|  | /* | 
|  | *  linux/kernel/time.c | 
|  | * | 
|  | *  Copyright (C) 1991, 1992  Linus Torvalds | 
|  | * | 
|  | *  This file contains the interface functions for the various | 
|  | *  time related system calls: time, stime, gettimeofday, settimeofday, | 
|  | *			       adjtime | 
|  | */ | 
|  | /* | 
|  | * Modification history kernel/time.c | 
|  | * | 
|  | * 1993-09-02    Philip Gladstone | 
|  | *      Created file with time related functions from sched.c and adjtimex() | 
|  | * 1993-10-08    Torsten Duwe | 
|  | *      adjtime interface update and CMOS clock write code | 
|  | * 1995-08-13    Torsten Duwe | 
|  | *      kernel PLL updated to 1994-12-13 specs (rfc-1589) | 
|  | * 1999-01-16    Ulrich Windl | 
|  | *	Introduced error checking for many cases in adjtimex(). | 
|  | *	Updated NTP code according to technical memorandum Jan '96 | 
|  | *	"A Kernel Model for Precision Timekeeping" by Dave Mills | 
|  | *	Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10) | 
|  | *	(Even though the technical memorandum forbids it) | 
|  | * 2004-07-14	 Christoph Lameter | 
|  | *	Added getnstimeofday to allow the posix timer functions to return | 
|  | *	with nanosecond accuracy | 
|  | */ | 
|  |  | 
|  | #include <linux/module.h> | 
|  | #include <linux/timex.h> | 
|  | #include <linux/capability.h> | 
|  | #include <linux/clocksource.h> | 
|  | #include <linux/errno.h> | 
|  | #include <linux/syscalls.h> | 
|  | #include <linux/security.h> | 
|  | #include <linux/fs.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/math64.h> | 
|  |  | 
|  | #include <asm/uaccess.h> | 
|  | #include <asm/unistd.h> | 
|  |  | 
|  | #include "timeconst.h" | 
|  |  | 
|  | /* | 
|  | * The timezone where the local system is located.  Used as a default by some | 
|  | * programs who obtain this value by using gettimeofday. | 
|  | */ | 
|  | struct timezone sys_tz; | 
|  |  | 
|  | EXPORT_SYMBOL(sys_tz); | 
|  |  | 
|  | #ifdef __ARCH_WANT_SYS_TIME | 
|  |  | 
|  | /* | 
|  | * sys_time() can be implemented in user-level using | 
|  | * sys_gettimeofday().  Is this for backwards compatibility?  If so, | 
|  | * why not move it into the appropriate arch directory (for those | 
|  | * architectures that need it). | 
|  | */ | 
|  | asmlinkage long sys_time(time_t __user * tloc) | 
|  | { | 
|  | time_t i = get_seconds(); | 
|  |  | 
|  | if (tloc) { | 
|  | if (put_user(i,tloc)) | 
|  | i = -EFAULT; | 
|  | } | 
|  | return i; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * sys_stime() can be implemented in user-level using | 
|  | * sys_settimeofday().  Is this for backwards compatibility?  If so, | 
|  | * why not move it into the appropriate arch directory (for those | 
|  | * architectures that need it). | 
|  | */ | 
|  |  | 
|  | asmlinkage long sys_stime(time_t __user *tptr) | 
|  | { | 
|  | struct timespec tv; | 
|  | int err; | 
|  |  | 
|  | if (get_user(tv.tv_sec, tptr)) | 
|  | return -EFAULT; | 
|  |  | 
|  | tv.tv_nsec = 0; | 
|  |  | 
|  | err = security_settime(&tv, NULL); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | do_settimeofday(&tv); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #endif /* __ARCH_WANT_SYS_TIME */ | 
|  |  | 
|  | asmlinkage long sys_gettimeofday(struct timeval __user *tv, | 
|  | struct timezone __user *tz) | 
|  | { | 
|  | if (likely(tv != NULL)) { | 
|  | struct timeval ktv; | 
|  | do_gettimeofday(&ktv); | 
|  | if (copy_to_user(tv, &ktv, sizeof(ktv))) | 
|  | return -EFAULT; | 
|  | } | 
|  | if (unlikely(tz != NULL)) { | 
|  | if (copy_to_user(tz, &sys_tz, sizeof(sys_tz))) | 
|  | return -EFAULT; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Adjust the time obtained from the CMOS to be UTC time instead of | 
|  | * local time. | 
|  | * | 
|  | * This is ugly, but preferable to the alternatives.  Otherwise we | 
|  | * would either need to write a program to do it in /etc/rc (and risk | 
|  | * confusion if the program gets run more than once; it would also be | 
|  | * hard to make the program warp the clock precisely n hours)  or | 
|  | * compile in the timezone information into the kernel.  Bad, bad.... | 
|  | * | 
|  | *						- TYT, 1992-01-01 | 
|  | * | 
|  | * The best thing to do is to keep the CMOS clock in universal time (UTC) | 
|  | * as real UNIX machines always do it. This avoids all headaches about | 
|  | * daylight saving times and warping kernel clocks. | 
|  | */ | 
|  | static inline void warp_clock(void) | 
|  | { | 
|  | write_seqlock_irq(&xtime_lock); | 
|  | wall_to_monotonic.tv_sec -= sys_tz.tz_minuteswest * 60; | 
|  | xtime.tv_sec += sys_tz.tz_minuteswest * 60; | 
|  | update_xtime_cache(0); | 
|  | write_sequnlock_irq(&xtime_lock); | 
|  | clock_was_set(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * In case for some reason the CMOS clock has not already been running | 
|  | * in UTC, but in some local time: The first time we set the timezone, | 
|  | * we will warp the clock so that it is ticking UTC time instead of | 
|  | * local time. Presumably, if someone is setting the timezone then we | 
|  | * are running in an environment where the programs understand about | 
|  | * timezones. This should be done at boot time in the /etc/rc script, | 
|  | * as soon as possible, so that the clock can be set right. Otherwise, | 
|  | * various programs will get confused when the clock gets warped. | 
|  | */ | 
|  |  | 
|  | int do_sys_settimeofday(struct timespec *tv, struct timezone *tz) | 
|  | { | 
|  | static int firsttime = 1; | 
|  | int error = 0; | 
|  |  | 
|  | if (tv && !timespec_valid(tv)) | 
|  | return -EINVAL; | 
|  |  | 
|  | error = security_settime(tv, tz); | 
|  | if (error) | 
|  | return error; | 
|  |  | 
|  | if (tz) { | 
|  | /* SMP safe, global irq locking makes it work. */ | 
|  | sys_tz = *tz; | 
|  | update_vsyscall_tz(); | 
|  | if (firsttime) { | 
|  | firsttime = 0; | 
|  | if (!tv) | 
|  | warp_clock(); | 
|  | } | 
|  | } | 
|  | if (tv) | 
|  | { | 
|  | /* SMP safe, again the code in arch/foo/time.c should | 
|  | * globally block out interrupts when it runs. | 
|  | */ | 
|  | return do_settimeofday(tv); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | asmlinkage long sys_settimeofday(struct timeval __user *tv, | 
|  | struct timezone __user *tz) | 
|  | { | 
|  | struct timeval user_tv; | 
|  | struct timespec	new_ts; | 
|  | struct timezone new_tz; | 
|  |  | 
|  | if (tv) { | 
|  | if (copy_from_user(&user_tv, tv, sizeof(*tv))) | 
|  | return -EFAULT; | 
|  | new_ts.tv_sec = user_tv.tv_sec; | 
|  | new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC; | 
|  | } | 
|  | if (tz) { | 
|  | if (copy_from_user(&new_tz, tz, sizeof(*tz))) | 
|  | return -EFAULT; | 
|  | } | 
|  |  | 
|  | return do_sys_settimeofday(tv ? &new_ts : NULL, tz ? &new_tz : NULL); | 
|  | } | 
|  |  | 
|  | asmlinkage long sys_adjtimex(struct timex __user *txc_p) | 
|  | { | 
|  | struct timex txc;		/* Local copy of parameter */ | 
|  | int ret; | 
|  |  | 
|  | /* Copy the user data space into the kernel copy | 
|  | * structure. But bear in mind that the structures | 
|  | * may change | 
|  | */ | 
|  | if(copy_from_user(&txc, txc_p, sizeof(struct timex))) | 
|  | return -EFAULT; | 
|  | ret = do_adjtimex(&txc); | 
|  | return copy_to_user(txc_p, &txc, sizeof(struct timex)) ? -EFAULT : ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * current_fs_time - Return FS time | 
|  | * @sb: Superblock. | 
|  | * | 
|  | * Return the current time truncated to the time granularity supported by | 
|  | * the fs. | 
|  | */ | 
|  | struct timespec current_fs_time(struct super_block *sb) | 
|  | { | 
|  | struct timespec now = current_kernel_time(); | 
|  | return timespec_trunc(now, sb->s_time_gran); | 
|  | } | 
|  | EXPORT_SYMBOL(current_fs_time); | 
|  |  | 
|  | /* | 
|  | * Convert jiffies to milliseconds and back. | 
|  | * | 
|  | * Avoid unnecessary multiplications/divisions in the | 
|  | * two most common HZ cases: | 
|  | */ | 
|  | unsigned int inline jiffies_to_msecs(const unsigned long j) | 
|  | { | 
|  | #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ) | 
|  | return (MSEC_PER_SEC / HZ) * j; | 
|  | #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC) | 
|  | return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC); | 
|  | #else | 
|  | # if BITS_PER_LONG == 32 | 
|  | return (HZ_TO_MSEC_MUL32 * j) >> HZ_TO_MSEC_SHR32; | 
|  | # else | 
|  | return (j * HZ_TO_MSEC_NUM) / HZ_TO_MSEC_DEN; | 
|  | # endif | 
|  | #endif | 
|  | } | 
|  | EXPORT_SYMBOL(jiffies_to_msecs); | 
|  |  | 
|  | unsigned int inline jiffies_to_usecs(const unsigned long j) | 
|  | { | 
|  | #if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ) | 
|  | return (USEC_PER_SEC / HZ) * j; | 
|  | #elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC) | 
|  | return (j + (HZ / USEC_PER_SEC) - 1)/(HZ / USEC_PER_SEC); | 
|  | #else | 
|  | # if BITS_PER_LONG == 32 | 
|  | return (HZ_TO_USEC_MUL32 * j) >> HZ_TO_USEC_SHR32; | 
|  | # else | 
|  | return (j * HZ_TO_USEC_NUM) / HZ_TO_USEC_DEN; | 
|  | # endif | 
|  | #endif | 
|  | } | 
|  | EXPORT_SYMBOL(jiffies_to_usecs); | 
|  |  | 
|  | /** | 
|  | * timespec_trunc - Truncate timespec to a granularity | 
|  | * @t: Timespec | 
|  | * @gran: Granularity in ns. | 
|  | * | 
|  | * Truncate a timespec to a granularity. gran must be smaller than a second. | 
|  | * Always rounds down. | 
|  | * | 
|  | * This function should be only used for timestamps returned by | 
|  | * current_kernel_time() or CURRENT_TIME, not with do_gettimeofday() because | 
|  | * it doesn't handle the better resolution of the latter. | 
|  | */ | 
|  | struct timespec timespec_trunc(struct timespec t, unsigned gran) | 
|  | { | 
|  | /* | 
|  | * Division is pretty slow so avoid it for common cases. | 
|  | * Currently current_kernel_time() never returns better than | 
|  | * jiffies resolution. Exploit that. | 
|  | */ | 
|  | if (gran <= jiffies_to_usecs(1) * 1000) { | 
|  | /* nothing */ | 
|  | } else if (gran == 1000000000) { | 
|  | t.tv_nsec = 0; | 
|  | } else { | 
|  | t.tv_nsec -= t.tv_nsec % gran; | 
|  | } | 
|  | return t; | 
|  | } | 
|  | EXPORT_SYMBOL(timespec_trunc); | 
|  |  | 
|  | #ifndef CONFIG_GENERIC_TIME | 
|  | /* | 
|  | * Simulate gettimeofday using do_gettimeofday which only allows a timeval | 
|  | * and therefore only yields usec accuracy | 
|  | */ | 
|  | void getnstimeofday(struct timespec *tv) | 
|  | { | 
|  | struct timeval x; | 
|  |  | 
|  | do_gettimeofday(&x); | 
|  | tv->tv_sec = x.tv_sec; | 
|  | tv->tv_nsec = x.tv_usec * NSEC_PER_USEC; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(getnstimeofday); | 
|  | #endif | 
|  |  | 
|  | /* Converts Gregorian date to seconds since 1970-01-01 00:00:00. | 
|  | * Assumes input in normal date format, i.e. 1980-12-31 23:59:59 | 
|  | * => year=1980, mon=12, day=31, hour=23, min=59, sec=59. | 
|  | * | 
|  | * [For the Julian calendar (which was used in Russia before 1917, | 
|  | * Britain & colonies before 1752, anywhere else before 1582, | 
|  | * and is still in use by some communities) leave out the | 
|  | * -year/100+year/400 terms, and add 10.] | 
|  | * | 
|  | * This algorithm was first published by Gauss (I think). | 
|  | * | 
|  | * WARNING: this function will overflow on 2106-02-07 06:28:16 on | 
|  | * machines where long is 32-bit! (However, as time_t is signed, we | 
|  | * will already get problems at other places on 2038-01-19 03:14:08) | 
|  | */ | 
|  | unsigned long | 
|  | mktime(const unsigned int year0, const unsigned int mon0, | 
|  | const unsigned int day, const unsigned int hour, | 
|  | const unsigned int min, const unsigned int sec) | 
|  | { | 
|  | unsigned int mon = mon0, year = year0; | 
|  |  | 
|  | /* 1..12 -> 11,12,1..10 */ | 
|  | if (0 >= (int) (mon -= 2)) { | 
|  | mon += 12;	/* Puts Feb last since it has leap day */ | 
|  | year -= 1; | 
|  | } | 
|  |  | 
|  | return ((((unsigned long) | 
|  | (year/4 - year/100 + year/400 + 367*mon/12 + day) + | 
|  | year*365 - 719499 | 
|  | )*24 + hour /* now have hours */ | 
|  | )*60 + min /* now have minutes */ | 
|  | )*60 + sec; /* finally seconds */ | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(mktime); | 
|  |  | 
|  | /** | 
|  | * set_normalized_timespec - set timespec sec and nsec parts and normalize | 
|  | * | 
|  | * @ts:		pointer to timespec variable to be set | 
|  | * @sec:	seconds to set | 
|  | * @nsec:	nanoseconds to set | 
|  | * | 
|  | * Set seconds and nanoseconds field of a timespec variable and | 
|  | * normalize to the timespec storage format | 
|  | * | 
|  | * Note: The tv_nsec part is always in the range of | 
|  | *	0 <= tv_nsec < NSEC_PER_SEC | 
|  | * For negative values only the tv_sec field is negative ! | 
|  | */ | 
|  | void set_normalized_timespec(struct timespec *ts, time_t sec, long nsec) | 
|  | { | 
|  | while (nsec >= NSEC_PER_SEC) { | 
|  | nsec -= NSEC_PER_SEC; | 
|  | ++sec; | 
|  | } | 
|  | while (nsec < 0) { | 
|  | nsec += NSEC_PER_SEC; | 
|  | --sec; | 
|  | } | 
|  | ts->tv_sec = sec; | 
|  | ts->tv_nsec = nsec; | 
|  | } | 
|  | EXPORT_SYMBOL(set_normalized_timespec); | 
|  |  | 
|  | /** | 
|  | * ns_to_timespec - Convert nanoseconds to timespec | 
|  | * @nsec:       the nanoseconds value to be converted | 
|  | * | 
|  | * Returns the timespec representation of the nsec parameter. | 
|  | */ | 
|  | struct timespec ns_to_timespec(const s64 nsec) | 
|  | { | 
|  | struct timespec ts; | 
|  | s32 rem; | 
|  |  | 
|  | if (!nsec) | 
|  | return (struct timespec) {0, 0}; | 
|  |  | 
|  | ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem); | 
|  | if (unlikely(rem < 0)) { | 
|  | ts.tv_sec--; | 
|  | rem += NSEC_PER_SEC; | 
|  | } | 
|  | ts.tv_nsec = rem; | 
|  |  | 
|  | return ts; | 
|  | } | 
|  | EXPORT_SYMBOL(ns_to_timespec); | 
|  |  | 
|  | /** | 
|  | * ns_to_timeval - Convert nanoseconds to timeval | 
|  | * @nsec:       the nanoseconds value to be converted | 
|  | * | 
|  | * Returns the timeval representation of the nsec parameter. | 
|  | */ | 
|  | struct timeval ns_to_timeval(const s64 nsec) | 
|  | { | 
|  | struct timespec ts = ns_to_timespec(nsec); | 
|  | struct timeval tv; | 
|  |  | 
|  | tv.tv_sec = ts.tv_sec; | 
|  | tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000; | 
|  |  | 
|  | return tv; | 
|  | } | 
|  | EXPORT_SYMBOL(ns_to_timeval); | 
|  |  | 
|  | /* | 
|  | * When we convert to jiffies then we interpret incoming values | 
|  | * the following way: | 
|  | * | 
|  | * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET) | 
|  | * | 
|  | * - 'too large' values [that would result in larger than | 
|  | *   MAX_JIFFY_OFFSET values] mean 'infinite timeout' too. | 
|  | * | 
|  | * - all other values are converted to jiffies by either multiplying | 
|  | *   the input value by a factor or dividing it with a factor | 
|  | * | 
|  | * We must also be careful about 32-bit overflows. | 
|  | */ | 
|  | unsigned long msecs_to_jiffies(const unsigned int m) | 
|  | { | 
|  | /* | 
|  | * Negative value, means infinite timeout: | 
|  | */ | 
|  | if ((int)m < 0) | 
|  | return MAX_JIFFY_OFFSET; | 
|  |  | 
|  | #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ) | 
|  | /* | 
|  | * HZ is equal to or smaller than 1000, and 1000 is a nice | 
|  | * round multiple of HZ, divide with the factor between them, | 
|  | * but round upwards: | 
|  | */ | 
|  | return (m + (MSEC_PER_SEC / HZ) - 1) / (MSEC_PER_SEC / HZ); | 
|  | #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC) | 
|  | /* | 
|  | * HZ is larger than 1000, and HZ is a nice round multiple of | 
|  | * 1000 - simply multiply with the factor between them. | 
|  | * | 
|  | * But first make sure the multiplication result cannot | 
|  | * overflow: | 
|  | */ | 
|  | if (m > jiffies_to_msecs(MAX_JIFFY_OFFSET)) | 
|  | return MAX_JIFFY_OFFSET; | 
|  |  | 
|  | return m * (HZ / MSEC_PER_SEC); | 
|  | #else | 
|  | /* | 
|  | * Generic case - multiply, round and divide. But first | 
|  | * check that if we are doing a net multiplication, that | 
|  | * we wouldn't overflow: | 
|  | */ | 
|  | if (HZ > MSEC_PER_SEC && m > jiffies_to_msecs(MAX_JIFFY_OFFSET)) | 
|  | return MAX_JIFFY_OFFSET; | 
|  |  | 
|  | return (MSEC_TO_HZ_MUL32 * m + MSEC_TO_HZ_ADJ32) | 
|  | >> MSEC_TO_HZ_SHR32; | 
|  | #endif | 
|  | } | 
|  | EXPORT_SYMBOL(msecs_to_jiffies); | 
|  |  | 
|  | unsigned long usecs_to_jiffies(const unsigned int u) | 
|  | { | 
|  | if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET)) | 
|  | return MAX_JIFFY_OFFSET; | 
|  | #if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ) | 
|  | return (u + (USEC_PER_SEC / HZ) - 1) / (USEC_PER_SEC / HZ); | 
|  | #elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC) | 
|  | return u * (HZ / USEC_PER_SEC); | 
|  | #else | 
|  | return (USEC_TO_HZ_MUL32 * u + USEC_TO_HZ_ADJ32) | 
|  | >> USEC_TO_HZ_SHR32; | 
|  | #endif | 
|  | } | 
|  | EXPORT_SYMBOL(usecs_to_jiffies); | 
|  |  | 
|  | /* | 
|  | * The TICK_NSEC - 1 rounds up the value to the next resolution.  Note | 
|  | * that a remainder subtract here would not do the right thing as the | 
|  | * resolution values don't fall on second boundries.  I.e. the line: | 
|  | * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding. | 
|  | * | 
|  | * Rather, we just shift the bits off the right. | 
|  | * | 
|  | * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec | 
|  | * value to a scaled second value. | 
|  | */ | 
|  | unsigned long | 
|  | timespec_to_jiffies(const struct timespec *value) | 
|  | { | 
|  | unsigned long sec = value->tv_sec; | 
|  | long nsec = value->tv_nsec + TICK_NSEC - 1; | 
|  |  | 
|  | if (sec >= MAX_SEC_IN_JIFFIES){ | 
|  | sec = MAX_SEC_IN_JIFFIES; | 
|  | nsec = 0; | 
|  | } | 
|  | return (((u64)sec * SEC_CONVERSION) + | 
|  | (((u64)nsec * NSEC_CONVERSION) >> | 
|  | (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC; | 
|  |  | 
|  | } | 
|  | EXPORT_SYMBOL(timespec_to_jiffies); | 
|  |  | 
|  | void | 
|  | jiffies_to_timespec(const unsigned long jiffies, struct timespec *value) | 
|  | { | 
|  | /* | 
|  | * Convert jiffies to nanoseconds and separate with | 
|  | * one divide. | 
|  | */ | 
|  | u32 rem; | 
|  | value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC, | 
|  | NSEC_PER_SEC, &rem); | 
|  | value->tv_nsec = rem; | 
|  | } | 
|  | EXPORT_SYMBOL(jiffies_to_timespec); | 
|  |  | 
|  | /* Same for "timeval" | 
|  | * | 
|  | * Well, almost.  The problem here is that the real system resolution is | 
|  | * in nanoseconds and the value being converted is in micro seconds. | 
|  | * Also for some machines (those that use HZ = 1024, in-particular), | 
|  | * there is a LARGE error in the tick size in microseconds. | 
|  |  | 
|  | * The solution we use is to do the rounding AFTER we convert the | 
|  | * microsecond part.  Thus the USEC_ROUND, the bits to be shifted off. | 
|  | * Instruction wise, this should cost only an additional add with carry | 
|  | * instruction above the way it was done above. | 
|  | */ | 
|  | unsigned long | 
|  | timeval_to_jiffies(const struct timeval *value) | 
|  | { | 
|  | unsigned long sec = value->tv_sec; | 
|  | long usec = value->tv_usec; | 
|  |  | 
|  | if (sec >= MAX_SEC_IN_JIFFIES){ | 
|  | sec = MAX_SEC_IN_JIFFIES; | 
|  | usec = 0; | 
|  | } | 
|  | return (((u64)sec * SEC_CONVERSION) + | 
|  | (((u64)usec * USEC_CONVERSION + USEC_ROUND) >> | 
|  | (USEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC; | 
|  | } | 
|  | EXPORT_SYMBOL(timeval_to_jiffies); | 
|  |  | 
|  | void jiffies_to_timeval(const unsigned long jiffies, struct timeval *value) | 
|  | { | 
|  | /* | 
|  | * Convert jiffies to nanoseconds and separate with | 
|  | * one divide. | 
|  | */ | 
|  | u32 rem; | 
|  |  | 
|  | value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC, | 
|  | NSEC_PER_SEC, &rem); | 
|  | value->tv_usec = rem / NSEC_PER_USEC; | 
|  | } | 
|  | EXPORT_SYMBOL(jiffies_to_timeval); | 
|  |  | 
|  | /* | 
|  | * Convert jiffies/jiffies_64 to clock_t and back. | 
|  | */ | 
|  | clock_t jiffies_to_clock_t(long x) | 
|  | { | 
|  | #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0 | 
|  | # if HZ < USER_HZ | 
|  | return x * (USER_HZ / HZ); | 
|  | # else | 
|  | return x / (HZ / USER_HZ); | 
|  | # endif | 
|  | #else | 
|  | return div_u64((u64)x * TICK_NSEC, NSEC_PER_SEC / USER_HZ); | 
|  | #endif | 
|  | } | 
|  | EXPORT_SYMBOL(jiffies_to_clock_t); | 
|  |  | 
|  | unsigned long clock_t_to_jiffies(unsigned long x) | 
|  | { | 
|  | #if (HZ % USER_HZ)==0 | 
|  | if (x >= ~0UL / (HZ / USER_HZ)) | 
|  | return ~0UL; | 
|  | return x * (HZ / USER_HZ); | 
|  | #else | 
|  | /* Don't worry about loss of precision here .. */ | 
|  | if (x >= ~0UL / HZ * USER_HZ) | 
|  | return ~0UL; | 
|  |  | 
|  | /* .. but do try to contain it here */ | 
|  | return div_u64((u64)x * HZ, USER_HZ); | 
|  | #endif | 
|  | } | 
|  | EXPORT_SYMBOL(clock_t_to_jiffies); | 
|  |  | 
|  | u64 jiffies_64_to_clock_t(u64 x) | 
|  | { | 
|  | #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0 | 
|  | # if HZ < USER_HZ | 
|  | x = div_u64(x * USER_HZ, HZ); | 
|  | # elif HZ > USER_HZ | 
|  | x = div_u64(x, HZ / USER_HZ); | 
|  | # else | 
|  | /* Nothing to do */ | 
|  | # endif | 
|  | #else | 
|  | /* | 
|  | * There are better ways that don't overflow early, | 
|  | * but even this doesn't overflow in hundreds of years | 
|  | * in 64 bits, so.. | 
|  | */ | 
|  | x = div_u64(x * TICK_NSEC, (NSEC_PER_SEC / USER_HZ)); | 
|  | #endif | 
|  | return x; | 
|  | } | 
|  | EXPORT_SYMBOL(jiffies_64_to_clock_t); | 
|  |  | 
|  | u64 nsec_to_clock_t(u64 x) | 
|  | { | 
|  | #if (NSEC_PER_SEC % USER_HZ) == 0 | 
|  | return div_u64(x, NSEC_PER_SEC / USER_HZ); | 
|  | #elif (USER_HZ % 512) == 0 | 
|  | return div_u64(x * USER_HZ / 512, NSEC_PER_SEC / 512); | 
|  | #else | 
|  | /* | 
|  | * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024, | 
|  | * overflow after 64.99 years. | 
|  | * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ... | 
|  | */ | 
|  | return div_u64(x * 9, (9ull * NSEC_PER_SEC + (USER_HZ / 2)) / USER_HZ); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | #if (BITS_PER_LONG < 64) | 
|  | u64 get_jiffies_64(void) | 
|  | { | 
|  | unsigned long seq; | 
|  | u64 ret; | 
|  |  | 
|  | do { | 
|  | seq = read_seqbegin(&xtime_lock); | 
|  | ret = jiffies_64; | 
|  | } while (read_seqretry(&xtime_lock, seq)); | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL(get_jiffies_64); | 
|  | #endif | 
|  |  | 
|  | EXPORT_SYMBOL(jiffies); |