| /* |
| * Fast and scalable bitmap tagging variant. Uses sparser bitmaps spread |
| * over multiple cachelines to avoid ping-pong between multiple submitters |
| * or submitter and completer. Uses rolling wakeups to avoid falling of |
| * the scaling cliff when we run out of tags and have to start putting |
| * submitters to sleep. |
| * |
| * Uses active queue tracking to support fairer distribution of tags |
| * between multiple submitters when a shared tag map is used. |
| * |
| * Copyright (C) 2013-2014 Jens Axboe |
| */ |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/random.h> |
| |
| #include <linux/blk-mq.h> |
| #include "blk.h" |
| #include "blk-mq.h" |
| #include "blk-mq-tag.h" |
| |
| static bool bt_has_free_tags(struct blk_mq_bitmap_tags *bt) |
| { |
| int i; |
| |
| for (i = 0; i < bt->map_nr; i++) { |
| struct blk_align_bitmap *bm = &bt->map[i]; |
| int ret; |
| |
| ret = find_first_zero_bit(&bm->word, bm->depth); |
| if (ret < bm->depth) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| bool blk_mq_has_free_tags(struct blk_mq_tags *tags) |
| { |
| if (!tags) |
| return true; |
| |
| return bt_has_free_tags(&tags->bitmap_tags); |
| } |
| |
| static inline int bt_index_inc(int index) |
| { |
| return (index + 1) & (BT_WAIT_QUEUES - 1); |
| } |
| |
| static inline void bt_index_atomic_inc(atomic_t *index) |
| { |
| int old = atomic_read(index); |
| int new = bt_index_inc(old); |
| atomic_cmpxchg(index, old, new); |
| } |
| |
| /* |
| * If a previously inactive queue goes active, bump the active user count. |
| */ |
| bool __blk_mq_tag_busy(struct blk_mq_hw_ctx *hctx) |
| { |
| if (!test_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state) && |
| !test_and_set_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state)) |
| atomic_inc(&hctx->tags->active_queues); |
| |
| return true; |
| } |
| |
| /* |
| * Wakeup all potentially sleeping on tags |
| */ |
| void blk_mq_tag_wakeup_all(struct blk_mq_tags *tags, bool include_reserve) |
| { |
| struct blk_mq_bitmap_tags *bt; |
| int i, wake_index; |
| |
| /* |
| * Make sure all changes prior to this are visible from other CPUs. |
| */ |
| smp_mb(); |
| bt = &tags->bitmap_tags; |
| wake_index = atomic_read(&bt->wake_index); |
| for (i = 0; i < BT_WAIT_QUEUES; i++) { |
| struct bt_wait_state *bs = &bt->bs[wake_index]; |
| |
| if (waitqueue_active(&bs->wait)) |
| wake_up(&bs->wait); |
| |
| wake_index = bt_index_inc(wake_index); |
| } |
| |
| if (include_reserve) { |
| bt = &tags->breserved_tags; |
| if (waitqueue_active(&bt->bs[0].wait)) |
| wake_up(&bt->bs[0].wait); |
| } |
| } |
| |
| /* |
| * If a previously busy queue goes inactive, potential waiters could now |
| * be allowed to queue. Wake them up and check. |
| */ |
| void __blk_mq_tag_idle(struct blk_mq_hw_ctx *hctx) |
| { |
| struct blk_mq_tags *tags = hctx->tags; |
| |
| if (!test_and_clear_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state)) |
| return; |
| |
| atomic_dec(&tags->active_queues); |
| |
| blk_mq_tag_wakeup_all(tags, false); |
| } |
| |
| /* |
| * For shared tag users, we track the number of currently active users |
| * and attempt to provide a fair share of the tag depth for each of them. |
| */ |
| static inline bool hctx_may_queue(struct blk_mq_hw_ctx *hctx, |
| struct blk_mq_bitmap_tags *bt) |
| { |
| unsigned int depth, users; |
| |
| if (!hctx || !(hctx->flags & BLK_MQ_F_TAG_SHARED)) |
| return true; |
| if (!test_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state)) |
| return true; |
| |
| /* |
| * Don't try dividing an ant |
| */ |
| if (bt->depth == 1) |
| return true; |
| |
| users = atomic_read(&hctx->tags->active_queues); |
| if (!users) |
| return true; |
| |
| /* |
| * Allow at least some tags |
| */ |
| depth = max((bt->depth + users - 1) / users, 4U); |
| return atomic_read(&hctx->nr_active) < depth; |
| } |
| |
| static int __bt_get_word(struct blk_align_bitmap *bm, unsigned int last_tag, |
| bool nowrap) |
| { |
| int tag, org_last_tag = last_tag; |
| |
| while (1) { |
| tag = find_next_zero_bit(&bm->word, bm->depth, last_tag); |
| if (unlikely(tag >= bm->depth)) { |
| /* |
| * We started with an offset, and we didn't reset the |
| * offset to 0 in a failure case, so start from 0 to |
| * exhaust the map. |
| */ |
| if (org_last_tag && last_tag && !nowrap) { |
| last_tag = org_last_tag = 0; |
| continue; |
| } |
| return -1; |
| } |
| |
| if (!test_and_set_bit(tag, &bm->word)) |
| break; |
| |
| last_tag = tag + 1; |
| if (last_tag >= bm->depth - 1) |
| last_tag = 0; |
| } |
| |
| return tag; |
| } |
| |
| #define BT_ALLOC_RR(tags) (tags->alloc_policy == BLK_TAG_ALLOC_RR) |
| |
| /* |
| * Straight forward bitmap tag implementation, where each bit is a tag |
| * (cleared == free, and set == busy). The small twist is using per-cpu |
| * last_tag caches, which blk-mq stores in the blk_mq_ctx software queue |
| * contexts. This enables us to drastically limit the space searched, |
| * without dirtying an extra shared cacheline like we would if we stored |
| * the cache value inside the shared blk_mq_bitmap_tags structure. On top |
| * of that, each word of tags is in a separate cacheline. This means that |
| * multiple users will tend to stick to different cachelines, at least |
| * until the map is exhausted. |
| */ |
| static int __bt_get(struct blk_mq_hw_ctx *hctx, struct blk_mq_bitmap_tags *bt, |
| unsigned int *tag_cache, struct blk_mq_tags *tags) |
| { |
| unsigned int last_tag, org_last_tag; |
| int index, i, tag; |
| |
| if (!hctx_may_queue(hctx, bt)) |
| return -1; |
| |
| last_tag = org_last_tag = *tag_cache; |
| index = TAG_TO_INDEX(bt, last_tag); |
| |
| for (i = 0; i < bt->map_nr; i++) { |
| tag = __bt_get_word(&bt->map[index], TAG_TO_BIT(bt, last_tag), |
| BT_ALLOC_RR(tags)); |
| if (tag != -1) { |
| tag += (index << bt->bits_per_word); |
| goto done; |
| } |
| |
| /* |
| * Jump to next index, and reset the last tag to be the |
| * first tag of that index |
| */ |
| index++; |
| last_tag = (index << bt->bits_per_word); |
| |
| if (index >= bt->map_nr) { |
| index = 0; |
| last_tag = 0; |
| } |
| } |
| |
| *tag_cache = 0; |
| return -1; |
| |
| /* |
| * Only update the cache from the allocation path, if we ended |
| * up using the specific cached tag. |
| */ |
| done: |
| if (tag == org_last_tag || unlikely(BT_ALLOC_RR(tags))) { |
| last_tag = tag + 1; |
| if (last_tag >= bt->depth - 1) |
| last_tag = 0; |
| |
| *tag_cache = last_tag; |
| } |
| |
| return tag; |
| } |
| |
| static struct bt_wait_state *bt_wait_ptr(struct blk_mq_bitmap_tags *bt, |
| struct blk_mq_hw_ctx *hctx) |
| { |
| struct bt_wait_state *bs; |
| int wait_index; |
| |
| if (!hctx) |
| return &bt->bs[0]; |
| |
| wait_index = atomic_read(&hctx->wait_index); |
| bs = &bt->bs[wait_index]; |
| bt_index_atomic_inc(&hctx->wait_index); |
| return bs; |
| } |
| |
| static int bt_get(struct blk_mq_alloc_data *data, |
| struct blk_mq_bitmap_tags *bt, |
| struct blk_mq_hw_ctx *hctx, |
| unsigned int *last_tag, struct blk_mq_tags *tags) |
| { |
| struct bt_wait_state *bs; |
| DEFINE_WAIT(wait); |
| int tag; |
| |
| tag = __bt_get(hctx, bt, last_tag, tags); |
| if (tag != -1) |
| return tag; |
| |
| if (data->flags & BLK_MQ_REQ_NOWAIT) |
| return -1; |
| |
| bs = bt_wait_ptr(bt, hctx); |
| do { |
| prepare_to_wait(&bs->wait, &wait, TASK_UNINTERRUPTIBLE); |
| |
| tag = __bt_get(hctx, bt, last_tag, tags); |
| if (tag != -1) |
| break; |
| |
| /* |
| * We're out of tags on this hardware queue, kick any |
| * pending IO submits before going to sleep waiting for |
| * some to complete. Note that hctx can be NULL here for |
| * reserved tag allocation. |
| */ |
| if (hctx) |
| blk_mq_run_hw_queue(hctx, false); |
| |
| /* |
| * Retry tag allocation after running the hardware queue, |
| * as running the queue may also have found completions. |
| */ |
| tag = __bt_get(hctx, bt, last_tag, tags); |
| if (tag != -1) |
| break; |
| |
| blk_mq_put_ctx(data->ctx); |
| |
| io_schedule(); |
| |
| data->ctx = blk_mq_get_ctx(data->q); |
| data->hctx = blk_mq_map_queue(data->q, data->ctx->cpu); |
| if (data->flags & BLK_MQ_REQ_RESERVED) { |
| bt = &data->hctx->tags->breserved_tags; |
| } else { |
| last_tag = &data->ctx->last_tag; |
| hctx = data->hctx; |
| bt = &hctx->tags->bitmap_tags; |
| } |
| finish_wait(&bs->wait, &wait); |
| bs = bt_wait_ptr(bt, hctx); |
| } while (1); |
| |
| finish_wait(&bs->wait, &wait); |
| return tag; |
| } |
| |
| static unsigned int __blk_mq_get_tag(struct blk_mq_alloc_data *data) |
| { |
| int tag; |
| |
| tag = bt_get(data, &data->hctx->tags->bitmap_tags, data->hctx, |
| &data->ctx->last_tag, data->hctx->tags); |
| if (tag >= 0) |
| return tag + data->hctx->tags->nr_reserved_tags; |
| |
| return BLK_MQ_TAG_FAIL; |
| } |
| |
| static unsigned int __blk_mq_get_reserved_tag(struct blk_mq_alloc_data *data) |
| { |
| int tag, zero = 0; |
| |
| if (unlikely(!data->hctx->tags->nr_reserved_tags)) { |
| WARN_ON_ONCE(1); |
| return BLK_MQ_TAG_FAIL; |
| } |
| |
| tag = bt_get(data, &data->hctx->tags->breserved_tags, NULL, &zero, |
| data->hctx->tags); |
| if (tag < 0) |
| return BLK_MQ_TAG_FAIL; |
| |
| return tag; |
| } |
| |
| unsigned int blk_mq_get_tag(struct blk_mq_alloc_data *data) |
| { |
| if (data->flags & BLK_MQ_REQ_RESERVED) |
| return __blk_mq_get_reserved_tag(data); |
| return __blk_mq_get_tag(data); |
| } |
| |
| static struct bt_wait_state *bt_wake_ptr(struct blk_mq_bitmap_tags *bt) |
| { |
| int i, wake_index; |
| |
| wake_index = atomic_read(&bt->wake_index); |
| for (i = 0; i < BT_WAIT_QUEUES; i++) { |
| struct bt_wait_state *bs = &bt->bs[wake_index]; |
| |
| if (waitqueue_active(&bs->wait)) { |
| int o = atomic_read(&bt->wake_index); |
| if (wake_index != o) |
| atomic_cmpxchg(&bt->wake_index, o, wake_index); |
| |
| return bs; |
| } |
| |
| wake_index = bt_index_inc(wake_index); |
| } |
| |
| return NULL; |
| } |
| |
| static void bt_clear_tag(struct blk_mq_bitmap_tags *bt, unsigned int tag) |
| { |
| const int index = TAG_TO_INDEX(bt, tag); |
| struct bt_wait_state *bs; |
| int wait_cnt; |
| |
| clear_bit(TAG_TO_BIT(bt, tag), &bt->map[index].word); |
| |
| /* Ensure that the wait list checks occur after clear_bit(). */ |
| smp_mb(); |
| |
| bs = bt_wake_ptr(bt); |
| if (!bs) |
| return; |
| |
| wait_cnt = atomic_dec_return(&bs->wait_cnt); |
| if (unlikely(wait_cnt < 0)) |
| wait_cnt = atomic_inc_return(&bs->wait_cnt); |
| if (wait_cnt == 0) { |
| atomic_add(bt->wake_cnt, &bs->wait_cnt); |
| bt_index_atomic_inc(&bt->wake_index); |
| wake_up(&bs->wait); |
| } |
| } |
| |
| void blk_mq_put_tag(struct blk_mq_hw_ctx *hctx, unsigned int tag, |
| unsigned int *last_tag) |
| { |
| struct blk_mq_tags *tags = hctx->tags; |
| |
| if (tag >= tags->nr_reserved_tags) { |
| const int real_tag = tag - tags->nr_reserved_tags; |
| |
| BUG_ON(real_tag >= tags->nr_tags); |
| bt_clear_tag(&tags->bitmap_tags, real_tag); |
| if (likely(tags->alloc_policy == BLK_TAG_ALLOC_FIFO)) |
| *last_tag = real_tag; |
| } else { |
| BUG_ON(tag >= tags->nr_reserved_tags); |
| bt_clear_tag(&tags->breserved_tags, tag); |
| } |
| } |
| |
| static void bt_for_each(struct blk_mq_hw_ctx *hctx, |
| struct blk_mq_bitmap_tags *bt, unsigned int off, |
| busy_iter_fn *fn, void *data, bool reserved) |
| { |
| struct request *rq; |
| int bit, i; |
| |
| for (i = 0; i < bt->map_nr; i++) { |
| struct blk_align_bitmap *bm = &bt->map[i]; |
| |
| for (bit = find_first_bit(&bm->word, bm->depth); |
| bit < bm->depth; |
| bit = find_next_bit(&bm->word, bm->depth, bit + 1)) { |
| rq = hctx->tags->rqs[off + bit]; |
| if (rq->q == hctx->queue) |
| fn(hctx, rq, data, reserved); |
| } |
| |
| off += (1 << bt->bits_per_word); |
| } |
| } |
| |
| static void bt_tags_for_each(struct blk_mq_tags *tags, |
| struct blk_mq_bitmap_tags *bt, unsigned int off, |
| busy_tag_iter_fn *fn, void *data, bool reserved) |
| { |
| struct request *rq; |
| int bit, i; |
| |
| if (!tags->rqs) |
| return; |
| for (i = 0; i < bt->map_nr; i++) { |
| struct blk_align_bitmap *bm = &bt->map[i]; |
| |
| for (bit = find_first_bit(&bm->word, bm->depth); |
| bit < bm->depth; |
| bit = find_next_bit(&bm->word, bm->depth, bit + 1)) { |
| rq = tags->rqs[off + bit]; |
| fn(rq, data, reserved); |
| } |
| |
| off += (1 << bt->bits_per_word); |
| } |
| } |
| |
| static void blk_mq_all_tag_busy_iter(struct blk_mq_tags *tags, |
| busy_tag_iter_fn *fn, void *priv) |
| { |
| if (tags->nr_reserved_tags) |
| bt_tags_for_each(tags, &tags->breserved_tags, 0, fn, priv, true); |
| bt_tags_for_each(tags, &tags->bitmap_tags, tags->nr_reserved_tags, fn, priv, |
| false); |
| } |
| |
| void blk_mq_tagset_busy_iter(struct blk_mq_tag_set *tagset, |
| busy_tag_iter_fn *fn, void *priv) |
| { |
| int i; |
| |
| for (i = 0; i < tagset->nr_hw_queues; i++) { |
| if (tagset->tags && tagset->tags[i]) |
| blk_mq_all_tag_busy_iter(tagset->tags[i], fn, priv); |
| } |
| } |
| EXPORT_SYMBOL(blk_mq_tagset_busy_iter); |
| |
| int blk_mq_reinit_tagset(struct blk_mq_tag_set *set) |
| { |
| int i, j, ret = 0; |
| |
| if (!set->ops->reinit_request) |
| goto out; |
| |
| for (i = 0; i < set->nr_hw_queues; i++) { |
| struct blk_mq_tags *tags = set->tags[i]; |
| |
| for (j = 0; j < tags->nr_tags; j++) { |
| if (!tags->rqs[j]) |
| continue; |
| |
| ret = set->ops->reinit_request(set->driver_data, |
| tags->rqs[j]); |
| if (ret) |
| goto out; |
| } |
| } |
| |
| out: |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(blk_mq_reinit_tagset); |
| |
| void blk_mq_queue_tag_busy_iter(struct request_queue *q, busy_iter_fn *fn, |
| void *priv) |
| { |
| struct blk_mq_hw_ctx *hctx; |
| int i; |
| |
| |
| queue_for_each_hw_ctx(q, hctx, i) { |
| struct blk_mq_tags *tags = hctx->tags; |
| |
| /* |
| * If not software queues are currently mapped to this |
| * hardware queue, there's nothing to check |
| */ |
| if (!blk_mq_hw_queue_mapped(hctx)) |
| continue; |
| |
| if (tags->nr_reserved_tags) |
| bt_for_each(hctx, &tags->breserved_tags, 0, fn, priv, true); |
| bt_for_each(hctx, &tags->bitmap_tags, tags->nr_reserved_tags, fn, priv, |
| false); |
| } |
| |
| } |
| |
| static unsigned int bt_unused_tags(struct blk_mq_bitmap_tags *bt) |
| { |
| unsigned int i, used; |
| |
| for (i = 0, used = 0; i < bt->map_nr; i++) { |
| struct blk_align_bitmap *bm = &bt->map[i]; |
| |
| used += bitmap_weight(&bm->word, bm->depth); |
| } |
| |
| return bt->depth - used; |
| } |
| |
| static void bt_update_count(struct blk_mq_bitmap_tags *bt, |
| unsigned int depth) |
| { |
| unsigned int tags_per_word = 1U << bt->bits_per_word; |
| unsigned int map_depth = depth; |
| |
| if (depth) { |
| int i; |
| |
| for (i = 0; i < bt->map_nr; i++) { |
| bt->map[i].depth = min(map_depth, tags_per_word); |
| map_depth -= bt->map[i].depth; |
| } |
| } |
| |
| bt->wake_cnt = BT_WAIT_BATCH; |
| if (bt->wake_cnt > depth / BT_WAIT_QUEUES) |
| bt->wake_cnt = max(1U, depth / BT_WAIT_QUEUES); |
| |
| bt->depth = depth; |
| } |
| |
| static int bt_alloc(struct blk_mq_bitmap_tags *bt, unsigned int depth, |
| int node, bool reserved) |
| { |
| int i; |
| |
| bt->bits_per_word = ilog2(BITS_PER_LONG); |
| |
| /* |
| * Depth can be zero for reserved tags, that's not a failure |
| * condition. |
| */ |
| if (depth) { |
| unsigned int nr, tags_per_word; |
| |
| tags_per_word = (1 << bt->bits_per_word); |
| |
| /* |
| * If the tag space is small, shrink the number of tags |
| * per word so we spread over a few cachelines, at least. |
| * If less than 4 tags, just forget about it, it's not |
| * going to work optimally anyway. |
| */ |
| if (depth >= 4) { |
| while (tags_per_word * 4 > depth) { |
| bt->bits_per_word--; |
| tags_per_word = (1 << bt->bits_per_word); |
| } |
| } |
| |
| nr = ALIGN(depth, tags_per_word) / tags_per_word; |
| bt->map = kzalloc_node(nr * sizeof(struct blk_align_bitmap), |
| GFP_KERNEL, node); |
| if (!bt->map) |
| return -ENOMEM; |
| |
| bt->map_nr = nr; |
| } |
| |
| bt->bs = kzalloc(BT_WAIT_QUEUES * sizeof(*bt->bs), GFP_KERNEL); |
| if (!bt->bs) { |
| kfree(bt->map); |
| bt->map = NULL; |
| return -ENOMEM; |
| } |
| |
| bt_update_count(bt, depth); |
| |
| for (i = 0; i < BT_WAIT_QUEUES; i++) { |
| init_waitqueue_head(&bt->bs[i].wait); |
| atomic_set(&bt->bs[i].wait_cnt, bt->wake_cnt); |
| } |
| |
| return 0; |
| } |
| |
| static void bt_free(struct blk_mq_bitmap_tags *bt) |
| { |
| kfree(bt->map); |
| kfree(bt->bs); |
| } |
| |
| static struct blk_mq_tags *blk_mq_init_bitmap_tags(struct blk_mq_tags *tags, |
| int node, int alloc_policy) |
| { |
| unsigned int depth = tags->nr_tags - tags->nr_reserved_tags; |
| |
| tags->alloc_policy = alloc_policy; |
| |
| if (bt_alloc(&tags->bitmap_tags, depth, node, false)) |
| goto enomem; |
| if (bt_alloc(&tags->breserved_tags, tags->nr_reserved_tags, node, true)) |
| goto enomem; |
| |
| return tags; |
| enomem: |
| bt_free(&tags->bitmap_tags); |
| kfree(tags); |
| return NULL; |
| } |
| |
| struct blk_mq_tags *blk_mq_init_tags(unsigned int total_tags, |
| unsigned int reserved_tags, |
| int node, int alloc_policy) |
| { |
| struct blk_mq_tags *tags; |
| |
| if (total_tags > BLK_MQ_TAG_MAX) { |
| pr_err("blk-mq: tag depth too large\n"); |
| return NULL; |
| } |
| |
| tags = kzalloc_node(sizeof(*tags), GFP_KERNEL, node); |
| if (!tags) |
| return NULL; |
| |
| tags->nr_tags = total_tags; |
| tags->nr_reserved_tags = reserved_tags; |
| |
| return blk_mq_init_bitmap_tags(tags, node, alloc_policy); |
| } |
| |
| void blk_mq_free_tags(struct blk_mq_tags *tags) |
| { |
| bt_free(&tags->bitmap_tags); |
| bt_free(&tags->breserved_tags); |
| kfree(tags); |
| } |
| |
| void blk_mq_tag_init_last_tag(struct blk_mq_tags *tags, unsigned int *tag) |
| { |
| unsigned int depth = tags->nr_tags - tags->nr_reserved_tags; |
| |
| *tag = prandom_u32() % depth; |
| } |
| |
| int blk_mq_tag_update_depth(struct blk_mq_tags *tags, unsigned int tdepth) |
| { |
| tdepth -= tags->nr_reserved_tags; |
| if (tdepth > tags->nr_tags) |
| return -EINVAL; |
| |
| /* |
| * Don't need (or can't) update reserved tags here, they remain |
| * static and should never need resizing. |
| */ |
| bt_update_count(&tags->bitmap_tags, tdepth); |
| blk_mq_tag_wakeup_all(tags, false); |
| return 0; |
| } |
| |
| /** |
| * blk_mq_unique_tag() - return a tag that is unique queue-wide |
| * @rq: request for which to compute a unique tag |
| * |
| * The tag field in struct request is unique per hardware queue but not over |
| * all hardware queues. Hence this function that returns a tag with the |
| * hardware context index in the upper bits and the per hardware queue tag in |
| * the lower bits. |
| * |
| * Note: When called for a request that is queued on a non-multiqueue request |
| * queue, the hardware context index is set to zero. |
| */ |
| u32 blk_mq_unique_tag(struct request *rq) |
| { |
| struct request_queue *q = rq->q; |
| struct blk_mq_hw_ctx *hctx; |
| int hwq = 0; |
| |
| if (q->mq_ops) { |
| hctx = blk_mq_map_queue(q, rq->mq_ctx->cpu); |
| hwq = hctx->queue_num; |
| } |
| |
| return (hwq << BLK_MQ_UNIQUE_TAG_BITS) | |
| (rq->tag & BLK_MQ_UNIQUE_TAG_MASK); |
| } |
| EXPORT_SYMBOL(blk_mq_unique_tag); |
| |
| ssize_t blk_mq_tag_sysfs_show(struct blk_mq_tags *tags, char *page) |
| { |
| char *orig_page = page; |
| unsigned int free, res; |
| |
| if (!tags) |
| return 0; |
| |
| page += sprintf(page, "nr_tags=%u, reserved_tags=%u, " |
| "bits_per_word=%u\n", |
| tags->nr_tags, tags->nr_reserved_tags, |
| tags->bitmap_tags.bits_per_word); |
| |
| free = bt_unused_tags(&tags->bitmap_tags); |
| res = bt_unused_tags(&tags->breserved_tags); |
| |
| page += sprintf(page, "nr_free=%u, nr_reserved=%u\n", free, res); |
| page += sprintf(page, "active_queues=%u\n", atomic_read(&tags->active_queues)); |
| |
| return page - orig_page; |
| } |