| /* | 
 |  * net/sched/sch_sfq.c	Stochastic Fairness Queueing discipline. | 
 |  * | 
 |  *		This program is free software; you can redistribute it and/or | 
 |  *		modify it under the terms of the GNU General Public License | 
 |  *		as published by the Free Software Foundation; either version | 
 |  *		2 of the License, or (at your option) any later version. | 
 |  * | 
 |  * Authors:	Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru> | 
 |  */ | 
 |  | 
 | #include <linux/module.h> | 
 | #include <linux/types.h> | 
 | #include <linux/kernel.h> | 
 | #include <linux/jiffies.h> | 
 | #include <linux/string.h> | 
 | #include <linux/in.h> | 
 | #include <linux/errno.h> | 
 | #include <linux/init.h> | 
 | #include <linux/ipv6.h> | 
 | #include <linux/skbuff.h> | 
 | #include <linux/jhash.h> | 
 | #include <net/ip.h> | 
 | #include <net/netlink.h> | 
 | #include <net/pkt_sched.h> | 
 |  | 
 |  | 
 | /*	Stochastic Fairness Queuing algorithm. | 
 | 	======================================= | 
 |  | 
 | 	Source: | 
 | 	Paul E. McKenney "Stochastic Fairness Queuing", | 
 | 	IEEE INFOCOMM'90 Proceedings, San Francisco, 1990. | 
 |  | 
 | 	Paul E. McKenney "Stochastic Fairness Queuing", | 
 | 	"Interworking: Research and Experience", v.2, 1991, p.113-131. | 
 |  | 
 |  | 
 | 	See also: | 
 | 	M. Shreedhar and George Varghese "Efficient Fair | 
 | 	Queuing using Deficit Round Robin", Proc. SIGCOMM 95. | 
 |  | 
 |  | 
 | 	This is not the thing that is usually called (W)FQ nowadays. | 
 | 	It does not use any timestamp mechanism, but instead | 
 | 	processes queues in round-robin order. | 
 |  | 
 | 	ADVANTAGE: | 
 |  | 
 | 	- It is very cheap. Both CPU and memory requirements are minimal. | 
 |  | 
 | 	DRAWBACKS: | 
 |  | 
 | 	- "Stochastic" -> It is not 100% fair. | 
 | 	When hash collisions occur, several flows are considered as one. | 
 |  | 
 | 	- "Round-robin" -> It introduces larger delays than virtual clock | 
 | 	based schemes, and should not be used for isolating interactive | 
 | 	traffic	from non-interactive. It means, that this scheduler | 
 | 	should be used as leaf of CBQ or P3, which put interactive traffic | 
 | 	to higher priority band. | 
 |  | 
 | 	We still need true WFQ for top level CSZ, but using WFQ | 
 | 	for the best effort traffic is absolutely pointless: | 
 | 	SFQ is superior for this purpose. | 
 |  | 
 | 	IMPLEMENTATION: | 
 | 	This implementation limits maximal queue length to 128; | 
 | 	maximal mtu to 2^15-1; number of hash buckets to 1024. | 
 | 	The only goal of this restrictions was that all data | 
 | 	fit into one 4K page :-). Struct sfq_sched_data is | 
 | 	organized in anti-cache manner: all the data for a bucket | 
 | 	are scattered over different locations. This is not good, | 
 | 	but it allowed me to put it into 4K. | 
 |  | 
 | 	It is easy to increase these values, but not in flight.  */ | 
 |  | 
 | #define SFQ_DEPTH		128 | 
 | #define SFQ_HASH_DIVISOR	1024 | 
 |  | 
 | /* This type should contain at least SFQ_DEPTH*2 values */ | 
 | typedef unsigned char sfq_index; | 
 |  | 
 | struct sfq_head | 
 | { | 
 | 	sfq_index	next; | 
 | 	sfq_index	prev; | 
 | }; | 
 |  | 
 | struct sfq_sched_data | 
 | { | 
 | /* Parameters */ | 
 | 	int		perturb_period; | 
 | 	unsigned	quantum;	/* Allotment per round: MUST BE >= MTU */ | 
 | 	int		limit; | 
 |  | 
 | /* Variables */ | 
 | 	struct tcf_proto *filter_list; | 
 | 	struct timer_list perturb_timer; | 
 | 	u32		perturbation; | 
 | 	sfq_index	tail;		/* Index of current slot in round */ | 
 | 	sfq_index	max_depth;	/* Maximal depth */ | 
 |  | 
 | 	sfq_index	ht[SFQ_HASH_DIVISOR];	/* Hash table */ | 
 | 	sfq_index	next[SFQ_DEPTH];	/* Active slots link */ | 
 | 	short		allot[SFQ_DEPTH];	/* Current allotment per slot */ | 
 | 	unsigned short	hash[SFQ_DEPTH];	/* Hash value indexed by slots */ | 
 | 	struct sk_buff_head	qs[SFQ_DEPTH];		/* Slot queue */ | 
 | 	struct sfq_head	dep[SFQ_DEPTH*2];	/* Linked list of slots, indexed by depth */ | 
 | }; | 
 |  | 
 | static __inline__ unsigned sfq_fold_hash(struct sfq_sched_data *q, u32 h, u32 h1) | 
 | { | 
 | 	return jhash_2words(h, h1, q->perturbation) & (SFQ_HASH_DIVISOR - 1); | 
 | } | 
 |  | 
 | static unsigned sfq_hash(struct sfq_sched_data *q, struct sk_buff *skb) | 
 | { | 
 | 	u32 h, h2; | 
 |  | 
 | 	switch (skb->protocol) { | 
 | 	case __constant_htons(ETH_P_IP): | 
 | 	{ | 
 | 		const struct iphdr *iph = ip_hdr(skb); | 
 | 		h = iph->daddr; | 
 | 		h2 = iph->saddr ^ iph->protocol; | 
 | 		if (!(iph->frag_off&htons(IP_MF|IP_OFFSET)) && | 
 | 		    (iph->protocol == IPPROTO_TCP || | 
 | 		     iph->protocol == IPPROTO_UDP || | 
 | 		     iph->protocol == IPPROTO_UDPLITE || | 
 | 		     iph->protocol == IPPROTO_SCTP || | 
 | 		     iph->protocol == IPPROTO_DCCP || | 
 | 		     iph->protocol == IPPROTO_ESP)) | 
 | 			h2 ^= *(((u32*)iph) + iph->ihl); | 
 | 		break; | 
 | 	} | 
 | 	case __constant_htons(ETH_P_IPV6): | 
 | 	{ | 
 | 		struct ipv6hdr *iph = ipv6_hdr(skb); | 
 | 		h = iph->daddr.s6_addr32[3]; | 
 | 		h2 = iph->saddr.s6_addr32[3] ^ iph->nexthdr; | 
 | 		if (iph->nexthdr == IPPROTO_TCP || | 
 | 		    iph->nexthdr == IPPROTO_UDP || | 
 | 		    iph->nexthdr == IPPROTO_UDPLITE || | 
 | 		    iph->nexthdr == IPPROTO_SCTP || | 
 | 		    iph->nexthdr == IPPROTO_DCCP || | 
 | 		    iph->nexthdr == IPPROTO_ESP) | 
 | 			h2 ^= *(u32*)&iph[1]; | 
 | 		break; | 
 | 	} | 
 | 	default: | 
 | 		h = (unsigned long)skb->dst ^ skb->protocol; | 
 | 		h2 = (unsigned long)skb->sk; | 
 | 	} | 
 |  | 
 | 	return sfq_fold_hash(q, h, h2); | 
 | } | 
 |  | 
 | static unsigned int sfq_classify(struct sk_buff *skb, struct Qdisc *sch, | 
 | 				 int *qerr) | 
 | { | 
 | 	struct sfq_sched_data *q = qdisc_priv(sch); | 
 | 	struct tcf_result res; | 
 | 	int result; | 
 |  | 
 | 	if (TC_H_MAJ(skb->priority) == sch->handle && | 
 | 	    TC_H_MIN(skb->priority) > 0 && | 
 | 	    TC_H_MIN(skb->priority) <= SFQ_HASH_DIVISOR) | 
 | 		return TC_H_MIN(skb->priority); | 
 |  | 
 | 	if (!q->filter_list) | 
 | 		return sfq_hash(q, skb) + 1; | 
 |  | 
 | 	*qerr = NET_XMIT_BYPASS; | 
 | 	result = tc_classify(skb, q->filter_list, &res); | 
 | 	if (result >= 0) { | 
 | #ifdef CONFIG_NET_CLS_ACT | 
 | 		switch (result) { | 
 | 		case TC_ACT_STOLEN: | 
 | 		case TC_ACT_QUEUED: | 
 | 			*qerr = NET_XMIT_SUCCESS; | 
 | 		case TC_ACT_SHOT: | 
 | 			return 0; | 
 | 		} | 
 | #endif | 
 | 		if (TC_H_MIN(res.classid) <= SFQ_HASH_DIVISOR) | 
 | 			return TC_H_MIN(res.classid); | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static inline void sfq_link(struct sfq_sched_data *q, sfq_index x) | 
 | { | 
 | 	sfq_index p, n; | 
 | 	int d = q->qs[x].qlen + SFQ_DEPTH; | 
 |  | 
 | 	p = d; | 
 | 	n = q->dep[d].next; | 
 | 	q->dep[x].next = n; | 
 | 	q->dep[x].prev = p; | 
 | 	q->dep[p].next = q->dep[n].prev = x; | 
 | } | 
 |  | 
 | static inline void sfq_dec(struct sfq_sched_data *q, sfq_index x) | 
 | { | 
 | 	sfq_index p, n; | 
 |  | 
 | 	n = q->dep[x].next; | 
 | 	p = q->dep[x].prev; | 
 | 	q->dep[p].next = n; | 
 | 	q->dep[n].prev = p; | 
 |  | 
 | 	if (n == p && q->max_depth == q->qs[x].qlen + 1) | 
 | 		q->max_depth--; | 
 |  | 
 | 	sfq_link(q, x); | 
 | } | 
 |  | 
 | static inline void sfq_inc(struct sfq_sched_data *q, sfq_index x) | 
 | { | 
 | 	sfq_index p, n; | 
 | 	int d; | 
 |  | 
 | 	n = q->dep[x].next; | 
 | 	p = q->dep[x].prev; | 
 | 	q->dep[p].next = n; | 
 | 	q->dep[n].prev = p; | 
 | 	d = q->qs[x].qlen; | 
 | 	if (q->max_depth < d) | 
 | 		q->max_depth = d; | 
 |  | 
 | 	sfq_link(q, x); | 
 | } | 
 |  | 
 | static unsigned int sfq_drop(struct Qdisc *sch) | 
 | { | 
 | 	struct sfq_sched_data *q = qdisc_priv(sch); | 
 | 	sfq_index d = q->max_depth; | 
 | 	struct sk_buff *skb; | 
 | 	unsigned int len; | 
 |  | 
 | 	/* Queue is full! Find the longest slot and | 
 | 	   drop a packet from it */ | 
 |  | 
 | 	if (d > 1) { | 
 | 		sfq_index x = q->dep[d + SFQ_DEPTH].next; | 
 | 		skb = q->qs[x].prev; | 
 | 		len = skb->len; | 
 | 		__skb_unlink(skb, &q->qs[x]); | 
 | 		kfree_skb(skb); | 
 | 		sfq_dec(q, x); | 
 | 		sch->q.qlen--; | 
 | 		sch->qstats.drops++; | 
 | 		sch->qstats.backlog -= len; | 
 | 		return len; | 
 | 	} | 
 |  | 
 | 	if (d == 1) { | 
 | 		/* It is difficult to believe, but ALL THE SLOTS HAVE LENGTH 1. */ | 
 | 		d = q->next[q->tail]; | 
 | 		q->next[q->tail] = q->next[d]; | 
 | 		q->allot[q->next[d]] += q->quantum; | 
 | 		skb = q->qs[d].prev; | 
 | 		len = skb->len; | 
 | 		__skb_unlink(skb, &q->qs[d]); | 
 | 		kfree_skb(skb); | 
 | 		sfq_dec(q, d); | 
 | 		sch->q.qlen--; | 
 | 		q->ht[q->hash[d]] = SFQ_DEPTH; | 
 | 		sch->qstats.drops++; | 
 | 		sch->qstats.backlog -= len; | 
 | 		return len; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int | 
 | sfq_enqueue(struct sk_buff *skb, struct Qdisc *sch) | 
 | { | 
 | 	struct sfq_sched_data *q = qdisc_priv(sch); | 
 | 	unsigned int hash; | 
 | 	sfq_index x; | 
 | 	int ret; | 
 |  | 
 | 	hash = sfq_classify(skb, sch, &ret); | 
 | 	if (hash == 0) { | 
 | 		if (ret == NET_XMIT_BYPASS) | 
 | 			sch->qstats.drops++; | 
 | 		kfree_skb(skb); | 
 | 		return ret; | 
 | 	} | 
 | 	hash--; | 
 |  | 
 | 	x = q->ht[hash]; | 
 | 	if (x == SFQ_DEPTH) { | 
 | 		q->ht[hash] = x = q->dep[SFQ_DEPTH].next; | 
 | 		q->hash[x] = hash; | 
 | 	} | 
 |  | 
 | 	/* If selected queue has length q->limit, this means that | 
 | 	 * all another queues are empty and that we do simple tail drop, | 
 | 	 * i.e. drop _this_ packet. | 
 | 	 */ | 
 | 	if (q->qs[x].qlen >= q->limit) | 
 | 		return qdisc_drop(skb, sch); | 
 |  | 
 | 	sch->qstats.backlog += skb->len; | 
 | 	__skb_queue_tail(&q->qs[x], skb); | 
 | 	sfq_inc(q, x); | 
 | 	if (q->qs[x].qlen == 1) {		/* The flow is new */ | 
 | 		if (q->tail == SFQ_DEPTH) {	/* It is the first flow */ | 
 | 			q->tail = x; | 
 | 			q->next[x] = x; | 
 | 			q->allot[x] = q->quantum; | 
 | 		} else { | 
 | 			q->next[x] = q->next[q->tail]; | 
 | 			q->next[q->tail] = x; | 
 | 			q->tail = x; | 
 | 		} | 
 | 	} | 
 | 	if (++sch->q.qlen <= q->limit) { | 
 | 		sch->bstats.bytes += skb->len; | 
 | 		sch->bstats.packets++; | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	sfq_drop(sch); | 
 | 	return NET_XMIT_CN; | 
 | } | 
 |  | 
 | static int | 
 | sfq_requeue(struct sk_buff *skb, struct Qdisc *sch) | 
 | { | 
 | 	struct sfq_sched_data *q = qdisc_priv(sch); | 
 | 	unsigned int hash; | 
 | 	sfq_index x; | 
 | 	int ret; | 
 |  | 
 | 	hash = sfq_classify(skb, sch, &ret); | 
 | 	if (hash == 0) { | 
 | 		if (ret == NET_XMIT_BYPASS) | 
 | 			sch->qstats.drops++; | 
 | 		kfree_skb(skb); | 
 | 		return ret; | 
 | 	} | 
 | 	hash--; | 
 |  | 
 | 	x = q->ht[hash]; | 
 | 	if (x == SFQ_DEPTH) { | 
 | 		q->ht[hash] = x = q->dep[SFQ_DEPTH].next; | 
 | 		q->hash[x] = hash; | 
 | 	} | 
 |  | 
 | 	sch->qstats.backlog += skb->len; | 
 | 	__skb_queue_head(&q->qs[x], skb); | 
 | 	/* If selected queue has length q->limit+1, this means that | 
 | 	 * all another queues are empty and we do simple tail drop. | 
 | 	 * This packet is still requeued at head of queue, tail packet | 
 | 	 * is dropped. | 
 | 	 */ | 
 | 	if (q->qs[x].qlen > q->limit) { | 
 | 		skb = q->qs[x].prev; | 
 | 		__skb_unlink(skb, &q->qs[x]); | 
 | 		sch->qstats.drops++; | 
 | 		sch->qstats.backlog -= skb->len; | 
 | 		kfree_skb(skb); | 
 | 		return NET_XMIT_CN; | 
 | 	} | 
 |  | 
 | 	sfq_inc(q, x); | 
 | 	if (q->qs[x].qlen == 1) {		/* The flow is new */ | 
 | 		if (q->tail == SFQ_DEPTH) {	/* It is the first flow */ | 
 | 			q->tail = x; | 
 | 			q->next[x] = x; | 
 | 			q->allot[x] = q->quantum; | 
 | 		} else { | 
 | 			q->next[x] = q->next[q->tail]; | 
 | 			q->next[q->tail] = x; | 
 | 			q->tail = x; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (++sch->q.qlen <= q->limit) { | 
 | 		sch->qstats.requeues++; | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	sch->qstats.drops++; | 
 | 	sfq_drop(sch); | 
 | 	return NET_XMIT_CN; | 
 | } | 
 |  | 
 |  | 
 |  | 
 |  | 
 | static struct sk_buff * | 
 | sfq_dequeue(struct Qdisc *sch) | 
 | { | 
 | 	struct sfq_sched_data *q = qdisc_priv(sch); | 
 | 	struct sk_buff *skb; | 
 | 	sfq_index a, old_a; | 
 |  | 
 | 	/* No active slots */ | 
 | 	if (q->tail == SFQ_DEPTH) | 
 | 		return NULL; | 
 |  | 
 | 	a = old_a = q->next[q->tail]; | 
 |  | 
 | 	/* Grab packet */ | 
 | 	skb = __skb_dequeue(&q->qs[a]); | 
 | 	sfq_dec(q, a); | 
 | 	sch->q.qlen--; | 
 | 	sch->qstats.backlog -= skb->len; | 
 |  | 
 | 	/* Is the slot empty? */ | 
 | 	if (q->qs[a].qlen == 0) { | 
 | 		q->ht[q->hash[a]] = SFQ_DEPTH; | 
 | 		a = q->next[a]; | 
 | 		if (a == old_a) { | 
 | 			q->tail = SFQ_DEPTH; | 
 | 			return skb; | 
 | 		} | 
 | 		q->next[q->tail] = a; | 
 | 		q->allot[a] += q->quantum; | 
 | 	} else if ((q->allot[a] -= skb->len) <= 0) { | 
 | 		q->tail = a; | 
 | 		a = q->next[a]; | 
 | 		q->allot[a] += q->quantum; | 
 | 	} | 
 | 	return skb; | 
 | } | 
 |  | 
 | static void | 
 | sfq_reset(struct Qdisc *sch) | 
 | { | 
 | 	struct sk_buff *skb; | 
 |  | 
 | 	while ((skb = sfq_dequeue(sch)) != NULL) | 
 | 		kfree_skb(skb); | 
 | } | 
 |  | 
 | static void sfq_perturbation(unsigned long arg) | 
 | { | 
 | 	struct Qdisc *sch = (struct Qdisc *)arg; | 
 | 	struct sfq_sched_data *q = qdisc_priv(sch); | 
 |  | 
 | 	q->perturbation = net_random(); | 
 |  | 
 | 	if (q->perturb_period) | 
 | 		mod_timer(&q->perturb_timer, jiffies + q->perturb_period); | 
 | } | 
 |  | 
 | static int sfq_change(struct Qdisc *sch, struct nlattr *opt) | 
 | { | 
 | 	struct sfq_sched_data *q = qdisc_priv(sch); | 
 | 	struct tc_sfq_qopt *ctl = nla_data(opt); | 
 | 	unsigned int qlen; | 
 |  | 
 | 	if (opt->nla_len < nla_attr_size(sizeof(*ctl))) | 
 | 		return -EINVAL; | 
 |  | 
 | 	sch_tree_lock(sch); | 
 | 	q->quantum = ctl->quantum ? : psched_mtu(sch->dev); | 
 | 	q->perturb_period = ctl->perturb_period * HZ; | 
 | 	if (ctl->limit) | 
 | 		q->limit = min_t(u32, ctl->limit, SFQ_DEPTH - 1); | 
 |  | 
 | 	qlen = sch->q.qlen; | 
 | 	while (sch->q.qlen > q->limit) | 
 | 		sfq_drop(sch); | 
 | 	qdisc_tree_decrease_qlen(sch, qlen - sch->q.qlen); | 
 |  | 
 | 	del_timer(&q->perturb_timer); | 
 | 	if (q->perturb_period) { | 
 | 		mod_timer(&q->perturb_timer, jiffies + q->perturb_period); | 
 | 		q->perturbation = net_random(); | 
 | 	} | 
 | 	sch_tree_unlock(sch); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int sfq_init(struct Qdisc *sch, struct nlattr *opt) | 
 | { | 
 | 	struct sfq_sched_data *q = qdisc_priv(sch); | 
 | 	int i; | 
 |  | 
 | 	q->perturb_timer.function = sfq_perturbation; | 
 | 	q->perturb_timer.data = (unsigned long)sch;; | 
 | 	init_timer_deferrable(&q->perturb_timer); | 
 |  | 
 | 	for (i = 0; i < SFQ_HASH_DIVISOR; i++) | 
 | 		q->ht[i] = SFQ_DEPTH; | 
 |  | 
 | 	for (i = 0; i < SFQ_DEPTH; i++) { | 
 | 		skb_queue_head_init(&q->qs[i]); | 
 | 		q->dep[i + SFQ_DEPTH].next = i + SFQ_DEPTH; | 
 | 		q->dep[i + SFQ_DEPTH].prev = i + SFQ_DEPTH; | 
 | 	} | 
 |  | 
 | 	q->limit = SFQ_DEPTH - 1; | 
 | 	q->max_depth = 0; | 
 | 	q->tail = SFQ_DEPTH; | 
 | 	if (opt == NULL) { | 
 | 		q->quantum = psched_mtu(sch->dev); | 
 | 		q->perturb_period = 0; | 
 | 		q->perturbation = net_random(); | 
 | 	} else { | 
 | 		int err = sfq_change(sch, opt); | 
 | 		if (err) | 
 | 			return err; | 
 | 	} | 
 |  | 
 | 	for (i = 0; i < SFQ_DEPTH; i++) | 
 | 		sfq_link(q, i); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void sfq_destroy(struct Qdisc *sch) | 
 | { | 
 | 	struct sfq_sched_data *q = qdisc_priv(sch); | 
 |  | 
 | 	tcf_destroy_chain(q->filter_list); | 
 | 	del_timer(&q->perturb_timer); | 
 | } | 
 |  | 
 | static int sfq_dump(struct Qdisc *sch, struct sk_buff *skb) | 
 | { | 
 | 	struct sfq_sched_data *q = qdisc_priv(sch); | 
 | 	unsigned char *b = skb_tail_pointer(skb); | 
 | 	struct tc_sfq_qopt opt; | 
 |  | 
 | 	opt.quantum = q->quantum; | 
 | 	opt.perturb_period = q->perturb_period / HZ; | 
 |  | 
 | 	opt.limit = q->limit; | 
 | 	opt.divisor = SFQ_HASH_DIVISOR; | 
 | 	opt.flows = q->limit; | 
 |  | 
 | 	NLA_PUT(skb, TCA_OPTIONS, sizeof(opt), &opt); | 
 |  | 
 | 	return skb->len; | 
 |  | 
 | nla_put_failure: | 
 | 	nlmsg_trim(skb, b); | 
 | 	return -1; | 
 | } | 
 |  | 
 | static int sfq_change_class(struct Qdisc *sch, u32 classid, u32 parentid, | 
 | 			    struct nlattr **tca, unsigned long *arg) | 
 | { | 
 | 	return -EOPNOTSUPP; | 
 | } | 
 |  | 
 | static unsigned long sfq_get(struct Qdisc *sch, u32 classid) | 
 | { | 
 | 	return 0; | 
 | } | 
 |  | 
 | static struct tcf_proto **sfq_find_tcf(struct Qdisc *sch, unsigned long cl) | 
 | { | 
 | 	struct sfq_sched_data *q = qdisc_priv(sch); | 
 |  | 
 | 	if (cl) | 
 | 		return NULL; | 
 | 	return &q->filter_list; | 
 | } | 
 |  | 
 | static int sfq_dump_class(struct Qdisc *sch, unsigned long cl, | 
 | 			  struct sk_buff *skb, struct tcmsg *tcm) | 
 | { | 
 | 	tcm->tcm_handle |= TC_H_MIN(cl); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int sfq_dump_class_stats(struct Qdisc *sch, unsigned long cl, | 
 | 				struct gnet_dump *d) | 
 | { | 
 | 	struct sfq_sched_data *q = qdisc_priv(sch); | 
 | 	sfq_index idx = q->ht[cl-1]; | 
 | 	struct gnet_stats_queue qs = { .qlen = q->qs[idx].qlen }; | 
 | 	struct tc_sfq_xstats xstats = { .allot = q->allot[idx] }; | 
 |  | 
 | 	if (gnet_stats_copy_queue(d, &qs) < 0) | 
 | 		return -1; | 
 | 	return gnet_stats_copy_app(d, &xstats, sizeof(xstats)); | 
 | } | 
 |  | 
 | static void sfq_walk(struct Qdisc *sch, struct qdisc_walker *arg) | 
 | { | 
 | 	struct sfq_sched_data *q = qdisc_priv(sch); | 
 | 	unsigned int i; | 
 |  | 
 | 	if (arg->stop) | 
 | 		return; | 
 |  | 
 | 	for (i = 0; i < SFQ_HASH_DIVISOR; i++) { | 
 | 		if (q->ht[i] == SFQ_DEPTH || | 
 | 		    arg->count < arg->skip) { | 
 | 			arg->count++; | 
 | 			continue; | 
 | 		} | 
 | 		if (arg->fn(sch, i + 1, arg) < 0) { | 
 | 			arg->stop = 1; | 
 | 			break; | 
 | 		} | 
 | 		arg->count++; | 
 | 	} | 
 | } | 
 |  | 
 | static const struct Qdisc_class_ops sfq_class_ops = { | 
 | 	.get		=	sfq_get, | 
 | 	.change		=	sfq_change_class, | 
 | 	.tcf_chain	=	sfq_find_tcf, | 
 | 	.dump		=	sfq_dump_class, | 
 | 	.dump_stats	=	sfq_dump_class_stats, | 
 | 	.walk		=	sfq_walk, | 
 | }; | 
 |  | 
 | static struct Qdisc_ops sfq_qdisc_ops __read_mostly = { | 
 | 	.cl_ops		=	&sfq_class_ops, | 
 | 	.id		=	"sfq", | 
 | 	.priv_size	=	sizeof(struct sfq_sched_data), | 
 | 	.enqueue	=	sfq_enqueue, | 
 | 	.dequeue	=	sfq_dequeue, | 
 | 	.requeue	=	sfq_requeue, | 
 | 	.drop		=	sfq_drop, | 
 | 	.init		=	sfq_init, | 
 | 	.reset		=	sfq_reset, | 
 | 	.destroy	=	sfq_destroy, | 
 | 	.change		=	NULL, | 
 | 	.dump		=	sfq_dump, | 
 | 	.owner		=	THIS_MODULE, | 
 | }; | 
 |  | 
 | static int __init sfq_module_init(void) | 
 | { | 
 | 	return register_qdisc(&sfq_qdisc_ops); | 
 | } | 
 | static void __exit sfq_module_exit(void) | 
 | { | 
 | 	unregister_qdisc(&sfq_qdisc_ops); | 
 | } | 
 | module_init(sfq_module_init) | 
 | module_exit(sfq_module_exit) | 
 | MODULE_LICENSE("GPL"); |