| // SPDX-License-Identifier: GPL-2.0-or-later |
| /* |
| * Procedures for maintaining information about logical memory blocks. |
| * |
| * Peter Bergner, IBM Corp. June 2001. |
| * Copyright (C) 2001 Peter Bergner. |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/slab.h> |
| #include <linux/init.h> |
| #include <linux/bitops.h> |
| #include <linux/poison.h> |
| #include <linux/pfn.h> |
| #include <linux/debugfs.h> |
| #include <linux/kmemleak.h> |
| #include <linux/seq_file.h> |
| #include <linux/memblock.h> |
| |
| #include <asm/sections.h> |
| #include <linux/io.h> |
| |
| #include "internal.h" |
| |
| #define INIT_MEMBLOCK_REGIONS 128 |
| #define INIT_PHYSMEM_REGIONS 4 |
| |
| #ifndef INIT_MEMBLOCK_RESERVED_REGIONS |
| # define INIT_MEMBLOCK_RESERVED_REGIONS INIT_MEMBLOCK_REGIONS |
| #endif |
| |
| #ifndef INIT_MEMBLOCK_MEMORY_REGIONS |
| #define INIT_MEMBLOCK_MEMORY_REGIONS INIT_MEMBLOCK_REGIONS |
| #endif |
| |
| /** |
| * DOC: memblock overview |
| * |
| * Memblock is a method of managing memory regions during the early |
| * boot period when the usual kernel memory allocators are not up and |
| * running. |
| * |
| * Memblock views the system memory as collections of contiguous |
| * regions. There are several types of these collections: |
| * |
| * * ``memory`` - describes the physical memory available to the |
| * kernel; this may differ from the actual physical memory installed |
| * in the system, for instance when the memory is restricted with |
| * ``mem=`` command line parameter |
| * * ``reserved`` - describes the regions that were allocated |
| * * ``physmem`` - describes the actual physical memory available during |
| * boot regardless of the possible restrictions and memory hot(un)plug; |
| * the ``physmem`` type is only available on some architectures. |
| * |
| * Each region is represented by struct memblock_region that |
| * defines the region extents, its attributes and NUMA node id on NUMA |
| * systems. Every memory type is described by the struct memblock_type |
| * which contains an array of memory regions along with |
| * the allocator metadata. The "memory" and "reserved" types are nicely |
| * wrapped with struct memblock. This structure is statically |
| * initialized at build time. The region arrays are initially sized to |
| * %INIT_MEMBLOCK_MEMORY_REGIONS for "memory" and |
| * %INIT_MEMBLOCK_RESERVED_REGIONS for "reserved". The region array |
| * for "physmem" is initially sized to %INIT_PHYSMEM_REGIONS. |
| * The memblock_allow_resize() enables automatic resizing of the region |
| * arrays during addition of new regions. This feature should be used |
| * with care so that memory allocated for the region array will not |
| * overlap with areas that should be reserved, for example initrd. |
| * |
| * The early architecture setup should tell memblock what the physical |
| * memory layout is by using memblock_add() or memblock_add_node() |
| * functions. The first function does not assign the region to a NUMA |
| * node and it is appropriate for UMA systems. Yet, it is possible to |
| * use it on NUMA systems as well and assign the region to a NUMA node |
| * later in the setup process using memblock_set_node(). The |
| * memblock_add_node() performs such an assignment directly. |
| * |
| * Once memblock is setup the memory can be allocated using one of the |
| * API variants: |
| * |
| * * memblock_phys_alloc*() - these functions return the **physical** |
| * address of the allocated memory |
| * * memblock_alloc*() - these functions return the **virtual** address |
| * of the allocated memory. |
| * |
| * Note, that both API variants use implicit assumptions about allowed |
| * memory ranges and the fallback methods. Consult the documentation |
| * of memblock_alloc_internal() and memblock_alloc_range_nid() |
| * functions for more elaborate description. |
| * |
| * As the system boot progresses, the architecture specific mem_init() |
| * function frees all the memory to the buddy page allocator. |
| * |
| * Unless an architecture enables %CONFIG_ARCH_KEEP_MEMBLOCK, the |
| * memblock data structures (except "physmem") will be discarded after the |
| * system initialization completes. |
| */ |
| |
| #ifndef CONFIG_NUMA |
| struct pglist_data __refdata contig_page_data; |
| EXPORT_SYMBOL(contig_page_data); |
| #endif |
| |
| unsigned long max_low_pfn; |
| unsigned long min_low_pfn; |
| unsigned long max_pfn; |
| unsigned long long max_possible_pfn; |
| |
| static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_MEMORY_REGIONS] __initdata_memblock; |
| static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_RESERVED_REGIONS] __initdata_memblock; |
| #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP |
| static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS]; |
| #endif |
| |
| struct memblock memblock __initdata_memblock = { |
| .memory.regions = memblock_memory_init_regions, |
| .memory.max = INIT_MEMBLOCK_MEMORY_REGIONS, |
| .memory.name = "memory", |
| |
| .reserved.regions = memblock_reserved_init_regions, |
| .reserved.max = INIT_MEMBLOCK_RESERVED_REGIONS, |
| .reserved.name = "reserved", |
| |
| .bottom_up = false, |
| .current_limit = MEMBLOCK_ALLOC_ANYWHERE, |
| }; |
| |
| #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP |
| struct memblock_type physmem = { |
| .regions = memblock_physmem_init_regions, |
| .max = INIT_PHYSMEM_REGIONS, |
| .name = "physmem", |
| }; |
| #endif |
| |
| /* |
| * keep a pointer to &memblock.memory in the text section to use it in |
| * __next_mem_range() and its helpers. |
| * For architectures that do not keep memblock data after init, this |
| * pointer will be reset to NULL at memblock_discard() |
| */ |
| static __refdata struct memblock_type *memblock_memory = &memblock.memory; |
| |
| #define for_each_memblock_type(i, memblock_type, rgn) \ |
| for (i = 0, rgn = &memblock_type->regions[0]; \ |
| i < memblock_type->cnt; \ |
| i++, rgn = &memblock_type->regions[i]) |
| |
| #define memblock_dbg(fmt, ...) \ |
| do { \ |
| if (memblock_debug) \ |
| pr_info(fmt, ##__VA_ARGS__); \ |
| } while (0) |
| |
| static int memblock_debug __initdata_memblock; |
| static bool system_has_some_mirror __initdata_memblock; |
| static int memblock_can_resize __initdata_memblock; |
| static int memblock_memory_in_slab __initdata_memblock; |
| static int memblock_reserved_in_slab __initdata_memblock; |
| |
| bool __init_memblock memblock_has_mirror(void) |
| { |
| return system_has_some_mirror; |
| } |
| |
| static enum memblock_flags __init_memblock choose_memblock_flags(void) |
| { |
| return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE; |
| } |
| |
| /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */ |
| static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size) |
| { |
| return *size = min(*size, PHYS_ADDR_MAX - base); |
| } |
| |
| /* |
| * Address comparison utilities |
| */ |
| unsigned long __init_memblock |
| memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1, phys_addr_t base2, |
| phys_addr_t size2) |
| { |
| return ((base1 < (base2 + size2)) && (base2 < (base1 + size1))); |
| } |
| |
| bool __init_memblock memblock_overlaps_region(struct memblock_type *type, |
| phys_addr_t base, phys_addr_t size) |
| { |
| unsigned long i; |
| |
| memblock_cap_size(base, &size); |
| |
| for (i = 0; i < type->cnt; i++) |
| if (memblock_addrs_overlap(base, size, type->regions[i].base, |
| type->regions[i].size)) |
| return true; |
| return false; |
| } |
| |
| /** |
| * __memblock_find_range_bottom_up - find free area utility in bottom-up |
| * @start: start of candidate range |
| * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or |
| * %MEMBLOCK_ALLOC_ACCESSIBLE |
| * @size: size of free area to find |
| * @align: alignment of free area to find |
| * @nid: nid of the free area to find, %NUMA_NO_NODE for any node |
| * @flags: pick from blocks based on memory attributes |
| * |
| * Utility called from memblock_find_in_range_node(), find free area bottom-up. |
| * |
| * Return: |
| * Found address on success, 0 on failure. |
| */ |
| static phys_addr_t __init_memblock |
| __memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end, |
| phys_addr_t size, phys_addr_t align, int nid, |
| enum memblock_flags flags) |
| { |
| phys_addr_t this_start, this_end, cand; |
| u64 i; |
| |
| for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) { |
| this_start = clamp(this_start, start, end); |
| this_end = clamp(this_end, start, end); |
| |
| cand = round_up(this_start, align); |
| if (cand < this_end && this_end - cand >= size) |
| return cand; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * __memblock_find_range_top_down - find free area utility, in top-down |
| * @start: start of candidate range |
| * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or |
| * %MEMBLOCK_ALLOC_ACCESSIBLE |
| * @size: size of free area to find |
| * @align: alignment of free area to find |
| * @nid: nid of the free area to find, %NUMA_NO_NODE for any node |
| * @flags: pick from blocks based on memory attributes |
| * |
| * Utility called from memblock_find_in_range_node(), find free area top-down. |
| * |
| * Return: |
| * Found address on success, 0 on failure. |
| */ |
| static phys_addr_t __init_memblock |
| __memblock_find_range_top_down(phys_addr_t start, phys_addr_t end, |
| phys_addr_t size, phys_addr_t align, int nid, |
| enum memblock_flags flags) |
| { |
| phys_addr_t this_start, this_end, cand; |
| u64 i; |
| |
| for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end, |
| NULL) { |
| this_start = clamp(this_start, start, end); |
| this_end = clamp(this_end, start, end); |
| |
| if (this_end < size) |
| continue; |
| |
| cand = round_down(this_end - size, align); |
| if (cand >= this_start) |
| return cand; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * memblock_find_in_range_node - find free area in given range and node |
| * @size: size of free area to find |
| * @align: alignment of free area to find |
| * @start: start of candidate range |
| * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or |
| * %MEMBLOCK_ALLOC_ACCESSIBLE |
| * @nid: nid of the free area to find, %NUMA_NO_NODE for any node |
| * @flags: pick from blocks based on memory attributes |
| * |
| * Find @size free area aligned to @align in the specified range and node. |
| * |
| * Return: |
| * Found address on success, 0 on failure. |
| */ |
| static phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size, |
| phys_addr_t align, phys_addr_t start, |
| phys_addr_t end, int nid, |
| enum memblock_flags flags) |
| { |
| /* pump up @end */ |
| if (end == MEMBLOCK_ALLOC_ACCESSIBLE || |
| end == MEMBLOCK_ALLOC_NOLEAKTRACE) |
| end = memblock.current_limit; |
| |
| /* avoid allocating the first page */ |
| start = max_t(phys_addr_t, start, PAGE_SIZE); |
| end = max(start, end); |
| |
| if (memblock_bottom_up()) |
| return __memblock_find_range_bottom_up(start, end, size, align, |
| nid, flags); |
| else |
| return __memblock_find_range_top_down(start, end, size, align, |
| nid, flags); |
| } |
| |
| /** |
| * memblock_find_in_range - find free area in given range |
| * @start: start of candidate range |
| * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or |
| * %MEMBLOCK_ALLOC_ACCESSIBLE |
| * @size: size of free area to find |
| * @align: alignment of free area to find |
| * |
| * Find @size free area aligned to @align in the specified range. |
| * |
| * Return: |
| * Found address on success, 0 on failure. |
| */ |
| static phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start, |
| phys_addr_t end, phys_addr_t size, |
| phys_addr_t align) |
| { |
| phys_addr_t ret; |
| enum memblock_flags flags = choose_memblock_flags(); |
| |
| again: |
| ret = memblock_find_in_range_node(size, align, start, end, |
| NUMA_NO_NODE, flags); |
| |
| if (!ret && (flags & MEMBLOCK_MIRROR)) { |
| pr_warn_ratelimited("Could not allocate %pap bytes of mirrored memory\n", |
| &size); |
| flags &= ~MEMBLOCK_MIRROR; |
| goto again; |
| } |
| |
| return ret; |
| } |
| |
| static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r) |
| { |
| type->total_size -= type->regions[r].size; |
| memmove(&type->regions[r], &type->regions[r + 1], |
| (type->cnt - (r + 1)) * sizeof(type->regions[r])); |
| type->cnt--; |
| |
| /* Special case for empty arrays */ |
| if (type->cnt == 0) { |
| WARN_ON(type->total_size != 0); |
| type->regions[0].base = 0; |
| type->regions[0].size = 0; |
| type->regions[0].flags = 0; |
| memblock_set_region_node(&type->regions[0], MAX_NUMNODES); |
| } |
| } |
| |
| #ifndef CONFIG_ARCH_KEEP_MEMBLOCK |
| /** |
| * memblock_discard - discard memory and reserved arrays if they were allocated |
| */ |
| void __init memblock_discard(void) |
| { |
| phys_addr_t addr, size; |
| |
| if (memblock.reserved.regions != memblock_reserved_init_regions) { |
| addr = __pa(memblock.reserved.regions); |
| size = PAGE_ALIGN(sizeof(struct memblock_region) * |
| memblock.reserved.max); |
| if (memblock_reserved_in_slab) |
| kfree(memblock.reserved.regions); |
| else |
| memblock_free_late(addr, size); |
| } |
| |
| if (memblock.memory.regions != memblock_memory_init_regions) { |
| addr = __pa(memblock.memory.regions); |
| size = PAGE_ALIGN(sizeof(struct memblock_region) * |
| memblock.memory.max); |
| if (memblock_memory_in_slab) |
| kfree(memblock.memory.regions); |
| else |
| memblock_free_late(addr, size); |
| } |
| |
| memblock_memory = NULL; |
| } |
| #endif |
| |
| /** |
| * memblock_double_array - double the size of the memblock regions array |
| * @type: memblock type of the regions array being doubled |
| * @new_area_start: starting address of memory range to avoid overlap with |
| * @new_area_size: size of memory range to avoid overlap with |
| * |
| * Double the size of the @type regions array. If memblock is being used to |
| * allocate memory for a new reserved regions array and there is a previously |
| * allocated memory range [@new_area_start, @new_area_start + @new_area_size] |
| * waiting to be reserved, ensure the memory used by the new array does |
| * not overlap. |
| * |
| * Return: |
| * 0 on success, -1 on failure. |
| */ |
| static int __init_memblock memblock_double_array(struct memblock_type *type, |
| phys_addr_t new_area_start, |
| phys_addr_t new_area_size) |
| { |
| struct memblock_region *new_array, *old_array; |
| phys_addr_t old_alloc_size, new_alloc_size; |
| phys_addr_t old_size, new_size, addr, new_end; |
| int use_slab = slab_is_available(); |
| int *in_slab; |
| |
| /* We don't allow resizing until we know about the reserved regions |
| * of memory that aren't suitable for allocation |
| */ |
| if (!memblock_can_resize) |
| panic("memblock: cannot resize %s array\n", type->name); |
| |
| /* Calculate new doubled size */ |
| old_size = type->max * sizeof(struct memblock_region); |
| new_size = old_size << 1; |
| /* |
| * We need to allocated new one align to PAGE_SIZE, |
| * so we can free them completely later. |
| */ |
| old_alloc_size = PAGE_ALIGN(old_size); |
| new_alloc_size = PAGE_ALIGN(new_size); |
| |
| /* Retrieve the slab flag */ |
| if (type == &memblock.memory) |
| in_slab = &memblock_memory_in_slab; |
| else |
| in_slab = &memblock_reserved_in_slab; |
| |
| /* Try to find some space for it */ |
| if (use_slab) { |
| new_array = kmalloc(new_size, GFP_KERNEL); |
| addr = new_array ? __pa(new_array) : 0; |
| } else { |
| /* only exclude range when trying to double reserved.regions */ |
| if (type != &memblock.reserved) |
| new_area_start = new_area_size = 0; |
| |
| addr = memblock_find_in_range(new_area_start + new_area_size, |
| memblock.current_limit, |
| new_alloc_size, PAGE_SIZE); |
| if (!addr && new_area_size) |
| addr = memblock_find_in_range(0, |
| min(new_area_start, memblock.current_limit), |
| new_alloc_size, PAGE_SIZE); |
| |
| new_array = addr ? __va(addr) : NULL; |
| } |
| if (!addr) { |
| pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n", |
| type->name, type->max, type->max * 2); |
| return -1; |
| } |
| |
| new_end = addr + new_size - 1; |
| memblock_dbg("memblock: %s is doubled to %ld at [%pa-%pa]", |
| type->name, type->max * 2, &addr, &new_end); |
| |
| /* |
| * Found space, we now need to move the array over before we add the |
| * reserved region since it may be our reserved array itself that is |
| * full. |
| */ |
| memcpy(new_array, type->regions, old_size); |
| memset(new_array + type->max, 0, old_size); |
| old_array = type->regions; |
| type->regions = new_array; |
| type->max <<= 1; |
| |
| /* Free old array. We needn't free it if the array is the static one */ |
| if (*in_slab) |
| kfree(old_array); |
| else if (old_array != memblock_memory_init_regions && |
| old_array != memblock_reserved_init_regions) |
| memblock_free(old_array, old_alloc_size); |
| |
| /* |
| * Reserve the new array if that comes from the memblock. Otherwise, we |
| * needn't do it |
| */ |
| if (!use_slab) |
| BUG_ON(memblock_reserve(addr, new_alloc_size)); |
| |
| /* Update slab flag */ |
| *in_slab = use_slab; |
| |
| return 0; |
| } |
| |
| /** |
| * memblock_merge_regions - merge neighboring compatible regions |
| * @type: memblock type to scan |
| * @start_rgn: start scanning from (@start_rgn - 1) |
| * @end_rgn: end scanning at (@end_rgn - 1) |
| * Scan @type and merge neighboring compatible regions in [@start_rgn - 1, @end_rgn) |
| */ |
| static void __init_memblock memblock_merge_regions(struct memblock_type *type, |
| unsigned long start_rgn, |
| unsigned long end_rgn) |
| { |
| int i = 0; |
| if (start_rgn) |
| i = start_rgn - 1; |
| end_rgn = min(end_rgn, type->cnt - 1); |
| while (i < end_rgn) { |
| struct memblock_region *this = &type->regions[i]; |
| struct memblock_region *next = &type->regions[i + 1]; |
| |
| if (this->base + this->size != next->base || |
| memblock_get_region_node(this) != |
| memblock_get_region_node(next) || |
| this->flags != next->flags) { |
| BUG_ON(this->base + this->size > next->base); |
| i++; |
| continue; |
| } |
| |
| this->size += next->size; |
| /* move forward from next + 1, index of which is i + 2 */ |
| memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next)); |
| type->cnt--; |
| end_rgn--; |
| } |
| } |
| |
| /** |
| * memblock_insert_region - insert new memblock region |
| * @type: memblock type to insert into |
| * @idx: index for the insertion point |
| * @base: base address of the new region |
| * @size: size of the new region |
| * @nid: node id of the new region |
| * @flags: flags of the new region |
| * |
| * Insert new memblock region [@base, @base + @size) into @type at @idx. |
| * @type must already have extra room to accommodate the new region. |
| */ |
| static void __init_memblock memblock_insert_region(struct memblock_type *type, |
| int idx, phys_addr_t base, |
| phys_addr_t size, |
| int nid, |
| enum memblock_flags flags) |
| { |
| struct memblock_region *rgn = &type->regions[idx]; |
| |
| BUG_ON(type->cnt >= type->max); |
| memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn)); |
| rgn->base = base; |
| rgn->size = size; |
| rgn->flags = flags; |
| memblock_set_region_node(rgn, nid); |
| type->cnt++; |
| type->total_size += size; |
| } |
| |
| /** |
| * memblock_add_range - add new memblock region |
| * @type: memblock type to add new region into |
| * @base: base address of the new region |
| * @size: size of the new region |
| * @nid: nid of the new region |
| * @flags: flags of the new region |
| * |
| * Add new memblock region [@base, @base + @size) into @type. The new region |
| * is allowed to overlap with existing ones - overlaps don't affect already |
| * existing regions. @type is guaranteed to be minimal (all neighbouring |
| * compatible regions are merged) after the addition. |
| * |
| * Return: |
| * 0 on success, -errno on failure. |
| */ |
| static int __init_memblock memblock_add_range(struct memblock_type *type, |
| phys_addr_t base, phys_addr_t size, |
| int nid, enum memblock_flags flags) |
| { |
| bool insert = false; |
| phys_addr_t obase = base; |
| phys_addr_t end = base + memblock_cap_size(base, &size); |
| int idx, nr_new, start_rgn = -1, end_rgn; |
| struct memblock_region *rgn; |
| |
| if (!size) |
| return 0; |
| |
| /* special case for empty array */ |
| if (type->regions[0].size == 0) { |
| WARN_ON(type->cnt != 0 || type->total_size); |
| type->regions[0].base = base; |
| type->regions[0].size = size; |
| type->regions[0].flags = flags; |
| memblock_set_region_node(&type->regions[0], nid); |
| type->total_size = size; |
| type->cnt = 1; |
| return 0; |
| } |
| |
| /* |
| * The worst case is when new range overlaps all existing regions, |
| * then we'll need type->cnt + 1 empty regions in @type. So if |
| * type->cnt * 2 + 1 is less than or equal to type->max, we know |
| * that there is enough empty regions in @type, and we can insert |
| * regions directly. |
| */ |
| if (type->cnt * 2 + 1 <= type->max) |
| insert = true; |
| |
| repeat: |
| /* |
| * The following is executed twice. Once with %false @insert and |
| * then with %true. The first counts the number of regions needed |
| * to accommodate the new area. The second actually inserts them. |
| */ |
| base = obase; |
| nr_new = 0; |
| |
| for_each_memblock_type(idx, type, rgn) { |
| phys_addr_t rbase = rgn->base; |
| phys_addr_t rend = rbase + rgn->size; |
| |
| if (rbase >= end) |
| break; |
| if (rend <= base) |
| continue; |
| /* |
| * @rgn overlaps. If it separates the lower part of new |
| * area, insert that portion. |
| */ |
| if (rbase > base) { |
| #ifdef CONFIG_NUMA |
| WARN_ON(nid != memblock_get_region_node(rgn)); |
| #endif |
| WARN_ON(flags != rgn->flags); |
| nr_new++; |
| if (insert) { |
| if (start_rgn == -1) |
| start_rgn = idx; |
| end_rgn = idx + 1; |
| memblock_insert_region(type, idx++, base, |
| rbase - base, nid, |
| flags); |
| } |
| } |
| /* area below @rend is dealt with, forget about it */ |
| base = min(rend, end); |
| } |
| |
| /* insert the remaining portion */ |
| if (base < end) { |
| nr_new++; |
| if (insert) { |
| if (start_rgn == -1) |
| start_rgn = idx; |
| end_rgn = idx + 1; |
| memblock_insert_region(type, idx, base, end - base, |
| nid, flags); |
| } |
| } |
| |
| if (!nr_new) |
| return 0; |
| |
| /* |
| * If this was the first round, resize array and repeat for actual |
| * insertions; otherwise, merge and return. |
| */ |
| if (!insert) { |
| while (type->cnt + nr_new > type->max) |
| if (memblock_double_array(type, obase, size) < 0) |
| return -ENOMEM; |
| insert = true; |
| goto repeat; |
| } else { |
| memblock_merge_regions(type, start_rgn, end_rgn); |
| return 0; |
| } |
| } |
| |
| /** |
| * memblock_add_node - add new memblock region within a NUMA node |
| * @base: base address of the new region |
| * @size: size of the new region |
| * @nid: nid of the new region |
| * @flags: flags of the new region |
| * |
| * Add new memblock region [@base, @base + @size) to the "memory" |
| * type. See memblock_add_range() description for mode details |
| * |
| * Return: |
| * 0 on success, -errno on failure. |
| */ |
| int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size, |
| int nid, enum memblock_flags flags) |
| { |
| phys_addr_t end = base + size - 1; |
| |
| memblock_dbg("%s: [%pa-%pa] nid=%d flags=%x %pS\n", __func__, |
| &base, &end, nid, flags, (void *)_RET_IP_); |
| |
| return memblock_add_range(&memblock.memory, base, size, nid, flags); |
| } |
| |
| /** |
| * memblock_add - add new memblock region |
| * @base: base address of the new region |
| * @size: size of the new region |
| * |
| * Add new memblock region [@base, @base + @size) to the "memory" |
| * type. See memblock_add_range() description for mode details |
| * |
| * Return: |
| * 0 on success, -errno on failure. |
| */ |
| int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size) |
| { |
| phys_addr_t end = base + size - 1; |
| |
| memblock_dbg("%s: [%pa-%pa] %pS\n", __func__, |
| &base, &end, (void *)_RET_IP_); |
| |
| return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0); |
| } |
| |
| /** |
| * memblock_validate_numa_coverage - check if amount of memory with |
| * no node ID assigned is less than a threshold |
| * @threshold_bytes: maximal number of pages that can have unassigned node |
| * ID (in bytes). |
| * |
| * A buggy firmware may report memory that does not belong to any node. |
| * Check if amount of such memory is below @threshold_bytes. |
| * |
| * Return: true on success, false on failure. |
| */ |
| bool __init_memblock memblock_validate_numa_coverage(unsigned long threshold_bytes) |
| { |
| unsigned long nr_pages = 0; |
| unsigned long start_pfn, end_pfn, mem_size_mb; |
| int nid, i; |
| |
| /* calculate lose page */ |
| for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { |
| if (!numa_valid_node(nid)) |
| nr_pages += end_pfn - start_pfn; |
| } |
| |
| if ((nr_pages << PAGE_SHIFT) >= threshold_bytes) { |
| mem_size_mb = memblock_phys_mem_size() >> 20; |
| pr_err("NUMA: no nodes coverage for %luMB of %luMB RAM\n", |
| (nr_pages << PAGE_SHIFT) >> 20, mem_size_mb); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| |
| /** |
| * memblock_isolate_range - isolate given range into disjoint memblocks |
| * @type: memblock type to isolate range for |
| * @base: base of range to isolate |
| * @size: size of range to isolate |
| * @start_rgn: out parameter for the start of isolated region |
| * @end_rgn: out parameter for the end of isolated region |
| * |
| * Walk @type and ensure that regions don't cross the boundaries defined by |
| * [@base, @base + @size). Crossing regions are split at the boundaries, |
| * which may create at most two more regions. The index of the first |
| * region inside the range is returned in *@start_rgn and the index of the |
| * first region after the range is returned in *@end_rgn. |
| * |
| * Return: |
| * 0 on success, -errno on failure. |
| */ |
| static int __init_memblock memblock_isolate_range(struct memblock_type *type, |
| phys_addr_t base, phys_addr_t size, |
| int *start_rgn, int *end_rgn) |
| { |
| phys_addr_t end = base + memblock_cap_size(base, &size); |
| int idx; |
| struct memblock_region *rgn; |
| |
| *start_rgn = *end_rgn = 0; |
| |
| if (!size) |
| return 0; |
| |
| /* we'll create at most two more regions */ |
| while (type->cnt + 2 > type->max) |
| if (memblock_double_array(type, base, size) < 0) |
| return -ENOMEM; |
| |
| for_each_memblock_type(idx, type, rgn) { |
| phys_addr_t rbase = rgn->base; |
| phys_addr_t rend = rbase + rgn->size; |
| |
| if (rbase >= end) |
| break; |
| if (rend <= base) |
| continue; |
| |
| if (rbase < base) { |
| /* |
| * @rgn intersects from below. Split and continue |
| * to process the next region - the new top half. |
| */ |
| rgn->base = base; |
| rgn->size -= base - rbase; |
| type->total_size -= base - rbase; |
| memblock_insert_region(type, idx, rbase, base - rbase, |
| memblock_get_region_node(rgn), |
| rgn->flags); |
| } else if (rend > end) { |
| /* |
| * @rgn intersects from above. Split and redo the |
| * current region - the new bottom half. |
| */ |
| rgn->base = end; |
| rgn->size -= end - rbase; |
| type->total_size -= end - rbase; |
| memblock_insert_region(type, idx--, rbase, end - rbase, |
| memblock_get_region_node(rgn), |
| rgn->flags); |
| } else { |
| /* @rgn is fully contained, record it */ |
| if (!*end_rgn) |
| *start_rgn = idx; |
| *end_rgn = idx + 1; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int __init_memblock memblock_remove_range(struct memblock_type *type, |
| phys_addr_t base, phys_addr_t size) |
| { |
| int start_rgn, end_rgn; |
| int i, ret; |
| |
| ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn); |
| if (ret) |
| return ret; |
| |
| for (i = end_rgn - 1; i >= start_rgn; i--) |
| memblock_remove_region(type, i); |
| return 0; |
| } |
| |
| int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size) |
| { |
| phys_addr_t end = base + size - 1; |
| |
| memblock_dbg("%s: [%pa-%pa] %pS\n", __func__, |
| &base, &end, (void *)_RET_IP_); |
| |
| return memblock_remove_range(&memblock.memory, base, size); |
| } |
| |
| /** |
| * memblock_free - free boot memory allocation |
| * @ptr: starting address of the boot memory allocation |
| * @size: size of the boot memory block in bytes |
| * |
| * Free boot memory block previously allocated by memblock_alloc_xx() API. |
| * The freeing memory will not be released to the buddy allocator. |
| */ |
| void __init_memblock memblock_free(void *ptr, size_t size) |
| { |
| if (ptr) |
| memblock_phys_free(__pa(ptr), size); |
| } |
| |
| /** |
| * memblock_phys_free - free boot memory block |
| * @base: phys starting address of the boot memory block |
| * @size: size of the boot memory block in bytes |
| * |
| * Free boot memory block previously allocated by memblock_phys_alloc_xx() API. |
| * The freeing memory will not be released to the buddy allocator. |
| */ |
| int __init_memblock memblock_phys_free(phys_addr_t base, phys_addr_t size) |
| { |
| phys_addr_t end = base + size - 1; |
| |
| memblock_dbg("%s: [%pa-%pa] %pS\n", __func__, |
| &base, &end, (void *)_RET_IP_); |
| |
| kmemleak_free_part_phys(base, size); |
| return memblock_remove_range(&memblock.reserved, base, size); |
| } |
| |
| int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size) |
| { |
| phys_addr_t end = base + size - 1; |
| |
| memblock_dbg("%s: [%pa-%pa] %pS\n", __func__, |
| &base, &end, (void *)_RET_IP_); |
| |
| return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0); |
| } |
| |
| #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP |
| int __init_memblock memblock_physmem_add(phys_addr_t base, phys_addr_t size) |
| { |
| phys_addr_t end = base + size - 1; |
| |
| memblock_dbg("%s: [%pa-%pa] %pS\n", __func__, |
| &base, &end, (void *)_RET_IP_); |
| |
| return memblock_add_range(&physmem, base, size, MAX_NUMNODES, 0); |
| } |
| #endif |
| |
| /** |
| * memblock_setclr_flag - set or clear flag for a memory region |
| * @type: memblock type to set/clear flag for |
| * @base: base address of the region |
| * @size: size of the region |
| * @set: set or clear the flag |
| * @flag: the flag to update |
| * |
| * This function isolates region [@base, @base + @size), and sets/clears flag |
| * |
| * Return: 0 on success, -errno on failure. |
| */ |
| static int __init_memblock memblock_setclr_flag(struct memblock_type *type, |
| phys_addr_t base, phys_addr_t size, int set, int flag) |
| { |
| int i, ret, start_rgn, end_rgn; |
| |
| ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn); |
| if (ret) |
| return ret; |
| |
| for (i = start_rgn; i < end_rgn; i++) { |
| struct memblock_region *r = &type->regions[i]; |
| |
| if (set) |
| r->flags |= flag; |
| else |
| r->flags &= ~flag; |
| } |
| |
| memblock_merge_regions(type, start_rgn, end_rgn); |
| return 0; |
| } |
| |
| /** |
| * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG. |
| * @base: the base phys addr of the region |
| * @size: the size of the region |
| * |
| * Return: 0 on success, -errno on failure. |
| */ |
| int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size) |
| { |
| return memblock_setclr_flag(&memblock.memory, base, size, 1, MEMBLOCK_HOTPLUG); |
| } |
| |
| /** |
| * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region. |
| * @base: the base phys addr of the region |
| * @size: the size of the region |
| * |
| * Return: 0 on success, -errno on failure. |
| */ |
| int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size) |
| { |
| return memblock_setclr_flag(&memblock.memory, base, size, 0, MEMBLOCK_HOTPLUG); |
| } |
| |
| /** |
| * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR. |
| * @base: the base phys addr of the region |
| * @size: the size of the region |
| * |
| * Return: 0 on success, -errno on failure. |
| */ |
| int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size) |
| { |
| if (!mirrored_kernelcore) |
| return 0; |
| |
| system_has_some_mirror = true; |
| |
| return memblock_setclr_flag(&memblock.memory, base, size, 1, MEMBLOCK_MIRROR); |
| } |
| |
| /** |
| * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP. |
| * @base: the base phys addr of the region |
| * @size: the size of the region |
| * |
| * The memory regions marked with %MEMBLOCK_NOMAP will not be added to the |
| * direct mapping of the physical memory. These regions will still be |
| * covered by the memory map. The struct page representing NOMAP memory |
| * frames in the memory map will be PageReserved() |
| * |
| * Note: if the memory being marked %MEMBLOCK_NOMAP was allocated from |
| * memblock, the caller must inform kmemleak to ignore that memory |
| * |
| * Return: 0 on success, -errno on failure. |
| */ |
| int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size) |
| { |
| return memblock_setclr_flag(&memblock.memory, base, size, 1, MEMBLOCK_NOMAP); |
| } |
| |
| /** |
| * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region. |
| * @base: the base phys addr of the region |
| * @size: the size of the region |
| * |
| * Return: 0 on success, -errno on failure. |
| */ |
| int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size) |
| { |
| return memblock_setclr_flag(&memblock.memory, base, size, 0, MEMBLOCK_NOMAP); |
| } |
| |
| /** |
| * memblock_reserved_mark_noinit - Mark a reserved memory region with flag |
| * MEMBLOCK_RSRV_NOINIT which results in the struct pages not being initialized |
| * for this region. |
| * @base: the base phys addr of the region |
| * @size: the size of the region |
| * |
| * struct pages will not be initialized for reserved memory regions marked with |
| * %MEMBLOCK_RSRV_NOINIT. |
| * |
| * Return: 0 on success, -errno on failure. |
| */ |
| int __init_memblock memblock_reserved_mark_noinit(phys_addr_t base, phys_addr_t size) |
| { |
| return memblock_setclr_flag(&memblock.reserved, base, size, 1, |
| MEMBLOCK_RSRV_NOINIT); |
| } |
| |
| static bool should_skip_region(struct memblock_type *type, |
| struct memblock_region *m, |
| int nid, int flags) |
| { |
| int m_nid = memblock_get_region_node(m); |
| |
| /* we never skip regions when iterating memblock.reserved or physmem */ |
| if (type != memblock_memory) |
| return false; |
| |
| /* only memory regions are associated with nodes, check it */ |
| if (numa_valid_node(nid) && nid != m_nid) |
| return true; |
| |
| /* skip hotpluggable memory regions if needed */ |
| if (movable_node_is_enabled() && memblock_is_hotpluggable(m) && |
| !(flags & MEMBLOCK_HOTPLUG)) |
| return true; |
| |
| /* if we want mirror memory skip non-mirror memory regions */ |
| if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m)) |
| return true; |
| |
| /* skip nomap memory unless we were asked for it explicitly */ |
| if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m)) |
| return true; |
| |
| /* skip driver-managed memory unless we were asked for it explicitly */ |
| if (!(flags & MEMBLOCK_DRIVER_MANAGED) && memblock_is_driver_managed(m)) |
| return true; |
| |
| return false; |
| } |
| |
| /** |
| * __next_mem_range - next function for for_each_free_mem_range() etc. |
| * @idx: pointer to u64 loop variable |
| * @nid: node selector, %NUMA_NO_NODE for all nodes |
| * @flags: pick from blocks based on memory attributes |
| * @type_a: pointer to memblock_type from where the range is taken |
| * @type_b: pointer to memblock_type which excludes memory from being taken |
| * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL |
| * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL |
| * @out_nid: ptr to int for nid of the range, can be %NULL |
| * |
| * Find the first area from *@idx which matches @nid, fill the out |
| * parameters, and update *@idx for the next iteration. The lower 32bit of |
| * *@idx contains index into type_a and the upper 32bit indexes the |
| * areas before each region in type_b. For example, if type_b regions |
| * look like the following, |
| * |
| * 0:[0-16), 1:[32-48), 2:[128-130) |
| * |
| * The upper 32bit indexes the following regions. |
| * |
| * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX) |
| * |
| * As both region arrays are sorted, the function advances the two indices |
| * in lockstep and returns each intersection. |
| */ |
| void __next_mem_range(u64 *idx, int nid, enum memblock_flags flags, |
| struct memblock_type *type_a, |
| struct memblock_type *type_b, phys_addr_t *out_start, |
| phys_addr_t *out_end, int *out_nid) |
| { |
| int idx_a = *idx & 0xffffffff; |
| int idx_b = *idx >> 32; |
| |
| for (; idx_a < type_a->cnt; idx_a++) { |
| struct memblock_region *m = &type_a->regions[idx_a]; |
| |
| phys_addr_t m_start = m->base; |
| phys_addr_t m_end = m->base + m->size; |
| int m_nid = memblock_get_region_node(m); |
| |
| if (should_skip_region(type_a, m, nid, flags)) |
| continue; |
| |
| if (!type_b) { |
| if (out_start) |
| *out_start = m_start; |
| if (out_end) |
| *out_end = m_end; |
| if (out_nid) |
| *out_nid = m_nid; |
| idx_a++; |
| *idx = (u32)idx_a | (u64)idx_b << 32; |
| return; |
| } |
| |
| /* scan areas before each reservation */ |
| for (; idx_b < type_b->cnt + 1; idx_b++) { |
| struct memblock_region *r; |
| phys_addr_t r_start; |
| phys_addr_t r_end; |
| |
| r = &type_b->regions[idx_b]; |
| r_start = idx_b ? r[-1].base + r[-1].size : 0; |
| r_end = idx_b < type_b->cnt ? |
| r->base : PHYS_ADDR_MAX; |
| |
| /* |
| * if idx_b advanced past idx_a, |
| * break out to advance idx_a |
| */ |
| if (r_start >= m_end) |
| break; |
| /* if the two regions intersect, we're done */ |
| if (m_start < r_end) { |
| if (out_start) |
| *out_start = |
| max(m_start, r_start); |
| if (out_end) |
| *out_end = min(m_end, r_end); |
| if (out_nid) |
| *out_nid = m_nid; |
| /* |
| * The region which ends first is |
| * advanced for the next iteration. |
| */ |
| if (m_end <= r_end) |
| idx_a++; |
| else |
| idx_b++; |
| *idx = (u32)idx_a | (u64)idx_b << 32; |
| return; |
| } |
| } |
| } |
| |
| /* signal end of iteration */ |
| *idx = ULLONG_MAX; |
| } |
| |
| /** |
| * __next_mem_range_rev - generic next function for for_each_*_range_rev() |
| * |
| * @idx: pointer to u64 loop variable |
| * @nid: node selector, %NUMA_NO_NODE for all nodes |
| * @flags: pick from blocks based on memory attributes |
| * @type_a: pointer to memblock_type from where the range is taken |
| * @type_b: pointer to memblock_type which excludes memory from being taken |
| * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL |
| * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL |
| * @out_nid: ptr to int for nid of the range, can be %NULL |
| * |
| * Finds the next range from type_a which is not marked as unsuitable |
| * in type_b. |
| * |
| * Reverse of __next_mem_range(). |
| */ |
| void __init_memblock __next_mem_range_rev(u64 *idx, int nid, |
| enum memblock_flags flags, |
| struct memblock_type *type_a, |
| struct memblock_type *type_b, |
| phys_addr_t *out_start, |
| phys_addr_t *out_end, int *out_nid) |
| { |
| int idx_a = *idx & 0xffffffff; |
| int idx_b = *idx >> 32; |
| |
| if (*idx == (u64)ULLONG_MAX) { |
| idx_a = type_a->cnt - 1; |
| if (type_b != NULL) |
| idx_b = type_b->cnt; |
| else |
| idx_b = 0; |
| } |
| |
| for (; idx_a >= 0; idx_a--) { |
| struct memblock_region *m = &type_a->regions[idx_a]; |
| |
| phys_addr_t m_start = m->base; |
| phys_addr_t m_end = m->base + m->size; |
| int m_nid = memblock_get_region_node(m); |
| |
| if (should_skip_region(type_a, m, nid, flags)) |
| continue; |
| |
| if (!type_b) { |
| if (out_start) |
| *out_start = m_start; |
| if (out_end) |
| *out_end = m_end; |
| if (out_nid) |
| *out_nid = m_nid; |
| idx_a--; |
| *idx = (u32)idx_a | (u64)idx_b << 32; |
| return; |
| } |
| |
| /* scan areas before each reservation */ |
| for (; idx_b >= 0; idx_b--) { |
| struct memblock_region *r; |
| phys_addr_t r_start; |
| phys_addr_t r_end; |
| |
| r = &type_b->regions[idx_b]; |
| r_start = idx_b ? r[-1].base + r[-1].size : 0; |
| r_end = idx_b < type_b->cnt ? |
| r->base : PHYS_ADDR_MAX; |
| /* |
| * if idx_b advanced past idx_a, |
| * break out to advance idx_a |
| */ |
| |
| if (r_end <= m_start) |
| break; |
| /* if the two regions intersect, we're done */ |
| if (m_end > r_start) { |
| if (out_start) |
| *out_start = max(m_start, r_start); |
| if (out_end) |
| *out_end = min(m_end, r_end); |
| if (out_nid) |
| *out_nid = m_nid; |
| if (m_start >= r_start) |
| idx_a--; |
| else |
| idx_b--; |
| *idx = (u32)idx_a | (u64)idx_b << 32; |
| return; |
| } |
| } |
| } |
| /* signal end of iteration */ |
| *idx = ULLONG_MAX; |
| } |
| |
| /* |
| * Common iterator interface used to define for_each_mem_pfn_range(). |
| */ |
| void __init_memblock __next_mem_pfn_range(int *idx, int nid, |
| unsigned long *out_start_pfn, |
| unsigned long *out_end_pfn, int *out_nid) |
| { |
| struct memblock_type *type = &memblock.memory; |
| struct memblock_region *r; |
| int r_nid; |
| |
| while (++*idx < type->cnt) { |
| r = &type->regions[*idx]; |
| r_nid = memblock_get_region_node(r); |
| |
| if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size)) |
| continue; |
| if (!numa_valid_node(nid) || nid == r_nid) |
| break; |
| } |
| if (*idx >= type->cnt) { |
| *idx = -1; |
| return; |
| } |
| |
| if (out_start_pfn) |
| *out_start_pfn = PFN_UP(r->base); |
| if (out_end_pfn) |
| *out_end_pfn = PFN_DOWN(r->base + r->size); |
| if (out_nid) |
| *out_nid = r_nid; |
| } |
| |
| /** |
| * memblock_set_node - set node ID on memblock regions |
| * @base: base of area to set node ID for |
| * @size: size of area to set node ID for |
| * @type: memblock type to set node ID for |
| * @nid: node ID to set |
| * |
| * Set the nid of memblock @type regions in [@base, @base + @size) to @nid. |
| * Regions which cross the area boundaries are split as necessary. |
| * |
| * Return: |
| * 0 on success, -errno on failure. |
| */ |
| int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size, |
| struct memblock_type *type, int nid) |
| { |
| #ifdef CONFIG_NUMA |
| int start_rgn, end_rgn; |
| int i, ret; |
| |
| ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn); |
| if (ret) |
| return ret; |
| |
| for (i = start_rgn; i < end_rgn; i++) |
| memblock_set_region_node(&type->regions[i], nid); |
| |
| memblock_merge_regions(type, start_rgn, end_rgn); |
| #endif |
| return 0; |
| } |
| |
| #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT |
| /** |
| * __next_mem_pfn_range_in_zone - iterator for for_each_*_range_in_zone() |
| * |
| * @idx: pointer to u64 loop variable |
| * @zone: zone in which all of the memory blocks reside |
| * @out_spfn: ptr to ulong for start pfn of the range, can be %NULL |
| * @out_epfn: ptr to ulong for end pfn of the range, can be %NULL |
| * |
| * This function is meant to be a zone/pfn specific wrapper for the |
| * for_each_mem_range type iterators. Specifically they are used in the |
| * deferred memory init routines and as such we were duplicating much of |
| * this logic throughout the code. So instead of having it in multiple |
| * locations it seemed like it would make more sense to centralize this to |
| * one new iterator that does everything they need. |
| */ |
| void __init_memblock |
| __next_mem_pfn_range_in_zone(u64 *idx, struct zone *zone, |
| unsigned long *out_spfn, unsigned long *out_epfn) |
| { |
| int zone_nid = zone_to_nid(zone); |
| phys_addr_t spa, epa; |
| |
| __next_mem_range(idx, zone_nid, MEMBLOCK_NONE, |
| &memblock.memory, &memblock.reserved, |
| &spa, &epa, NULL); |
| |
| while (*idx != U64_MAX) { |
| unsigned long epfn = PFN_DOWN(epa); |
| unsigned long spfn = PFN_UP(spa); |
| |
| /* |
| * Verify the end is at least past the start of the zone and |
| * that we have at least one PFN to initialize. |
| */ |
| if (zone->zone_start_pfn < epfn && spfn < epfn) { |
| /* if we went too far just stop searching */ |
| if (zone_end_pfn(zone) <= spfn) { |
| *idx = U64_MAX; |
| break; |
| } |
| |
| if (out_spfn) |
| *out_spfn = max(zone->zone_start_pfn, spfn); |
| if (out_epfn) |
| *out_epfn = min(zone_end_pfn(zone), epfn); |
| |
| return; |
| } |
| |
| __next_mem_range(idx, zone_nid, MEMBLOCK_NONE, |
| &memblock.memory, &memblock.reserved, |
| &spa, &epa, NULL); |
| } |
| |
| /* signal end of iteration */ |
| if (out_spfn) |
| *out_spfn = ULONG_MAX; |
| if (out_epfn) |
| *out_epfn = 0; |
| } |
| |
| #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ |
| |
| /** |
| * memblock_alloc_range_nid - allocate boot memory block |
| * @size: size of memory block to be allocated in bytes |
| * @align: alignment of the region and block's size |
| * @start: the lower bound of the memory region to allocate (phys address) |
| * @end: the upper bound of the memory region to allocate (phys address) |
| * @nid: nid of the free area to find, %NUMA_NO_NODE for any node |
| * @exact_nid: control the allocation fall back to other nodes |
| * |
| * The allocation is performed from memory region limited by |
| * memblock.current_limit if @end == %MEMBLOCK_ALLOC_ACCESSIBLE. |
| * |
| * If the specified node can not hold the requested memory and @exact_nid |
| * is false, the allocation falls back to any node in the system. |
| * |
| * For systems with memory mirroring, the allocation is attempted first |
| * from the regions with mirroring enabled and then retried from any |
| * memory region. |
| * |
| * In addition, function using kmemleak_alloc_phys for allocated boot |
| * memory block, it is never reported as leaks. |
| * |
| * Return: |
| * Physical address of allocated memory block on success, %0 on failure. |
| */ |
| phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size, |
| phys_addr_t align, phys_addr_t start, |
| phys_addr_t end, int nid, |
| bool exact_nid) |
| { |
| enum memblock_flags flags = choose_memblock_flags(); |
| phys_addr_t found; |
| |
| /* |
| * Detect any accidental use of these APIs after slab is ready, as at |
| * this moment memblock may be deinitialized already and its |
| * internal data may be destroyed (after execution of memblock_free_all) |
| */ |
| if (WARN_ON_ONCE(slab_is_available())) { |
| void *vaddr = kzalloc_node(size, GFP_NOWAIT, nid); |
| |
| return vaddr ? virt_to_phys(vaddr) : 0; |
| } |
| |
| if (!align) { |
| /* Can't use WARNs this early in boot on powerpc */ |
| dump_stack(); |
| align = SMP_CACHE_BYTES; |
| } |
| |
| again: |
| found = memblock_find_in_range_node(size, align, start, end, nid, |
| flags); |
| if (found && !memblock_reserve(found, size)) |
| goto done; |
| |
| if (numa_valid_node(nid) && !exact_nid) { |
| found = memblock_find_in_range_node(size, align, start, |
| end, NUMA_NO_NODE, |
| flags); |
| if (found && !memblock_reserve(found, size)) |
| goto done; |
| } |
| |
| if (flags & MEMBLOCK_MIRROR) { |
| flags &= ~MEMBLOCK_MIRROR; |
| pr_warn_ratelimited("Could not allocate %pap bytes of mirrored memory\n", |
| &size); |
| goto again; |
| } |
| |
| return 0; |
| |
| done: |
| /* |
| * Skip kmemleak for those places like kasan_init() and |
| * early_pgtable_alloc() due to high volume. |
| */ |
| if (end != MEMBLOCK_ALLOC_NOLEAKTRACE) |
| /* |
| * Memblock allocated blocks are never reported as |
| * leaks. This is because many of these blocks are |
| * only referred via the physical address which is |
| * not looked up by kmemleak. |
| */ |
| kmemleak_alloc_phys(found, size, 0); |
| |
| /* |
| * Some Virtual Machine platforms, such as Intel TDX or AMD SEV-SNP, |
| * require memory to be accepted before it can be used by the |
| * guest. |
| * |
| * Accept the memory of the allocated buffer. |
| */ |
| accept_memory(found, size); |
| |
| return found; |
| } |
| |
| /** |
| * memblock_phys_alloc_range - allocate a memory block inside specified range |
| * @size: size of memory block to be allocated in bytes |
| * @align: alignment of the region and block's size |
| * @start: the lower bound of the memory region to allocate (physical address) |
| * @end: the upper bound of the memory region to allocate (physical address) |
| * |
| * Allocate @size bytes in the between @start and @end. |
| * |
| * Return: physical address of the allocated memory block on success, |
| * %0 on failure. |
| */ |
| phys_addr_t __init memblock_phys_alloc_range(phys_addr_t size, |
| phys_addr_t align, |
| phys_addr_t start, |
| phys_addr_t end) |
| { |
| memblock_dbg("%s: %llu bytes align=0x%llx from=%pa max_addr=%pa %pS\n", |
| __func__, (u64)size, (u64)align, &start, &end, |
| (void *)_RET_IP_); |
| return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE, |
| false); |
| } |
| |
| /** |
| * memblock_phys_alloc_try_nid - allocate a memory block from specified NUMA node |
| * @size: size of memory block to be allocated in bytes |
| * @align: alignment of the region and block's size |
| * @nid: nid of the free area to find, %NUMA_NO_NODE for any node |
| * |
| * Allocates memory block from the specified NUMA node. If the node |
| * has no available memory, attempts to allocated from any node in the |
| * system. |
| * |
| * Return: physical address of the allocated memory block on success, |
| * %0 on failure. |
| */ |
| phys_addr_t __init memblock_phys_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid) |
| { |
| return memblock_alloc_range_nid(size, align, 0, |
| MEMBLOCK_ALLOC_ACCESSIBLE, nid, false); |
| } |
| |
| /** |
| * memblock_alloc_internal - allocate boot memory block |
| * @size: size of memory block to be allocated in bytes |
| * @align: alignment of the region and block's size |
| * @min_addr: the lower bound of the memory region to allocate (phys address) |
| * @max_addr: the upper bound of the memory region to allocate (phys address) |
| * @nid: nid of the free area to find, %NUMA_NO_NODE for any node |
| * @exact_nid: control the allocation fall back to other nodes |
| * |
| * Allocates memory block using memblock_alloc_range_nid() and |
| * converts the returned physical address to virtual. |
| * |
| * The @min_addr limit is dropped if it can not be satisfied and the allocation |
| * will fall back to memory below @min_addr. Other constraints, such |
| * as node and mirrored memory will be handled again in |
| * memblock_alloc_range_nid(). |
| * |
| * Return: |
| * Virtual address of allocated memory block on success, NULL on failure. |
| */ |
| static void * __init memblock_alloc_internal( |
| phys_addr_t size, phys_addr_t align, |
| phys_addr_t min_addr, phys_addr_t max_addr, |
| int nid, bool exact_nid) |
| { |
| phys_addr_t alloc; |
| |
| |
| if (max_addr > memblock.current_limit) |
| max_addr = memblock.current_limit; |
| |
| alloc = memblock_alloc_range_nid(size, align, min_addr, max_addr, nid, |
| exact_nid); |
| |
| /* retry allocation without lower limit */ |
| if (!alloc && min_addr) |
| alloc = memblock_alloc_range_nid(size, align, 0, max_addr, nid, |
| exact_nid); |
| |
| if (!alloc) |
| return NULL; |
| |
| return phys_to_virt(alloc); |
| } |
| |
| /** |
| * memblock_alloc_exact_nid_raw - allocate boot memory block on the exact node |
| * without zeroing memory |
| * @size: size of memory block to be allocated in bytes |
| * @align: alignment of the region and block's size |
| * @min_addr: the lower bound of the memory region from where the allocation |
| * is preferred (phys address) |
| * @max_addr: the upper bound of the memory region from where the allocation |
| * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to |
| * allocate only from memory limited by memblock.current_limit value |
| * @nid: nid of the free area to find, %NUMA_NO_NODE for any node |
| * |
| * Public function, provides additional debug information (including caller |
| * info), if enabled. Does not zero allocated memory. |
| * |
| * Return: |
| * Virtual address of allocated memory block on success, NULL on failure. |
| */ |
| void * __init memblock_alloc_exact_nid_raw( |
| phys_addr_t size, phys_addr_t align, |
| phys_addr_t min_addr, phys_addr_t max_addr, |
| int nid) |
| { |
| memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n", |
| __func__, (u64)size, (u64)align, nid, &min_addr, |
| &max_addr, (void *)_RET_IP_); |
| |
| return memblock_alloc_internal(size, align, min_addr, max_addr, nid, |
| true); |
| } |
| |
| /** |
| * memblock_alloc_try_nid_raw - allocate boot memory block without zeroing |
| * memory and without panicking |
| * @size: size of memory block to be allocated in bytes |
| * @align: alignment of the region and block's size |
| * @min_addr: the lower bound of the memory region from where the allocation |
| * is preferred (phys address) |
| * @max_addr: the upper bound of the memory region from where the allocation |
| * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to |
| * allocate only from memory limited by memblock.current_limit value |
| * @nid: nid of the free area to find, %NUMA_NO_NODE for any node |
| * |
| * Public function, provides additional debug information (including caller |
| * info), if enabled. Does not zero allocated memory, does not panic if request |
| * cannot be satisfied. |
| * |
| * Return: |
| * Virtual address of allocated memory block on success, NULL on failure. |
| */ |
| void * __init memblock_alloc_try_nid_raw( |
| phys_addr_t size, phys_addr_t align, |
| phys_addr_t min_addr, phys_addr_t max_addr, |
| int nid) |
| { |
| memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n", |
| __func__, (u64)size, (u64)align, nid, &min_addr, |
| &max_addr, (void *)_RET_IP_); |
| |
| return memblock_alloc_internal(size, align, min_addr, max_addr, nid, |
| false); |
| } |
| |
| /** |
| * memblock_alloc_try_nid - allocate boot memory block |
| * @size: size of memory block to be allocated in bytes |
| * @align: alignment of the region and block's size |
| * @min_addr: the lower bound of the memory region from where the allocation |
| * is preferred (phys address) |
| * @max_addr: the upper bound of the memory region from where the allocation |
| * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to |
| * allocate only from memory limited by memblock.current_limit value |
| * @nid: nid of the free area to find, %NUMA_NO_NODE for any node |
| * |
| * Public function, provides additional debug information (including caller |
| * info), if enabled. This function zeroes the allocated memory. |
| * |
| * Return: |
| * Virtual address of allocated memory block on success, NULL on failure. |
| */ |
| void * __init memblock_alloc_try_nid( |
| phys_addr_t size, phys_addr_t align, |
| phys_addr_t min_addr, phys_addr_t max_addr, |
| int nid) |
| { |
| void *ptr; |
| |
| memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n", |
| __func__, (u64)size, (u64)align, nid, &min_addr, |
| &max_addr, (void *)_RET_IP_); |
| ptr = memblock_alloc_internal(size, align, |
| min_addr, max_addr, nid, false); |
| if (ptr) |
| memset(ptr, 0, size); |
| |
| return ptr; |
| } |
| |
| /** |
| * memblock_free_late - free pages directly to buddy allocator |
| * @base: phys starting address of the boot memory block |
| * @size: size of the boot memory block in bytes |
| * |
| * This is only useful when the memblock allocator has already been torn |
| * down, but we are still initializing the system. Pages are released directly |
| * to the buddy allocator. |
| */ |
| void __init memblock_free_late(phys_addr_t base, phys_addr_t size) |
| { |
| phys_addr_t cursor, end; |
| |
| end = base + size - 1; |
| memblock_dbg("%s: [%pa-%pa] %pS\n", |
| __func__, &base, &end, (void *)_RET_IP_); |
| kmemleak_free_part_phys(base, size); |
| cursor = PFN_UP(base); |
| end = PFN_DOWN(base + size); |
| |
| for (; cursor < end; cursor++) { |
| memblock_free_pages(pfn_to_page(cursor), cursor, 0); |
| totalram_pages_inc(); |
| } |
| } |
| |
| /* |
| * Remaining API functions |
| */ |
| |
| phys_addr_t __init_memblock memblock_phys_mem_size(void) |
| { |
| return memblock.memory.total_size; |
| } |
| |
| phys_addr_t __init_memblock memblock_reserved_size(void) |
| { |
| return memblock.reserved.total_size; |
| } |
| |
| /** |
| * memblock_estimated_nr_free_pages - return estimated number of free pages |
| * from memblock point of view |
| * |
| * During bootup, subsystems might need a rough estimate of the number of free |
| * pages in the whole system, before precise numbers are available from the |
| * buddy. Especially with CONFIG_DEFERRED_STRUCT_PAGE_INIT, the numbers |
| * obtained from the buddy might be very imprecise during bootup. |
| * |
| * Return: |
| * An estimated number of free pages from memblock point of view. |
| */ |
| unsigned long __init memblock_estimated_nr_free_pages(void) |
| { |
| return PHYS_PFN(memblock_phys_mem_size() - memblock_reserved_size()); |
| } |
| |
| /* lowest address */ |
| phys_addr_t __init_memblock memblock_start_of_DRAM(void) |
| { |
| return memblock.memory.regions[0].base; |
| } |
| |
| phys_addr_t __init_memblock memblock_end_of_DRAM(void) |
| { |
| int idx = memblock.memory.cnt - 1; |
| |
| return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size); |
| } |
| |
| static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit) |
| { |
| phys_addr_t max_addr = PHYS_ADDR_MAX; |
| struct memblock_region *r; |
| |
| /* |
| * translate the memory @limit size into the max address within one of |
| * the memory memblock regions, if the @limit exceeds the total size |
| * of those regions, max_addr will keep original value PHYS_ADDR_MAX |
| */ |
| for_each_mem_region(r) { |
| if (limit <= r->size) { |
| max_addr = r->base + limit; |
| break; |
| } |
| limit -= r->size; |
| } |
| |
| return max_addr; |
| } |
| |
| void __init memblock_enforce_memory_limit(phys_addr_t limit) |
| { |
| phys_addr_t max_addr; |
| |
| if (!limit) |
| return; |
| |
| max_addr = __find_max_addr(limit); |
| |
| /* @limit exceeds the total size of the memory, do nothing */ |
| if (max_addr == PHYS_ADDR_MAX) |
| return; |
| |
| /* truncate both memory and reserved regions */ |
| memblock_remove_range(&memblock.memory, max_addr, |
| PHYS_ADDR_MAX); |
| memblock_remove_range(&memblock.reserved, max_addr, |
| PHYS_ADDR_MAX); |
| } |
| |
| void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size) |
| { |
| int start_rgn, end_rgn; |
| int i, ret; |
| |
| if (!size) |
| return; |
| |
| if (!memblock_memory->total_size) { |
| pr_warn("%s: No memory registered yet\n", __func__); |
| return; |
| } |
| |
| ret = memblock_isolate_range(&memblock.memory, base, size, |
| &start_rgn, &end_rgn); |
| if (ret) |
| return; |
| |
| /* remove all the MAP regions */ |
| for (i = memblock.memory.cnt - 1; i >= end_rgn; i--) |
| if (!memblock_is_nomap(&memblock.memory.regions[i])) |
| memblock_remove_region(&memblock.memory, i); |
| |
| for (i = start_rgn - 1; i >= 0; i--) |
| if (!memblock_is_nomap(&memblock.memory.regions[i])) |
| memblock_remove_region(&memblock.memory, i); |
| |
| /* truncate the reserved regions */ |
| memblock_remove_range(&memblock.reserved, 0, base); |
| memblock_remove_range(&memblock.reserved, |
| base + size, PHYS_ADDR_MAX); |
| } |
| |
| void __init memblock_mem_limit_remove_map(phys_addr_t limit) |
| { |
| phys_addr_t max_addr; |
| |
| if (!limit) |
| return; |
| |
| max_addr = __find_max_addr(limit); |
| |
| /* @limit exceeds the total size of the memory, do nothing */ |
| if (max_addr == PHYS_ADDR_MAX) |
| return; |
| |
| memblock_cap_memory_range(0, max_addr); |
| } |
| |
| static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr) |
| { |
| unsigned int left = 0, right = type->cnt; |
| |
| do { |
| unsigned int mid = (right + left) / 2; |
| |
| if (addr < type->regions[mid].base) |
| right = mid; |
| else if (addr >= (type->regions[mid].base + |
| type->regions[mid].size)) |
| left = mid + 1; |
| else |
| return mid; |
| } while (left < right); |
| return -1; |
| } |
| |
| bool __init_memblock memblock_is_reserved(phys_addr_t addr) |
| { |
| return memblock_search(&memblock.reserved, addr) != -1; |
| } |
| |
| bool __init_memblock memblock_is_memory(phys_addr_t addr) |
| { |
| return memblock_search(&memblock.memory, addr) != -1; |
| } |
| |
| bool __init_memblock memblock_is_map_memory(phys_addr_t addr) |
| { |
| int i = memblock_search(&memblock.memory, addr); |
| |
| if (i == -1) |
| return false; |
| return !memblock_is_nomap(&memblock.memory.regions[i]); |
| } |
| |
| int __init_memblock memblock_search_pfn_nid(unsigned long pfn, |
| unsigned long *start_pfn, unsigned long *end_pfn) |
| { |
| struct memblock_type *type = &memblock.memory; |
| int mid = memblock_search(type, PFN_PHYS(pfn)); |
| |
| if (mid == -1) |
| return NUMA_NO_NODE; |
| |
| *start_pfn = PFN_DOWN(type->regions[mid].base); |
| *end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size); |
| |
| return memblock_get_region_node(&type->regions[mid]); |
| } |
| |
| /** |
| * memblock_is_region_memory - check if a region is a subset of memory |
| * @base: base of region to check |
| * @size: size of region to check |
| * |
| * Check if the region [@base, @base + @size) is a subset of a memory block. |
| * |
| * Return: |
| * 0 if false, non-zero if true |
| */ |
| bool __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size) |
| { |
| int idx = memblock_search(&memblock.memory, base); |
| phys_addr_t end = base + memblock_cap_size(base, &size); |
| |
| if (idx == -1) |
| return false; |
| return (memblock.memory.regions[idx].base + |
| memblock.memory.regions[idx].size) >= end; |
| } |
| |
| /** |
| * memblock_is_region_reserved - check if a region intersects reserved memory |
| * @base: base of region to check |
| * @size: size of region to check |
| * |
| * Check if the region [@base, @base + @size) intersects a reserved |
| * memory block. |
| * |
| * Return: |
| * True if they intersect, false if not. |
| */ |
| bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size) |
| { |
| return memblock_overlaps_region(&memblock.reserved, base, size); |
| } |
| |
| void __init_memblock memblock_trim_memory(phys_addr_t align) |
| { |
| phys_addr_t start, end, orig_start, orig_end; |
| struct memblock_region *r; |
| |
| for_each_mem_region(r) { |
| orig_start = r->base; |
| orig_end = r->base + r->size; |
| start = round_up(orig_start, align); |
| end = round_down(orig_end, align); |
| |
| if (start == orig_start && end == orig_end) |
| continue; |
| |
| if (start < end) { |
| r->base = start; |
| r->size = end - start; |
| } else { |
| memblock_remove_region(&memblock.memory, |
| r - memblock.memory.regions); |
| r--; |
| } |
| } |
| } |
| |
| void __init_memblock memblock_set_current_limit(phys_addr_t limit) |
| { |
| memblock.current_limit = limit; |
| } |
| |
| phys_addr_t __init_memblock memblock_get_current_limit(void) |
| { |
| return memblock.current_limit; |
| } |
| |
| static void __init_memblock memblock_dump(struct memblock_type *type) |
| { |
| phys_addr_t base, end, size; |
| enum memblock_flags flags; |
| int idx; |
| struct memblock_region *rgn; |
| |
| pr_info(" %s.cnt = 0x%lx\n", type->name, type->cnt); |
| |
| for_each_memblock_type(idx, type, rgn) { |
| char nid_buf[32] = ""; |
| |
| base = rgn->base; |
| size = rgn->size; |
| end = base + size - 1; |
| flags = rgn->flags; |
| #ifdef CONFIG_NUMA |
| if (numa_valid_node(memblock_get_region_node(rgn))) |
| snprintf(nid_buf, sizeof(nid_buf), " on node %d", |
| memblock_get_region_node(rgn)); |
| #endif |
| pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#x\n", |
| type->name, idx, &base, &end, &size, nid_buf, flags); |
| } |
| } |
| |
| static void __init_memblock __memblock_dump_all(void) |
| { |
| pr_info("MEMBLOCK configuration:\n"); |
| pr_info(" memory size = %pa reserved size = %pa\n", |
| &memblock.memory.total_size, |
| &memblock.reserved.total_size); |
| |
| memblock_dump(&memblock.memory); |
| memblock_dump(&memblock.reserved); |
| #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP |
| memblock_dump(&physmem); |
| #endif |
| } |
| |
| void __init_memblock memblock_dump_all(void) |
| { |
| if (memblock_debug) |
| __memblock_dump_all(); |
| } |
| |
| void __init memblock_allow_resize(void) |
| { |
| memblock_can_resize = 1; |
| } |
| |
| static int __init early_memblock(char *p) |
| { |
| if (p && strstr(p, "debug")) |
| memblock_debug = 1; |
| return 0; |
| } |
| early_param("memblock", early_memblock); |
| |
| static void __init free_memmap(unsigned long start_pfn, unsigned long end_pfn) |
| { |
| struct page *start_pg, *end_pg; |
| phys_addr_t pg, pgend; |
| |
| /* |
| * Convert start_pfn/end_pfn to a struct page pointer. |
| */ |
| start_pg = pfn_to_page(start_pfn - 1) + 1; |
| end_pg = pfn_to_page(end_pfn - 1) + 1; |
| |
| /* |
| * Convert to physical addresses, and round start upwards and end |
| * downwards. |
| */ |
| pg = PAGE_ALIGN(__pa(start_pg)); |
| pgend = PAGE_ALIGN_DOWN(__pa(end_pg)); |
| |
| /* |
| * If there are free pages between these, free the section of the |
| * memmap array. |
| */ |
| if (pg < pgend) |
| memblock_phys_free(pg, pgend - pg); |
| } |
| |
| /* |
| * The mem_map array can get very big. Free the unused area of the memory map. |
| */ |
| static void __init free_unused_memmap(void) |
| { |
| unsigned long start, end, prev_end = 0; |
| int i; |
| |
| if (!IS_ENABLED(CONFIG_HAVE_ARCH_PFN_VALID) || |
| IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP)) |
| return; |
| |
| /* |
| * This relies on each bank being in address order. |
| * The banks are sorted previously in bootmem_init(). |
| */ |
| for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, NULL) { |
| #ifdef CONFIG_SPARSEMEM |
| /* |
| * Take care not to free memmap entries that don't exist |
| * due to SPARSEMEM sections which aren't present. |
| */ |
| start = min(start, ALIGN(prev_end, PAGES_PER_SECTION)); |
| #endif |
| /* |
| * Align down here since many operations in VM subsystem |
| * presume that there are no holes in the memory map inside |
| * a pageblock |
| */ |
| start = pageblock_start_pfn(start); |
| |
| /* |
| * If we had a previous bank, and there is a space |
| * between the current bank and the previous, free it. |
| */ |
| if (prev_end && prev_end < start) |
| free_memmap(prev_end, start); |
| |
| /* |
| * Align up here since many operations in VM subsystem |
| * presume that there are no holes in the memory map inside |
| * a pageblock |
| */ |
| prev_end = pageblock_align(end); |
| } |
| |
| #ifdef CONFIG_SPARSEMEM |
| if (!IS_ALIGNED(prev_end, PAGES_PER_SECTION)) { |
| prev_end = pageblock_align(end); |
| free_memmap(prev_end, ALIGN(prev_end, PAGES_PER_SECTION)); |
| } |
| #endif |
| } |
| |
| static void __init __free_pages_memory(unsigned long start, unsigned long end) |
| { |
| int order; |
| |
| while (start < end) { |
| /* |
| * Free the pages in the largest chunks alignment allows. |
| * |
| * __ffs() behaviour is undefined for 0. start == 0 is |
| * MAX_PAGE_ORDER-aligned, set order to MAX_PAGE_ORDER for |
| * the case. |
| */ |
| if (start) |
| order = min_t(int, MAX_PAGE_ORDER, __ffs(start)); |
| else |
| order = MAX_PAGE_ORDER; |
| |
| while (start + (1UL << order) > end) |
| order--; |
| |
| memblock_free_pages(pfn_to_page(start), start, order); |
| |
| start += (1UL << order); |
| } |
| } |
| |
| static unsigned long __init __free_memory_core(phys_addr_t start, |
| phys_addr_t end) |
| { |
| unsigned long start_pfn = PFN_UP(start); |
| unsigned long end_pfn = min_t(unsigned long, |
| PFN_DOWN(end), max_low_pfn); |
| |
| if (start_pfn >= end_pfn) |
| return 0; |
| |
| __free_pages_memory(start_pfn, end_pfn); |
| |
| return end_pfn - start_pfn; |
| } |
| |
| static void __init memmap_init_reserved_pages(void) |
| { |
| struct memblock_region *region; |
| phys_addr_t start, end; |
| int nid; |
| |
| /* |
| * set nid on all reserved pages and also treat struct |
| * pages for the NOMAP regions as PageReserved |
| */ |
| for_each_mem_region(region) { |
| nid = memblock_get_region_node(region); |
| start = region->base; |
| end = start + region->size; |
| |
| if (memblock_is_nomap(region)) |
| reserve_bootmem_region(start, end, nid); |
| |
| memblock_set_node(start, end, &memblock.reserved, nid); |
| } |
| |
| /* |
| * initialize struct pages for reserved regions that don't have |
| * the MEMBLOCK_RSRV_NOINIT flag set |
| */ |
| for_each_reserved_mem_region(region) { |
| if (!memblock_is_reserved_noinit(region)) { |
| nid = memblock_get_region_node(region); |
| start = region->base; |
| end = start + region->size; |
| |
| if (!numa_valid_node(nid)) |
| nid = early_pfn_to_nid(PFN_DOWN(start)); |
| |
| reserve_bootmem_region(start, end, nid); |
| } |
| } |
| } |
| |
| static unsigned long __init free_low_memory_core_early(void) |
| { |
| unsigned long count = 0; |
| phys_addr_t start, end; |
| u64 i; |
| |
| memblock_clear_hotplug(0, -1); |
| |
| memmap_init_reserved_pages(); |
| |
| /* |
| * We need to use NUMA_NO_NODE instead of NODE_DATA(0)->node_id |
| * because in some case like Node0 doesn't have RAM installed |
| * low ram will be on Node1 |
| */ |
| for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end, |
| NULL) |
| count += __free_memory_core(start, end); |
| |
| return count; |
| } |
| |
| static int reset_managed_pages_done __initdata; |
| |
| static void __init reset_node_managed_pages(pg_data_t *pgdat) |
| { |
| struct zone *z; |
| |
| for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++) |
| atomic_long_set(&z->managed_pages, 0); |
| } |
| |
| void __init reset_all_zones_managed_pages(void) |
| { |
| struct pglist_data *pgdat; |
| |
| if (reset_managed_pages_done) |
| return; |
| |
| for_each_online_pgdat(pgdat) |
| reset_node_managed_pages(pgdat); |
| |
| reset_managed_pages_done = 1; |
| } |
| |
| /** |
| * memblock_free_all - release free pages to the buddy allocator |
| */ |
| void __init memblock_free_all(void) |
| { |
| unsigned long pages; |
| |
| free_unused_memmap(); |
| reset_all_zones_managed_pages(); |
| |
| pages = free_low_memory_core_early(); |
| totalram_pages_add(pages); |
| } |
| |
| /* Keep a table to reserve named memory */ |
| #define RESERVE_MEM_MAX_ENTRIES 8 |
| #define RESERVE_MEM_NAME_SIZE 16 |
| struct reserve_mem_table { |
| char name[RESERVE_MEM_NAME_SIZE]; |
| phys_addr_t start; |
| phys_addr_t size; |
| }; |
| static struct reserve_mem_table reserved_mem_table[RESERVE_MEM_MAX_ENTRIES]; |
| static int reserved_mem_count; |
| |
| /* Add wildcard region with a lookup name */ |
| static void __init reserved_mem_add(phys_addr_t start, phys_addr_t size, |
| const char *name) |
| { |
| struct reserve_mem_table *map; |
| |
| map = &reserved_mem_table[reserved_mem_count++]; |
| map->start = start; |
| map->size = size; |
| strscpy(map->name, name); |
| } |
| |
| /** |
| * reserve_mem_find_by_name - Find reserved memory region with a given name |
| * @name: The name that is attached to a reserved memory region |
| * @start: If found, holds the start address |
| * @size: If found, holds the size of the address. |
| * |
| * @start and @size are only updated if @name is found. |
| * |
| * Returns: 1 if found or 0 if not found. |
| */ |
| int reserve_mem_find_by_name(const char *name, phys_addr_t *start, phys_addr_t *size) |
| { |
| struct reserve_mem_table *map; |
| int i; |
| |
| for (i = 0; i < reserved_mem_count; i++) { |
| map = &reserved_mem_table[i]; |
| if (!map->size) |
| continue; |
| if (strcmp(name, map->name) == 0) { |
| *start = map->start; |
| *size = map->size; |
| return 1; |
| } |
| } |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(reserve_mem_find_by_name); |
| |
| /* |
| * Parse reserve_mem=nn:align:name |
| */ |
| static int __init reserve_mem(char *p) |
| { |
| phys_addr_t start, size, align, tmp; |
| char *name; |
| char *oldp; |
| int len; |
| |
| if (!p) |
| return -EINVAL; |
| |
| /* Check if there's room for more reserved memory */ |
| if (reserved_mem_count >= RESERVE_MEM_MAX_ENTRIES) |
| return -EBUSY; |
| |
| oldp = p; |
| size = memparse(p, &p); |
| if (!size || p == oldp) |
| return -EINVAL; |
| |
| if (*p != ':') |
| return -EINVAL; |
| |
| align = memparse(p+1, &p); |
| if (*p != ':') |
| return -EINVAL; |
| |
| /* |
| * memblock_phys_alloc() doesn't like a zero size align, |
| * but it is OK for this command to have it. |
| */ |
| if (align < SMP_CACHE_BYTES) |
| align = SMP_CACHE_BYTES; |
| |
| name = p + 1; |
| len = strlen(name); |
| |
| /* name needs to have length but not too big */ |
| if (!len || len >= RESERVE_MEM_NAME_SIZE) |
| return -EINVAL; |
| |
| /* Make sure that name has text */ |
| for (p = name; *p; p++) { |
| if (!isspace(*p)) |
| break; |
| } |
| if (!*p) |
| return -EINVAL; |
| |
| /* Make sure the name is not already used */ |
| if (reserve_mem_find_by_name(name, &start, &tmp)) |
| return -EBUSY; |
| |
| start = memblock_phys_alloc(size, align); |
| if (!start) |
| return -ENOMEM; |
| |
| reserved_mem_add(start, size, name); |
| |
| return 1; |
| } |
| __setup("reserve_mem=", reserve_mem); |
| |
| #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_ARCH_KEEP_MEMBLOCK) |
| static const char * const flagname[] = { |
| [ilog2(MEMBLOCK_HOTPLUG)] = "HOTPLUG", |
| [ilog2(MEMBLOCK_MIRROR)] = "MIRROR", |
| [ilog2(MEMBLOCK_NOMAP)] = "NOMAP", |
| [ilog2(MEMBLOCK_DRIVER_MANAGED)] = "DRV_MNG", |
| [ilog2(MEMBLOCK_RSRV_NOINIT)] = "RSV_NIT", |
| }; |
| |
| static int memblock_debug_show(struct seq_file *m, void *private) |
| { |
| struct memblock_type *type = m->private; |
| struct memblock_region *reg; |
| int i, j, nid; |
| unsigned int count = ARRAY_SIZE(flagname); |
| phys_addr_t end; |
| |
| for (i = 0; i < type->cnt; i++) { |
| reg = &type->regions[i]; |
| end = reg->base + reg->size - 1; |
| nid = memblock_get_region_node(reg); |
| |
| seq_printf(m, "%4d: ", i); |
| seq_printf(m, "%pa..%pa ", ®->base, &end); |
| if (numa_valid_node(nid)) |
| seq_printf(m, "%4d ", nid); |
| else |
| seq_printf(m, "%4c ", 'x'); |
| if (reg->flags) { |
| for (j = 0; j < count; j++) { |
| if (reg->flags & (1U << j)) { |
| seq_printf(m, "%s\n", flagname[j]); |
| break; |
| } |
| } |
| if (j == count) |
| seq_printf(m, "%s\n", "UNKNOWN"); |
| } else { |
| seq_printf(m, "%s\n", "NONE"); |
| } |
| } |
| return 0; |
| } |
| DEFINE_SHOW_ATTRIBUTE(memblock_debug); |
| |
| static int __init memblock_init_debugfs(void) |
| { |
| struct dentry *root = debugfs_create_dir("memblock", NULL); |
| |
| debugfs_create_file("memory", 0444, root, |
| &memblock.memory, &memblock_debug_fops); |
| debugfs_create_file("reserved", 0444, root, |
| &memblock.reserved, &memblock_debug_fops); |
| #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP |
| debugfs_create_file("physmem", 0444, root, &physmem, |
| &memblock_debug_fops); |
| #endif |
| |
| return 0; |
| } |
| __initcall(memblock_init_debugfs); |
| |
| #endif /* CONFIG_DEBUG_FS */ |