| /* SPDX-License-Identifier: GPL-2.0-or-later */ |
| /* |
| * vma.h |
| * |
| * Core VMA manipulation API implemented in vma.c. |
| */ |
| #ifndef __MM_VMA_H |
| #define __MM_VMA_H |
| |
| /* |
| * VMA lock generalization |
| */ |
| struct vma_prepare { |
| struct vm_area_struct *vma; |
| struct vm_area_struct *adj_next; |
| struct file *file; |
| struct address_space *mapping; |
| struct anon_vma *anon_vma; |
| struct vm_area_struct *insert; |
| struct vm_area_struct *remove; |
| struct vm_area_struct *remove2; |
| }; |
| |
| struct unlink_vma_file_batch { |
| int count; |
| struct vm_area_struct *vmas[8]; |
| }; |
| |
| /* |
| * vma munmap operation |
| */ |
| struct vma_munmap_struct { |
| struct vma_iterator *vmi; |
| struct vm_area_struct *vma; /* The first vma to munmap */ |
| struct vm_area_struct *prev; /* vma before the munmap area */ |
| struct vm_area_struct *next; /* vma after the munmap area */ |
| struct list_head *uf; /* Userfaultfd list_head */ |
| unsigned long start; /* Aligned start addr (inclusive) */ |
| unsigned long end; /* Aligned end addr (exclusive) */ |
| unsigned long unmap_start; /* Unmap PTE start */ |
| unsigned long unmap_end; /* Unmap PTE end */ |
| int vma_count; /* Number of vmas that will be removed */ |
| bool unlock; /* Unlock after the munmap */ |
| bool clear_ptes; /* If there are outstanding PTE to be cleared */ |
| /* 2 byte hole */ |
| unsigned long nr_pages; /* Number of pages being removed */ |
| unsigned long locked_vm; /* Number of locked pages */ |
| unsigned long nr_accounted; /* Number of VM_ACCOUNT pages */ |
| unsigned long exec_vm; |
| unsigned long stack_vm; |
| unsigned long data_vm; |
| }; |
| |
| enum vma_merge_state { |
| VMA_MERGE_START, |
| VMA_MERGE_ERROR_NOMEM, |
| VMA_MERGE_NOMERGE, |
| VMA_MERGE_SUCCESS, |
| }; |
| |
| enum vma_merge_flags { |
| VMG_FLAG_DEFAULT = 0, |
| /* |
| * If we can expand, simply do so. We know there is nothing to merge to |
| * the right. Does not reset state upon failure to merge. The VMA |
| * iterator is assumed to be positioned at the previous VMA, rather than |
| * at the gap. |
| */ |
| VMG_FLAG_JUST_EXPAND = 1 << 0, |
| }; |
| |
| /* Represents a VMA merge operation. */ |
| struct vma_merge_struct { |
| struct mm_struct *mm; |
| struct vma_iterator *vmi; |
| pgoff_t pgoff; |
| struct vm_area_struct *prev; |
| struct vm_area_struct *next; /* Modified by vma_merge(). */ |
| struct vm_area_struct *vma; /* Either a new VMA or the one being modified. */ |
| unsigned long start; |
| unsigned long end; |
| unsigned long flags; |
| struct file *file; |
| struct anon_vma *anon_vma; |
| struct mempolicy *policy; |
| struct vm_userfaultfd_ctx uffd_ctx; |
| struct anon_vma_name *anon_name; |
| enum vma_merge_flags merge_flags; |
| enum vma_merge_state state; |
| }; |
| |
| static inline bool vmg_nomem(struct vma_merge_struct *vmg) |
| { |
| return vmg->state == VMA_MERGE_ERROR_NOMEM; |
| } |
| |
| /* Assumes addr >= vma->vm_start. */ |
| static inline pgoff_t vma_pgoff_offset(struct vm_area_struct *vma, |
| unsigned long addr) |
| { |
| return vma->vm_pgoff + PHYS_PFN(addr - vma->vm_start); |
| } |
| |
| #define VMG_STATE(name, mm_, vmi_, start_, end_, flags_, pgoff_) \ |
| struct vma_merge_struct name = { \ |
| .mm = mm_, \ |
| .vmi = vmi_, \ |
| .start = start_, \ |
| .end = end_, \ |
| .flags = flags_, \ |
| .pgoff = pgoff_, \ |
| .state = VMA_MERGE_START, \ |
| .merge_flags = VMG_FLAG_DEFAULT, \ |
| } |
| |
| #define VMG_VMA_STATE(name, vmi_, prev_, vma_, start_, end_) \ |
| struct vma_merge_struct name = { \ |
| .mm = vma_->vm_mm, \ |
| .vmi = vmi_, \ |
| .prev = prev_, \ |
| .next = NULL, \ |
| .vma = vma_, \ |
| .start = start_, \ |
| .end = end_, \ |
| .flags = vma_->vm_flags, \ |
| .pgoff = vma_pgoff_offset(vma_, start_), \ |
| .file = vma_->vm_file, \ |
| .anon_vma = vma_->anon_vma, \ |
| .policy = vma_policy(vma_), \ |
| .uffd_ctx = vma_->vm_userfaultfd_ctx, \ |
| .anon_name = anon_vma_name(vma_), \ |
| .state = VMA_MERGE_START, \ |
| .merge_flags = VMG_FLAG_DEFAULT, \ |
| } |
| |
| #ifdef CONFIG_DEBUG_VM_MAPLE_TREE |
| void validate_mm(struct mm_struct *mm); |
| #else |
| #define validate_mm(mm) do { } while (0) |
| #endif |
| |
| /* Required for expand_downwards(). */ |
| void anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma); |
| |
| /* Required for expand_downwards(). */ |
| void anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma); |
| |
| int vma_expand(struct vma_merge_struct *vmg); |
| int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma, |
| unsigned long start, unsigned long end, pgoff_t pgoff); |
| |
| static inline int vma_iter_store_gfp(struct vma_iterator *vmi, |
| struct vm_area_struct *vma, gfp_t gfp) |
| |
| { |
| if (vmi->mas.status != ma_start && |
| ((vmi->mas.index > vma->vm_start) || (vmi->mas.last < vma->vm_start))) |
| vma_iter_invalidate(vmi); |
| |
| __mas_set_range(&vmi->mas, vma->vm_start, vma->vm_end - 1); |
| mas_store_gfp(&vmi->mas, vma, gfp); |
| if (unlikely(mas_is_err(&vmi->mas))) |
| return -ENOMEM; |
| |
| return 0; |
| } |
| |
| #ifdef CONFIG_MMU |
| /* |
| * init_vma_munmap() - Initializer wrapper for vma_munmap_struct |
| * @vms: The vma munmap struct |
| * @vmi: The vma iterator |
| * @vma: The first vm_area_struct to munmap |
| * @start: The aligned start address to munmap |
| * @end: The aligned end address to munmap |
| * @uf: The userfaultfd list_head |
| * @unlock: Unlock after the operation. Only unlocked on success |
| */ |
| static inline void init_vma_munmap(struct vma_munmap_struct *vms, |
| struct vma_iterator *vmi, struct vm_area_struct *vma, |
| unsigned long start, unsigned long end, struct list_head *uf, |
| bool unlock) |
| { |
| vms->vmi = vmi; |
| vms->vma = vma; |
| if (vma) { |
| vms->start = start; |
| vms->end = end; |
| } else { |
| vms->start = vms->end = 0; |
| } |
| vms->unlock = unlock; |
| vms->uf = uf; |
| vms->vma_count = 0; |
| vms->nr_pages = vms->locked_vm = vms->nr_accounted = 0; |
| vms->exec_vm = vms->stack_vm = vms->data_vm = 0; |
| vms->unmap_start = FIRST_USER_ADDRESS; |
| vms->unmap_end = USER_PGTABLES_CEILING; |
| vms->clear_ptes = false; |
| } |
| #endif |
| |
| int vms_gather_munmap_vmas(struct vma_munmap_struct *vms, |
| struct ma_state *mas_detach); |
| |
| void vms_complete_munmap_vmas(struct vma_munmap_struct *vms, |
| struct ma_state *mas_detach); |
| |
| void vms_clean_up_area(struct vma_munmap_struct *vms, |
| struct ma_state *mas_detach); |
| |
| /* |
| * reattach_vmas() - Undo any munmap work and free resources |
| * @mas_detach: The maple state with the detached maple tree |
| * |
| * Reattach any detached vmas and free up the maple tree used to track the vmas. |
| */ |
| static inline void reattach_vmas(struct ma_state *mas_detach) |
| { |
| struct vm_area_struct *vma; |
| |
| mas_set(mas_detach, 0); |
| mas_for_each(mas_detach, vma, ULONG_MAX) |
| vma_mark_detached(vma, false); |
| |
| __mt_destroy(mas_detach->tree); |
| } |
| |
| /* |
| * vms_abort_munmap_vmas() - Undo as much as possible from an aborted munmap() |
| * operation. |
| * @vms: The vma unmap structure |
| * @mas_detach: The maple state with the detached maple tree |
| * |
| * Reattach any detached vmas, free up the maple tree used to track the vmas. |
| * If that's not possible because the ptes are cleared (and vm_ops->closed() may |
| * have been called), then a NULL is written over the vmas and the vmas are |
| * removed (munmap() completed). |
| */ |
| static inline void vms_abort_munmap_vmas(struct vma_munmap_struct *vms, |
| struct ma_state *mas_detach) |
| { |
| struct ma_state *mas = &vms->vmi->mas; |
| if (!vms->nr_pages) |
| return; |
| |
| if (vms->clear_ptes) |
| return reattach_vmas(mas_detach); |
| |
| /* |
| * Aborting cannot just call the vm_ops open() because they are often |
| * not symmetrical and state data has been lost. Resort to the old |
| * failure method of leaving a gap where the MAP_FIXED mapping failed. |
| */ |
| mas_set_range(mas, vms->start, vms->end - 1); |
| mas_store_gfp(mas, NULL, GFP_KERNEL|__GFP_NOFAIL); |
| /* Clean up the insertion of the unfortunate gap */ |
| vms_complete_munmap_vmas(vms, mas_detach); |
| } |
| |
| int |
| do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma, |
| struct mm_struct *mm, unsigned long start, |
| unsigned long end, struct list_head *uf, bool unlock); |
| |
| int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm, |
| unsigned long start, size_t len, struct list_head *uf, |
| bool unlock); |
| |
| void remove_vma(struct vm_area_struct *vma, bool unreachable); |
| |
| void unmap_region(struct ma_state *mas, struct vm_area_struct *vma, |
| struct vm_area_struct *prev, struct vm_area_struct *next); |
| |
| /* We are about to modify the VMA's flags. */ |
| struct vm_area_struct *vma_modify_flags(struct vma_iterator *vmi, |
| struct vm_area_struct *prev, struct vm_area_struct *vma, |
| unsigned long start, unsigned long end, |
| unsigned long new_flags); |
| |
| /* We are about to modify the VMA's flags and/or anon_name. */ |
| struct vm_area_struct |
| *vma_modify_flags_name(struct vma_iterator *vmi, |
| struct vm_area_struct *prev, |
| struct vm_area_struct *vma, |
| unsigned long start, |
| unsigned long end, |
| unsigned long new_flags, |
| struct anon_vma_name *new_name); |
| |
| /* We are about to modify the VMA's memory policy. */ |
| struct vm_area_struct |
| *vma_modify_policy(struct vma_iterator *vmi, |
| struct vm_area_struct *prev, |
| struct vm_area_struct *vma, |
| unsigned long start, unsigned long end, |
| struct mempolicy *new_pol); |
| |
| /* We are about to modify the VMA's flags and/or uffd context. */ |
| struct vm_area_struct |
| *vma_modify_flags_uffd(struct vma_iterator *vmi, |
| struct vm_area_struct *prev, |
| struct vm_area_struct *vma, |
| unsigned long start, unsigned long end, |
| unsigned long new_flags, |
| struct vm_userfaultfd_ctx new_ctx); |
| |
| struct vm_area_struct *vma_merge_new_range(struct vma_merge_struct *vmg); |
| |
| struct vm_area_struct *vma_merge_extend(struct vma_iterator *vmi, |
| struct vm_area_struct *vma, |
| unsigned long delta); |
| |
| void unlink_file_vma_batch_init(struct unlink_vma_file_batch *vb); |
| |
| void unlink_file_vma_batch_final(struct unlink_vma_file_batch *vb); |
| |
| void unlink_file_vma_batch_add(struct unlink_vma_file_batch *vb, |
| struct vm_area_struct *vma); |
| |
| void unlink_file_vma(struct vm_area_struct *vma); |
| |
| void vma_link_file(struct vm_area_struct *vma); |
| |
| int vma_link(struct mm_struct *mm, struct vm_area_struct *vma); |
| |
| struct vm_area_struct *copy_vma(struct vm_area_struct **vmap, |
| unsigned long addr, unsigned long len, pgoff_t pgoff, |
| bool *need_rmap_locks); |
| |
| struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma); |
| |
| bool vma_needs_dirty_tracking(struct vm_area_struct *vma); |
| bool vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot); |
| |
| int mm_take_all_locks(struct mm_struct *mm); |
| void mm_drop_all_locks(struct mm_struct *mm); |
| |
| static inline bool vma_wants_manual_pte_write_upgrade(struct vm_area_struct *vma) |
| { |
| /* |
| * We want to check manually if we can change individual PTEs writable |
| * if we can't do that automatically for all PTEs in a mapping. For |
| * private mappings, that's always the case when we have write |
| * permissions as we properly have to handle COW. |
| */ |
| if (vma->vm_flags & VM_SHARED) |
| return vma_wants_writenotify(vma, vma->vm_page_prot); |
| return !!(vma->vm_flags & VM_WRITE); |
| } |
| |
| #ifdef CONFIG_MMU |
| static inline pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags) |
| { |
| return pgprot_modify(oldprot, vm_get_page_prot(vm_flags)); |
| } |
| #endif |
| |
| static inline struct vm_area_struct *vma_prev_limit(struct vma_iterator *vmi, |
| unsigned long min) |
| { |
| return mas_prev(&vmi->mas, min); |
| } |
| |
| /* |
| * These three helpers classifies VMAs for virtual memory accounting. |
| */ |
| |
| /* |
| * Executable code area - executable, not writable, not stack |
| */ |
| static inline bool is_exec_mapping(vm_flags_t flags) |
| { |
| return (flags & (VM_EXEC | VM_WRITE | VM_STACK)) == VM_EXEC; |
| } |
| |
| /* |
| * Stack area (including shadow stacks) |
| * |
| * VM_GROWSUP / VM_GROWSDOWN VMAs are always private anonymous: |
| * do_mmap() forbids all other combinations. |
| */ |
| static inline bool is_stack_mapping(vm_flags_t flags) |
| { |
| return ((flags & VM_STACK) == VM_STACK) || (flags & VM_SHADOW_STACK); |
| } |
| |
| /* |
| * Data area - private, writable, not stack |
| */ |
| static inline bool is_data_mapping(vm_flags_t flags) |
| { |
| return (flags & (VM_WRITE | VM_SHARED | VM_STACK)) == VM_WRITE; |
| } |
| |
| |
| static inline void vma_iter_config(struct vma_iterator *vmi, |
| unsigned long index, unsigned long last) |
| { |
| __mas_set_range(&vmi->mas, index, last - 1); |
| } |
| |
| static inline void vma_iter_reset(struct vma_iterator *vmi) |
| { |
| mas_reset(&vmi->mas); |
| } |
| |
| static inline |
| struct vm_area_struct *vma_iter_prev_range_limit(struct vma_iterator *vmi, unsigned long min) |
| { |
| return mas_prev_range(&vmi->mas, min); |
| } |
| |
| static inline |
| struct vm_area_struct *vma_iter_next_range_limit(struct vma_iterator *vmi, unsigned long max) |
| { |
| return mas_next_range(&vmi->mas, max); |
| } |
| |
| static inline int vma_iter_area_lowest(struct vma_iterator *vmi, unsigned long min, |
| unsigned long max, unsigned long size) |
| { |
| return mas_empty_area(&vmi->mas, min, max - 1, size); |
| } |
| |
| static inline int vma_iter_area_highest(struct vma_iterator *vmi, unsigned long min, |
| unsigned long max, unsigned long size) |
| { |
| return mas_empty_area_rev(&vmi->mas, min, max - 1, size); |
| } |
| |
| /* |
| * VMA Iterator functions shared between nommu and mmap |
| */ |
| static inline int vma_iter_prealloc(struct vma_iterator *vmi, |
| struct vm_area_struct *vma) |
| { |
| return mas_preallocate(&vmi->mas, vma, GFP_KERNEL); |
| } |
| |
| static inline void vma_iter_clear(struct vma_iterator *vmi) |
| { |
| mas_store_prealloc(&vmi->mas, NULL); |
| } |
| |
| static inline struct vm_area_struct *vma_iter_load(struct vma_iterator *vmi) |
| { |
| return mas_walk(&vmi->mas); |
| } |
| |
| /* Store a VMA with preallocated memory */ |
| static inline void vma_iter_store(struct vma_iterator *vmi, |
| struct vm_area_struct *vma) |
| { |
| |
| #if defined(CONFIG_DEBUG_VM_MAPLE_TREE) |
| if (MAS_WARN_ON(&vmi->mas, vmi->mas.status != ma_start && |
| vmi->mas.index > vma->vm_start)) { |
| pr_warn("%lx > %lx\n store vma %lx-%lx\n into slot %lx-%lx\n", |
| vmi->mas.index, vma->vm_start, vma->vm_start, |
| vma->vm_end, vmi->mas.index, vmi->mas.last); |
| } |
| if (MAS_WARN_ON(&vmi->mas, vmi->mas.status != ma_start && |
| vmi->mas.last < vma->vm_start)) { |
| pr_warn("%lx < %lx\nstore vma %lx-%lx\ninto slot %lx-%lx\n", |
| vmi->mas.last, vma->vm_start, vma->vm_start, vma->vm_end, |
| vmi->mas.index, vmi->mas.last); |
| } |
| #endif |
| |
| if (vmi->mas.status != ma_start && |
| ((vmi->mas.index > vma->vm_start) || (vmi->mas.last < vma->vm_start))) |
| vma_iter_invalidate(vmi); |
| |
| __mas_set_range(&vmi->mas, vma->vm_start, vma->vm_end - 1); |
| mas_store_prealloc(&vmi->mas, vma); |
| } |
| |
| static inline unsigned long vma_iter_addr(struct vma_iterator *vmi) |
| { |
| return vmi->mas.index; |
| } |
| |
| static inline unsigned long vma_iter_end(struct vma_iterator *vmi) |
| { |
| return vmi->mas.last + 1; |
| } |
| |
| static inline int vma_iter_bulk_alloc(struct vma_iterator *vmi, |
| unsigned long count) |
| { |
| return mas_expected_entries(&vmi->mas, count); |
| } |
| |
| static inline |
| struct vm_area_struct *vma_iter_prev_range(struct vma_iterator *vmi) |
| { |
| return mas_prev_range(&vmi->mas, 0); |
| } |
| |
| /* |
| * Retrieve the next VMA and rewind the iterator to end of the previous VMA, or |
| * if no previous VMA, to index 0. |
| */ |
| static inline |
| struct vm_area_struct *vma_iter_next_rewind(struct vma_iterator *vmi, |
| struct vm_area_struct **pprev) |
| { |
| struct vm_area_struct *next = vma_next(vmi); |
| struct vm_area_struct *prev = vma_prev(vmi); |
| |
| /* |
| * Consider the case where no previous VMA exists. We advance to the |
| * next VMA, skipping any gap, then rewind to the start of the range. |
| * |
| * If we were to unconditionally advance to the next range we'd wind up |
| * at the next VMA again, so we check to ensure there is a previous VMA |
| * to skip over. |
| */ |
| if (prev) |
| vma_iter_next_range(vmi); |
| |
| if (pprev) |
| *pprev = prev; |
| |
| return next; |
| } |
| |
| #ifdef CONFIG_64BIT |
| |
| static inline bool vma_is_sealed(struct vm_area_struct *vma) |
| { |
| return (vma->vm_flags & VM_SEALED); |
| } |
| |
| /* |
| * check if a vma is sealed for modification. |
| * return true, if modification is allowed. |
| */ |
| static inline bool can_modify_vma(struct vm_area_struct *vma) |
| { |
| if (unlikely(vma_is_sealed(vma))) |
| return false; |
| |
| return true; |
| } |
| |
| bool can_modify_vma_madv(struct vm_area_struct *vma, int behavior); |
| |
| #else |
| |
| static inline bool can_modify_vma(struct vm_area_struct *vma) |
| { |
| return true; |
| } |
| |
| static inline bool can_modify_vma_madv(struct vm_area_struct *vma, int behavior) |
| { |
| return true; |
| } |
| |
| #endif |
| |
| #endif /* __MM_VMA_H */ |