeue_task(rq, p, queue_flags); |
| if (running) |
| put_prev_task(rq, p); |
| |
| prev_class = p->sched_class; |
| |
| if (!(attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)) { |
| __setscheduler_params(p, attr); |
| __setscheduler_prio(p, newprio); |
| } |
| __setscheduler_uclamp(p, attr); |
| |
| if (queued) { |
| /* |
| * We enqueue to tail when the priority of a task is |
| * increased (user space view). |
| */ |
| if (oldprio < p->prio) |
| queue_flags |= ENQUEUE_HEAD; |
| |
| enqueue_task(rq, p, queue_flags); |
| } |
| if (running) |
| set_next_task(rq, p); |
| |
| check_class_changed(rq, p, prev_class, oldprio); |
| |
| /* Avoid rq from going away on us: */ |
| preempt_disable(); |
| head = splice_balance_callbacks(rq); |
| task_rq_unlock(rq, p, &rf); |
| |
| if (pi) { |
| if (cpuset_locked) |
| cpuset_unlock(); |
| rt_mutex_adjust_pi(p); |
| } |
| |
| /* Run balance callbacks after we've adjusted the PI chain: */ |
| balance_callbacks(rq, head); |
| preempt_enable(); |
| |
| return 0; |
| |
| unlock: |
| task_rq_unlock(rq, p, &rf); |
| if (cpuset_locked) |
| cpuset_unlock(); |
| return retval; |
| } |
| |
| static int _sched_setscheduler(struct task_struct *p, int policy, |
| const struct sched_param *param, bool check) |
| { |
| struct sched_attr attr = { |
| .sched_policy = policy, |
| .sched_priority = param->sched_priority, |
| .sched_nice = PRIO_TO_NICE(p->static_prio), |
| }; |
| |
| /* Fixup the legacy SCHED_RESET_ON_FORK hack. */ |
| if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) { |
| attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; |
| policy &= ~SCHED_RESET_ON_FORK; |
| attr.sched_policy = policy; |
| } |
| |
| return __sched_setscheduler(p, &attr, check, true); |
| } |
| /** |
| * sched_setscheduler - change the scheduling policy and/or RT priority of a thread. |
| * @p: the task in question. |
| * @policy: new policy. |
| * @param: structure containing the new RT priority. |
| * |
| * Use sched_set_fifo(), read its comment. |
| * |
| * Return: 0 on success. An error code otherwise. |
| * |
| * NOTE that the task may be already dead. |
| */ |
| int sched_setscheduler(struct task_struct *p, int policy, |
| const struct sched_param *param) |
| { |
| return _sched_setscheduler(p, policy, param, true); |
| } |
| |
| int sched_setattr(struct task_struct *p, const struct sched_attr *attr) |
| { |
| return __sched_setscheduler(p, attr, true, true); |
| } |
| |
| int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr) |
| { |
| return __sched_setscheduler(p, attr, false, true); |
| } |
| EXPORT_SYMBOL_GPL(sched_setattr_nocheck); |
| |
| /** |
| * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace. |
| * @p: the task in question. |
| * @policy: new policy. |
| * @param: structure containing the new RT priority. |
| * |
| * Just like sched_setscheduler, only don't bother checking if the |
| * current context has permission. For example, this is needed in |
| * stop_machine(): we create temporary high priority worker threads, |
| * but our caller might not have that capability. |
| * |
| * Return: 0 on success. An error code otherwise. |
| */ |
| int sched_setscheduler_nocheck(struct task_struct *p, int policy, |
| const struct sched_param *param) |
| { |
| return _sched_setscheduler(p, policy, param, false); |
| } |
| |
| /* |
| * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally |
| * incapable of resource management, which is the one thing an OS really should |
| * be doing. |
| * |
| * This is of course the reason it is limited to privileged users only. |
| * |
| * Worse still; it is fundamentally impossible to compose static priority |
| * workloads. You cannot take two correctly working static prio workloads |
| * and smash them together and still expect them to work. |
| * |
| * For this reason 'all' FIFO tasks the kernel creates are basically at: |
| * |
| * MAX_RT_PRIO / 2 |
| * |
| * The administrator _MUST_ configure the system, the kernel simply doesn't |
| * know enough information to make a sensible choice. |
| */ |
| void sched_set_fifo(struct task_struct *p) |
| { |
| struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 }; |
| WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0); |
| } |
| EXPORT_SYMBOL_GPL(sched_set_fifo); |
| |
| /* |
| * For when you don't much care about FIFO, but want to be above SCHED_NORMAL. |
| */ |
| void sched_set_fifo_low(struct task_struct *p) |
| { |
| struct sched_param sp = { .sched_priority = 1 }; |
| WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0); |
| } |
| EXPORT_SYMBOL_GPL(sched_set_fifo_low); |
| |
| void sched_set_normal(struct task_struct *p, int nice) |
| { |
| struct sched_attr attr = { |
| .sched_policy = SCHED_NORMAL, |
| .sched_nice = nice, |
| }; |
| WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0); |
| } |
| EXPORT_SYMBOL_GPL(sched_set_normal); |
| |
| static int |
| do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) |
| { |
| struct sched_param lparam; |
| |
| if (!param || pid < 0) |
| return -EINVAL; |
| if (copy_from_user(&lparam, param, sizeof(struct sched_param))) |
| return -EFAULT; |
| |
| CLASS(find_get_task, p)(pid); |
| if (!p) |
| return -ESRCH; |
| |
| return sched_setscheduler(p, policy, &lparam); |
| } |
| |
| /* |
| * Mimics kernel/events/core.c perf_copy_attr(). |
| */ |
| static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr) |
| { |
| u32 size; |
| int ret; |
| |
| /* Zero the full structure, so that a short copy will be nice: */ |
| memset(attr, 0, sizeof(*attr)); |
| |
| ret = get_user(size, &uattr->size); |
| if (ret) |
| return ret; |
| |
| /* ABI compatibility quirk: */ |
| if (!size) |
| size = SCHED_ATTR_SIZE_VER0; |
| if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE) |
| goto err_size; |
| |
| ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size); |
| if (ret) { |
| if (ret == -E2BIG) |
| goto err_size; |
| return ret; |
| } |
| |
| if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) && |
| size < SCHED_ATTR_SIZE_VER1) |
| return -EINVAL; |
| |
| /* |
| * XXX: Do we want to be lenient like existing syscalls; or do we want |
| * to be strict and return an error on out-of-bounds values? |
| */ |
| attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE); |
| |
| return 0; |
| |
| err_size: |
| put_user(sizeof(*attr), &uattr->size); |
| return -E2BIG; |
| } |
| |
| static void get_params(struct task_struct *p, struct sched_attr *attr) |
| { |
| if (task_has_dl_policy(p)) |
| __getparam_dl(p, attr); |
| else if (task_has_rt_policy(p)) |
| attr->sched_priority = p->rt_priority; |
| else |
| attr->sched_nice = task_nice(p); |
| } |
| |
| /** |
| * sys_sched_setscheduler - set/change the scheduler policy and RT priority |
| * @pid: the pid in question. |
| * @policy: new policy. |
| * @param: structure containing the new RT priority. |
| * |
| * Return: 0 on success. An error code otherwise. |
| */ |
| SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param) |
| { |
| if (policy < 0) |
| return -EINVAL; |
| |
| return do_sched_setscheduler(pid, policy, param); |
| } |
| |
| /** |
| * sys_sched_setparam - set/change the RT priority of a thread |
| * @pid: the pid in question. |
| * @param: structure containing the new RT priority. |
| * |
| * Return: 0 on success. An error code otherwise. |
| */ |
| SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param) |
| { |
| return do_sched_setscheduler(pid, SETPARAM_POLICY, param); |
| } |
| |
| /** |
| * sys_sched_setattr - same as above, but with extended sched_attr |
| * @pid: the pid in question. |
| * @uattr: structure containing the extended parameters. |
| * @flags: for future extension. |
| */ |
| SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr, |
| unsigned int, flags) |
| { |
| struct sched_attr attr; |
| int retval; |
| |
| if (!uattr || pid < 0 || flags) |
| return -EINVAL; |
| |
| retval = sched_copy_attr(uattr, &attr); |
| if (retval) |
| return retval; |
| |
| if ((int)attr.sched_policy < 0) |
| return -EINVAL; |
| if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY) |
| attr.sched_policy = SETPARAM_POLICY; |
| |
| CLASS(find_get_task, p)(pid); |
| if (!p) |
| return -ESRCH; |
| |
| if (attr.sched_flags & SCHED_FLAG_KEEP_PARAMS) |
| get_params(p, &attr); |
| |
| return sched_setattr(p, &attr); |
| } |
| |
| /** |
| * sys_sched_getscheduler - get the policy (scheduling class) of a thread |
| * @pid: the pid in question. |
| * |
| * Return: On success, the policy of the thread. Otherwise, a negative error |
| * code. |
| */ |
| SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid) |
| { |
| struct task_struct *p; |
| int retval; |
| |
| if (pid < 0) |
| return -EINVAL; |
| |
| guard(rcu)(); |
| p = find_process_by_pid(pid); |
| if (!p) |
| return -ESRCH; |
| |
| retval = security_task_getscheduler(p); |
| if (!retval) { |
| retval = p->policy; |
| if (p->sched_reset_on_fork) |
| retval |= SCHED_RESET_ON_FORK; |
| } |
| return retval; |
| } |
| |
| /** |
| * sys_sched_getparam - get the RT priority of a thread |
| * @pid: the pid in question. |
| * @param: structure containing the RT priority. |
| * |
| * Return: On success, 0 and the RT priority is in @param. Otherwise, an error |
| * code. |
| */ |
| SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param) |
| { |
| struct sched_param lp = { .sched_priority = 0 }; |
| struct task_struct *p; |
| int retval; |
| |
| if (!param || pid < 0) |
| return -EINVAL; |
| |
| scoped_guard (rcu) { |
| p = find_process_by_pid(pid); |
| if (!p) |
| return -ESRCH; |
| |
| retval = security_task_getscheduler(p); |
| if (retval) |
| return retval; |
| |
| if (task_has_rt_policy(p)) |
| lp.sched_priority = p->rt_priority; |
| } |
| |
| /* |
| * This one might sleep, we cannot do it with a spinlock held ... |
| */ |
| return copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0; |
| } |
| |
| /* |
| * Copy the kernel size attribute structure (which might be larger |
| * than what user-space knows about) to user-space. |
| * |
| * Note that all cases are valid: user-space buffer can be larger or |
| * smaller than the kernel-space buffer. The usual case is that both |
| * have the same size. |
| */ |
| static int |
| sched_attr_copy_to_user(struct sched_attr __user *uattr, |
| struct sched_attr *kattr, |
| unsigned int usize) |
| { |
| unsigned int ksize = sizeof(*kattr); |
| |
| if (!access_ok(uattr, usize)) |
| return -EFAULT; |
| |
| /* |
| * sched_getattr() ABI forwards and backwards compatibility: |
| * |
| * If usize == ksize then we just copy everything to user-space and all is good. |
| * |
| * If usize < ksize then we only copy as much as user-space has space for, |
| * this keeps ABI compatibility as well. We skip the rest. |
| * |
| * If usize > ksize then user-space is using a newer version of the ABI, |
| * which part the kernel doesn't know about. Just ignore it - tooling can |
| * detect the kernel's knowledge of attributes from the attr->size value |
| * which is set to ksize in this case. |
| */ |
| kattr->size = min(usize, ksize); |
| |
| if (copy_to_user(uattr, kattr, kattr->size)) |
| return -EFAULT; |
| |
| return 0; |
| } |
| |
| /** |
| * sys_sched_getattr - similar to sched_getparam, but with sched_attr |
| * @pid: the pid in question. |
| * @uattr: structure containing the extended parameters. |
| * @usize: sizeof(attr) for fwd/bwd comp. |
| * @flags: for future extension. |
| */ |
| SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr, |
| unsigned int, usize, unsigned int, flags) |
| { |
| struct sched_attr kattr = { }; |
| struct task_struct *p; |
| int retval; |
| |
| if (!uattr || pid < 0 || usize > PAGE_SIZE || |
| usize < SCHED_ATTR_SIZE_VER0 || flags) |
| return -EINVAL; |
| |
| scoped_guard (rcu) { |
| p = find_process_by_pid(pid); |
| if (!p) |
| return -ESRCH; |
| |
| retval = security_task_getscheduler(p); |
| if (retval) |
| return retval; |
| |
| kattr.sched_policy = p->policy; |
| if (p->sched_reset_on_fork) |
| kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; |
| get_params(p, &kattr); |
| kattr.sched_flags &= SCHED_FLAG_ALL; |
| |
| #ifdef CONFIG_UCLAMP_TASK |
| /* |
| * This could race with another potential updater, but this is fine |
| * because it'll correctly read the old or the new value. We don't need |
| * to guarantee who wins the race as long as it doesn't return garbage. |
| */ |
| kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value; |
| kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value; |
| #endif |
| } |
| |
| return sched_attr_copy_to_user(uattr, &kattr, usize); |
| } |
| |
| #ifdef CONFIG_SMP |
| int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask) |
| { |
| /* |
| * If the task isn't a deadline task or admission control is |
| * disabled then we don't care about affinity changes. |
| */ |
| if (!task_has_dl_policy(p) || !dl_bandwidth_enabled()) |
| return 0; |
| |
| /* |
| * Since bandwidth control happens on root_domain basis, |
| * if admission test is enabled, we only admit -deadline |
| * tasks allowed to run on all the CPUs in the task's |
| * root_domain. |
| */ |
| guard(rcu)(); |
| if (!cpumask_subset(task_rq(p)->rd->span, mask)) |
| return -EBUSY; |
| |
| return 0; |
| } |
| #endif |
| |
| static int |
| __sched_setaffinity(struct task_struct *p, struct affinity_context *ctx) |
| { |
| int retval; |
| cpumask_var_t cpus_allowed, new_mask; |
| |
| if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) |
| return -ENOMEM; |
| |
| if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) { |
| retval = -ENOMEM; |
| goto out_free_cpus_allowed; |
| } |
| |
| cpuset_cpus_allowed(p, cpus_allowed); |
| cpumask_and(new_mask, ctx->new_mask, cpus_allowed); |
| |
| ctx->new_mask = new_mask; |
| ctx->flags |= SCA_CHECK; |
| |
| retval = dl_task_check_affinity(p, new_mask); |
| if (retval) |
| goto out_free_new_mask; |
| |
| retval = __set_cpus_allowed_ptr(p, ctx); |
| if (retval) |
| goto out_free_new_mask; |
| |
| cpuset_cpus_allowed(p, cpus_allowed); |
| if (!cpumask_subset(new_mask, cpus_allowed)) { |
| /* |
| * We must have raced with a concurrent cpuset update. |
| * Just reset the cpumask to the cpuset's cpus_allowed. |
| */ |
| cpumask_copy(new_mask, cpus_allowed); |
| |
| /* |
| * If SCA_USER is set, a 2nd call to __set_cpus_allowed_ptr() |
| * will restore the previous user_cpus_ptr value. |
| * |
| * In the unlikely event a previous user_cpus_ptr exists, |
| * we need to further restrict the mask to what is allowed |
| * by that old user_cpus_ptr. |
| */ |
| if (unlikely((ctx->flags & SCA_USER) && ctx->user_mask)) { |
| bool empty = !cpumask_and(new_mask, new_mask, |
| ctx->user_mask); |
| |
| if (WARN_ON_ONCE(empty)) |
| cpumask_copy(new_mask, cpus_allowed); |
| } |
| __set_cpus_allowed_ptr(p, ctx); |
| retval = -EINVAL; |
| } |
| |
| out_free_new_mask: |
| free_cpumask_var(new_mask); |
| out_free_cpus_allowed: |
| free_cpumask_var(cpus_allowed); |
| return retval; |
| } |
| |
| long sched_setaffinity(pid_t pid, const struct cpumask *in_mask) |
| { |
| struct affinity_context ac; |
| struct cpumask *user_mask; |
| int retval; |
| |
| CLASS(find_get_task, p)(pid); |
| if (!p) |
| return -ESRCH; |
| |
| if (p->flags & PF_NO_SETAFFINITY) |
| return -EINVAL; |
| |
| if (!check_same_owner(p)) { |
| guard(rcu)(); |
| if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) |
| return -EPERM; |
| } |
| |
| retval = security_task_setscheduler(p); |
| if (retval) |
| return retval; |
| |
| /* |
| * With non-SMP configs, user_cpus_ptr/user_mask isn't used and |
| * alloc_user_cpus_ptr() returns NULL. |
| */ |
| user_mask = alloc_user_cpus_ptr(NUMA_NO_NODE); |
| if (user_mask) { |
| cpumask_copy(user_mask, in_mask); |
| } else if (IS_ENABLED(CONFIG_SMP)) { |
| return -ENOMEM; |
| } |
| |
| ac = (struct affinity_context){ |
| .new_mask = in_mask, |
| .user_mask = user_mask, |
| .flags = SCA_USER, |
| }; |
| |
| retval = __sched_setaffinity(p, &ac); |
| kfree(ac.user_mask); |
| |
| return retval; |
| } |
| |
| static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, |
| struct cpumask *new_mask) |
| { |
| if (len < cpumask_size()) |
| cpumask_clear(new_mask); |
| else if (len > cpumask_size()) |
| len = cpumask_size(); |
| |
| return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; |
| } |
| |
| /** |
| * sys_sched_setaffinity - set the CPU affinity of a process |
| * @pid: pid of the process |
| * @len: length in bytes of the bitmask pointed to by user_mask_ptr |
| * @user_mask_ptr: user-space pointer to the new CPU mask |
| * |
| * Return: 0 on success. An error code otherwise. |
| */ |
| SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len, |
| unsigned long __user *, user_mask_ptr) |
| { |
| cpumask_var_t new_mask; |
| int retval; |
| |
| if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) |
| return -ENOMEM; |
| |
| retval = get_user_cpu_mask(user_mask_ptr, len, new_mask); |
| if (retval == 0) |
| retval = sched_setaffinity(pid, new_mask); |
| free_cpumask_var(new_mask); |
| return retval; |
| } |
| |
| long sched_getaffinity(pid_t pid, struct cpumask *mask) |
| { |
| struct task_struct *p; |
| int retval; |
| |
| guard(rcu)(); |
| p = find_process_by_pid(pid); |
| if (!p) |
| return -ESRCH; |
| |
| retval = security_task_getscheduler(p); |
| if (retval) |
| return retval; |
| |
| guard(raw_spinlock_irqsave)(&p->pi_lock); |
| cpumask_and(mask, &p->cpus_mask, cpu_active_mask); |
| |
| return 0; |
| } |
| |
| /** |
| * sys_sched_getaffinity - get the CPU affinity of a process |
| * @pid: pid of the process |
| * @len: length in bytes of the bitmask pointed to by user_mask_ptr |
| * @user_mask_ptr: user-space pointer to hold the current CPU mask |
| * |
| * Return: size of CPU mask copied to user_mask_ptr on success. An |
| * error code otherwise. |
| */ |
| SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len, |
| unsigned long __user *, user_mask_ptr) |
| { |
| int ret; |
| cpumask_var_t mask; |
| |
| if ((len * BITS_PER_BYTE) < nr_cpu_ids) |
| return -EINVAL; |
| if (len & (sizeof(unsigned long)-1)) |
| return -EINVAL; |
| |
| if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) |
| return -ENOMEM; |
| |
| ret = sched_getaffinity(pid, mask); |
| if (ret == 0) { |
| unsigned int retlen = min(len, cpumask_size()); |
| |
| if (copy_to_user(user_mask_ptr, cpumask_bits(mask), retlen)) |
| ret = -EFAULT; |
| else |
| ret = retlen; |
| } |
| free_cpumask_var(mask); |
| |
| return ret; |
| } |
| |
| static void do_sched_yield(void) |
| { |
| struct rq_flags rf; |
| struct rq *rq; |
| |
| rq = this_rq_lock_irq(&rf); |
| |
| schedstat_inc(rq->yld_count); |
| current->sched_class->yield_task(rq); |
| |
| preempt_disable(); |
| rq_unlock_irq(rq, &rf); |
| sched_preempt_enable_no_resched(); |
| |
| schedule(); |
| } |
| |
| /** |
| * sys_sched_yield - yield the current processor to other threads. |
| * |
| * This function yields the current CPU to other tasks. If there are no |
| * other threads running on this CPU then this function will return. |
| * |
| * Return: 0. |
| */ |
| SYSCALL_DEFINE0(sched_yield) |
| { |
| do_sched_yield(); |
| return 0; |
| } |
| |
| #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC) |
| int __sched __cond_resched(void) |
| { |
| if (should_resched(0)) { |
| preempt_schedule_common(); |
| return 1; |
| } |
| /* |
| * In preemptible kernels, ->rcu_read_lock_nesting tells the tick |
| * whether the current CPU is in an RCU read-side critical section, |
| * so the tick can report quiescent states even for CPUs looping |
| * in kernel context. In contrast, in non-preemptible kernels, |
| * RCU readers leave no in-memory hints, which means that CPU-bound |
| * processes executing in kernel context might never report an |
| * RCU quiescent state. Therefore, the following code causes |
| * cond_resched() to report a quiescent state, but only when RCU |
| * is in urgent need of one. |
| */ |
| #ifndef CONFIG_PREEMPT_RCU |
| rcu_all_qs(); |
| #endif |
| return 0; |
| } |
| EXPORT_SYMBOL(__cond_resched); |
| #endif |
| |
| #ifdef CONFIG_PREEMPT_DYNAMIC |
| #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) |
| #define cond_resched_dynamic_enabled __cond_resched |
| #define cond_resched_dynamic_disabled ((void *)&__static_call_return0) |
| DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched); |
| EXPORT_STATIC_CALL_TRAMP(cond_resched); |
| |
| #define might_resched_dynamic_enabled __cond_resched |
| #define might_resched_dynamic_disabled ((void *)&__static_call_return0) |
| DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched); |
| EXPORT_STATIC_CALL_TRAMP(might_resched); |
| #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) |
| static DEFINE_STATIC_KEY_FALSE(sk_dynamic_cond_resched); |
| int __sched dynamic_cond_resched(void) |
| { |
| klp_sched_try_switch(); |
| if (!static_branch_unlikely(&sk_dynamic_cond_resched)) |
| return 0; |
| return __cond_resched(); |
| } |
| EXPORT_SYMBOL(dynamic_cond_resched); |
| |
| static DEFINE_STATIC_KEY_FALSE(sk_dynamic_might_resched); |
| int __sched dynamic_might_resched(void) |
| { |
| if (!static_branch_unlikely(&sk_dynamic_might_resched)) |
| return 0; |
| return __cond_resched(); |
| } |
| EXPORT_SYMBOL(dynamic_might_resched); |
| #endif |
| #endif |
| |
| /* |
| * __cond_resched_lock() - if a reschedule is pending, drop the given lock, |
| * call schedule, and on return reacquire the lock. |
| * |
| * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level |
| * operations here to prevent schedule() from being called twice (once via |
| * spin_unlock(), once by hand). |
| */ |
| int __cond_resched_lock(spinlock_t *lock) |
| { |
| int resched = should_resched(PREEMPT_LOCK_OFFSET); |
| int ret = 0; |
| |
| lockdep_assert_held(lock); |
| |
| if (spin_needbreak(lock) || resched) { |
| spin_unlock(lock); |
| if (!_cond_resched()) |
| cpu_relax(); |
| ret = 1; |
| spin_lock(lock); |
| } |
| return ret; |
| } |
| EXPORT_SYMBOL(__cond_resched_lock); |
| |
| int __cond_resched_rwlock_read(rwlock_t *lock) |
| { |
| int resched = should_resched(PREEMPT_LOCK_OFFSET); |
| int ret = 0; |
| |
| lockdep_assert_held_read(lock); |
| |
| if (rwlock_needbreak(lock) || resched) { |
| read_unlock(lock); |
| if (!_cond_resched()) |
| cpu_relax(); |
| ret = 1; |
| read_lock(lock); |
| } |
| return ret; |
| } |
| EXPORT_SYMBOL(__cond_resched_rwlock_read); |
| |
| int __cond_resched_rwlock_write(rwlock_t *lock) |
| { |
| int resched = should_resched(PREEMPT_LOCK_OFFSET); |
| int ret = 0; |
| |
| lockdep_assert_held_write(lock); |
| |
| if (rwlock_needbreak(lock) || resched) { |
| write_unlock(lock); |
| if (!_cond_resched()) |
| cpu_relax(); |
| ret = 1; |
| write_lock(lock); |
| } |
| return ret; |
| } |
| EXPORT_SYMBOL(__cond_resched_rwlock_write); |
| |
| #ifdef CONFIG_PREEMPT_DYNAMIC |
| |
| #ifdef CONFIG_GENERIC_ENTRY |
| #include <linux/entry-common.h> |
| #endif |
| |
| /* |
| * SC:cond_resched |
| * SC:might_resched |
| * SC:preempt_schedule |
| * SC:preempt_schedule_notrace |
| * SC:irqentry_exit_cond_resched |
| * |
| * |
| * NONE: |
| * cond_resched <- __cond_resched |
| * might_resched <- RET0 |
| * preempt_schedule <- NOP |
| * preempt_schedule_notrace <- NOP |
| * irqentry_exit_cond_resched <- NOP |
| * |
| * VOLUNTARY: |
| * cond_resched <- __cond_resched |
| * might_resched <- __cond_resched |
| * preempt_schedule <- NOP |
| * preempt_schedule_notrace <- NOP |
| * irqentry_exit_cond_resched <- NOP |
| * |
| * FULL: |
| * cond_resched <- RET0 |
| * might_resched <- RET0 |
| * preempt_schedule <- preempt_schedule |
| * preempt_schedule_notrace <- preempt_schedule_notrace |
| * irqentry_exit_cond_resched <- irqentry_exit_cond_resched |
| */ |
| |
| enum { |
| preempt_dynamic_undefined = -1, |
| preempt_dynamic_none, |
| preempt_dynamic_voluntary, |
| preempt_dynamic_full, |
| }; |
| |
| int preempt_dynamic_mode = preempt_dynamic_undefined; |
| |
| int sched_dynamic_mode(const char *str) |
| { |
| if (!strcmp(str, "none")) |
| return preempt_dynamic_none; |
| |
| if (!strcmp(str, "voluntary")) |
| return preempt_dynamic_voluntary; |
| |
| if (!strcmp(str, "full")) |
| return preempt_dynamic_full; |
| |
| return -EINVAL; |
| } |
| |
| #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) |
| #define preempt_dynamic_enable(f) static_call_update(f, f##_dynamic_enabled) |
| #define preempt_dynamic_disable(f) static_call_update(f, f##_dynamic_disabled) |
| #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) |
| #define preempt_dynamic_enable(f) static_key_enable(&sk_dynamic_##f.key) |
| #define preempt_dynamic_disable(f) static_key_disable(&sk_dynamic_##f.key) |
| #else |
| #error "Unsupported PREEMPT_DYNAMIC mechanism" |
| #endif |
| |
| static DEFINE_MUTEX(sched_dynamic_mutex); |
| static bool klp_override; |
| |
| static void __sched_dynamic_update(int mode) |
| { |
| /* |
| * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in |
| * the ZERO state, which is invalid. |
| */ |
| if (!klp_override) |
| preempt_dynamic_enable(cond_resched); |
| preempt_dynamic_enable(might_resched); |
| preempt_dynamic_enable(preempt_schedule); |
| preempt_dynamic_enable(preempt_schedule_notrace); |
| preempt_dynamic_enable(irqentry_exit_cond_resched); |
| |
| switch (mode) { |
| case preempt_dynamic_none: |
| if (!klp_override) |
| preempt_dynamic_enable(cond_resched); |
| preempt_dynamic_disable(might_resched); |
| preempt_dynamic_disable(preempt_schedule); |
| preempt_dynamic_disable(preempt_schedule_notrace); |
| preempt_dynamic_disable(irqentry_exit_cond_resched); |
| if (mode != preempt_dynamic_mode) |
| pr_info("Dynamic Preempt: none\n"); |
| break; |
| |
| case preempt_dynamic_voluntary: |
| if (!klp_override) |
| preempt_dynamic_enable(cond_resched); |
| preempt_dynamic_enable(might_resched); |
| preempt_dynamic_disable(preempt_schedule); |
| preempt_dynamic_disable(preempt_schedule_notrace); |
| preempt_dynamic_disable(irqentry_exit_cond_resched); |
| if (mode != preempt_dynamic_mode) |
| pr_info("Dynamic Preempt: voluntary\n"); |
| break; |
| |
| case preempt_dynamic_full: |
| if (!klp_override) |
| preempt_dynamic_disable(cond_resched); |
| preempt_dynamic_disable(might_resched); |
| preempt_dynamic_enable(preempt_schedule); |
| preempt_dynamic_enable(preempt_schedule_notrace); |
| preempt_dynamic_enable(irqentry_exit_cond_resched); |
| if (mode != preempt_dynamic_mode) |
| pr_info("Dynamic Preempt: full\n"); |
| break; |
| } |
| |
| preempt_dynamic_mode = mode; |
| } |
| |
| void sched_dynamic_update(int mode) |
| { |
| mutex_lock(&sched_dynamic_mutex); |
| __sched_dynamic_update(mode); |
| mutex_unlock(&sched_dynamic_mutex); |
| } |
| |
| #ifdef CONFIG_HAVE_PREEMPT_DYNAMIC_CALL |
| |
| static int klp_cond_resched(void) |
| { |
| __klp_sched_try_switch(); |
| return __cond_resched(); |
| } |
| |
| void sched_dynamic_klp_enable(void) |
| { |
| mutex_lock(&sched_dynamic_mutex); |
| |
| klp_override = true; |
| static_call_update(cond_resched, klp_cond_resched); |
| |
| mutex_unlock(&sched_dynamic_mutex); |
| } |
| |
| void sched_dynamic_klp_disable(void) |
| { |
| mutex_lock(&sched_dynamic_mutex); |
| |
| klp_override = false; |
| __sched_dynamic_update(preempt_dynamic_mode); |
| |
| mutex_unlock(&sched_dynamic_mutex); |
| } |
| |
| #endif /* CONFIG_HAVE_PREEMPT_DYNAMIC_CALL */ |
| |
| static int __init setup_preempt_mode(char *str) |
| { |
| int mode = sched_dynamic_mode(str); |
| if (mode < 0) { |
| pr_warn("Dynamic Preempt: unsupported mode: %s\n", str); |
| return 0; |
| } |
| |
| sched_dynamic_update(mode); |
| return 1; |
| } |
| __setup("preempt=", setup_preempt_mode); |
| |
| static void __init preempt_dynamic_init(void) |
| { |
| if (preempt_dynamic_mode == preempt_dynamic_undefined) { |
| if (IS_ENABLED(CONFIG_PREEMPT_NONE)) { |
| sched_dynamic_update(preempt_dynamic_none); |
| } else if (IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY)) { |
| sched_dynamic_update(preempt_dynamic_voluntary); |
| } else { |
| /* Default static call setting, nothing to do */ |
| WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT)); |
| preempt_dynamic_mode = preempt_dynamic_full; |
| pr_info("Dynamic Preempt: full\n"); |
| } |
| } |
| } |
| |
| #define PREEMPT_MODEL_ACCESSOR(mode) \ |
| bool preempt_model_##mode(void) \ |
| { \ |
| WARN_ON_ONCE(preempt_dynamic_mode == preempt_dynamic_undefined); \ |
| return preempt_dynamic_mode == preempt_dynamic_##mode; \ |
| } \ |
| EXPORT_SYMBOL_GPL(preempt_model_##mode) |
| |
| PREEMPT_MODEL_ACCESSOR(none); |
| PREEMPT_MODEL_ACCESSOR(voluntary); |
| PREEMPT_MODEL_ACCESSOR(full); |
| |
| #else /* !CONFIG_PREEMPT_DYNAMIC */ |
| |
| static inline void preempt_dynamic_init(void) { } |
| |
| #endif /* #ifdef CONFIG_PREEMPT_DYNAMIC */ |
| |
| /** |
| * yield - yield the current processor to other threads. |
| * |
| * Do not ever use this function, there's a 99% chance you're doing it wrong. |
| * |
| * The scheduler is at all times free to pick the calling task as the most |
| * eligible task to run, if removing the yield() call from your code breaks |
| * it, it's already broken. |
| * |
| * Typical broken usage is: |
| * |
| * while (!event) |
| * yield(); |
| * |
| * where one assumes that yield() will let 'the other' process run that will |
| * make event true. If the current task is a SCHED_FIFO task that will never |
| * happen. Never use yield() as a progress guarantee!! |
| * |
| * If you want to use yield() to wait for something, use wait_event(). |
| * If you want to use yield() to be 'nice' for others, use cond_resched(). |
| * If you still want to use yield(), do not! |
| */ |
| void __sched yield(void) |
| { |
| set_current_state(TASK_RUNNING); |
| do_sched_yield(); |
| } |
| EXPORT_SYMBOL(yield); |
| |
| /** |
| * yield_to - yield the current processor to another thread in |
| * your thread group, or accelerate that thread toward the |
| * processor it's on. |
| * @p: target task |
| * @preempt: whether task preemption is allowed or not |
| * |
| * It's the caller's job to ensure that the target task struct |
| * can't go away on us before we can do any checks. |
| * |
| * Return: |
| * true (>0) if we indeed boosted the target task. |
| * false (0) if we failed to boost the target. |
| * -ESRCH if there's no task to yield to. |
| */ |
| int __sched yield_to(struct task_struct *p, bool preempt) |
| { |
| struct task_struct *curr = current; |
| struct rq *rq, *p_rq; |
| int yielded = 0; |
| |
| scoped_guard (irqsave) { |
| rq = this_rq(); |
| |
| again: |
| p_rq = task_rq(p); |
| /* |
| * If we're the only runnable task on the rq and target rq also |
| * has only one task, there's absolutely no point in yielding. |
| */ |
| if (rq->nr_running == 1 && p_rq->nr_running == 1) |
| return -ESRCH; |
| |
| guard(double_rq_lock)(rq, p_rq); |
| if (task_rq(p) != p_rq) |
| goto again; |
| |
| if (!curr->sched_class->yield_to_task) |
| return 0; |
| |
| if (curr->sched_class != p->sched_class) |
| return 0; |
| |
| if (task_on_cpu(p_rq, p) || !task_is_running(p)) |
| return 0; |
| |
| yielded = curr->sched_class->yield_to_task(rq, p); |
| if (yielded) { |
| schedstat_inc(rq->yld_count); |
| /* |
| * Make p's CPU reschedule; pick_next_entity |
| * takes care of fairness. |
| */ |
| if (preempt && rq != p_rq) |
| resched_curr(p_rq); |
| } |
| } |
| |
| if (yielded) |
| schedule(); |
| |
| return yielded; |
| } |
| EXPORT_SYMBOL_GPL(yield_to); |
| |
| int io_schedule_prepare(void) |
| { |
| int old_iowait = current->in_iowait; |
| |
| current->in_iowait = 1; |
| blk_flush_plug(current->plug, true); |
| return old_iowait; |
| } |
| |
| void io_schedule_finish(int token) |
| { |
| current->in_iowait = token; |
| } |
| |
| /* |
| * This task is about to go to sleep on IO. Increment rq->nr_iowait so |
| * that process accounting knows that this is a task in IO wait state. |
| */ |
| long __sched io_schedule_timeout(long timeout) |
| { |
| int token; |
| long ret; |
| |
| token = io_schedule_prepare(); |
| ret = schedule_timeout(timeout); |
| io_schedule_finish(token); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL(io_schedule_timeout); |
| |
| void __sched io_schedule(void) |
| { |
| int token; |
| |
| token = io_schedule_prepare(); |
| schedule(); |
| io_schedule_finish(token); |
| } |
| EXPORT_SYMBOL(io_schedule); |
| |
| /** |
| * sys_sched_get_priority_max - return maximum RT priority. |
| * @policy: scheduling class. |
| * |
| * Return: On success, this syscall returns the maximum |
| * rt_priority that can be used by a given scheduling class. |
| * On failure, a negative error code is returned. |
| */ |
| SYSCALL_DEFINE1(sched_get_priority_max, int, policy) |
| { |
| int ret = -EINVAL; |
| |
| switch (policy) { |
| case SCHED_FIFO: |
| case SCHED_RR: |
| ret = MAX_RT_PRIO-1; |
| break; |
| case SCHED_DEADLINE: |
| case SCHED_NORMAL: |
| case SCHED_BATCH: |
| case SCHED_IDLE: |
| ret = 0; |
| break; |
| } |
| return ret; |
| } |
| |
| /** |
| * sys_sched_get_priority_min - return minimum RT priority. |
| * @policy: scheduling class. |
| * |
| * Return: On success, this syscall returns the minimum |
| * rt_priority that can be used by a given scheduling class. |
| * On failure, a negative error code is returned. |
| */ |
| SYSCALL_DEFINE1(sched_get_priority_min, int, policy) |
| { |
| int ret = -EINVAL; |
| |
| switch (policy) { |
| case SCHED_FIFO: |
| case SCHED_RR: |
| ret = 1; |
| break; |
| case SCHED_DEADLINE: |
| case SCHED_NORMAL: |
| case SCHED_BATCH: |
| case SCHED_IDLE: |
| ret = 0; |
| } |
| return ret; |
| } |
| |
| static int sched_rr_get_interval(pid_t pid, struct timespec64 *t) |
| { |
| unsigned int time_slice = 0; |
| int retval; |
| |
| if (pid < 0) |
| return -EINVAL; |
| |
| scoped_guard (rcu) { |
| struct task_struct *p = find_process_by_pid(pid); |
| if (!p) |
| return -ESRCH; |
| |
| retval = security_task_getscheduler(p); |
| if (retval) |
| return retval; |
| |
| scoped_guard (task_rq_lock, p) { |
| struct rq *rq = scope.rq; |
| if (p->sched_class->get_rr_interval) |
| time_slice = p->sched_class->get_rr_interval(rq, p); |
| } |
| } |
| |
| jiffies_to_timespec64(time_slice, t); |
| return 0; |
| } |
| |
| /** |
| * sys_sched_rr_get_interval - return the default timeslice of a process. |
| * @pid: pid of the process. |
| * @interval: userspace pointer to the timeslice value. |
| * |
| * this syscall writes the default timeslice value of a given process |
| * into the user-space timespec buffer. A value of '0' means infinity. |
| * |
| * Return: On success, 0 and the timeslice is in @interval. Otherwise, |
| * an error code. |
| */ |
| SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, |
| struct __kernel_timespec __user *, interval) |
| { |
| struct timespec64 t; |
| int retval = sched_rr_get_interval(pid, &t); |
| |
| if (retval == 0) |
| retval = put_timespec64(&t, interval); |
| |
| return retval; |
| } |
| |
| #ifdef CONFIG_COMPAT_32BIT_TIME |
| SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid, |
| struct old_timespec32 __user *, interval) |
| { |
| struct timespec64 t; |
| int retval = sched_rr_get_interval(pid, &t); |
| |
| if (retval == 0) |
| retval = put_old_timespec32(&t, interval); |
| return retval; |
| } |
| #endif |
| |
| void sched_show_task(struct task_struct *p) |
| { |
| unsigned long free = 0; |
| int ppid; |
| |
| if (!try_get_task_stack(p)) |
| return; |
| |
| pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p)); |
| |
| if (task_is_running(p)) |
| pr_cont(" running task "); |
| #ifdef CONFIG_DEBUG_STACK_USAGE |
| free = stack_not_used(p); |
| #endif |
| ppid = 0; |
| rcu_read_lock(); |
| if (pid_alive(p)) |
| ppid = task_pid_nr(rcu_dereference(p->real_parent)); |
| rcu_read_unlock(); |
| pr_cont(" stack:%-5lu pid:%-5d tgid:%-5d ppid:%-6d flags:0x%08lx\n", |
| free, task_pid_nr(p), task_tgid_nr(p), |
| ppid, read_task_thread_flags(p)); |
| |
| print_worker_info(KERN_INFO, p); |
| print_stop_info(KERN_INFO, p); |
| show_stack(p, NULL, KERN_INFO); |
| put_task_stack(p); |
| } |
| EXPORT_SYMBOL_GPL(sched_show_task); |
| |
| static inline bool |
| state_filter_match(unsigned long state_filter, struct task_struct *p) |
| { |
| unsigned int state = READ_ONCE(p->__state); |
| |
| /* no filter, everything matches */ |
| if (!state_filter) |
| return true; |
| |
| /* filter, but doesn't match */ |
| if (!(state & state_filter)) |
| return false; |
| |
| /* |
| * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows |
| * TASK_KILLABLE). |
| */ |
| if (state_filter == TASK_UNINTERRUPTIBLE && (state & TASK_NOLOAD)) |
| return false; |
| |
| return true; |
| } |
| |
| |
| void show_state_filter(unsigned int state_filter) |
| { |
| struct task_struct *g, *p; |
| |
| rcu_read_lock(); |
| for_each_process_thread(g, p) { |
| /* |
| * reset the NMI-timeout, listing all files on a slow |
| * console might take a lot of time: |
| * Also, reset softlockup watchdogs on all CPUs, because |
| * another CPU might be blocked waiting for us to process |
| * an IPI. |
| */ |
| touch_nmi_watchdog(); |
| touch_all_softlockup_watchdogs(); |
| if (state_filter_match(state_filter, p)) |
| sched_show_task(p); |
| } |
| |
| #ifdef CONFIG_SCHED_DEBUG |
| if (!state_filter) |
| sysrq_sched_debug_show(); |
| #endif |
| rcu_read_unlock(); |
| /* |
| * Only show locks if all tasks are dumped: |
| */ |
| if (!state_filter) |
| debug_show_all_locks(); |
| } |
| |
| /** |
| * init_idle - set up an idle thread for a given CPU |
| * @idle: task in question |
| * @cpu: CPU the idle task belongs to |
| * |
| * NOTE: this function does not set the idle thread's NEED_RESCHED |
| * flag, to make booting more robust. |
| */ |
| void __init init_idle(struct task_struct *idle, int cpu) |
| { |
| #ifdef CONFIG_SMP |
| struct affinity_context ac = (struct affinity_context) { |
| .new_mask = cpumask_of(cpu), |
| .flags = 0, |
| }; |
| #endif |
| struct rq *rq = cpu_rq(cpu); |
| unsigned long flags; |
| |
| __sched_fork(0, idle); |
| |
| raw_spin_lock_irqsave(&idle->pi_lock, flags); |
| raw_spin_rq_lock(rq); |
| |
| idle->__state = TASK_RUNNING; |
| idle->se.exec_start = sched_clock(); |
| /* |
| * PF_KTHREAD should already be set at this point; regardless, make it |
| * look like a proper per-CPU kthread. |
| */ |
| idle->flags |= PF_KTHREAD | PF_NO_SETAFFINITY; |
| kthread_set_per_cpu(idle, cpu); |
| |
| #ifdef CONFIG_SMP |
| /* |
| * It's possible that init_idle() gets called multiple times on a task, |
| * in that case do_set_cpus_allowed() will not do the right thing. |
| * |
| * And since this is boot we can forgo the serialization. |
| */ |
| set_cpus_allowed_common(idle, &ac); |
| #endif |
| /* |
| * We're having a chicken and egg problem, even though we are |
| * holding rq->lock, the CPU isn't yet set to this CPU so the |
| * lockdep check in task_group() will fail. |
| * |
| * Similar case to sched_fork(). / Alternatively we could |
| * use task_rq_lock() here and obtain the other rq->lock. |
| * |
| * Silence PROVE_RCU |
| */ |
| rcu_read_lock(); |
| __set_task_cpu(idle, cpu); |
| rcu_read_unlock(); |
| |
| rq->idle = idle; |
| rcu_assign_pointer(rq->curr, idle); |
| idle->on_rq = TASK_ON_RQ_QUEUED; |
| #ifdef CONFIG_SMP |
| idle->on_cpu = 1; |
| #endif |
| raw_spin_rq_unlock(rq); |
| raw_spin_unlock_irqrestore(&idle->pi_lock, flags); |
| |
| /* Set the preempt count _outside_ the spinlocks! */ |
| init_idle_preempt_count(idle, cpu); |
| |
| /* |
| * The idle tasks have their own, simple scheduling class: |
| */ |
| idle->sched_class = &idle_sched_class; |
| ftrace_graph_init_idle_task(idle, cpu); |
| vtime_init_idle(idle, cpu); |
| #ifdef CONFIG_SMP |
| sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu); |
| #endif |
| } |
| |
| #ifdef CONFIG_SMP |
| |
| int cpuset_cpumask_can_shrink(const struct cpumask *cur, |
| const struct cpumask *trial) |
| { |
| int ret = 1; |
| |
| if (cpumask_empty(cur)) |
| return ret; |
| |
| ret = dl_cpuset_cpumask_can_shrink(cur, trial); |
| |
| return ret; |
| } |
| |
| int task_can_attach(struct task_struct *p) |
| { |
| int ret = 0; |
| |
| /* |
| * Kthreads which disallow setaffinity shouldn't be moved |
| * to a new cpuset; we don't want to change their CPU |
| * affinity and isolating such threads by their set of |
| * allowed nodes is unnecessary. Thus, cpusets are not |
| * applicable for such threads. This prevents checking for |
| * success of set_cpus_allowed_ptr() on all attached tasks |
| * before cpus_mask may be changed. |
| */ |
| if (p->flags & PF_NO_SETAFFINITY) |
| ret = -EINVAL; |
| |
| return ret; |
| } |
| |
| bool sched_smp_initialized __read_mostly; |
| |
| #ifdef CONFIG_NUMA_BALANCING |
| /* Migrate current task p to target_cpu */ |
| int migrate_task_to(struct task_struct *p, int target_cpu) |
| { |
| struct migration_arg arg = { p, target_cpu }; |
| int curr_cpu = task_cpu(p); |
| |
| if (curr_cpu == target_cpu) |
| return 0; |
| |
| if (!cpumask_test_cpu(target_cpu, p->cpus_ptr)) |
| return -EINVAL; |
| |
| /* TODO: This is not properly updating schedstats */ |
| |
| trace_sched_move_numa(p, curr_cpu, target_cpu); |
| return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg); |
| } |
| |
| /* |
| * Requeue a task on a given node and accurately track the number of NUMA |
| * tasks on the runqueues |
| */ |
| void sched_setnuma(struct task_struct *p, int nid) |
| { |
| bool queued, running; |
| struct rq_flags rf; |
| struct rq *rq; |
| |
| rq = task_rq_lock(p, &rf); |
| queued = task_on_rq_queued(p); |
| running = task_current(rq, p); |
| |
| if (queued) |
| dequeue_task(rq, p, DEQUEUE_SAVE); |
| if (running) |
| put_prev_task(rq, p); |
| |
| p->numa_preferred_nid = nid; |
| |
| if (queued) |
| enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); |
| if (running) |
| set_next_task(rq, p); |
| task_rq_unlock(rq, p, &rf); |
| } |
| #endif /* CONFIG_NUMA_BALANCING */ |
| |
| #ifdef CONFIG_HOTPLUG_CPU |
| /* |
| * Ensure that the idle task is using init_mm right before its CPU goes |
| * offline. |
| */ |
| void idle_task_exit(void) |
| { |
| struct mm_struct *mm = current->active_mm; |
| |
| BUG_ON(cpu_online(smp_processor_id())); |
| BUG_ON(current != this_rq()->idle); |
| |
| if (mm != &init_mm) { |
| switch_mm(mm, &init_mm, current); |
| finish_arch_post_lock_switch(); |
| } |
| |
| /* finish_cpu(), as ran on the BP, will clean up the active_mm state */ |
| } |
| |
| static int __balance_push_cpu_stop(void *arg) |
| { |
| struct task_struct *p = arg; |
| struct rq *rq = this_rq(); |
| struct rq_flags rf; |
| int cpu; |
| |
| raw_spin_lock_irq(&p->pi_lock); |
| rq_lock(rq, &rf); |
| |
| update_rq_clock(rq); |
| |
| if (task_rq(p) == rq && task_on_rq_queued(p)) { |
| cpu = select_fallback_rq(rq->cpu, p); |
| rq = __migrate_task(rq, &rf, p, cpu); |
| } |
| |
| rq_unlock(rq, &rf); |
| raw_spin_unlock_irq(&p->pi_lock); |
| |
| put_task_struct(p); |
| |
| return 0; |
| } |
| |
| static DEFINE_PER_CPU(struct cpu_stop_work, push_work); |
| |
| /* |
| * Ensure we only run per-cpu kthreads once the CPU goes !active. |
| * |
| * This is enabled below SCHED_AP_ACTIVE; when !cpu_active(), but only |
| * effective when the hotplug motion is down. |
| */ |
| static void balance_push(struct rq *rq) |
| { |
| struct task_struct *push_task = rq->curr; |
| |
| lockdep_assert_rq_held(rq); |
| |
| /* |
| * Ensure the thing is persistent until balance_push_set(.on = false); |
| */ |
| rq->balance_callback = &balance_push_callback; |
| |
| /* |
| * Only active while going offline and when invoked on the outgoing |
| * CPU. |
| */ |
| if (!cpu_dying(rq->cpu) || rq != this_rq()) |
| return; |
| |
| /* |
| * Both the cpu-hotplug and stop task are in this case and are |
| * required to complete the hotplug process. |
| */ |
| if (kthread_is_per_cpu(push_task) || |
| is_migration_disabled(push_task)) { |
| |
| /* |
| * If this is the idle task on the outgoing CPU try to wake |
| * up the hotplug control thread which might wait for the |
| * last task to vanish. The rcuwait_active() check is |
| * accurate here because the waiter is pinned on this CPU |
| * and can't obviously be running in parallel. |
| * |
| * On RT kernels this also has to check whether there are |
| * pinned and scheduled out tasks on the runqueue. They |
| * need to leave the migrate disabled section first. |
| */ |
| if (!rq->nr_running && !rq_has_pinned_tasks(rq) && |
| rcuwait_active(&rq->hotplug_wait)) { |
| raw_spin_rq_unlock(rq); |
| rcuwait_wake_up(&rq->hotplug_wait); |
| raw_spin_rq_lock(rq); |
| } |
| return; |
| } |
| |
| get_task_struct(push_task); |
| /* |
| * Temporarily drop rq->lock such that we can wake-up the stop task. |
| * Both preemption and IRQs are still disabled. |
| */ |
| preempt_disable(); |
| raw_spin_rq_unlock(rq); |
| stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task, |
| this_cpu_ptr(&push_work)); |
| preempt_enable(); |
| /* |
| * At this point need_resched() is true and we'll take the loop in |
| * schedule(). The next pick is obviously going to be the stop task |
| * which kthread_is_per_cpu() and will push this task away. |
| */ |
| raw_spin_rq_lock(rq); |
| } |
| |
| static void balance_push_set(int cpu, bool on) |
| { |
| struct rq *rq = cpu_rq(cpu); |
| struct rq_flags rf; |
| |
| rq_lock_irqsave(rq, &rf); |
| if (on) { |
| WARN_ON_ONCE(rq->balance_callback); |
| rq->balance_callback = &balance_push_callback; |
| } else if (rq->balance_callback == &balance_push_callback) { |
| rq->balance_callback = NULL; |
| } |
| rq_unlock_irqrestore(rq, &rf); |
| } |
| |
| /* |
| * Invoked from a CPUs hotplug control thread after the CPU has been marked |
| * inactive. All tasks which are not per CPU kernel threads are either |
| * pushed off this CPU now via balance_push() or placed on a different CPU |
| * during wakeup. Wait until the CPU is quiescent. |
| */ |
| static void balance_hotplug_wait(void) |
| { |
| struct rq *rq = this_rq(); |
| |
| rcuwait_wait_event(&rq->hotplug_wait, |
| rq->nr_running == 1 && !rq_has_pinned_tasks(rq), |
| TASK_UNINTERRUPTIBLE); |
| } |
| |
| #else |
| |
| static inline void balance_push(struct rq *rq) |
| { |
| } |
| |
| static inline void balance_push_set(int cpu, bool on) |
| { |
| } |
| |
| static inline void balance_hotplug_wait(void) |
| { |
| } |
| |
| #endif /* CONFIG_HOTPLUG_CPU */ |
| |
| void set_rq_online(struct rq *rq) |
| { |
| if (!rq->online) { |
| const struct sched_class *class; |
| |
| cpumask_set_cpu(rq->cpu, rq->rd->online); |
| rq->online = 1; |
| |
| for_each_class(class) { |
| if (class->rq_online) |
| class->rq_online(rq); |
| } |
| } |
| } |
| |
| void set_rq_offline(struct rq *rq) |
| { |
| if (rq->online) { |
| const struct sched_class *class; |
| |
| update_rq_clock(rq); |
| for_each_class(class) { |
| if (class->rq_offline) |
| class->rq_offline(rq); |
| } |
| |
| cpumask_clear_cpu(rq->cpu, rq->rd->online); |
| rq->online = 0; |
| } |
| } |
| |
| /* |
| * used to mark begin/end of suspend/resume: |
| */ |
| static int num_cpus_frozen; |
| |
| /* |
| * Update cpusets according to cpu_active mask. If cpusets are |
| * disabled, cpuset_update_active_cpus() becomes a simple wrapper |
| * around partition_sched_domains(). |
| * |
| * If we come here as part of a suspend/resume, don't touch cpusets because we |
| * want to restore it back to its original state upon resume anyway. |
| */ |
| static void cpuset_cpu_active(void) |
| { |
| if (cpuhp_tasks_frozen) { |
| /* |
| * num_cpus_frozen tracks how many CPUs are involved in suspend |
| * resume sequence. As long as this is not the last online |
| * operation in the resume sequence, just build a single sched |
| * domain, ignoring cpusets. |
| */ |
| partition_sched_domains(1, NULL, NULL); |
| if (--num_cpus_frozen) |
| return; |
| /* |
| * This is the last CPU online operation. So fall through and |
| * restore the original sched domains by considering the |
| * cpuset configurations. |
| */ |
| cpuset_force_rebuild(); |
| } |
| cpuset_update_active_cpus(); |
| } |
| |
| static int cpuset_cpu_inactive(unsigned int cpu) |
| { |
| if (!cpuhp_tasks_frozen) { |
| int ret = dl_bw_check_overflow(cpu); |
| |
| if (ret) |
| return ret; |
| cpuset_update_active_cpus(); |
| } else { |
| num_cpus_frozen++; |
| partition_sched_domains(1, NULL, NULL); |
| } |
| return 0; |
| } |
| |
| int sched_cpu_activate(unsigned int cpu) |
| { |
| struct rq *rq = cpu_rq(cpu); |
| struct rq_flags rf; |
| |
| /* |
| * Clear the balance_push callback and prepare to schedule |
| * regular tasks. |
| */ |
| balance_push_set(cpu, false); |
| |
| #ifdef CONFIG_SCHED_SMT |
| /* |
| * When going up, increment the number of cores with SMT present. |
| */ |
| if (cpumask_weight(cpu_smt_mask(cpu)) == 2) |
| static_branch_inc_cpuslocked(&sched_smt_present); |
| #endif |
| set_cpu_active(cpu, true); |
| |
| if (sched_smp_initialized) { |
| sched_update_numa(cpu, true); |
| sched_domains_numa_masks_set(cpu); |
| cpuset_cpu_active(); |
| } |
| |
| /* |
| * Put the rq online, if not already. This happens: |
| * |
| * 1) In the early boot process, because we build the real domains |
| * after all CPUs have been brought up. |
| * |
| * 2) At runtime, if cpuset_cpu_active() fails to rebuild the |
| * domains. |
| */ |
| rq_lock_irqsave(rq, &rf); |
| if (rq->rd) { |
| BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); |
| set_rq_online(rq); |
| } |
| rq_unlock_irqrestore(rq, &rf); |
| |
| return 0; |
| } |
| |
| int sched_cpu_deactivate(unsigned int cpu) |
| { |
| struct rq *rq = cpu_rq(cpu); |
| struct rq_flags rf; |
| int ret; |
| |
| /* |
| * Remove CPU from nohz.idle_cpus_mask to prevent participating in |
| * load balancing when not active |
| */ |
| nohz_balance_exit_idle(rq); |
| |
| set_cpu_active(cpu, false); |
| |
| /* |
| * From this point forward, this CPU will refuse to run any task that |
| * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively |
| * push those tasks away until this gets cleared, see |
| * sched_cpu_dying(). |
| */ |
| balance_push_set(cpu, true); |
| |
| /* |
| * We've cleared cpu_active_mask / set balance_push, wait for all |
| * preempt-disabled and RCU users of this state to go away such that |
| * all new such users will observe it. |
| * |
| * Specifically, we rely on ttwu to no longer target this CPU, see |
| * ttwu_queue_cond() and is_cpu_allowed(). |
| * |
| * Do sync before park smpboot threads to take care the rcu boost case. |
| */ |
| synchronize_rcu(); |
| |
| rq_lock_irqsave(rq, &rf); |
| if (rq->rd) { |
| BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); |
| set_rq_offline(rq); |
| } |
| rq_unlock_irqrestore(rq, &rf); |
| |
| #ifdef CONFIG_SCHED_SMT |
| /* |
| * When going down, decrement the number of cores with SMT present. |
| */ |
| if (cpumask_weight(cpu_smt_mask(cpu)) == 2) |
| static_branch_dec_cpuslocked(&sched_smt_present); |
| |
| sched_core_cpu_deactivate(cpu); |
| #endif |
| |
| if (!sched_smp_initialized) |
| return 0; |
| |
| sched_update_numa(cpu, false); |
| ret = cpuset_cpu_inactive(cpu); |
| if (ret) { |
| balance_push_set(cpu, false); |
| set_cpu_active(cpu, true); |
| sched_update_numa(cpu, true); |
| return ret; |
| } |
| sched_domains_numa_masks_clear(cpu); |
| return 0; |
| } |
| |
| static void sched_rq_cpu_starting(unsigned int cpu) |
| { |
| struct rq *rq = cpu_rq(cpu); |
| |
| rq->calc_load_update = calc_load_update; |
| update_max_interval(); |
| } |
| |
| int sched_cpu_starting(unsigned int cpu) |
| { |
| sched_core_cpu_starting(cpu); |
| sched_rq_cpu_starting(cpu); |
| sched_tick_start(cpu); |
| return 0; |
| } |
| |
| #ifdef CONFIG_HOTPLUG_CPU |
| |
| /* |
| * Invoked immediately before the stopper thread is invoked to bring the |
| * CPU down completely. At this point all per CPU kthreads except the |
| * hotplug thread (current) and the stopper thread (inactive) have been |
| * either parked or have been unbound from the outgoing CPU. Ensure that |
| * any of those which might be on the way out are gone. |
| * |
| * If after this point a bound task is being woken on this CPU then the |
| * responsible hotplug callback has failed to do it's job. |
| * sched_cpu_dying() will catch it with the appropriate fireworks. |
| */ |
| int sched_cpu_wait_empty(unsigned int cpu) |
| { |
| balance_hotplug_wait(); |
| return 0; |
| } |
| |
| /* |
| * Since this CPU is going 'away' for a while, fold any nr_active delta we |
| * might have. Called from the CPU stopper task after ensuring that the |
| * stopper is the last running task on the CPU, so nr_active count is |
| * stable. We need to take the teardown thread which is calling this into |
| * account, so we hand in adjust = 1 to the load calculation. |
| * |
| * Also see the comment "Global load-average calculations". |
| */ |
| static void calc_load_migrate(struct rq *rq) |
| { |
| long delta = calc_load_fold_active(rq, 1); |
| |
| if (delta) |
| atomic_long_add(delta, &calc_load_tasks); |
| } |
| |
| static void dump_rq_tasks(struct rq *rq, const char *loglvl) |
| { |
| struct task_struct *g, *p; |
| int cpu = cpu_of(rq); |
| |
| lockdep_assert_rq_held(rq); |
| |
| printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running); |
| for_each_process_thread(g, p) { |
| if (task_cpu(p) != cpu) |
| continue; |
| |
| if (!task_on_rq_queued(p)) |
| continue; |
| |
| printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm); |
| } |
| } |
| |
| int sched_cpu_dying(unsigned int cpu) |
| { |
| struct rq *rq = cpu_rq(cpu); |
| struct rq_flags rf; |
| |
| /* Handle pending wakeups and then migrate everything off */ |
| sched_tick_stop(cpu); |
| |
| rq_lock_irqsave(rq, &rf); |
| if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) { |
| WARN(true, "Dying CPU not properly vacated!"); |
| dump_rq_tasks(rq, KERN_WARNING); |
| } |
| rq_unlock_irqrestore(rq, &rf); |
| |
| calc_load_migrate(rq); |
| update_max_interval(); |
| hrtick_clear(rq); |
| sched_core_cpu_dying(cpu); |
| return 0; |
| } |
| #endif |
| |
| void __init sched_init_smp(void) |
| { |
| sched_init_numa(NUMA_NO_NODE); |
| |
| /* |
| * There's no userspace yet to cause hotplug operations; hence all the |
| * CPU masks are stable and all blatant races in the below code cannot |
| * happen. |
| */ |
| mutex_lock(&sched_domains_mutex); |
| sched_init_domains(cpu_active_mask); |
| mutex_unlock(&sched_domains_mutex); |
| |
| /* Move init over to a non-isolated CPU */ |
| if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_TYPE_DOMAIN)) < 0) |
| BUG(); |
| current->flags &= ~PF_NO_SETAFFINITY; |
| sched_init_granularity(); |
| |
| init_sched_rt_class(); |
| init_sched_dl_class(); |
| |
| sched_smp_initialized = true; |
| } |
| |
| static int __init migration_init(void) |
| { |
| sched_cpu_starting(smp_processor_id()); |
| return 0; |
| } |
| early_initcall(migration_init); |
| |
| #else |
| void __init sched_init_smp(void) |
| { |
| sched_init_granularity(); |
| } |
| #endif /* CONFIG_SMP */ |
| |
| int in_sched_functions(unsigned long addr) |
| { |
| return in_lock_functions(addr) || |
| (addr >= (unsigned long)__sched_text_start |
| && addr < (unsigned long)__sched_text_end); |
| } |
| |
| #ifdef CONFIG_CGROUP_SCHED |
| /* |
| * Default task group. |
| * Every task in system belongs to this group at bootup. |
| */ |
| struct task_group root_task_group; |
| LIST_HEAD(task_groups); |
| |
| /* Cacheline aligned slab cache for task_group */ |
| static struct kmem_cache *task_group_cache __ro_after_init; |
| #endif |
| |
| void __init sched_init(void) |
| { |
| unsigned long ptr = 0; |
| int i; |
| |
| /* Make sure the linker didn't screw up */ |
| BUG_ON(&idle_sched_class != &fair_sched_class + 1 || |
| &fair_sched_class != &rt_sched_class + 1 || |
| &rt_sched_class != &dl_sched_class + 1); |
| #ifdef CONFIG_SMP |
| BUG_ON(&dl_sched_class != &stop_sched_class + 1); |
| #endif |
| |
| wait_bit_init(); |
| |
| #ifdef CONFIG_FAIR_GROUP_SCHED |
| ptr += 2 * nr_cpu_ids * sizeof(void **); |
| #endif |
| #ifdef CONFIG_RT_GROUP_SCHED |
| ptr += 2 * nr_cpu_ids * sizeof(void **); |
| #endif |
| if (ptr) { |
| ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT); |
| |
| #ifdef CONFIG_FAIR_GROUP_SCHED |
| root_task_group.se = (struct sched_entity **)ptr; |
| ptr += nr_cpu_ids * sizeof(void **); |
| |
| root_task_group.cfs_rq = (struct cfs_rq **)ptr; |
| ptr += nr_cpu_ids * sizeof(void **); |
| |
| root_task_group.shares = ROOT_TASK_GROUP_LOAD; |
| init_cfs_bandwidth(&root_task_group.cfs_bandwidth, NULL); |
| #endif /* CONFIG_FAIR_GROUP_SCHED */ |
| #ifdef CONFIG_RT_GROUP_SCHED |
| root_task_group.rt_se = (struct sched_rt_entity **)ptr; |
| ptr += nr_cpu_ids * sizeof(void **); |
| |
| root_task_group.rt_rq = (struct rt_rq **)ptr; |
| ptr += nr_cpu_ids * sizeof(void **); |
| |
| #endif /* CONFIG_RT_GROUP_SCHED */ |
| } |
| |
| init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime()); |
| |
| #ifdef CONFIG_SMP |
| init_defrootdomain(); |
| #endif |
| |
| #ifdef CONFIG_RT_GROUP_SCHED |
| init_rt_bandwidth(&root_task_group.rt_bandwidth, |
| global_rt_period(), global_rt_runtime()); |
| #endif /* CONFIG_RT_GROUP_SCHED */ |
| |
| #ifdef CONFIG_CGROUP_SCHED |
| task_group_cache = KMEM_CACHE(task_group, 0); |
| |
| list_add(&root_task_group.list, &task_groups); |
| INIT_LIST_HEAD(&root_task_group.children); |
| INIT_LIST_HEAD(&root_task_group.siblings); |
| autogroup_init(&init_task); |
| #endif /* CONFIG_CGROUP_SCHED */ |
| |
| for_each_possible_cpu(i) { |
| struct rq *rq; |
| |
| rq = cpu_rq(i); |
| raw_spin_lock_init(&rq->__lock); |
| rq->nr_running = 0; |
| rq->calc_load_active = 0; |
| rq->calc_load_update = jiffies + LOAD_FREQ; |
| init_cfs_rq(&rq->cfs); |
| init_rt_rq(&rq->rt); |
| init_dl_rq(&rq->dl); |
| #ifdef CONFIG_FAIR_GROUP_SCHED |
| INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); |
| rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; |
| /* |
| * How much CPU bandwidth does root_task_group get? |
| * |
| * In case of task-groups formed thr' the cgroup filesystem, it |
| * gets 100% of the CPU resources in the system. This overall |
| * system CPU resource is divided among the tasks of |
| * root_task_group and its child task-groups in a fair manner, |
| * based on each entity's (task or task-group's) weight |
| * (se->load.weight). |
| * |
| * In other words, if root_task_group has 10 tasks of weight |
| * 1024) and two child groups A0 and A1 (of weight 1024 each), |
| * then A0's share of the CPU resource is: |
| * |
| * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33% |
| * |
| * We achieve this by letting root_task_group's tasks sit |
| * directly in rq->cfs (i.e root_task_group->se[] = NULL). |
| */ |
| init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL); |
| #endif /* CONFIG_FAIR_GROUP_SCHED */ |
| |
| rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime; |
| #ifdef CONFIG_RT_GROUP_SCHED |
| init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL); |
| #endif |
| #ifdef CONFIG_SMP |
| rq->sd = NULL; |
| rq->rd = NULL; |
| rq->cpu_capacity = SCHED_CAPACITY_SCALE; |
| rq->balance_callback = &balance_push_callback; |
| rq->active_balance = 0; |
| rq->next_balance = jiffies; |
| rq->push_cpu = 0; |
| rq->cpu = i; |
| rq->online = 0; |
| rq->idle_stamp = 0; |
| rq->avg_idle = 2*sysctl_sched_migration_cost; |
| rq->max_idle_balance_cost = sysctl_sched_migration_cost; |
| |
| INIT_LIST_HEAD(&rq->cfs_tasks); |
| |
| rq_attach_root(rq, &def_root_domain); |
| #ifdef CONFIG_NO_HZ_COMMON |
| rq->last_blocked_load_update_tick = jiffies; |
| atomic_set(&rq->nohz_flags, 0); |
| |
| INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq); |
| #endif |
| #ifdef CONFIG_HOTPLUG_CPU |
| rcuwait_init(&rq->hotplug_wait); |
| #endif |
| #endif /* CONFIG_SMP */ |
| hrtick_rq_init(rq); |
| atomic_set(&rq->nr_iowait, 0); |
| |
| #ifdef CONFIG_SCHED_CORE |
| rq->core = rq; |
| rq->core_pick = NULL; |
| rq->core_enabled = 0; |
| rq->core_tree = RB_ROOT; |
| rq->core_forceidle_count = 0; |
| rq->core_forceidle_occupation = 0; |
| rq->core_forceidle_start = 0; |
| |
| rq->core_cookie = 0UL; |
| #endif |
| zalloc_cpumask_var_node(&rq->scratch_mask, GFP_KERNEL, cpu_to_node(i)); |
| } |
| |
| set_load_weight(&init_task, false); |
| |
| /* |
| * The boot idle thread does lazy MMU switching as well: |
| */ |
| mmgrab_lazy_tlb(&init_mm); |
| enter_lazy_tlb(&init_mm, current); |
| |
| /* |
| * The idle task doesn't need the kthread struct to function, but it |
| * is dressed up as a per-CPU kthread and thus needs to play the part |
| * if we want to avoid special-casing it in code that deals with per-CPU |
| * kthreads. |
| */ |
| WARN_ON(!set_kthread_struct(current)); |
| |
| /* |
| * Make us the idle thread. Technically, schedule() should not be |
| * called from this thread, however somewhere below it might be, |
| * but because we are the idle thread, we just pick up running again |
| * when this runqueue becomes "idle". |
| */ |
| init_idle(current, smp_processor_id()); |
| |
| calc_load_update = jiffies + LOAD_FREQ; |
| |
| #ifdef CONFIG_SMP |
| idle_thread_set_boot_cpu(); |
| balance_push_set(smp_processor_id(), false); |
| #endif |
| init_sched_fair_class(); |
| |
| psi_init(); |
| |
| init_uclamp(); |
| |
| preempt_dynamic_init(); |
| |
| scheduler_running = 1; |
| } |
| |
| #ifdef CONFIG_DEBUG_ATOMIC_SLEEP |
| |
| void __might_sleep(const char *file, int line) |
| { |
| unsigned int state = get_current_state(); |
| /* |
| * Blocking primitives will set (and therefore destroy) current->state, |
| * since we will exit with TASK_RUNNING make sure we enter with it, |
| * otherwise we will destroy state. |
| */ |
| WARN_ONCE(state != TASK_RUNNING && current->task_state_change, |
| "do not call blocking ops when !TASK_RUNNING; " |
| "state=%x set at [<%p>] %pS\n", state, |
| (void *)current->task_state_change, |
| (void *)current->task_state_change); |
| |
| __might_resched(file, line, 0); |
| } |
| EXPORT_SYMBOL(__might_sleep); |
| |
| static void print_preempt_disable_ip(int preempt_offset, unsigned long ip) |
| { |
| if (!IS_ENABLED(CONFIG_DEBUG_PREEMPT)) |
| return; |
| |
| if (preempt_count() == preempt_offset) |
| return; |
| |
| pr_err("Preemption disabled at:"); |
| print_ip_sym(KERN_ERR, ip); |
| } |
| |
| static inline bool resched_offsets_ok(unsigned int offsets) |
| { |
| unsigned int nested = preempt_count(); |
| |
| nested += rcu_preempt_depth() << MIGHT_RESCHED_RCU_SHIFT; |
| |
| return nested == offsets; |
| } |
| |
| void __might_resched(const char *file, int line, unsigned int offsets) |
| { |
| /* Ratelimiting timestamp: */ |
| static unsigned long prev_jiffy; |
| |
| unsigned long preempt_disable_ip; |
| |
| /* WARN_ON_ONCE() by default, no rate limit required: */ |
| rcu_sleep_check(); |
| |
| if ((resched_offsets_ok(offsets) && !irqs_disabled() && |
| !is_idle_task(current) && !current->non_block_count) || |
| system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING || |
| oops_in_progress) |
| return; |
| |
| if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) |
| return; |
| prev_jiffy = jiffies; |
| |
| /* Save this before calling printk(), since that will clobber it: */ |
| preempt_disable_ip = get_preempt_disable_ip(current); |
| |
| pr_err("BUG: sleeping function called from invalid context at %s:%d\n", |
| file, line); |
| pr_err("in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n", |
| in_atomic(), irqs_disabled(), current->non_block_count, |
| current->pid, current->comm); |
| pr_err("preempt_count: %x, expected: %x\n", preempt_count(), |
| offsets & MIGHT_RESCHED_PREEMPT_MASK); |
| |
| if (IS_ENABLED(CONFIG_PREEMPT_RCU)) { |
| pr_err("RCU nest depth: %d, expected: %u\n", |
| rcu_preempt_depth(), offsets >> MIGHT_RESCHED_RCU_SHIFT); |
| } |
| |
| if (task_stack_end_corrupted(current)) |
| pr_emerg("Thread overran stack, or stack corrupted\n"); |
| |
| debug_show_held_locks(current); |
| if (irqs_disabled()) |
| print_irqtrace_events(current); |
| |
| print_preempt_disable_ip(offsets & MIGHT_RESCHED_PREEMPT_MASK, |
| preempt_disable_ip); |
| |
| dump_stack(); |
| add_taint(TAINT_WARN, LOCKDEP_STILL_OK); |
| } |
| EXPORT_SYMBOL(__might_resched); |
| |
| void __cant_sleep(const char *file, int line, int preempt_offset) |
| { |
| static unsigned long prev_jiffy; |
| |
| if (irqs_disabled()) |
| return; |
| |
| if (!IS_ENABLED(CONFIG_PREEMPT_COUNT)) |
| return; |
| |
| if (preempt_count() > preempt_offset) |
| return; |
| |
| if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) |
| return; |
| prev_jiffy = jiffies; |
| |
| printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line); |
| printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", |
| in_atomic(), irqs_disabled(), |
| current->pid, current->comm); |
| |
| debug_show_held_locks(current); |
| dump_stack(); |
| add_taint(TAINT_WARN, LOCKDEP_STILL_OK); |
| } |
| EXPORT_SYMBOL_GPL(__cant_sleep); |
| |
| #ifdef CONFIG_SMP |
| void __cant_migrate(const char *file, int line) |
| { |
| static unsigned long prev_jiffy; |
| |
| if (irqs_disabled()) |
| return; |
| |
| if (is_migration_disabled(current)) |
| return; |
| |
| if (!IS_ENABLED(CONFIG_PREEMPT_COUNT)) |
| return; |
| |
| if (preempt_count() > 0) |
| return; |
| |
| if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) |
| return; |
| prev_jiffy = jiffies; |
| |
| pr_err("BUG: assuming non migratable context at %s:%d\n", file, line); |
| pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n", |
| in_atomic(), irqs_disabled(), is_migration_disabled(current), |
| current->pid, current->comm); |
| |
| debug_show_held_locks(current); |
| dump_stack(); |
| add_taint(TAINT_WARN, LOCKDEP_STILL_OK); |
| } |
| EXPORT_SYMBOL_GPL(__cant_migrate); |
| #endif |
| #endif |
| |
| #ifdef CONFIG_MAGIC_SYSRQ |
| void normalize_rt_tasks(void) |
| { |
| struct task_struct *g, *p; |
| struct sched_attr attr = { |
| .sched_policy = SCHED_NORMAL, |
| }; |
| |
| read_lock(&tasklist_lock); |
| for_each_process_thread(g, p) { |
| /* |
| * Only normalize user tasks: |
| */ |
| if (p->flags & PF_KTHREAD) |
| continue; |
| |
| p->se.exec_start = 0; |
| schedstat_set(p->stats.wait_start, 0); |
| schedstat_set(p->stats.sleep_start, 0); |
| schedstat_set(p->stats.block_start, 0); |
| |
| if (!dl_task(p) && !rt_task(p)) { |
| /* |
| * Renice negative nice level userspace |
| * tasks back to 0: |
| */ |
| if (task_nice(p) < 0) |
| set_user_nice(p, 0); |
| continue; |
| } |
| |
| __sched_setscheduler(p, &attr, false, false); |
| } |
| read_unlock(&tasklist_lock); |
| } |
| |
| #endif /* CONFIG_MAGIC_SYSRQ */ |
| |
| #if defined(CONFIG_KGDB_KDB) |
| /* |
| * These functions are only useful for kdb. |
| * |
| * They can only be called when the whole system has been |
| * stopped - every CPU needs to be quiescent, and no scheduling |
| * activity can take place. Using them for anything else would |
| * be a serious bug, and as a result, they aren't even visible |
| * under any other configuration. |
| */ |
| |
| /** |
| * curr_task - return the current task for a given CPU. |
| * @cpu: the processor in question. |
| * |
| * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! |
| * |
| * Return: The current task for @cpu. |
| */ |
| struct task_struct *curr_task(int cpu) |
| { |
| return cpu_curr(cpu); |
| } |
| |
| #endif /* defined(CONFIG_KGDB_KDB) */ |
| |
| #ifdef CONFIG_CGROUP_SCHED |
| /* task_group_lock serializes the addition/removal of task groups */ |
| static DEFINE_SPINLOCK(task_group_lock); |
| |
| static inline void alloc_uclamp_sched_group(struct task_group *tg, |
| struct task_group *parent) |
| { |
| #ifdef CONFIG_UCLAMP_TASK_GROUP |
| enum uclamp_id clamp_id; |
| |
| for_each_clamp_id(clamp_id) { |
| uclamp_se_set(&tg->uclamp_req[clamp_id], |
| uclamp_none(clamp_id), false); |
| tg->uclamp[clamp_id] = parent->uclamp[clamp_id]; |
| } |
| #endif |
| } |
| |
| static void sched_free_group(struct task_group *tg) |
| { |
| free_fair_sched_group(tg); |
| free_rt_sched_group(tg); |
| autogroup_free(tg); |
| kmem_cache_free(task_group_cache, tg); |
| } |
| |
| static void sched_free_group_rcu(struct rcu_head *rcu) |
| { |
| sched_free_group(container_of(rcu, struct task_group, rcu)); |
| } |
| |
| static void sched_unregister_group(struct task_group *tg) |
| { |
| unregister_fair_sched_group(tg); |
| unregister_rt_sched_group(tg); |
| /* |
| * We have to wait for yet another RCU grace period to expire, as |
| * print_cfs_stats() might run concurrently. |
| */ |
| call_rcu(&tg->rcu, sched_free_group_rcu); |
| } |
| |
| /* allocate runqueue etc for a new task group */ |
| struct task_group *sched_create_group(struct task_group *parent) |
| { |
| struct task_group *tg; |
| |
| tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO); |
| if (!tg) |
| return ERR_PTR(-ENOMEM); |
| |
| if (!alloc_fair_sched_group(tg, parent)) |
| goto err; |
| |
| if (!alloc_rt_sched_group(tg, parent)) |
| goto err; |
| |
| alloc_uclamp_sched_group(tg, parent); |
| |
| return tg; |
| |
| err: |
| sched_free_group(tg); |
| return ERR_PTR(-ENOMEM); |
| } |
| |
| void sched_online_group(struct task_group *tg, struct task_group *parent) |
| { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&task_group_lock, flags); |
| list_add_rcu(&tg->list, &task_groups); |
| |
| /* Root should already exist: */ |
| WARN_ON(!parent); |
| |
| tg->parent = parent; |
| INIT_LIST_HEAD(&tg->children); |
| list_add_rcu(&tg->siblings, &parent->children); |
| spin_unlock_irqrestore(&task_group_lock, flags); |
| |
| online_fair_sched_group(tg); |
| } |
| |
| /* rcu callback to free various structures associated with a task group */ |
| static void sched_unregister_group_rcu(struct rcu_head *rhp) |
| { |
| /* Now it should be safe to free those cfs_rqs: */ |
| sched_unregister_group(container_of(rhp, struct task_group, rcu)); |
| } |
| |
| void sched_destroy_group(struct task_group *tg) |
| { |
| /* Wait for possible concurrent references to cfs_rqs complete: */ |
| call_rcu(&tg->rcu, sched_unregister_group_rcu); |
| } |
| |
| void sched_release_group(struct task_group *tg) |
| { |
| unsigned long flags; |
| |
| /* |
| * Unlink first, to avoid walk_tg_tree_from() from finding us (via |
| * sched_cfs_period_timer()). |
| * |
| * For this to be effective, we have to wait for all pending users of |
| * this task group to leave their RCU critical section to ensure no new |
| * user will see our dying task group any more. Specifically ensure |
| * that tg_unthrottle_up() won't add decayed cfs_rq's to it. |
| * |
| * We therefore defer calling unregister_fair_sched_group() to |
| * sched_unregister_group() which is guarantied to get called only after the |
| * current RCU grace period has expired. |
| */ |
| spin_lock_irqsave(&task_group_lock, flags); |
| list_del_rcu(&tg->list); |
| list_del_rcu(&tg->siblings); |
| spin_unlock_irqrestore(&task_group_lock, flags); |
| } |
| |
| static struct task_group *sched_get_task_group(struct task_struct *tsk) |
| { |
| struct task_group *tg; |
| |
| /* |
| * All callers are synchronized by task_rq_lock(); we do not use RCU |
| * which is pointless here. Thus, we pass "true" to task_css_check() |
| * to prevent lockdep warnings. |
| */ |
| tg = container_of(task_css_check(tsk, cpu_cgrp_id, true), |
| struct task_group, css); |
| tg = autogroup_task_group(tsk, tg); |
| |
| return tg; |
| } |
| |
| static void sched_change_group(struct task_struct *tsk, struct task_group *group) |
| { |
| tsk->sched_task_group = group; |
| |
| #ifdef CONFIG_FAIR_GROUP_SCHED |
| if (tsk->sched_class->task_change_group) |
| tsk->sched_class->task_change_group(tsk); |
| else |
| #endif |
| set_task_rq(tsk, task_cpu(tsk)); |
| } |
| |
| /* |
| * Change task's runqueue when it moves between groups. |
| * |
| * The caller of this function should have put the task in its new group by |
| * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect |
| * its new group. |
| */ |
| void sched_move_task(struct task_struct *tsk) |
| { |
| int queued, running, queue_flags = |
| DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; |
| struct task_group *group; |
| struct rq *rq; |
| |
| CLASS(task_rq_lock, rq_guard)(tsk); |
| rq = rq_guard.rq; |
| |
| /* |
| * Esp. with SCHED_AUTOGROUP enabled it is possible to get superfluous |
| * group changes. |
| */ |
| group = sched_get_task_group(tsk); |
| if (group == tsk->sched_task_group) |
| return; |
| |
| update_rq_clock(rq); |
| |
| running = task_current(rq, tsk); |
| queued = task_on_rq_queued(tsk); |
| |
| if (queued) |
| dequeue_task(rq, tsk, queue_flags); |
| if (running) |
| put_prev_task(rq, tsk); |
| |
| sched_change_group(tsk, group); |
| |
| if (queued) |
| enqueue_task(rq, tsk, queue_flags); |
| if (running) { |
| set_next_task(rq, tsk); |
| /* |
| * After changing group, the running task may have joined a |
| * throttled one but it's still the running task. Trigger a |
| * resched to make sure that task can still run. |
| */ |
| resched_curr(rq); |
| } |
| } |
| |
| static inline struct task_group *css_tg(struct cgroup_subsys_state *css) |
| { |
| return css ? container_of(css, struct task_group, css) : NULL; |
| } |
| |
| static struct cgroup_subsys_state * |
| cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) |
| { |
| struct task_group *parent = css_tg(parent_css); |
| struct task_group *tg; |
| |
| if (!parent) { |
| /* This is early initialization for the top cgroup */ |
| return &root_task_group.css; |
| } |
| |
| tg = sched_create_group(parent); |
| if (IS_ERR(tg)) |
| return ERR_PTR(-ENOMEM); |
| |
| return &tg->css; |
| } |
| |
| /* Expose task group only after completing cgroup initialization */ |
| static int cpu_cgroup_css_online(struct cgroup_subsys_state *css) |
| { |
| struct task_group *tg = css_tg(css); |
| struct task_group *parent = css_tg(css->parent); |
| |
| if (parent) |
| sched_online_group(tg, parent); |
| |
| #ifdef CONFIG_UCLAMP_TASK_GROUP |
| /* Propagate the effective uclamp value for the new group */ |
| guard(mutex)(&uclamp_mutex); |
| guard(rcu)(); |
| cpu_util_update_eff(css); |
| #endif |
| |
| return 0; |
| } |
| |
| static void cpu_cgroup_css_released(struct cgroup_subsys_state *css) |
| { |
| struct task_group *tg = css_tg(css); |
| |
| sched_release_group(tg); |
| } |
| |
| static void cpu_cgroup_css_free(struct cgroup_subsys_state *css) |
| { |
| struct task_group *tg = css_tg(css); |
| |
| /* |
| * Relies on the RCU grace period between css_released() and this. |
| */ |
| sched_unregister_group(tg); |
| } |
| |
| #ifdef CONFIG_RT_GROUP_SCHED |
| static int cpu_cgroup_can_attach(struct cgroup_taskset *tset) |
| { |
| struct task_struct *task; |
| struct cgroup_subsys_state *css; |
| |
| cgroup_taskset_for_each(task, css, tset) { |
| if (!sched_rt_can_attach(css_tg(css), task)) |
| return -EINVAL; |
| } |
| return 0; |
| } |
| #endif |
| |
| static void cpu_cgroup_attach(struct cgroup_taskset *tset) |
| { |
| struct task_struct *task; |
| struct cgroup_subsys_state *css; |
| |
| cgroup_taskset_for_each(task, css, tset) |
| sched_move_task(task); |
| } |
| |
| #ifdef CONFIG_UCLAMP_TASK_GROUP |
| static void cpu_util_update_eff(struct cgroup_subsys_state *css) |
| { |
| struct cgroup_subsys_state *top_css = css; |
| struct uclamp_se *uc_parent = NULL; |
| struct uclamp_se *uc_se = NULL; |
| unsigned int eff[UCLAMP_CNT]; |
| enum uclamp_id clamp_id; |
| unsigned int clamps; |
| |
| lockdep_assert_held(&uclamp_mutex); |
| SCHED_WARN_ON(!rcu_read_lock_held()); |
| |
| css_for_each_descendant_pre(css, top_css) { |
| uc_parent = css_tg(css)->parent |
| ? css_tg(css)->parent->uclamp : NULL; |
| |
| for_each_clamp_id(clamp_id) { |
| /* Assume effective clamps matches requested clamps */ |
| eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value; |
| /* Cap effective clamps with parent's effective clamps */ |
| if (uc_parent && |
| eff[clamp_id] > uc_parent[clamp_id].value) { |
| eff[clamp_id] = uc_parent[clamp_id].value; |
| } |
| } |
| /* Ensure protection is always capped by limit */ |
| eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]); |
| |
| /* Propagate most restrictive effective clamps */ |
| clamps = 0x0; |
| uc_se = css_tg(css)->uclamp; |
| for_each_clamp_id(clamp_id) { |
| if (eff[clamp_id] == uc_se[clamp_id].value) |
| continue; |
| uc_se[clamp_id].value = eff[clamp_id]; |
| uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]); |
| clamps |= (0x1 << clamp_id); |
| } |
| if (!clamps) { |
| css = css_rightmost_descendant(css); |
| continue; |
| } |
| |
| /* Immediately update descendants RUNNABLE tasks */ |
| uclamp_update_active_tasks(css); |
| } |
| } |
| |
| /* |
| * Integer 10^N with a given N exponent by casting to integer the literal "1eN" |
| * C expression. Since there is no way to convert a macro argument (N) into a |
| * character constant, use two levels of macros. |
| */ |
| #define _POW10(exp) ((unsigned int)1e##exp) |
| #define POW10(exp) _POW10(exp) |
| |
| struct uclamp_request { |
| #define UCLAMP_PERCENT_SHIFT 2 |
| #define UCLAMP_PERCENT_SCALE (100 * POW10(UCLAMP_PERCENT_SHIFT)) |
| s64 percent; |
| u64 util; |
| int ret; |
| }; |
| |
| static inline struct uclamp_request |
| capacity_from_percent(char *buf) |
| { |
| struct uclamp_request req = { |
| .percent = UCLAMP_PERCENT_SCALE, |
| .util = SCHED_CAPACITY_SCALE, |
| .ret = 0, |
| }; |
| |
| buf = strim(buf); |
| if (strcmp(buf, "max")) { |
| req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT, |
| &req.percent); |
| if (req.ret) |
| return req; |
| if ((u64)req.percent > UCLAMP_PERCENT_SCALE) { |
| req.ret = -ERANGE; |
| return req; |
| } |
| |
| req.util = req.percent << SCHED_CAPACITY_SHIFT; |
| req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE); |
| } |
| |
| return req; |
| } |
| |
| static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf, |
| size_t nbytes, loff_t off, |
| enum uclamp_id clamp_id) |
| { |
| struct uclamp_request req; |
| struct task_group *tg; |
| |
| req = capacity_from_percent(buf); |
| if (req.ret) |
| return req.ret; |
| |
| static_branch_enable(&sched_uclamp_used); |
| |
| guard(mutex)(&uclamp_mutex); |
| guard(rcu)(); |
| |
| tg = css_tg(of_css(of)); |
| if (tg->uclamp_req[clamp_id].value != req.util) |
| uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false); |
| |
| /* |
| * Because of not recoverable conversion rounding we keep track of the |
| * exact requested value |
| */ |
| tg->uclamp_pct[clamp_id] = req.percent; |
| |
| /* Update effective clamps to track the most restrictive value */ |
| cpu_util_update_eff(of_css(of)); |
| |
| return nbytes; |
| } |
| |
| static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of, |
| char *buf, size_t nbytes, |
| loff_t off) |
| { |
| return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN); |
| } |
| |
| static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of, |
| char *buf, size_t nbytes, |
| loff_t off) |
| { |
| return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX); |
| } |
| |
| static inline void cpu_uclamp_print(struct seq_file *sf, |
| enum uclamp_id clamp_id) |
| { |
| struct task_group *tg; |
| u64 util_clamp; |
| u64 percent; |
| u32 rem; |
| |
| scoped_guard (rcu) { |
| tg = css_tg(seq_css(sf)); |
| util_clamp = tg->uclamp_req[clamp_id].value; |
| } |
| |
| if (util_clamp == SCHED_CAPACITY_SCALE) { |
| seq_puts(sf, "max\n"); |
| return; |
| } |
| |
| percent = tg->uclamp_pct[clamp_id]; |
| percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem); |
| seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem); |
| } |
| |
| static int cpu_uclamp_min_show(struct seq_file *sf, void *v) |
| { |
| cpu_uclamp_print(sf, UCLAMP_MIN); |
| return 0; |
| } |
| |
| static int cpu_uclamp_max_show(struct seq_file *sf, void *v) |
| { |
| cpu_uclamp_print(sf, UCLAMP_MAX); |
| return 0; |
| } |
| #endif /* CONFIG_UCLAMP_TASK_GROUP */ |
| |
| #ifdef CONFIG_FAIR_GROUP_SCHED |
| static int cpu_shares_write_u64(struct cgroup_subsys_state *css, |
| struct cftype *cftype, u64 shareval) |
| { |
| if (shareval > scale_load_down(ULONG_MAX)) |
| shareval = MAX_SHARES; |
| return sched_group_set_shares(css_tg(css), scale_load(shareval)); |
| } |
| |
| static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css, |
| struct cftype *cft) |
| { |
| struct task_group *tg = css_tg(css); |
| |
| return (u64) scale_load_down(tg->shares); |
| } |
| |
| #ifdef CONFIG_CFS_BANDWIDTH |
| static DEFINE_MUTEX(cfs_constraints_mutex); |
| |
| const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */ |
| static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */ |
| /* More than 203 days if BW_SHIFT equals 20. */ |
| static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC; |
| |
| static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime); |
| |
| static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota, |
| u64 burst) |
| { |
| int i, ret = 0, runtime_enabled, runtime_was_enabled; |
| struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; |
| |
| if (tg == &root_task_group) |
| return -EINVAL; |
| |
| /* |
| * Ensure we have at some amount of bandwidth every period. This is |
| * to prevent reaching a state of large arrears when throttled via |
| * entity_tick() resulting in prolonged exit starvation. |
| */ |
| if (quota < min_cfs_quota_period || period < min_cfs_quota_period) |
| return -EINVAL; |
| |
| /* |
| * Likewise, bound things on the other side by preventing insane quota |
| * periods. This also allows us to normalize in computing quota |
| * feasibility. |
| */ |
| if (period > max_cfs_quota_period) |
| return -EINVAL; |
| |
| /* |
| * Bound quota to defend quota against overflow during bandwidth shift. |
| */ |
| if (quota != RUNTIME_INF && quota > max_cfs_runtime) |
| return -EINVAL; |
| |
| if (quota != RUNTIME_INF && (burst > quota || |
| burst + quota > max_cfs_runtime)) |
| return -EINVAL; |
| |
| /* |
| * Prevent race between setting of cfs_rq->runtime_enabled and |
| * unthrottle_offline_cfs_rqs(). |
| */ |
| guard(cpus_read_lock)(); |
| guard(mutex)(&cfs_constraints_mutex); |
| |
| ret = __cfs_schedulable(tg, period, quota); |
| if (ret) |
| return ret; |
| |
| runtime_enabled = quota != RUNTIME_INF; |
| runtime_was_enabled = cfs_b->quota != RUNTIME_INF; |
| /* |
| * If we need to toggle cfs_bandwidth_used, off->on must occur |
| * before making related changes, and on->off must occur afterwards |
| */ |
| if (runtime_enabled && !runtime_was_enabled) |
| cfs_bandwidth_usage_inc(); |
| |
| scoped_guard (raw_spinlock_irq, &cfs_b->lock) { |
| cfs_b->period = ns_to_ktime(period); |
| cfs_b->quota = quota; |
| cfs_b->burst = burst; |
| |
| __refill_cfs_bandwidth_runtime(cfs_b); |
| |
| /* |
| * Restart the period timer (if active) to handle new |
| * period expiry: |
| */ |
| if (runtime_enabled) |
| start_cfs_bandwidth(cfs_b); |
| } |
| |
| for_each_online_cpu(i) { |
| struct cfs_rq *cfs_rq = tg->cfs_rq[i]; |
| struct rq *rq = cfs_rq->rq; |
| |
| guard(rq_lock_irq)(rq); |
| cfs_rq->runtime_enabled = runtime_enabled; |
| cfs_rq->runtime_remaining = 0; |
| |
| if (cfs_rq->throttled) |
| unthrottle_cfs_rq(cfs_rq); |
| } |
| |
| if (runtime_was_enabled && !runtime_enabled) |
| cfs_bandwidth_usage_dec(); |
| |
| return 0; |
| } |
| |
| static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us) |
| { |
| u64 quota, period, burst; |
| |
| period = ktime_to_ns(tg->cfs_bandwidth.period); |
| burst = tg->cfs_bandwidth.burst; |
| if (cfs_quota_us < 0) |
| quota = RUNTIME_INF; |
| else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC) |
| quota = (u64)cfs_quota_us * NSEC_PER_USEC; |
| else |
| return -EINVAL; |
| |
| return tg_set_cfs_bandwidth(tg, period, quota, burst); |
| } |
| |
| static long tg_get_cfs_quota(struct task_group *tg) |
| { |
| u64 quota_us; |
| |
| if (tg->cfs_bandwidth.quota == RUNTIME_INF) |
| return -1; |
| |
| quota_us = tg->cfs_bandwidth.quota; |
| do_div(quota_us, NSEC_PER_USEC); |
| |
| return quota_us; |
| } |
| |
| static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us) |
| { |
| u64 quota, period, burst; |
| |
| if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC) |
| return -EINVAL; |
| |
| period = (u64)cfs_period_us * NSEC_PER_USEC; |
| quota = tg->cfs_bandwidth.quota; |
| burst = tg->cfs_bandwidth.burst; |
| |
| return tg_set_cfs_bandwidth(tg, period, quota, burst); |
| } |
| |
| static long tg_get_cfs_period(struct task_group *tg) |
| { |
| u64 cfs_period_us; |
| |
| cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period); |
| do_div(cfs_period_us, NSEC_PER_USEC); |
| |
| return cfs_period_us; |
| } |
| |
| static int tg_set_cfs_burst(struct task_group *tg, long cfs_burst_us) |
| { |
| u64 quota, period, burst; |
| |
| if ((u64)cfs_burst_us > U64_MAX / NSEC_PER_USEC) |
| return -EINVAL; |
| |
| burst = (u64)cfs_burst_us * NSEC_PER_USEC; |
| period = ktime_to_ns(tg->cfs_bandwidth.period); |
| quota = tg->cfs_bandwidth.quota; |
| |
| return tg_set_cfs_bandwidth(tg, period, quota, burst); |
| } |
| |
| static long tg_get_cfs_burst(struct task_group *tg) |
| { |
| u64 burst_us; |
| |
| burst_us = tg->cfs_bandwidth.burst; |
| do_div(burst_us, NSEC_PER_USEC); |
| |
| return burst_us; |
| } |
| |
| static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css, |
| struct cftype *cft) |
| { |
| return tg_get_cfs_quota(css_tg(css)); |
| } |
| |
| static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css, |
| struct cftype *cftype, s64 cfs_quota_us) |
| { |
| return tg_set_cfs_quota(css_tg(css), cfs_quota_us); |
| } |
| |
| static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css, |
| struct cftype *cft) |
| { |
| return tg_get_cfs_period(css_tg(css)); |
| } |
| |
| static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css, |
| struct cftype *cftype, u64 cfs_period_us) |
| { |
| return tg_set_cfs_period(css_tg(css), cfs_period_us); |
| } |
| |
| static u64 cpu_cfs_burst_read_u64(struct cgroup_subsys_state *css, |
| struct cftype *cft) |
| { |
| return tg_get_cfs_burst(css_tg(css)); |
| } |
| |
| static int cpu_cfs_burst_write_u64(struct cgroup_subsys_state *css, |
| struct cftype *cftype, u64 cfs_burst_us) |
| { |
| return tg_set_cfs_burst(css_tg(css), cfs_burst_us); |
| } |
| |
| struct cfs_schedulable_data { |
| struct task_group *tg; |
| u64 period, quota; |
| }; |
| |
| /* |
| * normalize group quota/period to be quota/max_period |
| * note: units are usecs |
| */ |
| static u64 normalize_cfs_quota(struct task_group *tg, |
| struct cfs_schedulable_data *d) |
| { |
| u64 quota, period; |
| |
| if (tg == d->tg) { |
| period = d->period; |
| quota = d->quota; |
| } else { |
| period = tg_get_cfs_period(tg); |
| quota = tg_get_cfs_quota(tg); |
| } |
| |
| /* note: these should typically be equivalent */ |
| if (quota == RUNTIME_INF || quota == -1) |
| return RUNTIME_INF; |
| |
| return to_ratio(period, quota); |
| } |
| |
| static int tg_cfs_schedulable_down(struct task_group *tg, void *data) |
| { |
| struct cfs_schedulable_data *d = data; |
| struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; |
| s64 quota = 0, parent_quota = -1; |
| |
| if (!tg->parent) { |
| quota = RUNTIME_INF; |
| } else { |
| struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth; |
| |
| quota = normalize_cfs_quota(tg, d); |
| parent_quota = parent_b->hierarchical_quota; |
| |
| /* |
| * Ensure max(child_quota) <= parent_quota. On cgroup2, |
| * always take the non-RUNTIME_INF min. On cgroup1, only |
| * inherit when no limit is set. In both cases this is used |
| * by the scheduler to determine if a given CFS task has a |
| * bandwidth constraint at some higher level. |
| */ |
| if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) { |
| if (quota == RUNTIME_INF) |
| quota = parent_quota; |
| else if (parent_quota != RUNTIME_INF) |
| quota = min(quota, parent_quota); |
| } else { |
| if (quota == RUNTIME_INF) |
| quota = parent_quota; |
| else if (parent_quota != RUNTIME_INF && quota > parent_quota) |
| return -EINVAL; |
| } |
| } |
| cfs_b->hierarchical_quota = quota; |
| |
| return 0; |
| } |
| |
| static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota) |
| { |
| struct cfs_schedulable_data data = { |
| .tg = tg, |
| .period = period, |
| .quota = quota, |
| }; |
| |
| if (quota != RUNTIME_INF) { |
| do_div(data.period, NSEC_PER_USEC); |
| do_div(data.quota, NSEC_PER_USEC); |
| } |
| |
| guard(rcu)(); |
| return walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data); |
| } |
| |
| static int cpu_cfs_stat_show(struct seq_file *sf, void *v) |
| { |
| struct task_group *tg = css_tg(seq_css(sf)); |
| struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; |
| |
| seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods); |
| seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled); |
| seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time); |
| |
| if (schedstat_enabled() && tg != &root_task_group) { |
| struct sched_statistics *stats; |
| u64 ws = 0; |
| int i; |
| |
| for_each_possible_cpu(i) { |
| stats = __schedstats_from_se(tg->se[i]); |
| ws += schedstat_val(stats->wait_sum); |
| } |
| |
| seq_printf(sf, "wait_sum %llu\n", ws); |
| } |
| |
| seq_printf(sf, "nr_bursts %d\n", cfs_b->nr_burst); |
| seq_printf(sf, "burst_time %llu\n", cfs_b->burst_time); |
| |
| return 0; |
| } |
| |
| static u64 throttled_time_self(struct task_group *tg) |
| { |
| int i; |
| u64 total = 0; |
| |
| for_each_possible_cpu(i) { |
| total += READ_ONCE(tg->cfs_rq[i]->throttled_clock_self_time); |
| } |
| |
| return total; |
| } |
| |
| static int cpu_cfs_local_stat_show(struct seq_file *sf, void *v) |
| { |
| struct task_group *tg = css_tg(seq_css(sf)); |
| |
| seq_printf(sf, "throttled_time %llu\n", throttled_time_self(tg)); |
| |
| return 0; |
| } |
| #endif /* CONFIG_CFS_BANDWIDTH */ |
| #endif /* CONFIG_FAIR_GROUP_SCHED */ |
| |
| #ifdef CONFIG_RT_GROUP_SCHED |
| static int cpu_rt_runtime_write(struct cgroup_subsys_state *css, |
| struct cftype *cft, s64 val) |
| { |
| return sched_group_set_rt_runtime(css_tg(css), val); |
| } |
| |
| static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css, |
| struct cftype *cft) |
| { |
| return sched_group_rt_runtime(css_tg(css)); |
| } |
| |
| static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css, |
| struct cftype *cftype, u64 rt_period_us) |
| { |
| return sched_group_set_rt_period(css_tg(css), rt_period_us); |
| } |
| |
| static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css, |
| struct cftype *cft) |
| { |
| return sched_group_rt_period(css_tg(css)); |
| } |
| #endif /* CONFIG_RT_GROUP_SCHED */ |
| |
| #ifdef CONFIG_FAIR_GROUP_SCHED |
| static s64 cpu_idle_read_s64(struct cgroup_subsys_state *css, |
| struct cftype *cft) |
| { |
| return css_tg(css)->idle; |
| } |
| |
| static int cpu_idle_write_s64(struct cgroup_subsys_state *css, |
| struct cftype *cft, s64 idle) |
| { |
| return sched_group_set_idle(css_tg(css), idle); |
| } |
| #endif |
| |
| static struct cftype cpu_legacy_files[] = { |
| #ifdef CONFIG_FAIR_GROUP_SCHED |
| { |
| .name = "shares", |
| .read_u64 = cpu_shares_read_u64, |
| .write_u64 = cpu_shares_write_u64, |
| }, |
| { |
| .name = "idle", |
| .read_s64 = cpu_idle_read_s64, |
| .write_s64 = cpu_idle_write_s64, |
| }, |
| #endif |
| #ifdef CONFIG_CFS_BANDWIDTH |
| { |
| .name = "cfs_quota_us", |
| .read_s64 = cpu_cfs_quota_read_s64, |
| .write_s64 = cpu_cfs_quota_write_s64, |
| }, |
| { |
| .name = "cfs_period_us", |
| .read_u64 = cpu_cfs_period_read_u64, |
| .write_u64 = cpu_cfs_period_write_u64, |
| }, |
| { |
| .name = "cfs_burst_us", |
| .read_u64 = cpu_cfs_burst_read_u64, |
| .write_u64 = cpu_cfs_burst_write_u64, |
| }, |
| { |
| .name = "stat", |
| .seq_show = cpu_cfs_stat_show, |
| }, |
| { |
| .name = "stat.local", |
| .seq_show = cpu_cfs_local_stat_show, |
| }, |
| #endif |
| #ifdef CONFIG_RT_GROUP_SCHED |
| { |
| .name = "rt_runtime_us", |
| .read_s64 = cpu_rt_runtime_read, |
| .write_s64 = cpu_rt_runtime_write, |
| }, |
| { |
| .name = "rt_period_us", |
| .read_u64 = cpu_rt_period_read_uint, |
| .write_u64 = cpu_rt_period_write_uint, |
| }, |
| #endif |
| #ifdef CONFIG_UCLAMP_TASK_GROUP |
| { |
| .name = "uclamp.min", |
| .flags = CFTYPE_NOT_ON_ROOT, |
| .seq_show = cpu_uclamp_min_show, |
| .write = cpu_uclamp_min_write, |
| }, |
| { |
| .name = "uclamp.max", |
| .flags = CFTYPE_NOT_ON_ROOT, |
| .seq_show = cpu_uclamp_max_show, |
| .write = cpu_uclamp_max_write, |
| }, |
| #endif |
| { } /* Terminate */ |
| }; |
| |
| static int cpu_extra_stat_show(struct seq_file *sf, |
| struct cgroup_subsys_state *css) |
| { |
| #ifdef CONFIG_CFS_BANDWIDTH |
| { |
| struct task_group *tg = css_tg(css); |
| struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; |
| u64 throttled_usec, burst_usec; |
| |
| throttled_usec = cfs_b->throttled_time; |
| do_div(throttled_usec, NSEC_PER_USEC); |
| burst_usec = cfs_b->burst_time; |
| do_div(burst_usec, NSEC_PER_USEC); |
| |
| seq_printf(sf, "nr_periods %d\n" |
| "nr_throttled %d\n" |
| "throttled_usec %llu\n" |
| "nr_bursts %d\n" |
| "burst_usec %llu\n", |
| cfs_b->nr_periods, cfs_b->nr_throttled, |
| throttled_usec, cfs_b->nr_burst, burst_usec); |
| } |
| #endif |
| return 0; |
| } |
| |
| static int cpu_local_stat_show(struct seq_file *sf, |
| struct cgroup_subsys_state *css) |
| { |
| #ifdef CONFIG_CFS_BANDWIDTH |
| { |
| struct task_group *tg = css_tg(css); |
| u64 throttled_self_usec; |
| |
| throttled_self_usec = throttled_time_self(tg); |
| do_div(throttled_self_usec, NSEC_PER_USEC); |
| |
| seq_printf(sf, "throttled_usec %llu\n", |
| throttled_self_usec); |
| } |
| #endif |
| return 0; |
| } |
| |
| #ifdef CONFIG_FAIR_GROUP_SCHED |
| static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css, |
| struct cftype *cft) |
| { |
| struct task_group *tg = css_tg(css); |
| u64 weight = scale_load_down(tg->shares); |
| |
| return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024); |
| } |
| |
| static int cpu_weight_write_u64(struct cgroup_subsys_state *css, |
| struct cftype *cft, u64 weight) |
| { |
| /* |
| * cgroup weight knobs should use the common MIN, DFL and MAX |
| * values which are 1, 100 and 10000 respectively. While it loses |
| * a bit of range on both ends, it maps pretty well onto the shares |
| * value used by scheduler and the round-trip conversions preserve |
| * the original value over the entire range. |
| */ |
| if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX) |
| return -ERANGE; |
| |
| weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL); |
| |
| return sched_group_set_shares(css_tg(css), scale_load(weight)); |
| } |
| |
| static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css, |
| struct cftype *cft) |
| { |
| unsigned long weight = scale_load_down(css_tg(css)->shares); |
| int last_delta = INT_MAX; |
| int prio, delta; |
| |
| /* find the closest nice value to the current weight */ |
| for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) { |
| delta = abs(sched_prio_to_weight[prio] - weight); |
| if (delta >= last_delta) |
| break; |
| last_delta = delta; |
| } |
| |
| return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO); |
| } |
| |
| static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css, |
| struct cftype *cft, s64 nice) |
| { |
| unsigned long weight; |
| int idx; |
| |
| if (nice < MIN_NICE || nice > MAX_NICE) |
| return -ERANGE; |
| |
| idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO; |
| idx = array_index_nospec(idx, 40); |
| weight = sched_prio_to_weight[idx]; |
| |
| return sched_group_set_shares(css_tg(css), scale_load(weight)); |
| } |
| #endif |
| |
| static void __maybe_unused cpu_period_quota_print(struct seq_file *sf, |
| long period, long quota) |
| { |
| if (quota < 0) |
| seq_puts(sf, "max"); |
| else |
| seq_printf(sf, "%ld", quota); |
| |
| seq_printf(sf, " %ld\n", period); |
| } |
| |
| /* caller should put the current value in *@periodp before calling */ |
| static int __maybe_unused cpu_period_quota_parse(char *buf, |
| u64 *periodp, u64 *quotap) |
| { |
| char tok[21]; /* U64_MAX */ |
| |
| if (sscanf(buf, "%20s %llu", tok, periodp) < 1) |
| return -EINVAL; |
| |
| *periodp *= NSEC_PER_USEC; |
| |
| if (sscanf(tok, "%llu", quotap)) |
| *quotap *= NSEC_PER_USEC; |
| else if (!strcmp(tok, "max")) |
| *quotap = RUNTIME_INF; |
| else |
| return -EINVAL; |
| |
| return 0; |
| } |
| |
| #ifdef CONFIG_CFS_BANDWIDTH |
| static int cpu_max_show(struct seq_file *sf, void *v) |
| { |
| struct task_group *tg = css_tg(seq_css(sf)); |
| |
| cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg)); |
| return 0; |
| } |
| |
| static ssize_t cpu_max_write(struct kernfs_open_file *of, |
| char *buf, size_t nbytes, loff_t off) |
| { |
| struct task_group *tg = css_tg(of_css(of)); |
| u64 period = tg_get_cfs_period(tg); |
| u64 burst = tg->cfs_bandwidth.burst; |
| u64 quota; |
| int ret; |
| |
| ret = cpu_period_quota_parse(buf, &period, "a); |
| if (!ret) |
| ret = tg_set_cfs_bandwidth(tg, period, quota, burst); |
| return ret ?: nbytes; |
| } |
| #endif |
| |
| static struct cftype cpu_files[] = { |
| #ifdef CONFIG_FAIR_GROUP_SCHED |
| { |
| .name = "weight", |
| .flags = CFTYPE_NOT_ON_ROOT, |
| .read_u64 = cpu_weight_read_u64, |
| .write_u64 = cpu_weight_write_u64, |
| }, |
| { |
| .name = "weight.nice", |
| .flags = CFTYPE_NOT_ON_ROOT, |
| .read_s64 = cpu_weight_nice_read_s64, |
| .write_s64 = cpu_weight_nice_write_s64, |
| }, |
| { |
| .name = "idle", |
| .flags = CFTYPE_NOT_ON_ROOT, |
| .read_s64 = cpu_idle_read_s64, |
| .write_s64 = cpu_idle_write_s64, |
| }, |
| #endif |
| #ifdef CONFIG_CFS_BANDWIDTH |
| { |
| .name = "max", |
| .flags = CFTYPE_NOT_ON_ROOT, |
| .seq_show = cpu_max_show, |
| .write = cpu_max_write, |
| }, |
| { |
| .name = "max.burst", |
| .flags = CFTYPE_NOT_ON_ROOT, |
| .read_u64 = cpu_cfs_burst_read_u64, |
| .write_u64 = cpu_cfs_burst_write_u64, |
| }, |
| #endif |
| #ifdef CONFIG_UCLAMP_TASK_GROUP |
| { |
| .name = "uclamp.min", |
| .flags = CFTYPE_NOT_ON_ROOT, |
| .seq_show = cpu_uclamp_min_show, |
| .write = cpu_uclamp_min_write, |
| }, |
| { |
| .name = "uclamp.max", |
| .flags = CFTYPE_NOT_ON_ROOT, |
| .seq_show = cpu_uclamp_max_show, |
| .write = cpu_uclamp_max_write, |
| }, |
| #endif |
| { } /* terminate */ |
| }; |
| |
| struct cgroup_subsys cpu_cgrp_subsys = { |
| .css_alloc = cpu_cgroup_css_alloc, |
| .css_online = cpu_cgroup_css_online, |
| .css_released = cpu_cgroup_css_released, |
| .css_free = cpu_cgroup_css_free, |
| .css_extra_stat_show = cpu_extra_stat_show, |
| .css_local_stat_show = cpu_local_stat_show, |
| #ifdef CONFIG_RT_GROUP_SCHED |
| .can_attach = cpu_cgroup_can_attach, |
| #endif |
| .attach = cpu_cgroup_attach, |
| .legacy_cftypes = cpu_legacy_files, |
| .dfl_cftypes = cpu_files, |
| .early_init = true, |
| .threaded = true, |
| }; |
| |
| #endif /* CONFIG_CGROUP_SCHED */ |
| |
| void dump_cpu_task(int cpu) |
| { |
| if (cpu == smp_processor_id() && in_hardirq()) { |
| struct pt_regs *regs; |
| |
| regs = get_irq_regs(); |
| if (regs) { |
| show_regs(regs); |
| return; |
| } |
| } |
| |
| if (trigger_single_cpu_backtrace(cpu)) |
| return; |
| |
| pr_info("Task dump for CPU %d:\n", cpu); |
| sched_show_task(cpu_curr(cpu)); |
| } |
| |
| /* |
| * Nice levels are multiplicative, with a gentle 10% change for every |
| * nice level changed. I.e. when a CPU-bound task goes from nice 0 to |
| * nice 1, it will get ~10% less CPU time than another CPU-bound task |
| * that remained on nice 0. |
| * |
| * The "10% effect" is relative and cumulative: from _any_ nice level, |
| * if you go up 1 level, it's -10% CPU usage, if you go down 1 level |
| * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25. |
| * If a task goes up by ~10% and another task goes down by ~10% then |
| * the relative distance between them is ~25%.) |
| */ |
| const int sched_prio_to_weight[40] = { |
| /* -20 */ 88761, 71755, 56483, 46273, 36291, |
| /* -15 */ 29154, 23254, 18705, 14949, 11916, |
| /* -10 */ 9548, 7620, 6100, 4904, 3906, |
| /* -5 */ 3121, 2501, 1991, 1586, 1277, |
| /* 0 */ 1024, 820, 655, 526, 423, |
| /* 5 */ 335, 272, 215, 172, 137, |
| /* 10 */ 110, 87, 70, 56, 45, |
| /* 15 */ 36, 29, 23, 18, 15, |
| }; |
| |
| /* |
| * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated. |
| * |
| * In cases where the weight does not change often, we can use the |
| * precalculated inverse to speed up arithmetics by turning divisions |
| * into multiplications: |
| */ |
| const u32 sched_prio_to_wmult[40] = { |
| /* -20 */ 48388, 59856, 76040, 92818, 118348, |
| /* -15 */ 147320, 184698, 229616, 287308, 360437, |
| /* -10 */ 449829, 563644, 704093, 875809, 1099582, |
| /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326, |
| /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587, |
| /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126, |
| /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717, |
| /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153, |
| }; |
| |
| void call_trace_sched_update_nr_running(struct rq *rq, int count) |
| { |
| trace_sched_update_nr_running_tp(rq, count); |
| } |
| |
| #ifdef CONFIG_SCHED_MM_CID |
| |
| /* |
| * @cid_lock: Guarantee forward-progress of cid allocation. |
| * |
| * Concurrency ID allocation within a bitmap is mostly lock-free. The cid_lock |
| * is only used when contention is detected by the lock-free allocation so |
| * forward progress can be guaranteed. |
| */ |
| DEFINE_RAW_SPINLOCK(cid_lock); |
| |
| /* |
| * @use_cid_lock: Select cid allocation behavior: lock-free vs spinlock. |
| * |
| * When @use_cid_lock is 0, the cid allocation is lock-free. When contention is |
| * detected, it is set to 1 to ensure that all newly coming allocations are |
| * serialized by @cid_lock until the allocation which detected contention |
| * completes and sets @use_cid_lock back to 0. This guarantees forward progress |
| * of a cid allocation. |
| */ |
| int use_cid_lock; |
| |
| /* |
| * mm_cid remote-clear implements a lock-free algorithm to clear per-mm/cpu cid |
| * concurrently with respect to the execution of the source runqueue context |
| * switch. |
| * |
| * There is one basic properties we want to guarantee here: |
| * |
| * (1) Remote-clear should _never_ mark a per-cpu cid UNSET when it is actively |
| * used by a task. That would lead to concurrent allocation of the cid and |
| * userspace corruption. |
| * |
| * Provide this guarantee by introducing a Dekker memory ordering to guarantee |
| * that a pair of loads observe at least one of a pair of stores, which can be |
| * shown as: |
| * |
| * X = Y = 0 |
| * |
| * w[X]=1 w[Y]=1 |
| * MB MB |
| * r[Y]=y r[X]=x |
| * |
| * Which guarantees that x==0 && y==0 is impossible. But rather than using |
| * values 0 and 1, this algorithm cares about specific state transitions of the |
| * runqueue current task (as updated by the scheduler context switch), and the |
| * per-mm/cpu cid value. |
| * |
| * Let's introduce task (Y) which has task->mm == mm and task (N) which has |
| * task->mm != mm for the rest of the discussion. There are two scheduler state |
| * transitions on context switch we care about: |
| * |
| * (TSA) Store to rq->curr with transition from (N) to (Y) |
| * |
| * (TSB) Store to rq->curr with transition from (Y) to (N) |
| * |
| * On the remote-clear side, there is one transition we care about: |
| * |
| * (TMA) cmpxchg to *pcpu_cid to set the LAZY flag |
| * |
| * There is also a transition to UNSET state which can be performed from all |
| * sides (scheduler, remote-clear). It is always performed with a cmpxchg which |
| * guarantees that only a single thread will succeed: |
| * |
| * (TMB) cmpxchg to *pcpu_cid to mark UNSET |
| * |
| * Just to be clear, what we do _not_ want to happen is a transition to UNSET |
| * when a thread is actively using the cid (property (1)). |
| * |
| * Let's looks at the relevant combinations of TSA/TSB, and TMA transitions. |
| * |
| * Scenario A) (TSA)+(TMA) (from next task perspective) |
| * |
| * CPU0 CPU1 |
| * |
| * Context switch CS-1 Remote-clear |
| * - store to rq->curr: (N)->(Y) (TSA) - cmpxchg to *pcpu_id to LAZY (TMA) |
| * (implied barrier after cmpxchg) |
| * - switch_mm_cid() |
| * - memory barrier (see switch_mm_cid() |
| * comment explaining how this barrier |
| * is combined with other scheduler |
| * barriers) |
| * - mm_cid_get (next) |
| * - READ_ONCE(*pcpu_cid) - rcu_dereference(src_rq->curr) |
| * |
| * This Dekker ensures that either task (Y) is observed by the |
| * rcu_dereference() or the LAZY flag is observed by READ_ONCE(), or both are |
| * observed. |
| * |
| * If task (Y) store is observed by rcu_dereference(), it means that there is |
| * still an active task on the cpu. Remote-clear will therefore not transition |
| * to UNSET, which fulfills property (1). |
| * |
| * If task (Y) is not observed, but the lazy flag is observed by READ_ONCE(), |
| * it will move its state to UNSET, which clears the percpu cid perhaps |
| * uselessly (which is not an issue for correctness). Because task (Y) is not |
| * observed, CPU1 can move ahead to set the state to UNSET. Because moving |
| * state to UNSET is done with a cmpxchg expecting that the old state has the |
| * LAZY flag set, only one thread will successfully UNSET. |
| * |
| * If both states (LAZY flag and task (Y)) are observed, the thread on CPU0 |
| * will observe the LAZY flag and transition to UNSET (perhaps uselessly), and |
| * CPU1 will observe task (Y) and do nothing more, which is fine. |
| * |
| * What we are effectively preventing with this Dekker is a scenario where |
| * neither LAZY flag nor store (Y) are observed, which would fail property (1) |
| * because this would UNSET a cid which is actively used. |
| */ |
| |
| void sched_mm_cid_migrate_from(struct task_struct *t) |
| { |
| t->migrate_from_cpu = task_cpu(t); |
| } |
| |
| static |
| int __sched_mm_cid_migrate_from_fetch_cid(struct rq *src_rq, |
| struct task_struct *t, |
| struct mm_cid *src_pcpu_cid) |
| { |
| struct mm_struct *mm = t->mm; |
| struct task_struct *src_task; |
| int src_cid, last_mm_cid; |
| |
| if (!mm) |
| return -1; |
| |
| last_mm_cid = t->last_mm_cid; |
| /* |
| * If the migrated task has no last cid, or if the current |
| * task on src rq uses the cid, it means the source cid does not need |
| * to be moved to the destination cpu. |
| */ |
| if (last_mm_cid == -1) |
| return -1; |
| src_cid = READ_ONCE(src_pcpu_cid->cid); |
| if (!mm_cid_is_valid(src_cid) || last_mm_cid != src_cid) |
| return -1; |
| |
| /* |
| * If we observe an active task using the mm on this rq, it means we |
| * are not the last task to be migrated from this cpu for this mm, so |
| * there is no need to move src_cid to the destination cpu. |
| */ |
| guard(rcu)(); |
| src_task = rcu_dereference(src_rq->curr); |
| if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) { |
| t->last_mm_cid = -1; |
| return -1; |
| } |
| |
| return src_cid; |
| } |
| |
| static |
| int __sched_mm_cid_migrate_from_try_steal_cid(struct rq *src_rq, |
| struct task_struct *t, |
| struct mm_cid *src_pcpu_cid, |
| int src_cid) |
| { |
| struct task_struct *src_task; |
| struct mm_struct *mm = t->mm; |
| int lazy_cid; |
| |
| if (src_cid == -1) |
| return -1; |
| |
| /* |
| * Attempt to clear the source cpu cid to move it to the destination |
| * cpu. |
| */ |
| lazy_cid = mm_cid_set_lazy_put(src_cid); |
| if (!try_cmpxchg(&src_pcpu_cid->cid, &src_cid, lazy_cid)) |
| return -1; |
| |
| /* |
| * The implicit barrier after cmpxchg per-mm/cpu cid before loading |
| * rq->curr->mm matches the scheduler barrier in context_switch() |
| * between store to rq->curr and load of prev and next task's |
| * per-mm/cpu cid. |
| * |
| * The implicit barrier after cmpxchg per-mm/cpu cid before loading |
| * rq->curr->mm_cid_active matches the barrier in |
| * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and |
| * sched_mm_cid_after_execve() between store to t->mm_cid_active and |
| * load of per-mm/cpu cid. |
| */ |
| |
| /* |
| * If we observe an active task using the mm on this rq after setting |
| * the lazy-put flag, this task will be responsible for transitioning |
| * from lazy-put flag set to MM_CID_UNSET. |
| */ |
| scoped_guard (rcu) { |
| src_task = rcu_dereference(src_rq->curr); |
| if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) { |
| /* |
| * We observed an active task for this mm, there is therefore |
| * no point in moving this cid to the destination cpu. |
| */ |
| t->last_mm_cid = -1; |
| return -1; |
| } |
| } |
| |
| /* |
| * The src_cid is unused, so it can be unset. |
| */ |
| if (!try_cmpxchg(&src_pcpu_cid->cid, &lazy_cid, MM_CID_UNSET)) |
| return -1; |
| return src_cid; |
| } |
| |
| /* |
| * Migration to dst cpu. Called with dst_rq lock held. |
| * Interrupts are disabled, which keeps the window of cid ownership without the |
| * source rq lock held small. |
| */ |
| void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t) |
| { |
| struct mm_cid *src_pcpu_cid, *dst_pcpu_cid; |
| struct mm_struct *mm = t->mm; |
| int src_cid, dst_cid, src_cpu; |
| struct rq *src_rq; |
| |
| lockdep_assert_rq_held(dst_rq); |
| |
| if (!mm) |
| return; |
| src_cpu = t->migrate_from_cpu; |
| if (src_cpu == -1) { |
| t->last_mm_cid = -1; |
| return; |
| } |
| /* |
| * Move the src cid if the dst cid is unset. This keeps id |
| * allocation closest to 0 in cases where few threads migrate around |
| * many cpus. |
| * |
| * If destination cid is already set, we may have to just clear |
| * the src cid to ensure compactness in frequent migrations |
| * scenarios. |
| * |
| * It is not useful to clear the src cid when the number of threads is |
| * greater or equal to the number of allowed cpus, because user-space |
| * can expect that the number of allowed cids can reach the number of |
| * allowed cpus. |
| */ |
| dst_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu_of(dst_rq)); |
| dst_cid = READ_ONCE(dst_pcpu_cid->cid); |
| if (!mm_cid_is_unset(dst_cid) && |
| atomic_read(&mm->mm_users) >= t->nr_cpus_allowed) |
| return; |
| src_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, src_cpu); |
| src_rq = cpu_rq(src_cpu); |
| src_cid = __sched_mm_cid_migrate_from_fetch_cid(src_rq, t, src_pcpu_cid); |
| if (src_cid == -1) |
| return; |
| src_cid = __sched_mm_cid_migrate_from_try_steal_cid(src_rq, t, src_pcpu_cid, |
| src_cid); |
| if (src_cid == -1) |
| return; |
| if (!mm_cid_is_unset(dst_cid)) { |
| __mm_cid_put(mm, src_cid); |
| return; |
| } |
| /* Move src_cid to dst cpu. */ |
| mm_cid_snapshot_time(dst_rq, mm); |
| WRITE_ONCE(dst_pcpu_cid->cid, src_cid); |
| } |
| |
| static void sched_mm_cid_remote_clear(struct mm_struct *mm, struct mm_cid *pcpu_cid, |
| int cpu) |
| { |
| struct rq *rq = cpu_rq(cpu); |
| struct task_struct *t; |
| int cid, lazy_cid; |
| |
| cid = READ_ONCE(pcpu_cid->cid); |
| if (!mm_cid_is_valid(cid)) |
| return; |
| |
| /* |
| * Clear the cpu cid if it is set to keep cid allocation compact. If |
| * there happens to be other tasks left on the source cpu using this |
| * mm, the next task using this mm will reallocate its cid on context |
| * switch. |
| */ |
| lazy_cid = mm_cid_set_lazy_put(cid); |
| if (!try_cmpxchg(&pcpu_cid->cid, &cid, lazy_cid)) |
| return; |
| |
| /* |
| * The implicit barrier after cmpxchg per-mm/cpu cid before loading |
| * rq->curr->mm matches the scheduler barrier in context_switch() |
| * between store to rq->curr and load of prev and next task's |
| * per-mm/cpu cid. |
| * |
| * The implicit barrier after cmpxchg per-mm/cpu cid before loading |
| * rq->curr->mm_cid_active matches the barrier in |
| * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and |
| * sched_mm_cid_after_execve() between store to t->mm_cid_active and |
| * load of per-mm/cpu cid. |
| */ |
| |
| /* |
| * If we observe an active task using the mm on this rq after setting |
| * the lazy-put flag, that task will be responsible for transitioning |
| * from lazy-put flag set to MM_CID_UNSET. |
| */ |
| scoped_guard (rcu) { |
| t = rcu_dereference(rq->curr); |
| if (READ_ONCE(t->mm_cid_active) && t->mm == mm) |
| return; |
| } |
| |
| /* |
| * The cid is unused, so it can be unset. |
| * Disable interrupts to keep the window of cid ownership without rq |
| * lock small. |
| */ |
| scoped_guard (irqsave) { |
| if (try_cmpxchg(&pcpu_cid->cid, &lazy_cid, MM_CID_UNSET)) |
| __mm_cid_put(mm, cid); |
| } |
| } |
| |
| static void sched_mm_cid_remote_clear_old(struct mm_struct *mm, int cpu) |
| { |
| struct rq *rq = cpu_rq(cpu); |
| struct mm_cid *pcpu_cid; |
| struct task_struct *curr; |
| u64 rq_clock; |
| |
| /* |
| * rq->clock load is racy on 32-bit but one spurious clear once in a |
| * while is irrelevant. |
| */ |
| rq_clock = READ_ONCE(rq->clock); |
| pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu); |
| |
| /* |
| * In order to take care of infrequently scheduled tasks, bump the time |
| * snapshot associated with this cid if an active task using the mm is |
| * observed on this rq. |
| */ |
| scoped_guard (rcu) { |
| curr = rcu_dereference(rq->curr); |
| if (READ_ONCE(curr->mm_cid_active) && curr->mm == mm) { |
| WRITE_ONCE(pcpu_cid->time, rq_clock); |
| return; |
| } |
| } |
| |
| if (rq_clock < pcpu_cid->time + SCHED_MM_CID_PERIOD_NS) |
| return; |
| sched_mm_cid_remote_clear(mm, pcpu_cid, cpu); |
| } |
| |
| static void sched_mm_cid_remote_clear_weight(struct mm_struct *mm, int cpu, |
| int weight) |
| { |
| struct mm_cid *pcpu_cid; |
| int cid; |
| |
| pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu); |
| cid = READ_ONCE(pcpu_cid->cid); |
| if (!mm_cid_is_valid(cid) || cid < weight) |
| return; |
| sched_mm_cid_remote_clear(mm, pcpu_cid, cpu); |
| } |
| |
| static void task_mm_cid_work(struct callback_head *work) |
| { |
| unsigned long now = jiffies, old_scan, next_scan; |
| struct task_struct *t = current; |
| struct cpumask *cidmask; |
| struct mm_struct *mm; |
| int weight, cpu; |
| |
| SCHED_WARN_ON(t != container_of(work, struct task_struct, cid_work)); |
| |
| work->next = work; /* Prevent double-add */ |
| if (t->flags & PF_EXITING) |
| return; |
| mm = t->mm; |
| if (!mm) |
| return; |
| old_scan = READ_ONCE(mm->mm_cid_next_scan); |
| next_scan = now + msecs_to_jiffies(MM_CID_SCAN_DELAY); |
| if (!old_scan) { |
| unsigned long res; |
| |
| res = cmpxchg(&mm->mm_cid_next_scan, old_scan, next_scan); |
| if (res != old_scan) |
| old_scan = res; |
| else |
| old_scan = next_scan; |
| } |
| if (time_before(now, old_scan)) |
| return; |
| if (!try_cmpxchg(&mm->mm_cid_next_scan, &old_scan, next_scan)) |
| return; |
| cidmask = mm_cidmask(mm); |
| /* Clear cids that were not recently used. */ |
| for_each_possible_cpu(cpu) |
| sched_mm_cid_remote_clear_old(mm, cpu); |
| weight = cpumask_weight(cidmask); |
| /* |
| * Clear cids that are greater or equal to the cidmask weight to |
| * recompact it. |
| */ |
| for_each_possible_cpu(cpu) |
| sched_mm_cid_remote_clear_weight(mm, cpu, weight); |
| } |
| |
| void init_sched_mm_cid(struct task_struct *t) |
| { |
| struct mm_struct *mm = t->mm; |
| int mm_users = 0; |
| |
| if (mm) { |
| mm_users = atomic_read(&mm->mm_users); |
| if (mm_users == 1) |
| mm->mm_cid_next_scan = jiffies + msecs_to_jiffies(MM_CID_SCAN_DELAY); |
| } |
| t->cid_work.next = &t->cid_work; /* Protect against double add */ |
| init_task_work(&t->cid_work, task_mm_cid_work); |
| } |
| |
| void task_tick_mm_cid(struct rq *rq, struct task_struct *curr) |
| { |
| struct callback_head *work = &curr->cid_work; |
| unsigned long now = jiffies; |
| |
| if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) || |
| work->next != work) |
| return; |
| if (time_before(now, READ_ONCE(curr->mm->mm_cid_next_scan))) |
| return; |
| task_work_add(curr, work, TWA_RESUME); |
| } |
| |
| void sched_mm_cid_exit_signals(struct task_struct *t) |
| { |
| struct mm_struct *mm = t->mm; |
| struct rq *rq; |
| |
| if (!mm) |
| return; |
| |
| preempt_disable(); |
| rq = this_rq(); |
| guard(rq_lock_irqsave)(rq); |
| preempt_enable_no_resched(); /* holding spinlock */ |
| WRITE_ONCE(t->mm_cid_active, 0); |
| /* |
| * Store t->mm_cid_active before loading per-mm/cpu cid. |
| * Matches barrier in sched_mm_cid_remote_clear_old(). |
| */ |
| smp_mb(); |
| mm_cid_put(mm); |
| t->last_mm_cid = t->mm_cid = -1; |
| } |
| |
| void sched_mm_cid_before_execve(struct task_struct *t) |
| { |
| struct mm_struct *mm = t->mm; |
| struct rq *rq; |
| |
| if (!mm) |
| return; |
| |
| preempt_disable(); |
| rq = this_rq(); |
| guard(rq_lock_irqsave)(rq); |
| preempt_enable_no_resched(); /* holding spinlock */ |
| WRITE_ONCE(t->mm_cid_active, 0); |
| /* |
| * Store t->mm_cid_active before loading per-mm/cpu cid. |
| * Matches barrier in sched_mm_cid_remote_clear_old(). |
| */ |
| smp_mb(); |
| mm_cid_put(mm); |
| t->last_mm_cid = t->mm_cid = -1; |
| } |
| |
| void sched_mm_cid_after_execve(struct task_struct *t) |
| { |
| struct mm_struct *mm = t->mm; |
| struct rq *rq; |
| |
| if (!mm) |
| return; |
| |
| preempt_disable(); |
| rq = this_rq(); |
| scoped_guard (rq_lock_irqsave, rq) { |
| preempt_enable_no_resched(); /* holding spinlock */ |
| WRITE_ONCE(t->mm_cid_active, 1); |
| /* |
| * Store t->mm_cid_active before loading per-mm/cpu cid. |
| * Matches barrier in sched_mm_cid_remote_clear_old(). |
| */ |
| smp_mb(); |
| t->last_mm_cid = t->mm_cid = mm_cid_get(rq, mm); |
| } |
| rseq_set_notify_resume(t); |
| } |
| |
| void sched_mm_cid_fork(struct task_struct *t) |
| { |
| WARN_ON_ONCE(!t->mm || t->mm_cid != -1); |
| t->mm_cid_active = 1; |
| } |
| #endif |