| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Copyright (C) 2020 Google LLC |
| * Author: Quentin Perret <qperret@google.com> |
| */ |
| |
| #include <linux/kvm_host.h> |
| #include <asm/kvm_emulate.h> |
| #include <asm/kvm_hyp.h> |
| #include <asm/kvm_mmu.h> |
| #include <asm/kvm_pgtable.h> |
| #include <asm/kvm_pkvm.h> |
| #include <asm/stage2_pgtable.h> |
| |
| #include <hyp/adjust_pc.h> |
| #include <hyp/fault.h> |
| |
| #include <nvhe/gfp.h> |
| #include <nvhe/iommu.h> |
| #include <nvhe/memory.h> |
| #include <nvhe/mem_protect.h> |
| #include <nvhe/mm.h> |
| |
| #define KVM_HOST_S2_FLAGS (KVM_PGTABLE_S2_NOFWB | KVM_PGTABLE_S2_IDMAP) |
| |
| struct host_mmu host_mmu; |
| |
| static struct hyp_pool host_s2_pool; |
| |
| static DEFINE_PER_CPU(struct pkvm_hyp_vm *, __current_vm); |
| #define current_vm (*this_cpu_ptr(&__current_vm)) |
| |
| static struct kvm_pgtable_pte_ops host_s2_pte_ops; |
| static bool host_stage2_force_pte(u64 addr, u64 end, enum kvm_pgtable_prot prot); |
| static bool host_stage2_pte_is_counted(kvm_pte_t pte, u32 level); |
| static bool guest_stage2_force_pte_cb(u64 addr, u64 end, |
| enum kvm_pgtable_prot prot); |
| static bool guest_stage2_pte_is_counted(kvm_pte_t pte, u32 level); |
| |
| static struct kvm_pgtable_pte_ops guest_s2_pte_ops = { |
| .force_pte_cb = guest_stage2_force_pte_cb, |
| .pte_is_counted_cb = guest_stage2_pte_is_counted |
| }; |
| |
| static void guest_lock_component(struct pkvm_hyp_vm *vm) |
| { |
| hyp_spin_lock(&vm->lock); |
| current_vm = vm; |
| } |
| |
| static void guest_unlock_component(struct pkvm_hyp_vm *vm) |
| { |
| current_vm = NULL; |
| hyp_spin_unlock(&vm->lock); |
| } |
| |
| static void host_lock_component(void) |
| { |
| hyp_spin_lock(&host_mmu.lock); |
| } |
| |
| static void host_unlock_component(void) |
| { |
| hyp_spin_unlock(&host_mmu.lock); |
| } |
| |
| static void hyp_lock_component(void) |
| { |
| hyp_spin_lock(&pkvm_pgd_lock); |
| } |
| |
| static void hyp_unlock_component(void) |
| { |
| hyp_spin_unlock(&pkvm_pgd_lock); |
| } |
| |
| static void *host_s2_zalloc_pages_exact(size_t size) |
| { |
| void *addr = hyp_alloc_pages(&host_s2_pool, get_order(size)); |
| |
| hyp_split_page(hyp_virt_to_page(addr)); |
| |
| /* |
| * The size of concatenated PGDs is always a power of two of PAGE_SIZE, |
| * so there should be no need to free any of the tail pages to make the |
| * allocation exact. |
| */ |
| WARN_ON(size != (PAGE_SIZE << get_order(size))); |
| |
| return addr; |
| } |
| |
| static void *host_s2_zalloc_page(void *pool) |
| { |
| return hyp_alloc_pages(pool, 0); |
| } |
| |
| static void host_s2_get_page(void *addr) |
| { |
| hyp_get_page(&host_s2_pool, addr); |
| } |
| |
| static void host_s2_put_page(void *addr) |
| { |
| hyp_put_page(&host_s2_pool, addr); |
| } |
| |
| static int prepare_s2_pool(void *pgt_pool_base) |
| { |
| unsigned long nr_pages, pfn; |
| int ret; |
| |
| pfn = hyp_virt_to_pfn(pgt_pool_base); |
| nr_pages = host_s2_pgtable_pages(); |
| ret = hyp_pool_init(&host_s2_pool, pfn, nr_pages, 0); |
| if (ret) |
| return ret; |
| |
| host_mmu.mm_ops = (struct kvm_pgtable_mm_ops) { |
| .zalloc_pages_exact = host_s2_zalloc_pages_exact, |
| .zalloc_page = host_s2_zalloc_page, |
| .phys_to_virt = hyp_phys_to_virt, |
| .virt_to_phys = hyp_virt_to_phys, |
| .page_count = hyp_page_count, |
| .get_page = host_s2_get_page, |
| .put_page = host_s2_put_page, |
| }; |
| |
| return 0; |
| } |
| |
| static void prepare_host_vtcr(void) |
| { |
| u32 parange, phys_shift; |
| |
| /* The host stage 2 is id-mapped, so use parange for T0SZ */ |
| parange = kvm_get_parange(id_aa64mmfr0_el1_sys_val); |
| phys_shift = id_aa64mmfr0_parange_to_phys_shift(parange); |
| |
| host_mmu.arch.vtcr = kvm_get_vtcr(id_aa64mmfr0_el1_sys_val, |
| id_aa64mmfr1_el1_sys_val, phys_shift); |
| } |
| |
| int kvm_host_prepare_stage2(void *pgt_pool_base) |
| { |
| struct kvm_s2_mmu *mmu = &host_mmu.arch.mmu; |
| int ret; |
| |
| prepare_host_vtcr(); |
| hyp_spin_lock_init(&host_mmu.lock); |
| mmu->arch = &host_mmu.arch; |
| |
| ret = prepare_s2_pool(pgt_pool_base); |
| if (ret) |
| return ret; |
| |
| host_s2_pte_ops.force_pte_cb = host_stage2_force_pte; |
| host_s2_pte_ops.pte_is_counted_cb = host_stage2_pte_is_counted; |
| |
| ret = __kvm_pgtable_stage2_init(&host_mmu.pgt, mmu, |
| &host_mmu.mm_ops, KVM_HOST_S2_FLAGS, |
| &host_s2_pte_ops); |
| if (ret) |
| return ret; |
| |
| mmu->pgd_phys = __hyp_pa(host_mmu.pgt.pgd); |
| mmu->pgt = &host_mmu.pgt; |
| atomic64_set(&mmu->vmid.id, 0); |
| |
| return 0; |
| } |
| |
| static bool guest_stage2_force_pte_cb(u64 addr, u64 end, |
| enum kvm_pgtable_prot prot) |
| { |
| return true; |
| } |
| |
| static bool guest_stage2_pte_is_counted(kvm_pte_t pte, u32 level) |
| { |
| return !!pte; |
| } |
| |
| static void *guest_s2_zalloc_pages_exact(size_t size) |
| { |
| void *addr = hyp_alloc_pages(¤t_vm->pool, get_order(size)); |
| |
| WARN_ON(size != (PAGE_SIZE << get_order(size))); |
| hyp_split_page(hyp_virt_to_page(addr)); |
| |
| return addr; |
| } |
| |
| static void guest_s2_free_pages_exact(void *addr, unsigned long size) |
| { |
| u8 order = get_order(size); |
| unsigned int i; |
| |
| for (i = 0; i < (1 << order); i++) |
| hyp_put_page(¤t_vm->pool, addr + (i * PAGE_SIZE)); |
| } |
| |
| static void *guest_s2_zalloc_page(void *mc) |
| { |
| struct hyp_page *p; |
| void *addr; |
| |
| addr = hyp_alloc_pages(¤t_vm->pool, 0); |
| if (addr) |
| return addr; |
| |
| addr = pop_hyp_memcache(mc, hyp_phys_to_virt); |
| if (!addr) |
| return addr; |
| |
| memset(addr, 0, PAGE_SIZE); |
| p = hyp_virt_to_page(addr); |
| memset(p, 0, sizeof(*p)); |
| p->refcount = 1; |
| |
| return addr; |
| } |
| |
| static void guest_s2_get_page(void *addr) |
| { |
| hyp_get_page(¤t_vm->pool, addr); |
| } |
| |
| static void guest_s2_put_page(void *addr) |
| { |
| hyp_put_page(¤t_vm->pool, addr); |
| } |
| |
| static void clean_dcache_guest_page(void *va, size_t size) |
| { |
| __clean_dcache_guest_page(hyp_fixmap_map(__hyp_pa(va)), size); |
| hyp_fixmap_unmap(); |
| } |
| |
| static void invalidate_icache_guest_page(void *va, size_t size) |
| { |
| __invalidate_icache_guest_page(hyp_fixmap_map(__hyp_pa(va)), size); |
| hyp_fixmap_unmap(); |
| } |
| |
| int kvm_guest_prepare_stage2(struct pkvm_hyp_vm *vm, void *pgd) |
| { |
| struct kvm_s2_mmu *mmu = &vm->kvm.arch.mmu; |
| unsigned long nr_pages; |
| int ret; |
| |
| nr_pages = kvm_pgtable_stage2_pgd_size(vm->kvm.arch.vtcr) >> PAGE_SHIFT; |
| ret = hyp_pool_init(&vm->pool, hyp_virt_to_pfn(pgd), nr_pages, 0); |
| if (ret) |
| return ret; |
| |
| hyp_spin_lock_init(&vm->lock); |
| vm->mm_ops = (struct kvm_pgtable_mm_ops) { |
| .zalloc_pages_exact = guest_s2_zalloc_pages_exact, |
| .free_pages_exact = guest_s2_free_pages_exact, |
| .zalloc_page = guest_s2_zalloc_page, |
| .phys_to_virt = hyp_phys_to_virt, |
| .virt_to_phys = hyp_virt_to_phys, |
| .page_count = hyp_page_count, |
| .get_page = guest_s2_get_page, |
| .put_page = guest_s2_put_page, |
| .dcache_clean_inval_poc = clean_dcache_guest_page, |
| .icache_inval_pou = invalidate_icache_guest_page, |
| }; |
| |
| guest_lock_component(vm); |
| ret = __kvm_pgtable_stage2_init(mmu->pgt, mmu, &vm->mm_ops, 0, |
| &guest_s2_pte_ops); |
| guest_unlock_component(vm); |
| if (ret) |
| return ret; |
| |
| vm->kvm.arch.mmu.pgd_phys = __hyp_pa(vm->pgt.pgd); |
| |
| return 0; |
| } |
| |
| static int reclaim_walker(u64 addr, u64 end, u32 level, kvm_pte_t *ptep, |
| enum kvm_pgtable_walk_flags flag, void * const arg) |
| { |
| kvm_pte_t pte = *ptep; |
| struct hyp_page *page; |
| |
| if (!kvm_pte_valid(pte)) |
| return 0; |
| |
| page = hyp_phys_to_page(kvm_pte_to_phys(pte)); |
| switch (pkvm_getstate(kvm_pgtable_stage2_pte_prot(pte))) { |
| case PKVM_PAGE_OWNED: |
| page->flags |= HOST_PAGE_NEED_POISONING; |
| fallthrough; |
| case PKVM_PAGE_SHARED_BORROWED: |
| case PKVM_PAGE_SHARED_OWNED: |
| page->flags |= HOST_PAGE_PENDING_RECLAIM; |
| break; |
| default: |
| return -EPERM; |
| } |
| |
| return 0; |
| } |
| |
| void reclaim_guest_pages(struct pkvm_hyp_vm *vm, struct kvm_hyp_memcache *mc) |
| { |
| |
| struct kvm_pgtable_walker walker = { |
| .cb = reclaim_walker, |
| .flags = KVM_PGTABLE_WALK_LEAF |
| }; |
| void *addr; |
| |
| host_lock_component(); |
| guest_lock_component(vm); |
| |
| /* Reclaim all guest pages and dump all pgtable pages in the hyp_pool */ |
| BUG_ON(kvm_pgtable_walk(&vm->pgt, 0, BIT(vm->pgt.ia_bits), &walker)); |
| kvm_pgtable_stage2_destroy(&vm->pgt); |
| vm->kvm.arch.mmu.pgd_phys = 0ULL; |
| |
| guest_unlock_component(vm); |
| host_unlock_component(); |
| |
| /* Drain the hyp_pool into the memcache */ |
| addr = hyp_alloc_pages(&vm->pool, 0); |
| while (addr) { |
| memset(hyp_virt_to_page(addr), 0, sizeof(struct hyp_page)); |
| push_hyp_memcache(mc, addr, hyp_virt_to_phys); |
| WARN_ON(__pkvm_hyp_donate_host(hyp_virt_to_pfn(addr), 1)); |
| addr = hyp_alloc_pages(&vm->pool, 0); |
| } |
| } |
| |
| struct relinquish_data { |
| enum pkvm_page_state expected_state; |
| u64 pa; |
| }; |
| |
| static int relinquish_walker(u64 addr, u64 end, u32 level, kvm_pte_t *ptep, |
| enum kvm_pgtable_walk_flags flag, void * const arg) |
| { |
| kvm_pte_t pte = *ptep; |
| struct hyp_page *page; |
| struct relinquish_data *data = arg; |
| enum pkvm_page_state state; |
| |
| if (!kvm_pte_valid(pte)) |
| return 0; |
| |
| state = pkvm_getstate(kvm_pgtable_stage2_pte_prot(pte)); |
| if (state != data->expected_state) |
| return -EPERM; |
| |
| page = hyp_phys_to_page(kvm_pte_to_phys(pte)); |
| if (state == PKVM_PAGE_OWNED) |
| page->flags |= HOST_PAGE_NEED_POISONING; |
| page->flags |= HOST_PAGE_PENDING_RECLAIM; |
| |
| data->pa = kvm_pte_to_phys(pte); |
| |
| return 0; |
| } |
| |
| int __pkvm_guest_relinquish_to_host(struct pkvm_hyp_vcpu *vcpu, |
| u64 ipa, u64 *ppa) |
| { |
| struct relinquish_data data; |
| struct kvm_pgtable_walker walker = { |
| .cb = relinquish_walker, |
| .flags = KVM_PGTABLE_WALK_LEAF, |
| .arg = &data, |
| }; |
| struct pkvm_hyp_vm *vm = pkvm_hyp_vcpu_to_hyp_vm(vcpu); |
| int ret; |
| |
| host_lock_component(); |
| guest_lock_component(vm); |
| |
| /* Expected page state depends on VM type. */ |
| data.expected_state = pkvm_hyp_vcpu_is_protected(vcpu) ? |
| PKVM_PAGE_OWNED : |
| PKVM_PAGE_SHARED_BORROWED; |
| |
| /* Set default pa value to "not found". */ |
| data.pa = 0; |
| |
| /* If ipa is mapped: sets page flags, and gets the pa. */ |
| ret = kvm_pgtable_walk(&vm->pgt, ipa, PAGE_SIZE, &walker); |
| |
| /* Zap the guest stage2 pte. */ |
| if (!ret && data.pa) |
| kvm_pgtable_stage2_unmap(&vm->pgt, ipa, PAGE_SIZE); |
| |
| guest_unlock_component(vm); |
| host_unlock_component(); |
| |
| *ppa = data.pa; |
| return ret; |
| } |
| |
| int __pkvm_prot_finalize(void) |
| { |
| struct kvm_s2_mmu *mmu = &host_mmu.arch.mmu; |
| struct kvm_nvhe_init_params *params = this_cpu_ptr(&kvm_init_params); |
| |
| if (params->hcr_el2 & HCR_VM) |
| return -EPERM; |
| |
| params->vttbr = kvm_get_vttbr(mmu); |
| params->vtcr = host_mmu.arch.vtcr; |
| params->hcr_el2 |= HCR_VM; |
| kvm_flush_dcache_to_poc(params, sizeof(*params)); |
| |
| write_sysreg(params->hcr_el2, hcr_el2); |
| __load_stage2(&host_mmu.arch.mmu, &host_mmu.arch); |
| |
| /* |
| * Make sure to have an ISB before the TLB maintenance below but only |
| * when __load_stage2() doesn't include one already. |
| */ |
| asm(ALTERNATIVE("isb", "nop", ARM64_WORKAROUND_SPECULATIVE_AT)); |
| |
| /* Invalidate stale HCR bits that may be cached in TLBs */ |
| __tlbi(vmalls12e1); |
| dsb(nsh); |
| isb(); |
| |
| return 0; |
| } |
| |
| int host_stage2_unmap_dev_locked(phys_addr_t start, u64 size) |
| { |
| int ret; |
| |
| hyp_assert_lock_held(&host_mmu.lock); |
| |
| ret = kvm_pgtable_stage2_unmap(&host_mmu.pgt, start, size); |
| if (ret) |
| return ret; |
| |
| pkvm_iommu_host_stage2_idmap(start, start + size, 0); |
| return 0; |
| } |
| |
| static int host_stage2_unmap_dev_all(void) |
| { |
| struct kvm_pgtable *pgt = &host_mmu.pgt; |
| struct memblock_region *reg; |
| u64 addr = 0; |
| int i, ret; |
| |
| /* Unmap all non-memory regions to recycle the pages */ |
| for (i = 0; i < hyp_memblock_nr; i++, addr = reg->base + reg->size) { |
| reg = &hyp_memory[i]; |
| ret = host_stage2_unmap_dev_locked(addr, reg->base - addr); |
| if (ret) |
| return ret; |
| } |
| return host_stage2_unmap_dev_locked(addr, BIT(pgt->ia_bits) - addr); |
| } |
| |
| struct kvm_mem_range { |
| u64 start; |
| u64 end; |
| }; |
| |
| static struct memblock_region *find_mem_range(phys_addr_t addr, struct kvm_mem_range *range) |
| { |
| int cur, left = 0, right = hyp_memblock_nr; |
| struct memblock_region *reg; |
| phys_addr_t end; |
| |
| range->start = 0; |
| range->end = ULONG_MAX; |
| |
| /* The list of memblock regions is sorted, binary search it */ |
| while (left < right) { |
| cur = (left + right) >> 1; |
| reg = &hyp_memory[cur]; |
| end = reg->base + reg->size; |
| if (addr < reg->base) { |
| right = cur; |
| range->end = reg->base; |
| } else if (addr >= end) { |
| left = cur + 1; |
| range->start = end; |
| } else { |
| range->start = reg->base; |
| range->end = end; |
| return reg; |
| } |
| } |
| |
| return NULL; |
| } |
| |
| bool addr_is_memory(phys_addr_t phys) |
| { |
| struct kvm_mem_range range; |
| |
| return !!find_mem_range(phys, &range); |
| } |
| |
| static bool addr_is_allowed_memory(phys_addr_t phys) |
| { |
| struct memblock_region *reg; |
| struct kvm_mem_range range; |
| |
| reg = find_mem_range(phys, &range); |
| |
| return reg && !(reg->flags & MEMBLOCK_NOMAP); |
| } |
| |
| static bool is_in_mem_range(u64 addr, struct kvm_mem_range *range) |
| { |
| return range->start <= addr && addr < range->end; |
| } |
| |
| static bool range_is_memory(u64 start, u64 end) |
| { |
| struct kvm_mem_range r; |
| |
| if (!find_mem_range(start, &r)) |
| return false; |
| |
| return is_in_mem_range(end - 1, &r); |
| } |
| |
| static inline int __host_stage2_idmap(u64 start, u64 end, |
| enum kvm_pgtable_prot prot, |
| bool update_iommu) |
| { |
| int ret; |
| |
| ret = kvm_pgtable_stage2_map(&host_mmu.pgt, start, end - start, start, |
| prot, &host_s2_pool); |
| if (ret) |
| return ret; |
| |
| if (update_iommu) |
| pkvm_iommu_host_stage2_idmap(start, end, prot); |
| return 0; |
| } |
| |
| /* |
| * The pool has been provided with enough pages to cover all of memory with |
| * page granularity, but it is difficult to know how much of the MMIO range |
| * we will need to cover upfront, so we may need to 'recycle' the pages if we |
| * run out. |
| */ |
| #define host_stage2_try(fn, ...) \ |
| ({ \ |
| int __ret; \ |
| hyp_assert_lock_held(&host_mmu.lock); \ |
| __ret = fn(__VA_ARGS__); \ |
| if (__ret == -ENOMEM) { \ |
| __ret = host_stage2_unmap_dev_all(); \ |
| if (!__ret) \ |
| __ret = fn(__VA_ARGS__); \ |
| } \ |
| __ret; \ |
| }) |
| |
| static inline bool range_included(struct kvm_mem_range *child, |
| struct kvm_mem_range *parent) |
| { |
| return parent->start <= child->start && child->end <= parent->end; |
| } |
| |
| static int host_stage2_adjust_range(u64 addr, struct kvm_mem_range *range) |
| { |
| struct kvm_mem_range cur; |
| kvm_pte_t pte; |
| u32 level; |
| int ret; |
| |
| hyp_assert_lock_held(&host_mmu.lock); |
| ret = kvm_pgtable_get_leaf(&host_mmu.pgt, addr, &pte, &level); |
| if (ret) |
| return ret; |
| |
| if (kvm_pte_valid(pte)) |
| return -EAGAIN; |
| |
| if (pte) |
| return -EPERM; |
| |
| do { |
| u64 granule = kvm_granule_size(level); |
| cur.start = ALIGN_DOWN(addr, granule); |
| cur.end = cur.start + granule; |
| level++; |
| } while ((level < KVM_PGTABLE_MAX_LEVELS) && |
| !(kvm_level_supports_block_mapping(level) && |
| range_included(&cur, range))); |
| |
| *range = cur; |
| |
| return 0; |
| } |
| |
| int host_stage2_idmap_locked(phys_addr_t addr, u64 size, |
| enum kvm_pgtable_prot prot, bool update_iommu) |
| { |
| return host_stage2_try(__host_stage2_idmap, addr, addr + size, prot, update_iommu); |
| } |
| |
| #define KVM_INVALID_PTE_OWNER_MASK GENMASK(9, 2) |
| static kvm_pte_t kvm_init_invalid_leaf_owner(enum pkvm_component_id owner_id) |
| { |
| return FIELD_PREP(KVM_INVALID_PTE_OWNER_MASK, owner_id); |
| } |
| |
| int host_stage2_set_owner_locked(phys_addr_t addr, u64 size, enum pkvm_component_id owner_id) |
| { |
| kvm_pte_t annotation; |
| enum kvm_pgtable_prot prot; |
| int ret; |
| |
| if (owner_id > PKVM_ID_MAX) |
| return -EINVAL; |
| |
| annotation = kvm_init_invalid_leaf_owner(owner_id); |
| |
| ret = host_stage2_try(kvm_pgtable_stage2_annotate, &host_mmu.pgt, |
| addr, size, &host_s2_pool, annotation); |
| if (ret) |
| return ret; |
| |
| prot = owner_id == PKVM_ID_HOST ? PKVM_HOST_MEM_PROT : 0; |
| pkvm_iommu_host_stage2_idmap(addr, addr + size, prot); |
| return 0; |
| } |
| |
| static bool host_stage2_force_pte(u64 addr, u64 end, enum kvm_pgtable_prot prot) |
| { |
| /* |
| * Block mappings must be used with care in the host stage-2 as a |
| * kvm_pgtable_stage2_map() operation targeting a page in the range of |
| * an existing block will delete the block under the assumption that |
| * mappings in the rest of the block range can always be rebuilt lazily. |
| * That assumption is correct for the host stage-2 with RWX mappings |
| * targeting memory or RW mappings targeting MMIO ranges (see |
| * host_stage2_idmap() below which implements some of the host memory |
| * abort logic). However, this is not safe for any other mappings where |
| * the host stage-2 page-table is in fact the only place where this |
| * state is stored. In all those cases, it is safer to use page-level |
| * mappings, hence avoiding to lose the state because of side-effects in |
| * kvm_pgtable_stage2_map(). |
| */ |
| if (range_is_memory(addr, end)) |
| return prot != PKVM_HOST_MEM_PROT; |
| else |
| return prot != PKVM_HOST_MMIO_PROT; |
| } |
| |
| static bool host_stage2_pte_is_counted(kvm_pte_t pte, u32 level) |
| { |
| u64 phys; |
| |
| /* |
| * The refcount tracks valid entries as well as invalid entries if they |
| * encode ownership of a page to another entity than the page-table |
| * owner, whose id is 0. |
| */ |
| if (!kvm_pte_valid(pte)) |
| return !!pte; |
| |
| if (kvm_pte_table(pte, level)) |
| return true; |
| |
| phys = kvm_pte_to_phys(pte); |
| if (!addr_is_memory(phys)) |
| return (pte & KVM_HOST_S2_DEFAULT_ATTR) != |
| KVM_HOST_S2_DEFAULT_MMIO_PTE; |
| else |
| return (pte & KVM_HOST_S2_DEFAULT_ATTR) != |
| KVM_HOST_S2_DEFAULT_MEM_PTE; |
| } |
| |
| static int host_stage2_idmap(u64 addr) |
| { |
| struct kvm_mem_range range; |
| bool is_memory = !!find_mem_range(addr, &range); |
| enum kvm_pgtable_prot prot; |
| int ret; |
| |
| hyp_assert_lock_held(&host_mmu.lock); |
| |
| prot = is_memory ? PKVM_HOST_MEM_PROT : PKVM_HOST_MMIO_PROT; |
| /* |
| * Adjust against IOMMU devices first. host_stage2_adjust_range() should |
| * be called last for proper alignment. |
| */ |
| if (!is_memory) { |
| ret = pkvm_iommu_host_stage2_adjust_range(addr, &range.start, |
| &range.end); |
| if (ret) |
| return ret; |
| } |
| |
| ret = host_stage2_adjust_range(addr, &range); |
| if (ret) |
| return ret; |
| |
| return host_stage2_idmap_locked(range.start, range.end - range.start, prot, false); |
| } |
| |
| static void host_inject_abort(struct kvm_cpu_context *host_ctxt) |
| { |
| u64 spsr = read_sysreg_el2(SYS_SPSR); |
| u64 esr = read_sysreg_el2(SYS_ESR); |
| u64 ventry, ec; |
| |
| /* Repaint the ESR to report a same-level fault if taken from EL1 */ |
| if ((spsr & PSR_MODE_MASK) != PSR_MODE_EL0t) { |
| ec = ESR_ELx_EC(esr); |
| if (ec == ESR_ELx_EC_DABT_LOW) |
| ec = ESR_ELx_EC_DABT_CUR; |
| else if (ec == ESR_ELx_EC_IABT_LOW) |
| ec = ESR_ELx_EC_IABT_CUR; |
| else |
| WARN_ON(1); |
| esr &= ~ESR_ELx_EC_MASK; |
| esr |= ec << ESR_ELx_EC_SHIFT; |
| } |
| |
| /* |
| * Since S1PTW should only ever be set for stage-2 faults, we're pretty |
| * much guaranteed that it won't be set in ESR_EL1 by the hardware. So, |
| * let's use that bit to allow the host abort handler to differentiate |
| * this abort from normal userspace faults. |
| * |
| * Note: although S1PTW is RES0 at EL1, it is guaranteed by the |
| * architecture to be backed by flops, so it should be safe to use. |
| */ |
| esr |= ESR_ELx_S1PTW; |
| |
| write_sysreg_el1(esr, SYS_ESR); |
| write_sysreg_el1(spsr, SYS_SPSR); |
| write_sysreg_el1(read_sysreg_el2(SYS_ELR), SYS_ELR); |
| write_sysreg_el1(read_sysreg_el2(SYS_FAR), SYS_FAR); |
| |
| ventry = read_sysreg_el1(SYS_VBAR); |
| ventry += get_except64_offset(spsr, PSR_MODE_EL1h, except_type_sync); |
| write_sysreg_el2(ventry, SYS_ELR); |
| |
| spsr = get_except64_cpsr(spsr, system_supports_mte(), |
| read_sysreg_el1(SYS_SCTLR), PSR_MODE_EL1h); |
| write_sysreg_el2(spsr, SYS_SPSR); |
| } |
| |
| static bool is_dabt(u64 esr) |
| { |
| return ESR_ELx_EC(esr) == ESR_ELx_EC_DABT_LOW; |
| } |
| |
| static int (*perm_fault_handler)(struct kvm_cpu_context *host_ctxt, u64 esr, u64 addr); |
| |
| int hyp_register_host_perm_fault_handler(int (*cb)(struct kvm_cpu_context *ctxt, u64 esr, u64 addr)) |
| { |
| return cmpxchg(&perm_fault_handler, NULL, cb) ? -EBUSY : 0; |
| } |
| |
| static int handle_host_perm_fault(struct kvm_cpu_context *host_ctxt, u64 esr, u64 addr) |
| { |
| int (*cb)(struct kvm_cpu_context *host_ctxt, u64 esr, u64 addr); |
| |
| cb = READ_ONCE(perm_fault_handler); |
| return cb ? cb(host_ctxt, esr, addr) : -EPERM; |
| } |
| |
| void handle_host_mem_abort(struct kvm_cpu_context *host_ctxt) |
| { |
| struct kvm_vcpu_fault_info fault; |
| u64 esr, addr; |
| int ret = -EPERM; |
| |
| esr = read_sysreg_el2(SYS_ESR); |
| BUG_ON(!__get_fault_info(esr, &fault)); |
| |
| addr = (fault.hpfar_el2 & HPFAR_MASK) << 8; |
| addr |= fault.far_el2 & FAR_MASK; |
| |
| host_lock_component(); |
| |
| /* Check if an IOMMU device can handle the DABT. */ |
| if (is_dabt(esr) && !addr_is_memory(addr) && |
| pkvm_iommu_host_dabt_handler(host_ctxt, esr, addr)) |
| ret = 0; |
| |
| /* If not handled, attempt to map the page. */ |
| if (ret == -EPERM) |
| ret = host_stage2_idmap(addr); |
| |
| host_unlock_component(); |
| |
| if ((esr & ESR_ELx_FSC_TYPE) == FSC_PERM) |
| ret = handle_host_perm_fault(host_ctxt, esr, addr); |
| |
| if (ret == -EPERM) |
| host_inject_abort(host_ctxt); |
| else |
| BUG_ON(ret && ret != -EAGAIN); |
| } |
| |
| struct pkvm_mem_transition { |
| u64 nr_pages; |
| |
| struct { |
| enum pkvm_component_id id; |
| /* Address in the initiator's address space */ |
| u64 addr; |
| |
| union { |
| struct { |
| /* Address in the completer's address space */ |
| u64 completer_addr; |
| } host; |
| struct { |
| u64 completer_addr; |
| } hyp; |
| struct { |
| struct pkvm_hyp_vcpu *hyp_vcpu; |
| } guest; |
| }; |
| } initiator; |
| |
| struct { |
| enum pkvm_component_id id; |
| |
| union { |
| struct { |
| struct pkvm_hyp_vcpu *hyp_vcpu; |
| phys_addr_t phys; |
| } guest; |
| }; |
| } completer; |
| }; |
| |
| struct pkvm_mem_share { |
| const struct pkvm_mem_transition tx; |
| const enum kvm_pgtable_prot completer_prot; |
| }; |
| |
| struct pkvm_mem_donation { |
| const struct pkvm_mem_transition tx; |
| }; |
| |
| struct check_walk_data { |
| enum pkvm_page_state desired; |
| enum pkvm_page_state (*get_page_state)(kvm_pte_t pte); |
| }; |
| |
| static int __check_page_state_visitor(u64 addr, u64 end, u32 level, |
| kvm_pte_t *ptep, |
| enum kvm_pgtable_walk_flags flag, |
| void * const arg) |
| { |
| struct check_walk_data *d = arg; |
| kvm_pte_t pte = *ptep; |
| |
| if (kvm_pte_valid(pte) && !addr_is_allowed_memory(kvm_pte_to_phys(pte))) |
| return -EINVAL; |
| |
| return d->get_page_state(pte) == d->desired ? 0 : -EPERM; |
| } |
| |
| static int check_page_state_range(struct kvm_pgtable *pgt, u64 addr, u64 size, |
| struct check_walk_data *data) |
| { |
| struct kvm_pgtable_walker walker = { |
| .cb = __check_page_state_visitor, |
| .arg = data, |
| .flags = KVM_PGTABLE_WALK_LEAF, |
| }; |
| |
| return kvm_pgtable_walk(pgt, addr, size, &walker); |
| } |
| |
| static enum pkvm_page_state host_get_page_state(kvm_pte_t pte) |
| { |
| enum pkvm_page_state state = 0; |
| enum kvm_pgtable_prot prot; |
| |
| if (!kvm_pte_valid(pte) && pte) |
| return PKVM_NOPAGE; |
| |
| prot = kvm_pgtable_stage2_pte_prot(pte); |
| if (kvm_pte_valid(pte) && ((prot & KVM_PGTABLE_PROT_RWX) != PKVM_HOST_MEM_PROT)) |
| state = PKVM_PAGE_RESTRICTED_PROT; |
| |
| return state | pkvm_getstate(prot); |
| } |
| |
| static int __host_check_page_state_range(u64 addr, u64 size, |
| enum pkvm_page_state state) |
| { |
| struct check_walk_data d = { |
| .desired = state, |
| .get_page_state = host_get_page_state, |
| }; |
| |
| hyp_assert_lock_held(&host_mmu.lock); |
| return check_page_state_range(&host_mmu.pgt, addr, size, &d); |
| } |
| |
| static int __host_set_page_state_range(u64 addr, u64 size, |
| enum pkvm_page_state state) |
| { |
| enum kvm_pgtable_prot prot = pkvm_mkstate(PKVM_HOST_MEM_PROT, state); |
| |
| return host_stage2_idmap_locked(addr, size, prot, true); |
| } |
| |
| static int host_request_owned_transition(u64 *completer_addr, |
| const struct pkvm_mem_transition *tx) |
| { |
| u64 size = tx->nr_pages * PAGE_SIZE; |
| u64 addr = tx->initiator.addr; |
| |
| *completer_addr = tx->initiator.host.completer_addr; |
| return __host_check_page_state_range(addr, size, PKVM_PAGE_OWNED); |
| } |
| |
| static int host_request_unshare(u64 *completer_addr, |
| const struct pkvm_mem_transition *tx) |
| { |
| u64 size = tx->nr_pages * PAGE_SIZE; |
| u64 addr = tx->initiator.addr; |
| |
| *completer_addr = tx->initiator.host.completer_addr; |
| return __host_check_page_state_range(addr, size, PKVM_PAGE_SHARED_OWNED); |
| } |
| |
| static int host_initiate_share(u64 *completer_addr, |
| const struct pkvm_mem_transition *tx) |
| { |
| u64 size = tx->nr_pages * PAGE_SIZE; |
| u64 addr = tx->initiator.addr; |
| |
| *completer_addr = tx->initiator.host.completer_addr; |
| return __host_set_page_state_range(addr, size, PKVM_PAGE_SHARED_OWNED); |
| } |
| |
| static int host_initiate_unshare(u64 *completer_addr, |
| const struct pkvm_mem_transition *tx) |
| { |
| u64 size = tx->nr_pages * PAGE_SIZE; |
| u64 addr = tx->initiator.addr; |
| |
| *completer_addr = tx->initiator.host.completer_addr; |
| return __host_set_page_state_range(addr, size, PKVM_PAGE_OWNED); |
| } |
| |
| static int host_initiate_donation(u64 *completer_addr, |
| const struct pkvm_mem_transition *tx) |
| { |
| enum pkvm_component_id owner_id = tx->completer.id; |
| u64 size = tx->nr_pages * PAGE_SIZE; |
| |
| *completer_addr = tx->initiator.host.completer_addr; |
| return host_stage2_set_owner_locked(tx->initiator.addr, size, owner_id); |
| } |
| |
| static bool __host_ack_skip_pgtable_check(const struct pkvm_mem_transition *tx) |
| { |
| return !(IS_ENABLED(CONFIG_NVHE_EL2_DEBUG) || |
| tx->initiator.id != PKVM_ID_HYP); |
| } |
| |
| static int __host_ack_transition(u64 addr, const struct pkvm_mem_transition *tx, |
| enum pkvm_page_state state) |
| { |
| u64 size = tx->nr_pages * PAGE_SIZE; |
| |
| if (__host_ack_skip_pgtable_check(tx)) |
| return 0; |
| |
| return __host_check_page_state_range(addr, size, state); |
| } |
| |
| static int host_ack_share(u64 addr, const struct pkvm_mem_transition *tx, |
| enum kvm_pgtable_prot perms) |
| { |
| if (perms != PKVM_HOST_MEM_PROT) |
| return -EPERM; |
| |
| return __host_ack_transition(addr, tx, PKVM_NOPAGE); |
| } |
| |
| static int host_ack_donation(u64 addr, const struct pkvm_mem_transition *tx) |
| { |
| return __host_ack_transition(addr, tx, PKVM_NOPAGE); |
| } |
| |
| static int host_ack_unshare(u64 addr, const struct pkvm_mem_transition *tx) |
| { |
| return __host_ack_transition(addr, tx, PKVM_PAGE_SHARED_BORROWED); |
| } |
| |
| static int host_complete_share(u64 addr, const struct pkvm_mem_transition *tx, |
| enum kvm_pgtable_prot perms) |
| { |
| u64 size = tx->nr_pages * PAGE_SIZE; |
| int err; |
| |
| err = __host_set_page_state_range(addr, size, PKVM_PAGE_SHARED_BORROWED); |
| if (err) |
| return err; |
| |
| if (tx->initiator.id == PKVM_ID_GUEST) |
| psci_mem_protect_dec(tx->nr_pages); |
| |
| return 0; |
| } |
| |
| static int host_complete_unshare(u64 addr, const struct pkvm_mem_transition *tx) |
| { |
| enum pkvm_component_id owner_id = tx->initiator.id; |
| u64 size = tx->nr_pages * PAGE_SIZE; |
| |
| if (tx->initiator.id == PKVM_ID_GUEST) |
| psci_mem_protect_inc(tx->nr_pages); |
| |
| return host_stage2_set_owner_locked(addr, size, owner_id); |
| } |
| |
| static int host_complete_donation(u64 addr, const struct pkvm_mem_transition *tx) |
| { |
| u64 size = tx->nr_pages * PAGE_SIZE; |
| enum pkvm_component_id host_id = tx->completer.id; |
| |
| return host_stage2_set_owner_locked(addr, size, host_id); |
| } |
| |
| static enum pkvm_page_state hyp_get_page_state(kvm_pte_t pte) |
| { |
| enum pkvm_page_state state = 0; |
| enum kvm_pgtable_prot prot; |
| |
| if (!kvm_pte_valid(pte)) |
| return PKVM_NOPAGE; |
| |
| prot = kvm_pgtable_hyp_pte_prot(pte); |
| if (kvm_pte_valid(pte) && ((prot & KVM_PGTABLE_PROT_RWX) != PAGE_HYP)) |
| state = PKVM_PAGE_RESTRICTED_PROT; |
| |
| return state | pkvm_getstate(prot); |
| } |
| |
| static int __hyp_check_page_state_range(u64 addr, u64 size, |
| enum pkvm_page_state state) |
| { |
| struct check_walk_data d = { |
| .desired = state, |
| .get_page_state = hyp_get_page_state, |
| }; |
| |
| hyp_assert_lock_held(&pkvm_pgd_lock); |
| return check_page_state_range(&pkvm_pgtable, addr, size, &d); |
| } |
| |
| static int hyp_request_donation(u64 *completer_addr, |
| const struct pkvm_mem_transition *tx) |
| { |
| u64 size = tx->nr_pages * PAGE_SIZE; |
| u64 addr = tx->initiator.addr; |
| |
| *completer_addr = tx->initiator.hyp.completer_addr; |
| return __hyp_check_page_state_range(addr, size, PKVM_PAGE_OWNED); |
| } |
| |
| static int hyp_initiate_donation(u64 *completer_addr, |
| const struct pkvm_mem_transition *tx) |
| { |
| u64 size = tx->nr_pages * PAGE_SIZE; |
| int ret; |
| |
| *completer_addr = tx->initiator.hyp.completer_addr; |
| ret = kvm_pgtable_hyp_unmap(&pkvm_pgtable, tx->initiator.addr, size); |
| return (ret != size) ? -EFAULT : 0; |
| } |
| |
| static bool __hyp_ack_skip_pgtable_check(const struct pkvm_mem_transition *tx) |
| { |
| return !(IS_ENABLED(CONFIG_NVHE_EL2_DEBUG) || |
| tx->initiator.id != PKVM_ID_HOST); |
| } |
| |
| static int hyp_ack_share(u64 addr, const struct pkvm_mem_transition *tx, |
| enum kvm_pgtable_prot perms) |
| { |
| u64 size = tx->nr_pages * PAGE_SIZE; |
| |
| if (perms != PAGE_HYP) |
| return -EPERM; |
| |
| if (__hyp_ack_skip_pgtable_check(tx)) |
| return 0; |
| |
| return __hyp_check_page_state_range(addr, size, PKVM_NOPAGE); |
| } |
| |
| static int hyp_ack_unshare(u64 addr, const struct pkvm_mem_transition *tx) |
| { |
| u64 size = tx->nr_pages * PAGE_SIZE; |
| |
| if (tx->initiator.id == PKVM_ID_HOST && hyp_page_count((void *)addr)) |
| return -EBUSY; |
| |
| if (__hyp_ack_skip_pgtable_check(tx)) |
| return 0; |
| |
| return __hyp_check_page_state_range(addr, size, |
| PKVM_PAGE_SHARED_BORROWED); |
| } |
| |
| static int hyp_ack_donation(u64 addr, const struct pkvm_mem_transition *tx) |
| { |
| u64 size = tx->nr_pages * PAGE_SIZE; |
| |
| if (__hyp_ack_skip_pgtable_check(tx)) |
| return 0; |
| |
| return __hyp_check_page_state_range(addr, size, PKVM_NOPAGE); |
| } |
| |
| static int hyp_complete_share(u64 addr, const struct pkvm_mem_transition *tx, |
| enum kvm_pgtable_prot perms) |
| { |
| void *start = (void *)addr, *end = start + (tx->nr_pages * PAGE_SIZE); |
| enum kvm_pgtable_prot prot; |
| |
| prot = pkvm_mkstate(perms, PKVM_PAGE_SHARED_BORROWED); |
| return pkvm_create_mappings_locked(start, end, prot); |
| } |
| |
| static int hyp_complete_unshare(u64 addr, const struct pkvm_mem_transition *tx) |
| { |
| u64 size = tx->nr_pages * PAGE_SIZE; |
| int ret = kvm_pgtable_hyp_unmap(&pkvm_pgtable, addr, size); |
| |
| return (ret != size) ? -EFAULT : 0; |
| } |
| |
| static int hyp_complete_donation(u64 addr, |
| const struct pkvm_mem_transition *tx) |
| { |
| void *start = (void *)addr, *end = start + (tx->nr_pages * PAGE_SIZE); |
| enum kvm_pgtable_prot prot = pkvm_mkstate(PAGE_HYP, PKVM_PAGE_OWNED); |
| |
| return pkvm_create_mappings_locked(start, end, prot); |
| } |
| |
| static enum pkvm_page_state guest_get_page_state(kvm_pte_t pte) |
| { |
| enum pkvm_page_state state = 0; |
| enum kvm_pgtable_prot prot; |
| |
| if (!kvm_pte_valid(pte)) |
| return PKVM_NOPAGE; |
| |
| prot = kvm_pgtable_stage2_pte_prot(pte); |
| if (kvm_pte_valid(pte) && ((prot & KVM_PGTABLE_PROT_RWX) != KVM_PGTABLE_PROT_RWX)) |
| state = PKVM_PAGE_RESTRICTED_PROT; |
| |
| return state | pkvm_getstate(prot); |
| } |
| |
| static int __guest_check_page_state_range(struct pkvm_hyp_vcpu *vcpu, u64 addr, |
| u64 size, enum pkvm_page_state state) |
| { |
| struct pkvm_hyp_vm *vm = pkvm_hyp_vcpu_to_hyp_vm(vcpu); |
| struct check_walk_data d = { |
| .desired = state, |
| .get_page_state = guest_get_page_state, |
| }; |
| |
| hyp_assert_lock_held(&vm->lock); |
| return check_page_state_range(&vm->pgt, addr, size, &d); |
| } |
| |
| static int guest_ack_share(u64 addr, const struct pkvm_mem_transition *tx, |
| enum kvm_pgtable_prot perms) |
| { |
| u64 size = tx->nr_pages * PAGE_SIZE; |
| |
| if (perms != KVM_PGTABLE_PROT_RWX) |
| return -EPERM; |
| |
| return __guest_check_page_state_range(tx->completer.guest.hyp_vcpu, |
| addr, size, PKVM_NOPAGE); |
| } |
| |
| static int guest_ack_donation(u64 addr, const struct pkvm_mem_transition *tx) |
| { |
| u64 size = tx->nr_pages * PAGE_SIZE; |
| |
| return __guest_check_page_state_range(tx->completer.guest.hyp_vcpu, |
| addr, size, PKVM_NOPAGE); |
| } |
| |
| static int guest_complete_share(u64 addr, const struct pkvm_mem_transition *tx, |
| enum kvm_pgtable_prot perms) |
| { |
| struct pkvm_hyp_vcpu *vcpu = tx->completer.guest.hyp_vcpu; |
| struct pkvm_hyp_vm *vm = pkvm_hyp_vcpu_to_hyp_vm(vcpu); |
| u64 size = tx->nr_pages * PAGE_SIZE; |
| enum kvm_pgtable_prot prot; |
| |
| prot = pkvm_mkstate(perms, PKVM_PAGE_SHARED_BORROWED); |
| return kvm_pgtable_stage2_map(&vm->pgt, addr, size, tx->completer.guest.phys, |
| prot, &vcpu->vcpu.arch.pkvm_memcache); |
| } |
| |
| static int guest_complete_donation(u64 addr, const struct pkvm_mem_transition *tx) |
| { |
| enum kvm_pgtable_prot prot = pkvm_mkstate(KVM_PGTABLE_PROT_RWX, PKVM_PAGE_OWNED); |
| struct pkvm_hyp_vcpu *vcpu = tx->completer.guest.hyp_vcpu; |
| struct pkvm_hyp_vm *vm = pkvm_hyp_vcpu_to_hyp_vm(vcpu); |
| phys_addr_t phys = tx->completer.guest.phys; |
| u64 size = tx->nr_pages * PAGE_SIZE; |
| int err; |
| |
| if (tx->initiator.id == PKVM_ID_HOST) |
| psci_mem_protect_inc(tx->nr_pages); |
| |
| if (pkvm_ipa_range_has_pvmfw(vm, addr, addr + size)) { |
| if (WARN_ON(!pkvm_hyp_vcpu_is_protected(vcpu))) { |
| err = -EPERM; |
| goto err_undo_psci; |
| } |
| |
| WARN_ON(tx->initiator.id != PKVM_ID_HOST); |
| err = pkvm_load_pvmfw_pages(vm, addr, phys, size); |
| if (err) |
| goto err_undo_psci; |
| } |
| |
| /* |
| * If this fails, we effectively leak the pages since they're now |
| * owned by the guest but not mapped into its stage-2 page-table. |
| */ |
| return kvm_pgtable_stage2_map(&vm->pgt, addr, size, phys, prot, |
| &vcpu->vcpu.arch.pkvm_memcache); |
| |
| err_undo_psci: |
| if (tx->initiator.id == PKVM_ID_HOST) |
| psci_mem_protect_dec(tx->nr_pages); |
| return err; |
| } |
| |
| static int __guest_get_completer_addr(u64 *completer_addr, phys_addr_t phys, |
| const struct pkvm_mem_transition *tx) |
| { |
| switch (tx->completer.id) { |
| case PKVM_ID_HOST: |
| *completer_addr = phys; |
| break; |
| case PKVM_ID_HYP: |
| *completer_addr = (u64)__hyp_va(phys); |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| static int __guest_request_page_transition(u64 *completer_addr, |
| const struct pkvm_mem_transition *tx, |
| enum pkvm_page_state desired) |
| { |
| struct pkvm_hyp_vcpu *vcpu = tx->initiator.guest.hyp_vcpu; |
| struct pkvm_hyp_vm *vm = pkvm_hyp_vcpu_to_hyp_vm(vcpu); |
| enum pkvm_page_state state; |
| phys_addr_t phys; |
| kvm_pte_t pte; |
| u32 level; |
| int ret; |
| |
| if (tx->nr_pages != 1) |
| return -E2BIG; |
| |
| ret = kvm_pgtable_get_leaf(&vm->pgt, tx->initiator.addr, &pte, &level); |
| if (ret) |
| return ret; |
| |
| state = guest_get_page_state(pte); |
| if (state == PKVM_NOPAGE) |
| return -EFAULT; |
| |
| if (state != desired) |
| return -EPERM; |
| |
| /* |
| * We only deal with page granular mappings in the guest for now as |
| * the pgtable code relies on being able to recreate page mappings |
| * lazily after zapping a block mapping, which doesn't work once the |
| * pages have been donated. |
| */ |
| if (level != KVM_PGTABLE_MAX_LEVELS - 1) |
| return -EINVAL; |
| |
| phys = kvm_pte_to_phys(pte); |
| if (!addr_is_allowed_memory(phys)) |
| return -EINVAL; |
| |
| return __guest_get_completer_addr(completer_addr, phys, tx); |
| } |
| |
| static int guest_request_share(u64 *completer_addr, |
| const struct pkvm_mem_transition *tx) |
| { |
| return __guest_request_page_transition(completer_addr, tx, |
| PKVM_PAGE_OWNED); |
| } |
| |
| static int guest_request_unshare(u64 *completer_addr, |
| const struct pkvm_mem_transition *tx) |
| { |
| return __guest_request_page_transition(completer_addr, tx, |
| PKVM_PAGE_SHARED_OWNED); |
| } |
| |
| static int __guest_initiate_page_transition(u64 *completer_addr, |
| const struct pkvm_mem_transition *tx, |
| enum pkvm_page_state state) |
| { |
| struct pkvm_hyp_vcpu *vcpu = tx->initiator.guest.hyp_vcpu; |
| struct kvm_hyp_memcache *mc = &vcpu->vcpu.arch.pkvm_memcache; |
| struct pkvm_hyp_vm *vm = pkvm_hyp_vcpu_to_hyp_vm(vcpu); |
| u64 size = tx->nr_pages * PAGE_SIZE; |
| u64 addr = tx->initiator.addr; |
| enum kvm_pgtable_prot prot; |
| phys_addr_t phys; |
| kvm_pte_t pte; |
| int ret; |
| |
| ret = kvm_pgtable_get_leaf(&vm->pgt, addr, &pte, NULL); |
| if (ret) |
| return ret; |
| |
| phys = kvm_pte_to_phys(pte); |
| prot = pkvm_mkstate(kvm_pgtable_stage2_pte_prot(pte), state); |
| ret = kvm_pgtable_stage2_map(&vm->pgt, addr, size, phys, prot, mc); |
| if (ret) |
| return ret; |
| |
| return __guest_get_completer_addr(completer_addr, phys, tx); |
| } |
| |
| static int guest_initiate_share(u64 *completer_addr, |
| const struct pkvm_mem_transition *tx) |
| { |
| return __guest_initiate_page_transition(completer_addr, tx, |
| PKVM_PAGE_SHARED_OWNED); |
| } |
| |
| static int guest_initiate_unshare(u64 *completer_addr, |
| const struct pkvm_mem_transition *tx) |
| { |
| return __guest_initiate_page_transition(completer_addr, tx, |
| PKVM_PAGE_OWNED); |
| } |
| |
| static int check_share(struct pkvm_mem_share *share) |
| { |
| const struct pkvm_mem_transition *tx = &share->tx; |
| u64 completer_addr; |
| int ret; |
| |
| switch (tx->initiator.id) { |
| case PKVM_ID_HOST: |
| ret = host_request_owned_transition(&completer_addr, tx); |
| break; |
| case PKVM_ID_GUEST: |
| ret = guest_request_share(&completer_addr, tx); |
| break; |
| default: |
| ret = -EINVAL; |
| } |
| |
| if (ret) |
| return ret; |
| |
| switch (tx->completer.id) { |
| case PKVM_ID_HOST: |
| ret = host_ack_share(completer_addr, tx, share->completer_prot); |
| break; |
| case PKVM_ID_HYP: |
| ret = hyp_ack_share(completer_addr, tx, share->completer_prot); |
| break; |
| case PKVM_ID_GUEST: |
| ret = guest_ack_share(completer_addr, tx, share->completer_prot); |
| break; |
| case PKVM_ID_FFA: |
| /* |
| * We only check the host; the secure side will check the other |
| * end when we forward the FFA call. |
| */ |
| ret = 0; |
| break; |
| default: |
| ret = -EINVAL; |
| } |
| |
| return ret; |
| } |
| |
| static int __do_share(struct pkvm_mem_share *share) |
| { |
| const struct pkvm_mem_transition *tx = &share->tx; |
| u64 completer_addr; |
| int ret; |
| |
| switch (tx->initiator.id) { |
| case PKVM_ID_HOST: |
| ret = host_initiate_share(&completer_addr, tx); |
| break; |
| case PKVM_ID_GUEST: |
| ret = guest_initiate_share(&completer_addr, tx); |
| break; |
| default: |
| ret = -EINVAL; |
| } |
| |
| if (ret) |
| return ret; |
| |
| switch (tx->completer.id) { |
| case PKVM_ID_HOST: |
| ret = host_complete_share(completer_addr, tx, share->completer_prot); |
| break; |
| case PKVM_ID_HYP: |
| ret = hyp_complete_share(completer_addr, tx, share->completer_prot); |
| break; |
| case PKVM_ID_GUEST: |
| ret = guest_complete_share(completer_addr, tx, share->completer_prot); |
| break; |
| case PKVM_ID_FFA: |
| /* |
| * We're not responsible for any secure page-tables, so there's |
| * nothing to do here. |
| */ |
| ret = 0; |
| break; |
| default: |
| ret = -EINVAL; |
| } |
| |
| return ret; |
| } |
| |
| /* |
| * do_share(): |
| * |
| * The page owner grants access to another component with a given set |
| * of permissions. |
| * |
| * Initiator: OWNED => SHARED_OWNED |
| * Completer: NOPAGE => SHARED_BORROWED |
| */ |
| static int do_share(struct pkvm_mem_share *share) |
| { |
| int ret; |
| |
| ret = check_share(share); |
| if (ret) |
| return ret; |
| |
| return WARN_ON(__do_share(share)); |
| } |
| |
| static int check_unshare(struct pkvm_mem_share *share) |
| { |
| const struct pkvm_mem_transition *tx = &share->tx; |
| u64 completer_addr; |
| int ret; |
| |
| switch (tx->initiator.id) { |
| case PKVM_ID_HOST: |
| ret = host_request_unshare(&completer_addr, tx); |
| break; |
| case PKVM_ID_GUEST: |
| ret = guest_request_unshare(&completer_addr, tx); |
| break; |
| default: |
| ret = -EINVAL; |
| } |
| |
| if (ret) |
| return ret; |
| |
| switch (tx->completer.id) { |
| case PKVM_ID_HOST: |
| ret = host_ack_unshare(completer_addr, tx); |
| break; |
| case PKVM_ID_HYP: |
| ret = hyp_ack_unshare(completer_addr, tx); |
| break; |
| case PKVM_ID_FFA: |
| /* See check_share() */ |
| ret = 0; |
| break; |
| default: |
| ret = -EINVAL; |
| } |
| |
| return ret; |
| } |
| |
| static int __do_unshare(struct pkvm_mem_share *share) |
| { |
| const struct pkvm_mem_transition *tx = &share->tx; |
| u64 completer_addr; |
| int ret; |
| |
| switch (tx->initiator.id) { |
| case PKVM_ID_HOST: |
| ret = host_initiate_unshare(&completer_addr, tx); |
| break; |
| case PKVM_ID_GUEST: |
| ret = guest_initiate_unshare(&completer_addr, tx); |
| break; |
| default: |
| ret = -EINVAL; |
| } |
| |
| if (ret) |
| return ret; |
| |
| switch (tx->completer.id) { |
| case PKVM_ID_HOST: |
| ret = host_complete_unshare(completer_addr, tx); |
| break; |
| case PKVM_ID_HYP: |
| ret = hyp_complete_unshare(completer_addr, tx); |
| break; |
| case PKVM_ID_FFA: |
| /* See __do_share() */ |
| ret = 0; |
| break; |
| default: |
| ret = -EINVAL; |
| } |
| |
| return ret; |
| } |
| |
| /* |
| * do_unshare(): |
| * |
| * The page owner revokes access from another component for a range of |
| * pages which were previously shared using do_share(). |
| * |
| * Initiator: SHARED_OWNED => OWNED |
| * Completer: SHARED_BORROWED => NOPAGE |
| */ |
| static int do_unshare(struct pkvm_mem_share *share) |
| { |
| int ret; |
| |
| ret = check_unshare(share); |
| if (ret) |
| return ret; |
| |
| return WARN_ON(__do_unshare(share)); |
| } |
| |
| static int check_donation(struct pkvm_mem_donation *donation) |
| { |
| const struct pkvm_mem_transition *tx = &donation->tx; |
| u64 completer_addr; |
| int ret; |
| |
| switch (tx->initiator.id) { |
| case PKVM_ID_HOST: |
| ret = host_request_owned_transition(&completer_addr, tx); |
| break; |
| case PKVM_ID_HYP: |
| ret = hyp_request_donation(&completer_addr, tx); |
| break; |
| default: |
| ret = -EINVAL; |
| } |
| |
| if (ret) |
| return ret; |
| |
| switch (tx->completer.id) { |
| case PKVM_ID_HOST: |
| ret = host_ack_donation(completer_addr, tx); |
| break; |
| case PKVM_ID_HYP: |
| ret = hyp_ack_donation(completer_addr, tx); |
| break; |
| case PKVM_ID_GUEST: |
| ret = guest_ack_donation(completer_addr, tx); |
| break; |
| default: |
| ret = -EINVAL; |
| } |
| |
| return ret; |
| } |
| |
| static int __do_donate(struct pkvm_mem_donation *donation) |
| { |
| const struct pkvm_mem_transition *tx = &donation->tx; |
| u64 completer_addr; |
| int ret; |
| |
| switch (tx->initiator.id) { |
| case PKVM_ID_HOST: |
| ret = host_initiate_donation(&completer_addr, tx); |
| break; |
| case PKVM_ID_HYP: |
| ret = hyp_initiate_donation(&completer_addr, tx); |
| break; |
| default: |
| ret = -EINVAL; |
| } |
| |
| if (ret) |
| return ret; |
| |
| switch (tx->completer.id) { |
| case PKVM_ID_HOST: |
| ret = host_complete_donation(completer_addr, tx); |
| break; |
| case PKVM_ID_HYP: |
| ret = hyp_complete_donation(completer_addr, tx); |
| break; |
| case PKVM_ID_GUEST: |
| ret = guest_complete_donation(completer_addr, tx); |
| break; |
| default: |
| ret = -EINVAL; |
| } |
| |
| return ret; |
| } |
| |
| /* |
| * do_donate(): |
| * |
| * The page owner transfers ownership to another component, losing access |
| * as a consequence. |
| * |
| * Initiator: OWNED => NOPAGE |
| * Completer: NOPAGE => OWNED |
| */ |
| static int do_donate(struct pkvm_mem_donation *donation) |
| { |
| int ret; |
| |
| ret = check_donation(donation); |
| if (ret) |
| return ret; |
| |
| return WARN_ON(__do_donate(donation)); |
| } |
| |
| int __pkvm_host_share_hyp(u64 pfn) |
| { |
| int ret; |
| u64 host_addr = hyp_pfn_to_phys(pfn); |
| u64 hyp_addr = (u64)__hyp_va(host_addr); |
| struct pkvm_mem_share share = { |
| .tx = { |
| .nr_pages = 1, |
| .initiator = { |
| .id = PKVM_ID_HOST, |
| .addr = host_addr, |
| .host = { |
| .completer_addr = hyp_addr, |
| }, |
| }, |
| .completer = { |
| .id = PKVM_ID_HYP, |
| }, |
| }, |
| .completer_prot = PAGE_HYP, |
| }; |
| |
| host_lock_component(); |
| hyp_lock_component(); |
| |
| ret = do_share(&share); |
| |
| hyp_unlock_component(); |
| host_unlock_component(); |
| |
| return ret; |
| } |
| |
| int __pkvm_guest_share_host(struct pkvm_hyp_vcpu *vcpu, u64 ipa) |
| { |
| int ret; |
| struct pkvm_hyp_vm *vm = pkvm_hyp_vcpu_to_hyp_vm(vcpu); |
| struct pkvm_mem_share share = { |
| .tx = { |
| .nr_pages = 1, |
| .initiator = { |
| .id = PKVM_ID_GUEST, |
| .addr = ipa, |
| .guest = { |
| .hyp_vcpu = vcpu, |
| }, |
| }, |
| .completer = { |
| .id = PKVM_ID_HOST, |
| }, |
| }, |
| .completer_prot = PKVM_HOST_MEM_PROT, |
| }; |
| |
| host_lock_component(); |
| guest_lock_component(vm); |
| |
| ret = do_share(&share); |
| |
| guest_unlock_component(vm); |
| host_unlock_component(); |
| |
| return ret; |
| } |
| |
| int __pkvm_guest_unshare_host(struct pkvm_hyp_vcpu *vcpu, u64 ipa) |
| { |
| int ret; |
| struct pkvm_hyp_vm *vm = pkvm_hyp_vcpu_to_hyp_vm(vcpu); |
| struct pkvm_mem_share share = { |
| .tx = { |
| .nr_pages = 1, |
| .initiator = { |
| .id = PKVM_ID_GUEST, |
| .addr = ipa, |
| .guest = { |
| .hyp_vcpu = vcpu, |
| }, |
| }, |
| .completer = { |
| .id = PKVM_ID_HOST, |
| }, |
| }, |
| .completer_prot = PKVM_HOST_MEM_PROT, |
| }; |
| |
| host_lock_component(); |
| guest_lock_component(vm); |
| |
| ret = do_unshare(&share); |
| |
| guest_unlock_component(vm); |
| host_unlock_component(); |
| |
| return ret; |
| } |
| |
| int __pkvm_host_unshare_hyp(u64 pfn) |
| { |
| int ret; |
| u64 host_addr = hyp_pfn_to_phys(pfn); |
| u64 hyp_addr = (u64)__hyp_va(host_addr); |
| struct pkvm_mem_share share = { |
| .tx = { |
| .nr_pages = 1, |
| .initiator = { |
| .id = PKVM_ID_HOST, |
| .addr = host_addr, |
| .host = { |
| .completer_addr = hyp_addr, |
| }, |
| }, |
| .completer = { |
| .id = PKVM_ID_HYP, |
| }, |
| }, |
| .completer_prot = PAGE_HYP, |
| }; |
| |
| host_lock_component(); |
| hyp_lock_component(); |
| |
| ret = do_unshare(&share); |
| |
| hyp_unlock_component(); |
| host_unlock_component(); |
| |
| return ret; |
| } |
| |
| int __pkvm_host_donate_hyp(u64 pfn, u64 nr_pages) |
| { |
| int ret; |
| u64 host_addr = hyp_pfn_to_phys(pfn); |
| u64 hyp_addr = (u64)__hyp_va(host_addr); |
| struct pkvm_mem_donation donation = { |
| .tx = { |
| .nr_pages = nr_pages, |
| .initiator = { |
| .id = PKVM_ID_HOST, |
| .addr = host_addr, |
| .host = { |
| .completer_addr = hyp_addr, |
| }, |
| }, |
| .completer = { |
| .id = PKVM_ID_HYP, |
| }, |
| }, |
| }; |
| |
| host_lock_component(); |
| hyp_lock_component(); |
| |
| ret = do_donate(&donation); |
| |
| hyp_unlock_component(); |
| host_unlock_component(); |
| |
| return ret; |
| } |
| |
| int __pkvm_hyp_donate_host(u64 pfn, u64 nr_pages) |
| { |
| int ret; |
| u64 host_addr = hyp_pfn_to_phys(pfn); |
| u64 hyp_addr = (u64)__hyp_va(host_addr); |
| struct pkvm_mem_donation donation = { |
| .tx = { |
| .nr_pages = nr_pages, |
| .initiator = { |
| .id = PKVM_ID_HYP, |
| .addr = hyp_addr, |
| .hyp = { |
| .completer_addr = host_addr, |
| }, |
| }, |
| .completer = { |
| .id = PKVM_ID_HOST, |
| }, |
| }, |
| }; |
| |
| host_lock_component(); |
| hyp_lock_component(); |
| |
| ret = do_donate(&donation); |
| |
| hyp_unlock_component(); |
| host_unlock_component(); |
| |
| return ret; |
| } |
| |
| int hyp_protect_host_page(u64 pfn, enum kvm_pgtable_prot prot) |
| { |
| u64 addr = hyp_pfn_to_phys(pfn); |
| kvm_pte_t pte; |
| u32 level; |
| int ret; |
| |
| if ((prot & KVM_PGTABLE_PROT_RWX) != prot || prot == KVM_PGTABLE_PROT_RWX) |
| return -EINVAL; |
| |
| host_lock_component(); |
| ret = kvm_pgtable_get_leaf(&host_mmu.pgt, addr, &pte, &level); |
| if (ret) |
| goto unlock; |
| |
| if (host_get_page_state(pte) != PKVM_PAGE_OWNED) { |
| ret = -EPERM; |
| goto unlock; |
| } |
| |
| /* XXX: optimize ... */ |
| if (kvm_pte_valid(pte) && (level == KVM_PGTABLE_MAX_LEVELS - 1)) |
| ret = kvm_pgtable_stage2_unmap(&host_mmu.pgt, addr, PAGE_SIZE); |
| if (!ret) |
| ret = host_stage2_idmap_locked(addr, PAGE_SIZE, prot, false); |
| |
| unlock: |
| host_unlock_component(); |
| |
| return ret; |
| } |
| |
| int hyp_pin_shared_mem(void *from, void *to) |
| { |
| u64 cur, start = ALIGN_DOWN((u64)from, PAGE_SIZE); |
| u64 end = PAGE_ALIGN((u64)to); |
| u64 size = end - start; |
| int ret; |
| |
| host_lock_component(); |
| hyp_lock_component(); |
| |
| ret = __host_check_page_state_range(__hyp_pa(start), size, |
| PKVM_PAGE_SHARED_OWNED); |
| if (ret) |
| goto unlock; |
| |
| ret = __hyp_check_page_state_range(start, size, |
| PKVM_PAGE_SHARED_BORROWED); |
| if (ret) |
| goto unlock; |
| |
| for (cur = start; cur < end; cur += PAGE_SIZE) |
| hyp_page_ref_inc(hyp_virt_to_page(cur)); |
| |
| unlock: |
| hyp_unlock_component(); |
| host_unlock_component(); |
| |
| return ret; |
| } |
| |
| void hyp_unpin_shared_mem(void *from, void *to) |
| { |
| u64 cur, start = ALIGN_DOWN((u64)from, PAGE_SIZE); |
| u64 end = PAGE_ALIGN((u64)to); |
| |
| host_lock_component(); |
| hyp_lock_component(); |
| |
| for (cur = start; cur < end; cur += PAGE_SIZE) |
| hyp_page_ref_dec(hyp_virt_to_page(cur)); |
| |
| hyp_unlock_component(); |
| host_unlock_component(); |
| } |
| |
| int __pkvm_host_share_guest(u64 pfn, u64 gfn, struct pkvm_hyp_vcpu *vcpu) |
| { |
| int ret; |
| u64 host_addr = hyp_pfn_to_phys(pfn); |
| u64 guest_addr = hyp_pfn_to_phys(gfn); |
| struct pkvm_hyp_vm *vm = pkvm_hyp_vcpu_to_hyp_vm(vcpu); |
| struct pkvm_mem_share share = { |
| .tx = { |
| .nr_pages = 1, |
| .initiator = { |
| .id = PKVM_ID_HOST, |
| .addr = host_addr, |
| .host = { |
| .completer_addr = guest_addr, |
| }, |
| }, |
| .completer = { |
| .id = PKVM_ID_GUEST, |
| .guest = { |
| .hyp_vcpu = vcpu, |
| .phys = host_addr, |
| }, |
| }, |
| }, |
| .completer_prot = KVM_PGTABLE_PROT_RWX, |
| }; |
| |
| host_lock_component(); |
| guest_lock_component(vm); |
| |
| ret = do_share(&share); |
| |
| guest_unlock_component(vm); |
| host_unlock_component(); |
| |
| return ret; |
| } |
| |
| int __pkvm_host_donate_guest(u64 pfn, u64 gfn, struct pkvm_hyp_vcpu *vcpu) |
| { |
| int ret; |
| u64 host_addr = hyp_pfn_to_phys(pfn); |
| u64 guest_addr = hyp_pfn_to_phys(gfn); |
| struct pkvm_hyp_vm *vm = pkvm_hyp_vcpu_to_hyp_vm(vcpu); |
| struct pkvm_mem_donation donation = { |
| .tx = { |
| .nr_pages = 1, |
| .initiator = { |
| .id = PKVM_ID_HOST, |
| .addr = host_addr, |
| .host = { |
| .completer_addr = guest_addr, |
| }, |
| }, |
| .completer = { |
| .id = PKVM_ID_GUEST, |
| .guest = { |
| .hyp_vcpu = vcpu, |
| .phys = host_addr, |
| }, |
| }, |
| }, |
| }; |
| |
| host_lock_component(); |
| guest_lock_component(vm); |
| |
| ret = do_donate(&donation); |
| |
| guest_unlock_component(vm); |
| host_unlock_component(); |
| |
| return ret; |
| } |
| |
| int __pkvm_host_share_ffa(u64 pfn, u64 nr_pages) |
| { |
| int ret; |
| struct pkvm_mem_share share = { |
| .tx = { |
| .nr_pages = nr_pages, |
| .initiator = { |
| .id = PKVM_ID_HOST, |
| .addr = hyp_pfn_to_phys(pfn), |
| }, |
| .completer = { |
| .id = PKVM_ID_FFA, |
| }, |
| }, |
| }; |
| |
| host_lock_component(); |
| ret = do_share(&share); |
| host_unlock_component(); |
| |
| return ret; |
| } |
| |
| |
| int __pkvm_host_unshare_ffa(u64 pfn, u64 nr_pages) |
| { |
| int ret; |
| struct pkvm_mem_share share = { |
| .tx = { |
| .nr_pages = nr_pages, |
| .initiator = { |
| .id = PKVM_ID_HOST, |
| .addr = hyp_pfn_to_phys(pfn), |
| }, |
| .completer = { |
| .id = PKVM_ID_FFA, |
| }, |
| }, |
| }; |
| |
| host_lock_component(); |
| ret = do_unshare(&share); |
| host_unlock_component(); |
| |
| return ret; |
| } |
| |
| void hyp_poison_page(phys_addr_t phys) |
| { |
| void *addr = hyp_fixmap_map(phys); |
| |
| memset(addr, 0, PAGE_SIZE); |
| /* |
| * Prefer kvm_flush_dcache_to_poc() over __clean_dcache_guest_page() |
| * here as the latter may elide the CMO under the assumption that FWB |
| * will be enabled on CPUs that support it. This is incorrect for the |
| * host stage-2 and would otherwise lead to a malicious host potentially |
| * being able to read the contents of newly reclaimed guest pages. |
| */ |
| kvm_flush_dcache_to_poc(addr, PAGE_SIZE); |
| hyp_fixmap_unmap(); |
| } |
| |
| int __pkvm_host_reclaim_page(u64 pfn) |
| { |
| u64 addr = hyp_pfn_to_phys(pfn); |
| struct hyp_page *page; |
| kvm_pte_t pte; |
| int ret; |
| |
| host_lock_component(); |
| |
| ret = kvm_pgtable_get_leaf(&host_mmu.pgt, addr, &pte, NULL); |
| if (ret) |
| goto unlock; |
| |
| if (host_get_page_state(pte) == PKVM_PAGE_OWNED) |
| goto unlock; |
| |
| page = hyp_phys_to_page(addr); |
| if (!(page->flags & HOST_PAGE_PENDING_RECLAIM)) { |
| ret = -EPERM; |
| goto unlock; |
| } |
| |
| if (page->flags & HOST_PAGE_NEED_POISONING) { |
| hyp_poison_page(addr); |
| page->flags &= ~HOST_PAGE_NEED_POISONING; |
| psci_mem_protect_dec(1); |
| } |
| |
| ret = host_stage2_set_owner_locked(addr, PAGE_SIZE, PKVM_ID_HOST); |
| if (ret) |
| goto unlock; |
| page->flags &= ~HOST_PAGE_PENDING_RECLAIM; |
| |
| unlock: |
| host_unlock_component(); |
| |
| return ret; |
| } |
| |
| /* Replace this with something more structured once day */ |
| #define MMIO_NOTE (('M' << 24 | 'M' << 16 | 'I' << 8 | 'O') << 1) |
| |
| static bool __check_ioguard_page(struct pkvm_hyp_vcpu *hyp_vcpu, u64 ipa) |
| { |
| struct pkvm_hyp_vm *vm = pkvm_hyp_vcpu_to_hyp_vm(hyp_vcpu); |
| kvm_pte_t pte; |
| u32 level; |
| int ret; |
| |
| ret = kvm_pgtable_get_leaf(&vm->pgt, ipa, &pte, &level); |
| if (ret) |
| return false; |
| |
| /* Must be a PAGE_SIZE mapping with our annotation */ |
| return (BIT(ARM64_HW_PGTABLE_LEVEL_SHIFT(level)) == PAGE_SIZE && |
| pte == MMIO_NOTE); |
| } |
| |
| int __pkvm_install_ioguard_page(struct pkvm_hyp_vcpu *hyp_vcpu, u64 ipa) |
| { |
| struct pkvm_hyp_vm *vm = pkvm_hyp_vcpu_to_hyp_vm(hyp_vcpu); |
| kvm_pte_t pte; |
| u32 level; |
| int ret; |
| |
| if (!test_bit(KVM_ARCH_FLAG_MMIO_GUARD, &vm->kvm.arch.flags)) |
| return -EINVAL; |
| |
| if (ipa & ~PAGE_MASK) |
| return -EINVAL; |
| |
| guest_lock_component(vm); |
| |
| ret = kvm_pgtable_get_leaf(&vm->pgt, ipa, &pte, &level); |
| if (ret) |
| goto unlock; |
| |
| if (pte && BIT(ARM64_HW_PGTABLE_LEVEL_SHIFT(level)) == PAGE_SIZE) { |
| /* |
| * Already flagged as MMIO, let's accept it, and fail |
| * otherwise |
| */ |
| if (pte != MMIO_NOTE) |
| ret = -EBUSY; |
| |
| goto unlock; |
| } |
| |
| ret = kvm_pgtable_stage2_annotate(&vm->pgt, ipa, PAGE_SIZE, |
| &hyp_vcpu->vcpu.arch.pkvm_memcache, |
| MMIO_NOTE); |
| |
| unlock: |
| guest_unlock_component(vm); |
| return ret; |
| } |
| |
| int __pkvm_remove_ioguard_page(struct pkvm_hyp_vcpu *hyp_vcpu, u64 ipa) |
| { |
| struct pkvm_hyp_vm *vm = pkvm_hyp_vcpu_to_hyp_vm(hyp_vcpu); |
| |
| if (!test_bit(KVM_ARCH_FLAG_MMIO_GUARD, &vm->kvm.arch.flags)) |
| return -EINVAL; |
| |
| guest_lock_component(vm); |
| |
| if (__check_ioguard_page(hyp_vcpu, ipa)) |
| WARN_ON(kvm_pgtable_stage2_unmap(&vm->pgt, |
| ALIGN_DOWN(ipa, PAGE_SIZE), PAGE_SIZE)); |
| |
| guest_unlock_component(vm); |
| return 0; |
| } |
| |
| bool __pkvm_check_ioguard_page(struct pkvm_hyp_vcpu *hyp_vcpu) |
| { |
| struct pkvm_hyp_vm *vm = pkvm_hyp_vcpu_to_hyp_vm(hyp_vcpu); |
| u64 ipa, end; |
| bool ret; |
| |
| if (!kvm_vcpu_dabt_isvalid(&hyp_vcpu->vcpu)) |
| return false; |
| |
| if (!test_bit(KVM_ARCH_FLAG_MMIO_GUARD, &vm->kvm.arch.flags)) |
| return true; |
| |
| ipa = kvm_vcpu_get_fault_ipa(&hyp_vcpu->vcpu); |
| ipa |= kvm_vcpu_get_hfar(&hyp_vcpu->vcpu) & FAR_MASK; |
| end = ipa + kvm_vcpu_dabt_get_as(&hyp_vcpu->vcpu) - 1; |
| |
| guest_lock_component(vm); |
| ret = __check_ioguard_page(hyp_vcpu, ipa); |
| if ((end & PAGE_MASK) != (ipa & PAGE_MASK)) |
| ret &= __check_ioguard_page(hyp_vcpu, end); |
| guest_unlock_component(vm); |
| |
| return ret; |
| } |