| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * linux/fs/ext4/balloc.c |
| * |
| * Copyright (C) 1992, 1993, 1994, 1995 |
| * Remy Card (card@masi.ibp.fr) |
| * Laboratoire MASI - Institut Blaise Pascal |
| * Universite Pierre et Marie Curie (Paris VI) |
| * |
| * Enhanced block allocation by Stephen Tweedie (sct@redhat.com), 1993 |
| * Big-endian to little-endian byte-swapping/bitmaps by |
| * David S. Miller (davem@caip.rutgers.edu), 1995 |
| */ |
| |
| #include <linux/time.h> |
| #include <linux/capability.h> |
| #include <linux/fs.h> |
| #include <linux/quotaops.h> |
| #include <linux/buffer_head.h> |
| #include "ext4.h" |
| #include "ext4_jbd2.h" |
| #include "mballoc.h" |
| |
| #include <trace/events/ext4.h> |
| |
| static unsigned ext4_num_base_meta_clusters(struct super_block *sb, |
| ext4_group_t block_group); |
| /* |
| * balloc.c contains the blocks allocation and deallocation routines |
| */ |
| |
| /* |
| * Calculate block group number for a given block number |
| */ |
| ext4_group_t ext4_get_group_number(struct super_block *sb, |
| ext4_fsblk_t block) |
| { |
| ext4_group_t group; |
| |
| if (test_opt2(sb, STD_GROUP_SIZE)) |
| group = (block - |
| le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block)) >> |
| (EXT4_BLOCK_SIZE_BITS(sb) + EXT4_CLUSTER_BITS(sb) + 3); |
| else |
| ext4_get_group_no_and_offset(sb, block, &group, NULL); |
| return group; |
| } |
| |
| /* |
| * Calculate the block group number and offset into the block/cluster |
| * allocation bitmap, given a block number |
| */ |
| void ext4_get_group_no_and_offset(struct super_block *sb, ext4_fsblk_t blocknr, |
| ext4_group_t *blockgrpp, ext4_grpblk_t *offsetp) |
| { |
| struct ext4_super_block *es = EXT4_SB(sb)->s_es; |
| ext4_grpblk_t offset; |
| |
| blocknr = blocknr - le32_to_cpu(es->s_first_data_block); |
| offset = do_div(blocknr, EXT4_BLOCKS_PER_GROUP(sb)) >> |
| EXT4_SB(sb)->s_cluster_bits; |
| if (offsetp) |
| *offsetp = offset; |
| if (blockgrpp) |
| *blockgrpp = blocknr; |
| |
| } |
| |
| /* |
| * Check whether the 'block' lives within the 'block_group'. Returns 1 if so |
| * and 0 otherwise. |
| */ |
| static inline int ext4_block_in_group(struct super_block *sb, |
| ext4_fsblk_t block, |
| ext4_group_t block_group) |
| { |
| ext4_group_t actual_group; |
| |
| actual_group = ext4_get_group_number(sb, block); |
| return (actual_group == block_group) ? 1 : 0; |
| } |
| |
| /* |
| * Return the number of clusters used for file system metadata; this |
| * represents the overhead needed by the file system. |
| */ |
| static unsigned ext4_num_overhead_clusters(struct super_block *sb, |
| ext4_group_t block_group, |
| struct ext4_group_desc *gdp) |
| { |
| unsigned base_clusters, num_clusters; |
| int block_cluster = -1, inode_cluster; |
| int itbl_cluster_start = -1, itbl_cluster_end = -1; |
| ext4_fsblk_t start = ext4_group_first_block_no(sb, block_group); |
| ext4_fsblk_t end = start + EXT4_BLOCKS_PER_GROUP(sb) - 1; |
| ext4_fsblk_t itbl_blk_start, itbl_blk_end; |
| struct ext4_sb_info *sbi = EXT4_SB(sb); |
| |
| /* This is the number of clusters used by the superblock, |
| * block group descriptors, and reserved block group |
| * descriptor blocks */ |
| base_clusters = ext4_num_base_meta_clusters(sb, block_group); |
| num_clusters = base_clusters; |
| |
| /* |
| * Account and record inode table clusters if any cluster |
| * is in the block group, or inode table cluster range is |
| * [-1, -1] and won't overlap with block/inode bitmap cluster |
| * accounted below. |
| */ |
| itbl_blk_start = ext4_inode_table(sb, gdp); |
| itbl_blk_end = itbl_blk_start + sbi->s_itb_per_group - 1; |
| if (itbl_blk_start <= end && itbl_blk_end >= start) { |
| itbl_blk_start = itbl_blk_start >= start ? |
| itbl_blk_start : start; |
| itbl_blk_end = itbl_blk_end <= end ? |
| itbl_blk_end : end; |
| |
| itbl_cluster_start = EXT4_B2C(sbi, itbl_blk_start - start); |
| itbl_cluster_end = EXT4_B2C(sbi, itbl_blk_end - start); |
| |
| num_clusters += itbl_cluster_end - itbl_cluster_start + 1; |
| /* check if border cluster is overlapped */ |
| if (itbl_cluster_start == base_clusters - 1) |
| num_clusters--; |
| } |
| |
| /* |
| * For the allocation bitmaps, we first need to check to see |
| * if the block is in the block group. If it is, then check |
| * to see if the cluster is already accounted for in the clusters |
| * used for the base metadata cluster and inode tables cluster. |
| * Normally all of these blocks are contiguous, so the special |
| * case handling shouldn't be necessary except for *very* |
| * unusual file system layouts. |
| */ |
| if (ext4_block_in_group(sb, ext4_block_bitmap(sb, gdp), block_group)) { |
| block_cluster = EXT4_B2C(sbi, |
| ext4_block_bitmap(sb, gdp) - start); |
| if (block_cluster >= base_clusters && |
| (block_cluster < itbl_cluster_start || |
| block_cluster > itbl_cluster_end)) |
| num_clusters++; |
| } |
| |
| if (ext4_block_in_group(sb, ext4_inode_bitmap(sb, gdp), block_group)) { |
| inode_cluster = EXT4_B2C(sbi, |
| ext4_inode_bitmap(sb, gdp) - start); |
| /* |
| * Additional check if inode bitmap is in just accounted |
| * block_cluster |
| */ |
| if (inode_cluster != block_cluster && |
| inode_cluster >= base_clusters && |
| (inode_cluster < itbl_cluster_start || |
| inode_cluster > itbl_cluster_end)) |
| num_clusters++; |
| } |
| |
| return num_clusters; |
| } |
| |
| static unsigned int num_clusters_in_group(struct super_block *sb, |
| ext4_group_t block_group) |
| { |
| unsigned int blocks; |
| |
| if (block_group == ext4_get_groups_count(sb) - 1) { |
| /* |
| * Even though mke2fs always initializes the first and |
| * last group, just in case some other tool was used, |
| * we need to make sure we calculate the right free |
| * blocks. |
| */ |
| blocks = ext4_blocks_count(EXT4_SB(sb)->s_es) - |
| ext4_group_first_block_no(sb, block_group); |
| } else |
| blocks = EXT4_BLOCKS_PER_GROUP(sb); |
| return EXT4_NUM_B2C(EXT4_SB(sb), blocks); |
| } |
| |
| /* Initializes an uninitialized block bitmap */ |
| static int ext4_init_block_bitmap(struct super_block *sb, |
| struct buffer_head *bh, |
| ext4_group_t block_group, |
| struct ext4_group_desc *gdp) |
| { |
| unsigned int bit, bit_max; |
| struct ext4_sb_info *sbi = EXT4_SB(sb); |
| ext4_fsblk_t start, tmp; |
| |
| ASSERT(buffer_locked(bh)); |
| |
| if (!ext4_group_desc_csum_verify(sb, block_group, gdp)) { |
| ext4_mark_group_bitmap_corrupted(sb, block_group, |
| EXT4_GROUP_INFO_BBITMAP_CORRUPT | |
| EXT4_GROUP_INFO_IBITMAP_CORRUPT); |
| return -EFSBADCRC; |
| } |
| memset(bh->b_data, 0, sb->s_blocksize); |
| |
| bit_max = ext4_num_base_meta_clusters(sb, block_group); |
| if ((bit_max >> 3) >= bh->b_size) |
| return -EFSCORRUPTED; |
| |
| for (bit = 0; bit < bit_max; bit++) |
| ext4_set_bit(bit, bh->b_data); |
| |
| start = ext4_group_first_block_no(sb, block_group); |
| |
| /* Set bits for block and inode bitmaps, and inode table */ |
| tmp = ext4_block_bitmap(sb, gdp); |
| if (ext4_block_in_group(sb, tmp, block_group)) |
| ext4_set_bit(EXT4_B2C(sbi, tmp - start), bh->b_data); |
| |
| tmp = ext4_inode_bitmap(sb, gdp); |
| if (ext4_block_in_group(sb, tmp, block_group)) |
| ext4_set_bit(EXT4_B2C(sbi, tmp - start), bh->b_data); |
| |
| tmp = ext4_inode_table(sb, gdp); |
| for (; tmp < ext4_inode_table(sb, gdp) + |
| sbi->s_itb_per_group; tmp++) { |
| if (ext4_block_in_group(sb, tmp, block_group)) |
| ext4_set_bit(EXT4_B2C(sbi, tmp - start), bh->b_data); |
| } |
| |
| /* |
| * Also if the number of blocks within the group is less than |
| * the blocksize * 8 ( which is the size of bitmap ), set rest |
| * of the block bitmap to 1 |
| */ |
| ext4_mark_bitmap_end(num_clusters_in_group(sb, block_group), |
| sb->s_blocksize * 8, bh->b_data); |
| return 0; |
| } |
| |
| /* Return the number of free blocks in a block group. It is used when |
| * the block bitmap is uninitialized, so we can't just count the bits |
| * in the bitmap. */ |
| unsigned ext4_free_clusters_after_init(struct super_block *sb, |
| ext4_group_t block_group, |
| struct ext4_group_desc *gdp) |
| { |
| return num_clusters_in_group(sb, block_group) - |
| ext4_num_overhead_clusters(sb, block_group, gdp); |
| } |
| |
| /* |
| * The free blocks are managed by bitmaps. A file system contains several |
| * blocks groups. Each group contains 1 bitmap block for blocks, 1 bitmap |
| * block for inodes, N blocks for the inode table and data blocks. |
| * |
| * The file system contains group descriptors which are located after the |
| * super block. Each descriptor contains the number of the bitmap block and |
| * the free blocks count in the block. The descriptors are loaded in memory |
| * when a file system is mounted (see ext4_fill_super). |
| */ |
| |
| /** |
| * ext4_get_group_desc() -- load group descriptor from disk |
| * @sb: super block |
| * @block_group: given block group |
| * @bh: pointer to the buffer head to store the block |
| * group descriptor |
| */ |
| struct ext4_group_desc * ext4_get_group_desc(struct super_block *sb, |
| ext4_group_t block_group, |
| struct buffer_head **bh) |
| { |
| unsigned int group_desc; |
| unsigned int offset; |
| ext4_group_t ngroups = ext4_get_groups_count(sb); |
| struct ext4_group_desc *desc; |
| struct ext4_sb_info *sbi = EXT4_SB(sb); |
| struct buffer_head *bh_p; |
| |
| if (block_group >= ngroups) { |
| ext4_error(sb, "block_group >= groups_count - block_group = %u," |
| " groups_count = %u", block_group, ngroups); |
| |
| return NULL; |
| } |
| |
| group_desc = block_group >> EXT4_DESC_PER_BLOCK_BITS(sb); |
| offset = block_group & (EXT4_DESC_PER_BLOCK(sb) - 1); |
| bh_p = sbi_array_rcu_deref(sbi, s_group_desc, group_desc); |
| /* |
| * sbi_array_rcu_deref returns with rcu unlocked, this is ok since |
| * the pointer being dereferenced won't be dereferenced again. By |
| * looking at the usage in add_new_gdb() the value isn't modified, |
| * just the pointer, and so it remains valid. |
| */ |
| if (!bh_p) { |
| ext4_error(sb, "Group descriptor not loaded - " |
| "block_group = %u, group_desc = %u, desc = %u", |
| block_group, group_desc, offset); |
| return NULL; |
| } |
| |
| desc = (struct ext4_group_desc *)( |
| (__u8 *)bh_p->b_data + |
| offset * EXT4_DESC_SIZE(sb)); |
| if (bh) |
| *bh = bh_p; |
| return desc; |
| } |
| |
| /* |
| * Return the block number which was discovered to be invalid, or 0 if |
| * the block bitmap is valid. |
| */ |
| static ext4_fsblk_t ext4_valid_block_bitmap(struct super_block *sb, |
| struct ext4_group_desc *desc, |
| ext4_group_t block_group, |
| struct buffer_head *bh) |
| { |
| struct ext4_sb_info *sbi = EXT4_SB(sb); |
| ext4_grpblk_t offset; |
| ext4_grpblk_t next_zero_bit; |
| ext4_grpblk_t max_bit = EXT4_CLUSTERS_PER_GROUP(sb); |
| ext4_fsblk_t blk; |
| ext4_fsblk_t group_first_block; |
| |
| if (ext4_has_feature_flex_bg(sb)) { |
| /* with FLEX_BG, the inode/block bitmaps and itable |
| * blocks may not be in the group at all |
| * so the bitmap validation will be skipped for those groups |
| * or it has to also read the block group where the bitmaps |
| * are located to verify they are set. |
| */ |
| return 0; |
| } |
| group_first_block = ext4_group_first_block_no(sb, block_group); |
| |
| /* check whether block bitmap block number is set */ |
| blk = ext4_block_bitmap(sb, desc); |
| offset = blk - group_first_block; |
| if (offset < 0 || EXT4_B2C(sbi, offset) >= max_bit || |
| !ext4_test_bit(EXT4_B2C(sbi, offset), bh->b_data)) |
| /* bad block bitmap */ |
| return blk; |
| |
| /* check whether the inode bitmap block number is set */ |
| blk = ext4_inode_bitmap(sb, desc); |
| offset = blk - group_first_block; |
| if (offset < 0 || EXT4_B2C(sbi, offset) >= max_bit || |
| !ext4_test_bit(EXT4_B2C(sbi, offset), bh->b_data)) |
| /* bad block bitmap */ |
| return blk; |
| |
| /* check whether the inode table block number is set */ |
| blk = ext4_inode_table(sb, desc); |
| offset = blk - group_first_block; |
| if (offset < 0 || EXT4_B2C(sbi, offset) >= max_bit || |
| EXT4_B2C(sbi, offset + sbi->s_itb_per_group - 1) >= max_bit) |
| return blk; |
| next_zero_bit = ext4_find_next_zero_bit(bh->b_data, |
| EXT4_B2C(sbi, offset + sbi->s_itb_per_group - 1) + 1, |
| EXT4_B2C(sbi, offset)); |
| if (next_zero_bit < |
| EXT4_B2C(sbi, offset + sbi->s_itb_per_group - 1) + 1) |
| /* bad bitmap for inode tables */ |
| return blk; |
| return 0; |
| } |
| |
| static int ext4_validate_block_bitmap(struct super_block *sb, |
| struct ext4_group_desc *desc, |
| ext4_group_t block_group, |
| struct buffer_head *bh) |
| { |
| ext4_fsblk_t blk; |
| struct ext4_group_info *grp; |
| |
| if (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) |
| return 0; |
| |
| grp = ext4_get_group_info(sb, block_group); |
| |
| if (buffer_verified(bh)) |
| return 0; |
| if (EXT4_MB_GRP_BBITMAP_CORRUPT(grp)) |
| return -EFSCORRUPTED; |
| |
| ext4_lock_group(sb, block_group); |
| if (buffer_verified(bh)) |
| goto verified; |
| if (unlikely(!ext4_block_bitmap_csum_verify(sb, desc, bh) || |
| ext4_simulate_fail(sb, EXT4_SIM_BBITMAP_CRC))) { |
| ext4_unlock_group(sb, block_group); |
| ext4_error(sb, "bg %u: bad block bitmap checksum", block_group); |
| ext4_mark_group_bitmap_corrupted(sb, block_group, |
| EXT4_GROUP_INFO_BBITMAP_CORRUPT); |
| return -EFSBADCRC; |
| } |
| blk = ext4_valid_block_bitmap(sb, desc, block_group, bh); |
| if (unlikely(blk != 0)) { |
| ext4_unlock_group(sb, block_group); |
| ext4_error(sb, "bg %u: block %llu: invalid block bitmap", |
| block_group, blk); |
| ext4_mark_group_bitmap_corrupted(sb, block_group, |
| EXT4_GROUP_INFO_BBITMAP_CORRUPT); |
| return -EFSCORRUPTED; |
| } |
| set_buffer_verified(bh); |
| verified: |
| ext4_unlock_group(sb, block_group); |
| return 0; |
| } |
| |
| /** |
| * ext4_read_block_bitmap_nowait() |
| * @sb: super block |
| * @block_group: given block group |
| * @ignore_locked: ignore locked buffers |
| * |
| * Read the bitmap for a given block_group,and validate the |
| * bits for block/inode/inode tables are set in the bitmaps |
| * |
| * Return buffer_head on success or an ERR_PTR in case of failure. |
| */ |
| struct buffer_head * |
| ext4_read_block_bitmap_nowait(struct super_block *sb, ext4_group_t block_group, |
| bool ignore_locked) |
| { |
| struct ext4_group_desc *desc; |
| struct ext4_sb_info *sbi = EXT4_SB(sb); |
| struct buffer_head *bh; |
| ext4_fsblk_t bitmap_blk; |
| int err; |
| |
| desc = ext4_get_group_desc(sb, block_group, NULL); |
| if (!desc) |
| return ERR_PTR(-EFSCORRUPTED); |
| bitmap_blk = ext4_block_bitmap(sb, desc); |
| if ((bitmap_blk <= le32_to_cpu(sbi->s_es->s_first_data_block)) || |
| (bitmap_blk >= ext4_blocks_count(sbi->s_es))) { |
| ext4_error(sb, "Invalid block bitmap block %llu in " |
| "block_group %u", bitmap_blk, block_group); |
| ext4_mark_group_bitmap_corrupted(sb, block_group, |
| EXT4_GROUP_INFO_BBITMAP_CORRUPT); |
| return ERR_PTR(-EFSCORRUPTED); |
| } |
| bh = sb_getblk(sb, bitmap_blk); |
| if (unlikely(!bh)) { |
| ext4_warning(sb, "Cannot get buffer for block bitmap - " |
| "block_group = %u, block_bitmap = %llu", |
| block_group, bitmap_blk); |
| return ERR_PTR(-ENOMEM); |
| } |
| |
| if (ignore_locked && buffer_locked(bh)) { |
| /* buffer under IO already, return if called for prefetching */ |
| put_bh(bh); |
| return NULL; |
| } |
| |
| if (bitmap_uptodate(bh)) |
| goto verify; |
| |
| lock_buffer(bh); |
| if (bitmap_uptodate(bh)) { |
| unlock_buffer(bh); |
| goto verify; |
| } |
| ext4_lock_group(sb, block_group); |
| if (ext4_has_group_desc_csum(sb) && |
| (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) { |
| if (block_group == 0) { |
| ext4_unlock_group(sb, block_group); |
| unlock_buffer(bh); |
| ext4_error(sb, "Block bitmap for bg 0 marked " |
| "uninitialized"); |
| err = -EFSCORRUPTED; |
| goto out; |
| } |
| err = ext4_init_block_bitmap(sb, bh, block_group, desc); |
| if (err) { |
| ext4_unlock_group(sb, block_group); |
| unlock_buffer(bh); |
| ext4_error(sb, "Failed to init block bitmap for group " |
| "%u: %d", block_group, err); |
| goto out; |
| } |
| set_bitmap_uptodate(bh); |
| set_buffer_uptodate(bh); |
| set_buffer_verified(bh); |
| ext4_unlock_group(sb, block_group); |
| unlock_buffer(bh); |
| return bh; |
| } |
| ext4_unlock_group(sb, block_group); |
| if (buffer_uptodate(bh)) { |
| /* |
| * if not uninit if bh is uptodate, |
| * bitmap is also uptodate |
| */ |
| set_bitmap_uptodate(bh); |
| unlock_buffer(bh); |
| goto verify; |
| } |
| /* |
| * submit the buffer_head for reading |
| */ |
| set_buffer_new(bh); |
| trace_ext4_read_block_bitmap_load(sb, block_group, ignore_locked); |
| ext4_read_bh_nowait(bh, REQ_META | REQ_PRIO | |
| (ignore_locked ? REQ_RAHEAD : 0), |
| ext4_end_bitmap_read); |
| return bh; |
| verify: |
| err = ext4_validate_block_bitmap(sb, desc, block_group, bh); |
| if (err) |
| goto out; |
| return bh; |
| out: |
| put_bh(bh); |
| return ERR_PTR(err); |
| } |
| |
| /* Returns 0 on success, -errno on error */ |
| int ext4_wait_block_bitmap(struct super_block *sb, ext4_group_t block_group, |
| struct buffer_head *bh) |
| { |
| struct ext4_group_desc *desc; |
| |
| if (!buffer_new(bh)) |
| return 0; |
| desc = ext4_get_group_desc(sb, block_group, NULL); |
| if (!desc) |
| return -EFSCORRUPTED; |
| wait_on_buffer(bh); |
| ext4_simulate_fail_bh(sb, bh, EXT4_SIM_BBITMAP_EIO); |
| if (!buffer_uptodate(bh)) { |
| ext4_error_err(sb, EIO, "Cannot read block bitmap - " |
| "block_group = %u, block_bitmap = %llu", |
| block_group, (unsigned long long) bh->b_blocknr); |
| ext4_mark_group_bitmap_corrupted(sb, block_group, |
| EXT4_GROUP_INFO_BBITMAP_CORRUPT); |
| return -EIO; |
| } |
| clear_buffer_new(bh); |
| /* Panic or remount fs read-only if block bitmap is invalid */ |
| return ext4_validate_block_bitmap(sb, desc, block_group, bh); |
| } |
| |
| struct buffer_head * |
| ext4_read_block_bitmap(struct super_block *sb, ext4_group_t block_group) |
| { |
| struct buffer_head *bh; |
| int err; |
| |
| bh = ext4_read_block_bitmap_nowait(sb, block_group, false); |
| if (IS_ERR(bh)) |
| return bh; |
| err = ext4_wait_block_bitmap(sb, block_group, bh); |
| if (err) { |
| put_bh(bh); |
| return ERR_PTR(err); |
| } |
| return bh; |
| } |
| |
| /** |
| * ext4_has_free_clusters() |
| * @sbi: in-core super block structure. |
| * @nclusters: number of needed blocks |
| * @flags: flags from ext4_mb_new_blocks() |
| * |
| * Check if filesystem has nclusters free & available for allocation. |
| * On success return 1, return 0 on failure. |
| */ |
| static int ext4_has_free_clusters(struct ext4_sb_info *sbi, |
| s64 nclusters, unsigned int flags) |
| { |
| s64 free_clusters, dirty_clusters, rsv, resv_clusters; |
| struct percpu_counter *fcc = &sbi->s_freeclusters_counter; |
| struct percpu_counter *dcc = &sbi->s_dirtyclusters_counter; |
| |
| free_clusters = percpu_counter_read_positive(fcc); |
| dirty_clusters = percpu_counter_read_positive(dcc); |
| resv_clusters = atomic64_read(&sbi->s_resv_clusters); |
| |
| /* |
| * r_blocks_count should always be multiple of the cluster ratio so |
| * we are safe to do a plane bit shift only. |
| */ |
| rsv = (ext4_r_blocks_count(sbi->s_es) >> sbi->s_cluster_bits) + |
| resv_clusters; |
| |
| if (free_clusters - (nclusters + rsv + dirty_clusters) < |
| EXT4_FREECLUSTERS_WATERMARK) { |
| free_clusters = percpu_counter_sum_positive(fcc); |
| dirty_clusters = percpu_counter_sum_positive(dcc); |
| } |
| /* Check whether we have space after accounting for current |
| * dirty clusters & root reserved clusters. |
| */ |
| if (free_clusters >= (rsv + nclusters + dirty_clusters)) |
| return 1; |
| |
| /* Hm, nope. Are (enough) root reserved clusters available? */ |
| if (uid_eq(sbi->s_resuid, current_fsuid()) || |
| (!gid_eq(sbi->s_resgid, GLOBAL_ROOT_GID) && in_group_p(sbi->s_resgid)) || |
| capable(CAP_SYS_RESOURCE) || |
| (flags & EXT4_MB_USE_ROOT_BLOCKS)) { |
| |
| if (free_clusters >= (nclusters + dirty_clusters + |
| resv_clusters)) |
| return 1; |
| } |
| /* No free blocks. Let's see if we can dip into reserved pool */ |
| if (flags & EXT4_MB_USE_RESERVED) { |
| if (free_clusters >= (nclusters + dirty_clusters)) |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| int ext4_claim_free_clusters(struct ext4_sb_info *sbi, |
| s64 nclusters, unsigned int flags) |
| { |
| if (ext4_has_free_clusters(sbi, nclusters, flags)) { |
| percpu_counter_add(&sbi->s_dirtyclusters_counter, nclusters); |
| return 0; |
| } else |
| return -ENOSPC; |
| } |
| |
| /** |
| * ext4_should_retry_alloc() - check if a block allocation should be retried |
| * @sb: superblock |
| * @retries: number of retry attempts made so far |
| * |
| * ext4_should_retry_alloc() is called when ENOSPC is returned while |
| * attempting to allocate blocks. If there's an indication that a pending |
| * journal transaction might free some space and allow another attempt to |
| * succeed, this function will wait for the current or committing transaction |
| * to complete and then return TRUE. |
| */ |
| int ext4_should_retry_alloc(struct super_block *sb, int *retries) |
| { |
| struct ext4_sb_info *sbi = EXT4_SB(sb); |
| |
| if (!sbi->s_journal) |
| return 0; |
| |
| if (++(*retries) > 3) { |
| percpu_counter_inc(&sbi->s_sra_exceeded_retry_limit); |
| return 0; |
| } |
| |
| /* |
| * if there's no indication that blocks are about to be freed it's |
| * possible we just missed a transaction commit that did so |
| */ |
| smp_mb(); |
| if (sbi->s_mb_free_pending == 0) { |
| if (test_opt(sb, DISCARD)) { |
| atomic_inc(&sbi->s_retry_alloc_pending); |
| flush_work(&sbi->s_discard_work); |
| atomic_dec(&sbi->s_retry_alloc_pending); |
| } |
| return ext4_has_free_clusters(sbi, 1, 0); |
| } |
| |
| /* |
| * it's possible we've just missed a transaction commit here, |
| * so ignore the returned status |
| */ |
| ext4_debug("%s: retrying operation after ENOSPC\n", sb->s_id); |
| (void) jbd2_journal_force_commit_nested(sbi->s_journal); |
| return 1; |
| } |
| |
| /* |
| * ext4_new_meta_blocks() -- allocate block for meta data (indexing) blocks |
| * |
| * @handle: handle to this transaction |
| * @inode: file inode |
| * @goal: given target block(filesystem wide) |
| * @count: pointer to total number of clusters needed |
| * @errp: error code |
| * |
| * Return 1st allocated block number on success, *count stores total account |
| * error stores in errp pointer |
| */ |
| ext4_fsblk_t ext4_new_meta_blocks(handle_t *handle, struct inode *inode, |
| ext4_fsblk_t goal, unsigned int flags, |
| unsigned long *count, int *errp) |
| { |
| struct ext4_allocation_request ar; |
| ext4_fsblk_t ret; |
| |
| memset(&ar, 0, sizeof(ar)); |
| /* Fill with neighbour allocated blocks */ |
| ar.inode = inode; |
| ar.goal = goal; |
| ar.len = count ? *count : 1; |
| ar.flags = flags; |
| |
| ret = ext4_mb_new_blocks(handle, &ar, errp); |
| if (count) |
| *count = ar.len; |
| /* |
| * Account for the allocated meta blocks. We will never |
| * fail EDQUOT for metdata, but we do account for it. |
| */ |
| if (!(*errp) && (flags & EXT4_MB_DELALLOC_RESERVED)) { |
| dquot_alloc_block_nofail(inode, |
| EXT4_C2B(EXT4_SB(inode->i_sb), ar.len)); |
| } |
| return ret; |
| } |
| |
| /** |
| * ext4_count_free_clusters() -- count filesystem free clusters |
| * @sb: superblock |
| * |
| * Adds up the number of free clusters from each block group. |
| */ |
| ext4_fsblk_t ext4_count_free_clusters(struct super_block *sb) |
| { |
| ext4_fsblk_t desc_count; |
| struct ext4_group_desc *gdp; |
| ext4_group_t i; |
| ext4_group_t ngroups = ext4_get_groups_count(sb); |
| struct ext4_group_info *grp; |
| #ifdef EXT4FS_DEBUG |
| struct ext4_super_block *es; |
| ext4_fsblk_t bitmap_count; |
| unsigned int x; |
| struct buffer_head *bitmap_bh = NULL; |
| |
| es = EXT4_SB(sb)->s_es; |
| desc_count = 0; |
| bitmap_count = 0; |
| gdp = NULL; |
| |
| for (i = 0; i < ngroups; i++) { |
| gdp = ext4_get_group_desc(sb, i, NULL); |
| if (!gdp) |
| continue; |
| grp = NULL; |
| if (EXT4_SB(sb)->s_group_info) |
| grp = ext4_get_group_info(sb, i); |
| if (!grp || !EXT4_MB_GRP_BBITMAP_CORRUPT(grp)) |
| desc_count += ext4_free_group_clusters(sb, gdp); |
| brelse(bitmap_bh); |
| bitmap_bh = ext4_read_block_bitmap(sb, i); |
| if (IS_ERR(bitmap_bh)) { |
| bitmap_bh = NULL; |
| continue; |
| } |
| |
| x = ext4_count_free(bitmap_bh->b_data, |
| EXT4_CLUSTERS_PER_GROUP(sb) / 8); |
| printk(KERN_DEBUG "group %u: stored = %d, counted = %u\n", |
| i, ext4_free_group_clusters(sb, gdp), x); |
| bitmap_count += x; |
| } |
| brelse(bitmap_bh); |
| printk(KERN_DEBUG "ext4_count_free_clusters: stored = %llu" |
| ", computed = %llu, %llu\n", |
| EXT4_NUM_B2C(EXT4_SB(sb), ext4_free_blocks_count(es)), |
| desc_count, bitmap_count); |
| return bitmap_count; |
| #else |
| desc_count = 0; |
| for (i = 0; i < ngroups; i++) { |
| gdp = ext4_get_group_desc(sb, i, NULL); |
| if (!gdp) |
| continue; |
| grp = NULL; |
| if (EXT4_SB(sb)->s_group_info) |
| grp = ext4_get_group_info(sb, i); |
| if (!grp || !EXT4_MB_GRP_BBITMAP_CORRUPT(grp)) |
| desc_count += ext4_free_group_clusters(sb, gdp); |
| } |
| |
| return desc_count; |
| #endif |
| } |
| |
| static inline int test_root(ext4_group_t a, int b) |
| { |
| while (1) { |
| if (a < b) |
| return 0; |
| if (a == b) |
| return 1; |
| if ((a % b) != 0) |
| return 0; |
| a = a / b; |
| } |
| } |
| |
| /** |
| * ext4_bg_has_super - number of blocks used by the superblock in group |
| * @sb: superblock for filesystem |
| * @group: group number to check |
| * |
| * Return the number of blocks used by the superblock (primary or backup) |
| * in this group. Currently this will be only 0 or 1. |
| */ |
| int ext4_bg_has_super(struct super_block *sb, ext4_group_t group) |
| { |
| struct ext4_super_block *es = EXT4_SB(sb)->s_es; |
| |
| if (group == 0) |
| return 1; |
| if (ext4_has_feature_sparse_super2(sb)) { |
| if (group == le32_to_cpu(es->s_backup_bgs[0]) || |
| group == le32_to_cpu(es->s_backup_bgs[1])) |
| return 1; |
| return 0; |
| } |
| if ((group <= 1) || !ext4_has_feature_sparse_super(sb)) |
| return 1; |
| if (!(group & 1)) |
| return 0; |
| if (test_root(group, 3) || (test_root(group, 5)) || |
| test_root(group, 7)) |
| return 1; |
| |
| return 0; |
| } |
| |
| static unsigned long ext4_bg_num_gdb_meta(struct super_block *sb, |
| ext4_group_t group) |
| { |
| unsigned long metagroup = group / EXT4_DESC_PER_BLOCK(sb); |
| ext4_group_t first = metagroup * EXT4_DESC_PER_BLOCK(sb); |
| ext4_group_t last = first + EXT4_DESC_PER_BLOCK(sb) - 1; |
| |
| if (group == first || group == first + 1 || group == last) |
| return 1; |
| return 0; |
| } |
| |
| static unsigned long ext4_bg_num_gdb_nometa(struct super_block *sb, |
| ext4_group_t group) |
| { |
| if (!ext4_bg_has_super(sb, group)) |
| return 0; |
| |
| return EXT4_SB(sb)->s_gdb_count; |
| } |
| |
| /** |
| * ext4_bg_num_gdb - number of blocks used by the group table in group |
| * @sb: superblock for filesystem |
| * @group: group number to check |
| * |
| * Return the number of blocks used by the group descriptor table |
| * (primary or backup) in this group. In the future there may be a |
| * different number of descriptor blocks in each group. |
| */ |
| unsigned long ext4_bg_num_gdb(struct super_block *sb, ext4_group_t group) |
| { |
| unsigned long first_meta_bg = |
| le32_to_cpu(EXT4_SB(sb)->s_es->s_first_meta_bg); |
| unsigned long metagroup = group / EXT4_DESC_PER_BLOCK(sb); |
| |
| if (!ext4_has_feature_meta_bg(sb) || metagroup < first_meta_bg) |
| return ext4_bg_num_gdb_nometa(sb, group); |
| |
| return ext4_bg_num_gdb_meta(sb,group); |
| |
| } |
| |
| /* |
| * This function returns the number of file system metadata clusters at |
| * the beginning of a block group, including the reserved gdt blocks. |
| */ |
| static unsigned ext4_num_base_meta_clusters(struct super_block *sb, |
| ext4_group_t block_group) |
| { |
| struct ext4_sb_info *sbi = EXT4_SB(sb); |
| unsigned num; |
| |
| /* Check for superblock and gdt backups in this group */ |
| num = ext4_bg_has_super(sb, block_group); |
| |
| if (!ext4_has_feature_meta_bg(sb) || |
| block_group < le32_to_cpu(sbi->s_es->s_first_meta_bg) * |
| sbi->s_desc_per_block) { |
| if (num) { |
| num += ext4_bg_num_gdb_nometa(sb, block_group); |
| num += le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks); |
| } |
| } else { /* For META_BG_BLOCK_GROUPS */ |
| num += ext4_bg_num_gdb_meta(sb, block_group); |
| } |
| return EXT4_NUM_B2C(sbi, num); |
| } |
| /** |
| * ext4_inode_to_goal_block - return a hint for block allocation |
| * @inode: inode for block allocation |
| * |
| * Return the ideal location to start allocating blocks for a |
| * newly created inode. |
| */ |
| ext4_fsblk_t ext4_inode_to_goal_block(struct inode *inode) |
| { |
| struct ext4_inode_info *ei = EXT4_I(inode); |
| ext4_group_t block_group; |
| ext4_grpblk_t colour; |
| int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb)); |
| ext4_fsblk_t bg_start; |
| ext4_fsblk_t last_block; |
| |
| block_group = ei->i_block_group; |
| if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) { |
| /* |
| * If there are at least EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME |
| * block groups per flexgroup, reserve the first block |
| * group for directories and special files. Regular |
| * files will start at the second block group. This |
| * tends to speed up directory access and improves |
| * fsck times. |
| */ |
| block_group &= ~(flex_size-1); |
| if (S_ISREG(inode->i_mode)) |
| block_group++; |
| } |
| bg_start = ext4_group_first_block_no(inode->i_sb, block_group); |
| last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1; |
| |
| /* |
| * If we are doing delayed allocation, we don't need take |
| * colour into account. |
| */ |
| if (test_opt(inode->i_sb, DELALLOC)) |
| return bg_start; |
| |
| if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block) |
| colour = (task_pid_nr(current) % 16) * |
| (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16); |
| else |
| colour = (task_pid_nr(current) % 16) * |
| ((last_block - bg_start) / 16); |
| return bg_start + colour; |
| } |
| |