| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * blk-mq scheduling framework |
| * |
| * Copyright (C) 2016 Jens Axboe |
| */ |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/blk-mq.h> |
| #include <linux/list_sort.h> |
| |
| #include <trace/events/block.h> |
| |
| #include "blk.h" |
| #include "blk-mq.h" |
| #include "blk-mq-debugfs.h" |
| #include "blk-mq-sched.h" |
| #include "blk-mq-tag.h" |
| #include "blk-wbt.h" |
| |
| /* |
| * Mark a hardware queue as needing a restart. |
| */ |
| void blk_mq_sched_mark_restart_hctx(struct blk_mq_hw_ctx *hctx) |
| { |
| if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state)) |
| return; |
| |
| set_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state); |
| } |
| EXPORT_SYMBOL_GPL(blk_mq_sched_mark_restart_hctx); |
| |
| void __blk_mq_sched_restart(struct blk_mq_hw_ctx *hctx) |
| { |
| clear_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state); |
| |
| /* |
| * Order clearing SCHED_RESTART and list_empty_careful(&hctx->dispatch) |
| * in blk_mq_run_hw_queue(). Its pair is the barrier in |
| * blk_mq_dispatch_rq_list(). So dispatch code won't see SCHED_RESTART, |
| * meantime new request added to hctx->dispatch is missed to check in |
| * blk_mq_run_hw_queue(). |
| */ |
| smp_mb(); |
| |
| blk_mq_run_hw_queue(hctx, true); |
| } |
| |
| static int sched_rq_cmp(void *priv, const struct list_head *a, |
| const struct list_head *b) |
| { |
| struct request *rqa = container_of(a, struct request, queuelist); |
| struct request *rqb = container_of(b, struct request, queuelist); |
| |
| return rqa->mq_hctx > rqb->mq_hctx; |
| } |
| |
| static bool blk_mq_dispatch_hctx_list(struct list_head *rq_list) |
| { |
| struct blk_mq_hw_ctx *hctx = |
| list_first_entry(rq_list, struct request, queuelist)->mq_hctx; |
| struct request *rq; |
| LIST_HEAD(hctx_list); |
| unsigned int count = 0; |
| |
| list_for_each_entry(rq, rq_list, queuelist) { |
| if (rq->mq_hctx != hctx) { |
| list_cut_before(&hctx_list, rq_list, &rq->queuelist); |
| goto dispatch; |
| } |
| count++; |
| } |
| list_splice_tail_init(rq_list, &hctx_list); |
| |
| dispatch: |
| return blk_mq_dispatch_rq_list(hctx, &hctx_list, count); |
| } |
| |
| #define BLK_MQ_BUDGET_DELAY 3 /* ms units */ |
| |
| /* |
| * Only SCSI implements .get_budget and .put_budget, and SCSI restarts |
| * its queue by itself in its completion handler, so we don't need to |
| * restart queue if .get_budget() fails to get the budget. |
| * |
| * Returns -EAGAIN if hctx->dispatch was found non-empty and run_work has to |
| * be run again. This is necessary to avoid starving flushes. |
| */ |
| static int __blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx *hctx) |
| { |
| struct request_queue *q = hctx->queue; |
| struct elevator_queue *e = q->elevator; |
| bool multi_hctxs = false, run_queue = false; |
| bool dispatched = false, busy = false; |
| unsigned int max_dispatch; |
| LIST_HEAD(rq_list); |
| int count = 0; |
| |
| if (hctx->dispatch_busy) |
| max_dispatch = 1; |
| else |
| max_dispatch = hctx->queue->nr_requests; |
| |
| do { |
| struct request *rq; |
| int budget_token; |
| |
| if (e->type->ops.has_work && !e->type->ops.has_work(hctx)) |
| break; |
| |
| if (!list_empty_careful(&hctx->dispatch)) { |
| busy = true; |
| break; |
| } |
| |
| budget_token = blk_mq_get_dispatch_budget(q); |
| if (budget_token < 0) |
| break; |
| |
| rq = e->type->ops.dispatch_request(hctx); |
| if (!rq) { |
| blk_mq_put_dispatch_budget(q, budget_token); |
| /* |
| * We're releasing without dispatching. Holding the |
| * budget could have blocked any "hctx"s with the |
| * same queue and if we didn't dispatch then there's |
| * no guarantee anyone will kick the queue. Kick it |
| * ourselves. |
| */ |
| run_queue = true; |
| break; |
| } |
| |
| blk_mq_set_rq_budget_token(rq, budget_token); |
| |
| /* |
| * Now this rq owns the budget which has to be released |
| * if this rq won't be queued to driver via .queue_rq() |
| * in blk_mq_dispatch_rq_list(). |
| */ |
| list_add_tail(&rq->queuelist, &rq_list); |
| count++; |
| if (rq->mq_hctx != hctx) |
| multi_hctxs = true; |
| |
| /* |
| * If we cannot get tag for the request, stop dequeueing |
| * requests from the IO scheduler. We are unlikely to be able |
| * to submit them anyway and it creates false impression for |
| * scheduling heuristics that the device can take more IO. |
| */ |
| if (!blk_mq_get_driver_tag(rq)) |
| break; |
| } while (count < max_dispatch); |
| |
| if (!count) { |
| if (run_queue) |
| blk_mq_delay_run_hw_queues(q, BLK_MQ_BUDGET_DELAY); |
| } else if (multi_hctxs) { |
| /* |
| * Requests from different hctx may be dequeued from some |
| * schedulers, such as bfq and deadline. |
| * |
| * Sort the requests in the list according to their hctx, |
| * dispatch batching requests from same hctx at a time. |
| */ |
| list_sort(NULL, &rq_list, sched_rq_cmp); |
| do { |
| dispatched |= blk_mq_dispatch_hctx_list(&rq_list); |
| } while (!list_empty(&rq_list)); |
| } else { |
| dispatched = blk_mq_dispatch_rq_list(hctx, &rq_list, count); |
| } |
| |
| if (busy) |
| return -EAGAIN; |
| return !!dispatched; |
| } |
| |
| static int blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx *hctx) |
| { |
| unsigned long end = jiffies + HZ; |
| int ret; |
| |
| do { |
| ret = __blk_mq_do_dispatch_sched(hctx); |
| if (ret != 1) |
| break; |
| if (need_resched() || time_is_before_jiffies(end)) { |
| blk_mq_delay_run_hw_queue(hctx, 0); |
| break; |
| } |
| } while (1); |
| |
| return ret; |
| } |
| |
| static struct blk_mq_ctx *blk_mq_next_ctx(struct blk_mq_hw_ctx *hctx, |
| struct blk_mq_ctx *ctx) |
| { |
| unsigned short idx = ctx->index_hw[hctx->type]; |
| |
| if (++idx == hctx->nr_ctx) |
| idx = 0; |
| |
| return hctx->ctxs[idx]; |
| } |
| |
| /* |
| * Only SCSI implements .get_budget and .put_budget, and SCSI restarts |
| * its queue by itself in its completion handler, so we don't need to |
| * restart queue if .get_budget() fails to get the budget. |
| * |
| * Returns -EAGAIN if hctx->dispatch was found non-empty and run_work has to |
| * be run again. This is necessary to avoid starving flushes. |
| */ |
| static int blk_mq_do_dispatch_ctx(struct blk_mq_hw_ctx *hctx) |
| { |
| struct request_queue *q = hctx->queue; |
| LIST_HEAD(rq_list); |
| struct blk_mq_ctx *ctx = READ_ONCE(hctx->dispatch_from); |
| int ret = 0; |
| struct request *rq; |
| |
| do { |
| int budget_token; |
| |
| if (!list_empty_careful(&hctx->dispatch)) { |
| ret = -EAGAIN; |
| break; |
| } |
| |
| if (!sbitmap_any_bit_set(&hctx->ctx_map)) |
| break; |
| |
| budget_token = blk_mq_get_dispatch_budget(q); |
| if (budget_token < 0) |
| break; |
| |
| rq = blk_mq_dequeue_from_ctx(hctx, ctx); |
| if (!rq) { |
| blk_mq_put_dispatch_budget(q, budget_token); |
| /* |
| * We're releasing without dispatching. Holding the |
| * budget could have blocked any "hctx"s with the |
| * same queue and if we didn't dispatch then there's |
| * no guarantee anyone will kick the queue. Kick it |
| * ourselves. |
| */ |
| blk_mq_delay_run_hw_queues(q, BLK_MQ_BUDGET_DELAY); |
| break; |
| } |
| |
| blk_mq_set_rq_budget_token(rq, budget_token); |
| |
| /* |
| * Now this rq owns the budget which has to be released |
| * if this rq won't be queued to driver via .queue_rq() |
| * in blk_mq_dispatch_rq_list(). |
| */ |
| list_add(&rq->queuelist, &rq_list); |
| |
| /* round robin for fair dispatch */ |
| ctx = blk_mq_next_ctx(hctx, rq->mq_ctx); |
| |
| } while (blk_mq_dispatch_rq_list(rq->mq_hctx, &rq_list, 1)); |
| |
| WRITE_ONCE(hctx->dispatch_from, ctx); |
| return ret; |
| } |
| |
| static int __blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx) |
| { |
| struct request_queue *q = hctx->queue; |
| const bool has_sched = q->elevator; |
| int ret = 0; |
| LIST_HEAD(rq_list); |
| |
| /* |
| * If we have previous entries on our dispatch list, grab them first for |
| * more fair dispatch. |
| */ |
| if (!list_empty_careful(&hctx->dispatch)) { |
| spin_lock(&hctx->lock); |
| if (!list_empty(&hctx->dispatch)) |
| list_splice_init(&hctx->dispatch, &rq_list); |
| spin_unlock(&hctx->lock); |
| } |
| |
| /* |
| * Only ask the scheduler for requests, if we didn't have residual |
| * requests from the dispatch list. This is to avoid the case where |
| * we only ever dispatch a fraction of the requests available because |
| * of low device queue depth. Once we pull requests out of the IO |
| * scheduler, we can no longer merge or sort them. So it's best to |
| * leave them there for as long as we can. Mark the hw queue as |
| * needing a restart in that case. |
| * |
| * We want to dispatch from the scheduler if there was nothing |
| * on the dispatch list or we were able to dispatch from the |
| * dispatch list. |
| */ |
| if (!list_empty(&rq_list)) { |
| blk_mq_sched_mark_restart_hctx(hctx); |
| if (blk_mq_dispatch_rq_list(hctx, &rq_list, 0)) { |
| if (has_sched) |
| ret = blk_mq_do_dispatch_sched(hctx); |
| else |
| ret = blk_mq_do_dispatch_ctx(hctx); |
| } |
| } else if (has_sched) { |
| ret = blk_mq_do_dispatch_sched(hctx); |
| } else if (hctx->dispatch_busy) { |
| /* dequeue request one by one from sw queue if queue is busy */ |
| ret = blk_mq_do_dispatch_ctx(hctx); |
| } else { |
| blk_mq_flush_busy_ctxs(hctx, &rq_list); |
| blk_mq_dispatch_rq_list(hctx, &rq_list, 0); |
| } |
| |
| return ret; |
| } |
| |
| void blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx) |
| { |
| struct request_queue *q = hctx->queue; |
| |
| /* RCU or SRCU read lock is needed before checking quiesced flag */ |
| if (unlikely(blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q))) |
| return; |
| |
| hctx->run++; |
| |
| /* |
| * A return of -EAGAIN is an indication that hctx->dispatch is not |
| * empty and we must run again in order to avoid starving flushes. |
| */ |
| if (__blk_mq_sched_dispatch_requests(hctx) == -EAGAIN) { |
| if (__blk_mq_sched_dispatch_requests(hctx) == -EAGAIN) |
| blk_mq_run_hw_queue(hctx, true); |
| } |
| } |
| |
| bool blk_mq_sched_bio_merge(struct request_queue *q, struct bio *bio, |
| unsigned int nr_segs) |
| { |
| struct elevator_queue *e = q->elevator; |
| struct blk_mq_ctx *ctx; |
| struct blk_mq_hw_ctx *hctx; |
| bool ret = false; |
| enum hctx_type type; |
| |
| if (e && e->type->ops.bio_merge) { |
| ret = e->type->ops.bio_merge(q, bio, nr_segs); |
| goto out_put; |
| } |
| |
| ctx = blk_mq_get_ctx(q); |
| hctx = blk_mq_map_queue(q, bio->bi_opf, ctx); |
| type = hctx->type; |
| if (!(hctx->flags & BLK_MQ_F_SHOULD_MERGE) || |
| list_empty_careful(&ctx->rq_lists[type])) |
| goto out_put; |
| |
| /* default per sw-queue merge */ |
| spin_lock(&ctx->lock); |
| /* |
| * Reverse check our software queue for entries that we could |
| * potentially merge with. Currently includes a hand-wavy stop |
| * count of 8, to not spend too much time checking for merges. |
| */ |
| if (blk_bio_list_merge(q, &ctx->rq_lists[type], bio, nr_segs)) |
| ret = true; |
| |
| spin_unlock(&ctx->lock); |
| out_put: |
| return ret; |
| } |
| |
| bool blk_mq_sched_try_insert_merge(struct request_queue *q, struct request *rq, |
| struct list_head *free) |
| { |
| return rq_mergeable(rq) && elv_attempt_insert_merge(q, rq, free); |
| } |
| EXPORT_SYMBOL_GPL(blk_mq_sched_try_insert_merge); |
| |
| static bool blk_mq_sched_bypass_insert(struct blk_mq_hw_ctx *hctx, |
| struct request *rq) |
| { |
| /* |
| * dispatch flush and passthrough rq directly |
| * |
| * passthrough request has to be added to hctx->dispatch directly. |
| * For some reason, device may be in one situation which can't |
| * handle FS request, so STS_RESOURCE is always returned and the |
| * FS request will be added to hctx->dispatch. However passthrough |
| * request may be required at that time for fixing the problem. If |
| * passthrough request is added to scheduler queue, there isn't any |
| * chance to dispatch it given we prioritize requests in hctx->dispatch. |
| */ |
| if ((rq->rq_flags & RQF_FLUSH_SEQ) || blk_rq_is_passthrough(rq)) |
| return true; |
| |
| return false; |
| } |
| |
| void blk_mq_sched_insert_request(struct request *rq, bool at_head, |
| bool run_queue, bool async) |
| { |
| struct request_queue *q = rq->q; |
| struct elevator_queue *e = q->elevator; |
| struct blk_mq_ctx *ctx = rq->mq_ctx; |
| struct blk_mq_hw_ctx *hctx = rq->mq_hctx; |
| |
| WARN_ON(e && (rq->tag != BLK_MQ_NO_TAG)); |
| |
| if (blk_mq_sched_bypass_insert(hctx, rq)) { |
| /* |
| * Firstly normal IO request is inserted to scheduler queue or |
| * sw queue, meantime we add flush request to dispatch queue( |
| * hctx->dispatch) directly and there is at most one in-flight |
| * flush request for each hw queue, so it doesn't matter to add |
| * flush request to tail or front of the dispatch queue. |
| * |
| * Secondly in case of NCQ, flush request belongs to non-NCQ |
| * command, and queueing it will fail when there is any |
| * in-flight normal IO request(NCQ command). When adding flush |
| * rq to the front of hctx->dispatch, it is easier to introduce |
| * extra time to flush rq's latency because of S_SCHED_RESTART |
| * compared with adding to the tail of dispatch queue, then |
| * chance of flush merge is increased, and less flush requests |
| * will be issued to controller. It is observed that ~10% time |
| * is saved in blktests block/004 on disk attached to AHCI/NCQ |
| * drive when adding flush rq to the front of hctx->dispatch. |
| * |
| * Simply queue flush rq to the front of hctx->dispatch so that |
| * intensive flush workloads can benefit in case of NCQ HW. |
| */ |
| at_head = (rq->rq_flags & RQF_FLUSH_SEQ) ? true : at_head; |
| blk_mq_request_bypass_insert(rq, at_head, false); |
| goto run; |
| } |
| |
| if (e) { |
| LIST_HEAD(list); |
| |
| list_add(&rq->queuelist, &list); |
| e->type->ops.insert_requests(hctx, &list, at_head); |
| } else { |
| spin_lock(&ctx->lock); |
| __blk_mq_insert_request(hctx, rq, at_head); |
| spin_unlock(&ctx->lock); |
| } |
| |
| run: |
| if (run_queue) |
| blk_mq_run_hw_queue(hctx, async); |
| } |
| |
| void blk_mq_sched_insert_requests(struct blk_mq_hw_ctx *hctx, |
| struct blk_mq_ctx *ctx, |
| struct list_head *list, bool run_queue_async) |
| { |
| struct elevator_queue *e; |
| struct request_queue *q = hctx->queue; |
| |
| /* |
| * blk_mq_sched_insert_requests() is called from flush plug |
| * context only, and hold one usage counter to prevent queue |
| * from being released. |
| */ |
| percpu_ref_get(&q->q_usage_counter); |
| |
| e = hctx->queue->elevator; |
| if (e) { |
| e->type->ops.insert_requests(hctx, list, false); |
| } else { |
| /* |
| * try to issue requests directly if the hw queue isn't |
| * busy in case of 'none' scheduler, and this way may save |
| * us one extra enqueue & dequeue to sw queue. |
| */ |
| if (!hctx->dispatch_busy && !run_queue_async) { |
| blk_mq_run_dispatch_ops(hctx->queue, |
| blk_mq_try_issue_list_directly(hctx, list)); |
| if (list_empty(list)) |
| goto out; |
| } |
| blk_mq_insert_requests(hctx, ctx, list); |
| } |
| |
| blk_mq_run_hw_queue(hctx, run_queue_async); |
| out: |
| percpu_ref_put(&q->q_usage_counter); |
| } |
| |
| static int blk_mq_sched_alloc_map_and_rqs(struct request_queue *q, |
| struct blk_mq_hw_ctx *hctx, |
| unsigned int hctx_idx) |
| { |
| if (blk_mq_is_shared_tags(q->tag_set->flags)) { |
| hctx->sched_tags = q->sched_shared_tags; |
| return 0; |
| } |
| |
| hctx->sched_tags = blk_mq_alloc_map_and_rqs(q->tag_set, hctx_idx, |
| q->nr_requests); |
| |
| if (!hctx->sched_tags) |
| return -ENOMEM; |
| return 0; |
| } |
| |
| static void blk_mq_exit_sched_shared_tags(struct request_queue *queue) |
| { |
| blk_mq_free_rq_map(queue->sched_shared_tags); |
| queue->sched_shared_tags = NULL; |
| } |
| |
| /* called in queue's release handler, tagset has gone away */ |
| static void blk_mq_sched_tags_teardown(struct request_queue *q, unsigned int flags) |
| { |
| struct blk_mq_hw_ctx *hctx; |
| unsigned long i; |
| |
| queue_for_each_hw_ctx(q, hctx, i) { |
| if (hctx->sched_tags) { |
| if (!blk_mq_is_shared_tags(flags)) |
| blk_mq_free_rq_map(hctx->sched_tags); |
| hctx->sched_tags = NULL; |
| } |
| } |
| |
| if (blk_mq_is_shared_tags(flags)) |
| blk_mq_exit_sched_shared_tags(q); |
| } |
| |
| static int blk_mq_init_sched_shared_tags(struct request_queue *queue) |
| { |
| struct blk_mq_tag_set *set = queue->tag_set; |
| |
| /* |
| * Set initial depth at max so that we don't need to reallocate for |
| * updating nr_requests. |
| */ |
| queue->sched_shared_tags = blk_mq_alloc_map_and_rqs(set, |
| BLK_MQ_NO_HCTX_IDX, |
| MAX_SCHED_RQ); |
| if (!queue->sched_shared_tags) |
| return -ENOMEM; |
| |
| blk_mq_tag_update_sched_shared_tags(queue); |
| |
| return 0; |
| } |
| |
| /* caller must have a reference to @e, will grab another one if successful */ |
| int blk_mq_init_sched(struct request_queue *q, struct elevator_type *e) |
| { |
| unsigned int flags = q->tag_set->flags; |
| struct blk_mq_hw_ctx *hctx; |
| struct elevator_queue *eq; |
| unsigned long i; |
| int ret; |
| |
| /* |
| * Default to double of smaller one between hw queue_depth and 128, |
| * since we don't split into sync/async like the old code did. |
| * Additionally, this is a per-hw queue depth. |
| */ |
| q->nr_requests = 2 * min_t(unsigned int, q->tag_set->queue_depth, |
| BLKDEV_DEFAULT_RQ); |
| |
| if (blk_mq_is_shared_tags(flags)) { |
| ret = blk_mq_init_sched_shared_tags(q); |
| if (ret) |
| return ret; |
| } |
| |
| queue_for_each_hw_ctx(q, hctx, i) { |
| ret = blk_mq_sched_alloc_map_and_rqs(q, hctx, i); |
| if (ret) |
| goto err_free_map_and_rqs; |
| } |
| |
| ret = e->ops.init_sched(q, e); |
| if (ret) |
| goto err_free_map_and_rqs; |
| |
| mutex_lock(&q->debugfs_mutex); |
| blk_mq_debugfs_register_sched(q); |
| mutex_unlock(&q->debugfs_mutex); |
| |
| queue_for_each_hw_ctx(q, hctx, i) { |
| if (e->ops.init_hctx) { |
| ret = e->ops.init_hctx(hctx, i); |
| if (ret) { |
| eq = q->elevator; |
| blk_mq_sched_free_rqs(q); |
| blk_mq_exit_sched(q, eq); |
| kobject_put(&eq->kobj); |
| return ret; |
| } |
| } |
| mutex_lock(&q->debugfs_mutex); |
| blk_mq_debugfs_register_sched_hctx(q, hctx); |
| mutex_unlock(&q->debugfs_mutex); |
| } |
| |
| return 0; |
| |
| err_free_map_and_rqs: |
| blk_mq_sched_free_rqs(q); |
| blk_mq_sched_tags_teardown(q, flags); |
| |
| q->elevator = NULL; |
| return ret; |
| } |
| |
| /* |
| * called in either blk_queue_cleanup or elevator_switch, tagset |
| * is required for freeing requests |
| */ |
| void blk_mq_sched_free_rqs(struct request_queue *q) |
| { |
| struct blk_mq_hw_ctx *hctx; |
| unsigned long i; |
| |
| if (blk_mq_is_shared_tags(q->tag_set->flags)) { |
| blk_mq_free_rqs(q->tag_set, q->sched_shared_tags, |
| BLK_MQ_NO_HCTX_IDX); |
| } else { |
| queue_for_each_hw_ctx(q, hctx, i) { |
| if (hctx->sched_tags) |
| blk_mq_free_rqs(q->tag_set, |
| hctx->sched_tags, i); |
| } |
| } |
| } |
| |
| void blk_mq_exit_sched(struct request_queue *q, struct elevator_queue *e) |
| { |
| struct blk_mq_hw_ctx *hctx; |
| unsigned long i; |
| unsigned int flags = 0; |
| |
| queue_for_each_hw_ctx(q, hctx, i) { |
| mutex_lock(&q->debugfs_mutex); |
| blk_mq_debugfs_unregister_sched_hctx(hctx); |
| mutex_unlock(&q->debugfs_mutex); |
| |
| if (e->type->ops.exit_hctx && hctx->sched_data) { |
| e->type->ops.exit_hctx(hctx, i); |
| hctx->sched_data = NULL; |
| } |
| flags = hctx->flags; |
| } |
| |
| mutex_lock(&q->debugfs_mutex); |
| blk_mq_debugfs_unregister_sched(q); |
| mutex_unlock(&q->debugfs_mutex); |
| |
| if (e->type->ops.exit_sched) |
| e->type->ops.exit_sched(e); |
| blk_mq_sched_tags_teardown(q, flags); |
| q->elevator = NULL; |
| } |