blob: bcfc9488125b15c1dc11ec251584a9490364faa9 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Copyright(c) 2006 - 2007 Atheros Corporation. All rights reserved.
* Copyright(c) 2007 - 2008 Chris Snook <csnook@redhat.com>
*
* Derived from Intel e1000 driver
* Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
*/
#include <linux/atomic.h>
#include <linux/crc32.h>
#include <linux/dma-mapping.h>
#include <linux/etherdevice.h>
#include <linux/ethtool.h>
#include <linux/hardirq.h>
#include <linux/if_vlan.h>
#include <linux/in.h>
#include <linux/interrupt.h>
#include <linux/ip.h>
#include <linux/irqflags.h>
#include <linux/irqreturn.h>
#include <linux/mii.h>
#include <linux/net.h>
#include <linux/netdevice.h>
#include <linux/pci.h>
#include <linux/pci_ids.h>
#include <linux/pm.h>
#include <linux/skbuff.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/string.h>
#include <linux/tcp.h>
#include <linux/timer.h>
#include <linux/types.h>
#include <linux/workqueue.h>
#include "atl2.h"
static const char atl2_driver_name[] = "atl2";
static const struct ethtool_ops atl2_ethtool_ops;
MODULE_AUTHOR("Atheros Corporation <xiong.huang@atheros.com>, Chris Snook <csnook@redhat.com>");
MODULE_DESCRIPTION("Atheros Fast Ethernet Network Driver");
MODULE_LICENSE("GPL");
/*
* atl2_pci_tbl - PCI Device ID Table
*/
static const struct pci_device_id atl2_pci_tbl[] = {
{PCI_DEVICE(PCI_VENDOR_ID_ATTANSIC, PCI_DEVICE_ID_ATTANSIC_L2)},
/* required last entry */
{0,}
};
MODULE_DEVICE_TABLE(pci, atl2_pci_tbl);
static void atl2_check_options(struct atl2_adapter *adapter);
/**
* atl2_sw_init - Initialize general software structures (struct atl2_adapter)
* @adapter: board private structure to initialize
*
* atl2_sw_init initializes the Adapter private data structure.
* Fields are initialized based on PCI device information and
* OS network device settings (MTU size).
*/
static int atl2_sw_init(struct atl2_adapter *adapter)
{
struct atl2_hw *hw = &adapter->hw;
struct pci_dev *pdev = adapter->pdev;
/* PCI config space info */
hw->vendor_id = pdev->vendor;
hw->device_id = pdev->device;
hw->subsystem_vendor_id = pdev->subsystem_vendor;
hw->subsystem_id = pdev->subsystem_device;
hw->revision_id = pdev->revision;
pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
adapter->wol = 0;
adapter->ict = 50000; /* ~100ms */
adapter->link_speed = SPEED_0; /* hardware init */
adapter->link_duplex = FULL_DUPLEX;
hw->phy_configured = false;
hw->preamble_len = 7;
hw->ipgt = 0x60;
hw->min_ifg = 0x50;
hw->ipgr1 = 0x40;
hw->ipgr2 = 0x60;
hw->retry_buf = 2;
hw->max_retry = 0xf;
hw->lcol = 0x37;
hw->jam_ipg = 7;
hw->fc_rxd_hi = 0;
hw->fc_rxd_lo = 0;
hw->max_frame_size = adapter->netdev->mtu;
spin_lock_init(&adapter->stats_lock);
set_bit(__ATL2_DOWN, &adapter->flags);
return 0;
}
/**
* atl2_set_multi - Multicast and Promiscuous mode set
* @netdev: network interface device structure
*
* The set_multi entry point is called whenever the multicast address
* list or the network interface flags are updated. This routine is
* responsible for configuring the hardware for proper multicast,
* promiscuous mode, and all-multi behavior.
*/
static void atl2_set_multi(struct net_device *netdev)
{
struct atl2_adapter *adapter = netdev_priv(netdev);
struct atl2_hw *hw = &adapter->hw;
struct netdev_hw_addr *ha;
u32 rctl;
u32 hash_value;
/* Check for Promiscuous and All Multicast modes */
rctl = ATL2_READ_REG(hw, REG_MAC_CTRL);
if (netdev->flags & IFF_PROMISC) {
rctl |= MAC_CTRL_PROMIS_EN;
} else if (netdev->flags & IFF_ALLMULTI) {
rctl |= MAC_CTRL_MC_ALL_EN;
rctl &= ~MAC_CTRL_PROMIS_EN;
} else
rctl &= ~(MAC_CTRL_PROMIS_EN | MAC_CTRL_MC_ALL_EN);
ATL2_WRITE_REG(hw, REG_MAC_CTRL, rctl);
/* clear the old settings from the multicast hash table */
ATL2_WRITE_REG(hw, REG_RX_HASH_TABLE, 0);
ATL2_WRITE_REG_ARRAY(hw, REG_RX_HASH_TABLE, 1, 0);
/* comoute mc addresses' hash value ,and put it into hash table */
netdev_for_each_mc_addr(ha, netdev) {
hash_value = atl2_hash_mc_addr(hw, ha->addr);
atl2_hash_set(hw, hash_value);
}
}
static void init_ring_ptrs(struct atl2_adapter *adapter)
{
/* Read / Write Ptr Initialize: */
adapter->txd_write_ptr = 0;
atomic_set(&adapter->txd_read_ptr, 0);
adapter->rxd_read_ptr = 0;
adapter->rxd_write_ptr = 0;
atomic_set(&adapter->txs_write_ptr, 0);
adapter->txs_next_clear = 0;
}
/**
* atl2_configure - Configure Transmit&Receive Unit after Reset
* @adapter: board private structure
*
* Configure the Tx /Rx unit of the MAC after a reset.
*/
static int atl2_configure(struct atl2_adapter *adapter)
{
struct atl2_hw *hw = &adapter->hw;
u32 value;
/* clear interrupt status */
ATL2_WRITE_REG(&adapter->hw, REG_ISR, 0xffffffff);
/* set MAC Address */
value = (((u32)hw->mac_addr[2]) << 24) |
(((u32)hw->mac_addr[3]) << 16) |
(((u32)hw->mac_addr[4]) << 8) |
(((u32)hw->mac_addr[5]));
ATL2_WRITE_REG(hw, REG_MAC_STA_ADDR, value);
value = (((u32)hw->mac_addr[0]) << 8) |
(((u32)hw->mac_addr[1]));
ATL2_WRITE_REG(hw, (REG_MAC_STA_ADDR+4), value);
/* HI base address */
ATL2_WRITE_REG(hw, REG_DESC_BASE_ADDR_HI,
(u32)((adapter->ring_dma & 0xffffffff00000000ULL) >> 32));
/* LO base address */
ATL2_WRITE_REG(hw, REG_TXD_BASE_ADDR_LO,
(u32)(adapter->txd_dma & 0x00000000ffffffffULL));
ATL2_WRITE_REG(hw, REG_TXS_BASE_ADDR_LO,
(u32)(adapter->txs_dma & 0x00000000ffffffffULL));
ATL2_WRITE_REG(hw, REG_RXD_BASE_ADDR_LO,
(u32)(adapter->rxd_dma & 0x00000000ffffffffULL));
/* element count */
ATL2_WRITE_REGW(hw, REG_TXD_MEM_SIZE, (u16)(adapter->txd_ring_size/4));
ATL2_WRITE_REGW(hw, REG_TXS_MEM_SIZE, (u16)adapter->txs_ring_size);
ATL2_WRITE_REGW(hw, REG_RXD_BUF_NUM, (u16)adapter->rxd_ring_size);
/* config Internal SRAM */
/*
ATL2_WRITE_REGW(hw, REG_SRAM_TXRAM_END, sram_tx_end);
ATL2_WRITE_REGW(hw, REG_SRAM_TXRAM_END, sram_rx_end);
*/
/* config IPG/IFG */
value = (((u32)hw->ipgt & MAC_IPG_IFG_IPGT_MASK) <<
MAC_IPG_IFG_IPGT_SHIFT) |
(((u32)hw->min_ifg & MAC_IPG_IFG_MIFG_MASK) <<
MAC_IPG_IFG_MIFG_SHIFT) |
(((u32)hw->ipgr1 & MAC_IPG_IFG_IPGR1_MASK) <<
MAC_IPG_IFG_IPGR1_SHIFT)|
(((u32)hw->ipgr2 & MAC_IPG_IFG_IPGR2_MASK) <<
MAC_IPG_IFG_IPGR2_SHIFT);
ATL2_WRITE_REG(hw, REG_MAC_IPG_IFG, value);
/* config Half-Duplex Control */
value = ((u32)hw->lcol & MAC_HALF_DUPLX_CTRL_LCOL_MASK) |
(((u32)hw->max_retry & MAC_HALF_DUPLX_CTRL_RETRY_MASK) <<
MAC_HALF_DUPLX_CTRL_RETRY_SHIFT) |
MAC_HALF_DUPLX_CTRL_EXC_DEF_EN |
(0xa << MAC_HALF_DUPLX_CTRL_ABEBT_SHIFT) |
(((u32)hw->jam_ipg & MAC_HALF_DUPLX_CTRL_JAMIPG_MASK) <<
MAC_HALF_DUPLX_CTRL_JAMIPG_SHIFT);
ATL2_WRITE_REG(hw, REG_MAC_HALF_DUPLX_CTRL, value);
/* set Interrupt Moderator Timer */
ATL2_WRITE_REGW(hw, REG_IRQ_MODU_TIMER_INIT, adapter->imt);
ATL2_WRITE_REG(hw, REG_MASTER_CTRL, MASTER_CTRL_ITIMER_EN);
/* set Interrupt Clear Timer */
ATL2_WRITE_REGW(hw, REG_CMBDISDMA_TIMER, adapter->ict);
/* set MTU */
ATL2_WRITE_REG(hw, REG_MTU, adapter->netdev->mtu +
ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN);
/* 1590 */
ATL2_WRITE_REG(hw, REG_TX_CUT_THRESH, 0x177);
/* flow control */
ATL2_WRITE_REGW(hw, REG_PAUSE_ON_TH, hw->fc_rxd_hi);
ATL2_WRITE_REGW(hw, REG_PAUSE_OFF_TH, hw->fc_rxd_lo);
/* Init mailbox */
ATL2_WRITE_REGW(hw, REG_MB_TXD_WR_IDX, (u16)adapter->txd_write_ptr);
ATL2_WRITE_REGW(hw, REG_MB_RXD_RD_IDX, (u16)adapter->rxd_read_ptr);
/* enable DMA read/write */
ATL2_WRITE_REGB(hw, REG_DMAR, DMAR_EN);
ATL2_WRITE_REGB(hw, REG_DMAW, DMAW_EN);
value = ATL2_READ_REG(&adapter->hw, REG_ISR);
if ((value & ISR_PHY_LINKDOWN) != 0)
value = 1; /* config failed */
else
value = 0;
/* clear all interrupt status */
ATL2_WRITE_REG(&adapter->hw, REG_ISR, 0x3fffffff);
ATL2_WRITE_REG(&adapter->hw, REG_ISR, 0);
return value;
}
/**
* atl2_setup_ring_resources - allocate Tx / RX descriptor resources
* @adapter: board private structure
*
* Return 0 on success, negative on failure
*/
static s32 atl2_setup_ring_resources(struct atl2_adapter *adapter)
{
struct pci_dev *pdev = adapter->pdev;
int size;
u8 offset = 0;
/* real ring DMA buffer */
adapter->ring_size = size =
adapter->txd_ring_size * 1 + 7 + /* dword align */
adapter->txs_ring_size * 4 + 7 + /* dword align */
adapter->rxd_ring_size * 1536 + 127; /* 128bytes align */
adapter->ring_vir_addr = dma_alloc_coherent(&pdev->dev, size,
&adapter->ring_dma, GFP_KERNEL);
if (!adapter->ring_vir_addr)
return -ENOMEM;
/* Init TXD Ring */
adapter->txd_dma = adapter->ring_dma ;
offset = (adapter->txd_dma & 0x7) ? (8 - (adapter->txd_dma & 0x7)) : 0;
adapter->txd_dma += offset;
adapter->txd_ring = adapter->ring_vir_addr + offset;
/* Init TXS Ring */
adapter->txs_dma = adapter->txd_dma + adapter->txd_ring_size;
offset = (adapter->txs_dma & 0x7) ? (8 - (adapter->txs_dma & 0x7)) : 0;
adapter->txs_dma += offset;
adapter->txs_ring = (struct tx_pkt_status *)
(((u8 *)adapter->txd_ring) + (adapter->txd_ring_size + offset));
/* Init RXD Ring */
adapter->rxd_dma = adapter->txs_dma + adapter->txs_ring_size * 4;
offset = (adapter->rxd_dma & 127) ?
(128 - (adapter->rxd_dma & 127)) : 0;
if (offset > 7)
offset -= 8;
else
offset += (128 - 8);
adapter->rxd_dma += offset;
adapter->rxd_ring = (struct rx_desc *) (((u8 *)adapter->txs_ring) +
(adapter->txs_ring_size * 4 + offset));
/*
* Read / Write Ptr Initialize:
* init_ring_ptrs(adapter);
*/
return 0;
}
/**
* atl2_irq_enable - Enable default interrupt generation settings
* @adapter: board private structure
*/
static inline void atl2_irq_enable(struct atl2_adapter *adapter)
{
ATL2_WRITE_REG(&adapter->hw, REG_IMR, IMR_NORMAL_MASK);
ATL2_WRITE_FLUSH(&adapter->hw);
}
/**
* atl2_irq_disable - Mask off interrupt generation on the NIC
* @adapter: board private structure
*/
static inline void atl2_irq_disable(struct atl2_adapter *adapter)
{
ATL2_WRITE_REG(&adapter->hw, REG_IMR, 0);
ATL2_WRITE_FLUSH(&adapter->hw);
synchronize_irq(adapter->pdev->irq);
}
static void __atl2_vlan_mode(netdev_features_t features, u32 *ctrl)
{
if (features & NETIF_F_HW_VLAN_CTAG_RX) {
/* enable VLAN tag insert/strip */
*ctrl |= MAC_CTRL_RMV_VLAN;
} else {
/* disable VLAN tag insert/strip */
*ctrl &= ~MAC_CTRL_RMV_VLAN;
}
}
static void atl2_vlan_mode(struct net_device *netdev,
netdev_features_t features)
{
struct atl2_adapter *adapter = netdev_priv(netdev);
u32 ctrl;
atl2_irq_disable(adapter);
ctrl = ATL2_READ_REG(&adapter->hw, REG_MAC_CTRL);
__atl2_vlan_mode(features, &ctrl);
ATL2_WRITE_REG(&adapter->hw, REG_MAC_CTRL, ctrl);
atl2_irq_enable(adapter);
}
static void atl2_restore_vlan(struct atl2_adapter *adapter)
{
atl2_vlan_mode(adapter->netdev, adapter->netdev->features);
}
static netdev_features_t atl2_fix_features(struct net_device *netdev,
netdev_features_t features)
{
/*
* Since there is no support for separate rx/tx vlan accel
* enable/disable make sure tx flag is always in same state as rx.
*/
if (features & NETIF_F_HW_VLAN_CTAG_RX)
features |= NETIF_F_HW_VLAN_CTAG_TX;
else
features &= ~NETIF_F_HW_VLAN_CTAG_TX;
return features;
}
static int atl2_set_features(struct net_device *netdev,
netdev_features_t features)
{
netdev_features_t changed = netdev->features ^ features;
if (changed & NETIF_F_HW_VLAN_CTAG_RX)
atl2_vlan_mode(netdev, features);
return 0;
}
static void atl2_intr_rx(struct atl2_adapter *adapter)
{
struct net_device *netdev = adapter->netdev;
struct rx_desc *rxd;
struct sk_buff *skb;
do {
rxd = adapter->rxd_ring+adapter->rxd_write_ptr;
if (!rxd->status.update)
break; /* end of tx */
/* clear this flag at once */
rxd->status.update = 0;
if (rxd->status.ok && rxd->status.pkt_size >= 60) {
int rx_size = (int)(rxd->status.pkt_size - 4);
/* alloc new buffer */
skb = netdev_alloc_skb_ip_align(netdev, rx_size);
if (NULL == skb) {
/*
* Check that some rx space is free. If not,
* free one and mark stats->rx_dropped++.
*/
netdev->stats.rx_dropped++;
break;
}
memcpy(skb->data, rxd->packet, rx_size);
skb_put(skb, rx_size);
skb->protocol = eth_type_trans(skb, netdev);
if (rxd->status.vlan) {
u16 vlan_tag = (rxd->status.vtag>>4) |
((rxd->status.vtag&7) << 13) |
((rxd->status.vtag&8) << 9);
__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
}
netif_rx(skb);
netdev->stats.rx_bytes += rx_size;
netdev->stats.rx_packets++;
} else {
netdev->stats.rx_errors++;
if (rxd->status.ok && rxd->status.pkt_size <= 60)
netdev->stats.rx_length_errors++;
if (rxd->status.mcast)
netdev->stats.multicast++;
if (rxd->status.crc)
netdev->stats.rx_crc_errors++;
if (rxd->status.align)
netdev->stats.rx_frame_errors++;
}
/* advance write ptr */
if (++adapter->rxd_write_ptr == adapter->rxd_ring_size)
adapter->rxd_write_ptr = 0;
} while (1);
/* update mailbox? */
adapter->rxd_read_ptr = adapter->rxd_write_ptr;
ATL2_WRITE_REGW(&adapter->hw, REG_MB_RXD_RD_IDX, adapter->rxd_read_ptr);
}
static void atl2_intr_tx(struct atl2_adapter *adapter)
{
struct net_device *netdev = adapter->netdev;
u32 txd_read_ptr;
u32 txs_write_ptr;
struct tx_pkt_status *txs;
struct tx_pkt_header *txph;
int free_hole = 0;
do {
txs_write_ptr = (u32) atomic_read(&adapter->txs_write_ptr);
txs = adapter->txs_ring + txs_write_ptr;
if (!txs->update)
break; /* tx stop here */
free_hole = 1;
txs->update = 0;
if (++txs_write_ptr == adapter->txs_ring_size)
txs_write_ptr = 0;
atomic_set(&adapter->txs_write_ptr, (int)txs_write_ptr);
txd_read_ptr = (u32) atomic_read(&adapter->txd_read_ptr);
txph = (struct tx_pkt_header *)
(((u8 *)adapter->txd_ring) + txd_read_ptr);
if (txph->pkt_size != txs->pkt_size) {
struct tx_pkt_status *old_txs = txs;
printk(KERN_WARNING
"%s: txs packet size not consistent with txd"
" txd_:0x%08x, txs_:0x%08x!\n",
adapter->netdev->name,
*(u32 *)txph, *(u32 *)txs);
printk(KERN_WARNING
"txd read ptr: 0x%x\n",
txd_read_ptr);
txs = adapter->txs_ring + txs_write_ptr;
printk(KERN_WARNING
"txs-behind:0x%08x\n",
*(u32 *)txs);
if (txs_write_ptr < 2) {
txs = adapter->txs_ring +
(adapter->txs_ring_size +
txs_write_ptr - 2);
} else {
txs = adapter->txs_ring + (txs_write_ptr - 2);
}
printk(KERN_WARNING
"txs-before:0x%08x\n",
*(u32 *)txs);
txs = old_txs;
}
/* 4for TPH */
txd_read_ptr += (((u32)(txph->pkt_size) + 7) & ~3);
if (txd_read_ptr >= adapter->txd_ring_size)
txd_read_ptr -= adapter->txd_ring_size;
atomic_set(&adapter->txd_read_ptr, (int)txd_read_ptr);
/* tx statistics: */
if (txs->ok) {
netdev->stats.tx_bytes += txs->pkt_size;
netdev->stats.tx_packets++;
}
else
netdev->stats.tx_errors++;
if (txs->defer)
netdev->stats.collisions++;
if (txs->abort_col)
netdev->stats.tx_aborted_errors++;
if (txs->late_col)
netdev->stats.tx_window_errors++;
if (txs->underrun)
netdev->stats.tx_fifo_errors++;
} while (1);
if (free_hole) {
if (netif_queue_stopped(adapter->netdev) &&
netif_carrier_ok(adapter->netdev))
netif_wake_queue(adapter->netdev);
}
}
static void atl2_check_for_link(struct atl2_adapter *adapter)
{
struct net_device *netdev = adapter->netdev;
u16 phy_data = 0;
spin_lock(&adapter->stats_lock);
atl2_read_phy_reg(&adapter->hw, MII_BMSR, &phy_data);
atl2_read_phy_reg(&adapter->hw, MII_BMSR, &phy_data);
spin_unlock(&adapter->stats_lock);
/* notify upper layer link down ASAP */
if (!(phy_data & BMSR_LSTATUS)) { /* Link Down */
if (netif_carrier_ok(netdev)) { /* old link state: Up */
printk(KERN_INFO "%s: %s NIC Link is Down\n",
atl2_driver_name, netdev->name);
adapter->link_speed = SPEED_0;
netif_carrier_off(netdev);
netif_stop_queue(netdev);
}
}
schedule_work(&adapter->link_chg_task);
}
static inline void atl2_clear_phy_int(struct atl2_adapter *adapter)
{
u16 phy_data;
spin_lock(&adapter->stats_lock);
atl2_read_phy_reg(&adapter->hw, 19, &phy_data);
spin_unlock(&adapter->stats_lock);
}
/**
* atl2_intr - Interrupt Handler
* @irq: interrupt number
* @data: pointer to a network interface device structure
*/
static irqreturn_t atl2_intr(int irq, void *data)
{
struct atl2_adapter *adapter = netdev_priv(data);
struct atl2_hw *hw = &adapter->hw;
u32 status;
status = ATL2_READ_REG(hw, REG_ISR);
if (0 == status)
return IRQ_NONE;
/* link event */
if (status & ISR_PHY)
atl2_clear_phy_int(adapter);
/* clear ISR status, and Enable CMB DMA/Disable Interrupt */
ATL2_WRITE_REG(hw, REG_ISR, status | ISR_DIS_INT);
/* check if PCIE PHY Link down */
if (status & ISR_PHY_LINKDOWN) {
if (netif_running(adapter->netdev)) { /* reset MAC */
ATL2_WRITE_REG(hw, REG_ISR, 0);
ATL2_WRITE_REG(hw, REG_IMR, 0);
ATL2_WRITE_FLUSH(hw);
schedule_work(&adapter->reset_task);
return IRQ_HANDLED;
}
}
/* check if DMA read/write error? */
if (status & (ISR_DMAR_TO_RST | ISR_DMAW_TO_RST)) {
ATL2_WRITE_REG(hw, REG_ISR, 0);
ATL2_WRITE_REG(hw, REG_IMR, 0);
ATL2_WRITE_FLUSH(hw);
schedule_work(&adapter->reset_task);
return IRQ_HANDLED;
}
/* link event */
if (status & (ISR_PHY | ISR_MANUAL)) {
adapter->netdev->stats.tx_carrier_errors++;
atl2_check_for_link(adapter);
}
/* transmit event */
if (status & ISR_TX_EVENT)
atl2_intr_tx(adapter);
/* rx exception */
if (status & ISR_RX_EVENT)
atl2_intr_rx(adapter);
/* re-enable Interrupt */
ATL2_WRITE_REG(&adapter->hw, REG_ISR, 0);
return IRQ_HANDLED;
}
static int atl2_request_irq(struct atl2_adapter *adapter)
{
struct net_device *netdev = adapter->netdev;
int flags, err = 0;
flags = IRQF_SHARED;
adapter->have_msi = true;
err = pci_enable_msi(adapter->pdev);
if (err)
adapter->have_msi = false;
if (adapter->have_msi)
flags &= ~IRQF_SHARED;
return request_irq(adapter->pdev->irq, atl2_intr, flags, netdev->name,
netdev);
}
/**
* atl2_free_ring_resources - Free Tx / RX descriptor Resources
* @adapter: board private structure
*
* Free all transmit software resources
*/
static void atl2_free_ring_resources(struct atl2_adapter *adapter)
{
struct pci_dev *pdev = adapter->pdev;
dma_free_coherent(&pdev->dev, adapter->ring_size,
adapter->ring_vir_addr, adapter->ring_dma);
}
/**
* atl2_open - Called when a network interface is made active
* @netdev: network interface device structure
*
* Returns 0 on success, negative value on failure
*
* The open entry point is called when a network interface is made
* active by the system (IFF_UP). At this point all resources needed
* for transmit and receive operations are allocated, the interrupt
* handler is registered with the OS, the watchdog timer is started,
* and the stack is notified that the interface is ready.
*/
static int atl2_open(struct net_device *netdev)
{
struct atl2_adapter *adapter = netdev_priv(netdev);
int err;
u32 val;
/* disallow open during test */
if (test_bit(__ATL2_TESTING, &adapter->flags))
return -EBUSY;
/* allocate transmit descriptors */
err = atl2_setup_ring_resources(adapter);
if (err)
return err;
err = atl2_init_hw(&adapter->hw);
if (err) {
err = -EIO;
goto err_init_hw;
}
/* hardware has been reset, we need to reload some things */
atl2_set_multi(netdev);
init_ring_ptrs(adapter);
atl2_restore_vlan(adapter);
if (atl2_configure(adapter)) {
err = -EIO;
goto err_config;
}
err = atl2_request_irq(adapter);
if (err)
goto err_req_irq;
clear_bit(__ATL2_DOWN, &adapter->flags);
mod_timer(&adapter->watchdog_timer, round_jiffies(jiffies + 4*HZ));
val = ATL2_READ_REG(&adapter->hw, REG_MASTER_CTRL);
ATL2_WRITE_REG(&adapter->hw, REG_MASTER_CTRL,
val | MASTER_CTRL_MANUAL_INT);
atl2_irq_enable(adapter);
return 0;
err_init_hw:
err_req_irq:
err_config:
atl2_free_ring_resources(adapter);
atl2_reset_hw(&adapter->hw);
return err;
}
static void atl2_down(struct atl2_adapter *adapter)
{
struct net_device *netdev = adapter->netdev;
/* signal that we're down so the interrupt handler does not
* reschedule our watchdog timer */
set_bit(__ATL2_DOWN, &adapter->flags);
netif_tx_disable(netdev);
/* reset MAC to disable all RX/TX */
atl2_reset_hw(&adapter->hw);
msleep(1);
atl2_irq_disable(adapter);
del_timer_sync(&adapter->watchdog_timer);
del_timer_sync(&adapter->phy_config_timer);
clear_bit(0, &adapter->cfg_phy);
netif_carrier_off(netdev);
adapter->link_speed = SPEED_0;
adapter->link_duplex = -1;
}
static void atl2_free_irq(struct atl2_adapter *adapter)
{
struct net_device *netdev = adapter->netdev;
free_irq(adapter->pdev->irq, netdev);
#ifdef CONFIG_PCI_MSI
if (adapter->have_msi)
pci_disable_msi(adapter->pdev);
#endif
}
/**
* atl2_close - Disables a network interface
* @netdev: network interface device structure
*
* Returns 0, this is not allowed to fail
*
* The close entry point is called when an interface is de-activated
* by the OS. The hardware is still under the drivers control, but
* needs to be disabled. A global MAC reset is issued to stop the
* hardware, and all transmit and receive resources are freed.
*/
static int atl2_close(struct net_device *netdev)
{
struct atl2_adapter *adapter = netdev_priv(netdev);
WARN_ON(test_bit(__ATL2_RESETTING, &adapter->flags));
atl2_down(adapter);
atl2_free_irq(adapter);
atl2_free_ring_resources(adapter);
return 0;
}
static inline int TxsFreeUnit(struct atl2_adapter *adapter)
{
u32 txs_write_ptr = (u32) atomic_read(&adapter->txs_write_ptr);
return (adapter->txs_next_clear >= txs_write_ptr) ?
(int) (adapter->txs_ring_size - adapter->txs_next_clear +
txs_write_ptr - 1) :
(int) (txs_write_ptr - adapter->txs_next_clear - 1);
}
static inline int TxdFreeBytes(struct atl2_adapter *adapter)
{
u32 txd_read_ptr = (u32)atomic_read(&adapter->txd_read_ptr);
return (adapter->txd_write_ptr >= txd_read_ptr) ?
(int) (adapter->txd_ring_size - adapter->txd_write_ptr +
txd_read_ptr - 1) :
(int) (txd_read_ptr - adapter->txd_write_ptr - 1);
}
static netdev_tx_t atl2_xmit_frame(struct sk_buff *skb,
struct net_device *netdev)
{
struct atl2_adapter *adapter = netdev_priv(netdev);
struct tx_pkt_header *txph;
u32 offset, copy_len;
int txs_unused;
int txbuf_unused;
if (test_bit(__ATL2_DOWN, &adapter->flags)) {
dev_kfree_skb_any(skb);
return NETDEV_TX_OK;
}
if (unlikely(skb->len <= 0)) {
dev_kfree_skb_any(skb);
return NETDEV_TX_OK;
}
txs_unused = TxsFreeUnit(adapter);
txbuf_unused = TxdFreeBytes(adapter);
if (skb->len + sizeof(struct tx_pkt_header) + 4 > txbuf_unused ||
txs_unused < 1) {
/* not enough resources */
netif_stop_queue(netdev);
return NETDEV_TX_BUSY;
}
offset = adapter->txd_write_ptr;
txph = (struct tx_pkt_header *) (((u8 *)adapter->txd_ring) + offset);
*(u32 *)txph = 0;
txph->pkt_size = skb->len;
offset += 4;
if (offset >= adapter->txd_ring_size)
offset -= adapter->txd_ring_size;
copy_len = adapter->txd_ring_size - offset;
if (copy_len >= skb->len) {
memcpy(((u8 *)adapter->txd_ring) + offset, skb->data, skb->len);
offset += ((u32)(skb->len + 3) & ~3);
} else {
memcpy(((u8 *)adapter->txd_ring)+offset, skb->data, copy_len);
memcpy((u8 *)adapter->txd_ring, skb->data+copy_len,
skb->len-copy_len);
offset = ((u32)(skb->len-copy_len + 3) & ~3);
}
#ifdef NETIF_F_HW_VLAN_CTAG_TX
if (skb_vlan_tag_present(skb)) {
u16 vlan_tag = skb_vlan_tag_get(skb);
vlan_tag = (vlan_tag << 4) |
(vlan_tag >> 13) |
((vlan_tag >> 9) & 0x8);
txph->ins_vlan = 1;
txph->vlan = vlan_tag;
}
#endif
if (offset >= adapter->txd_ring_size)
offset -= adapter->txd_ring_size;
adapter->txd_write_ptr = offset;
/* clear txs before send */
adapter->txs_ring[adapter->txs_next_clear].update = 0;
if (++adapter->txs_next_clear == adapter->txs_ring_size)
adapter->txs_next_clear = 0;
ATL2_WRITE_REGW(&adapter->hw, REG_MB_TXD_WR_IDX,
(adapter->txd_write_ptr >> 2));
dev_consume_skb_any(skb);
return NETDEV_TX_OK;
}
/**
* atl2_change_mtu - Change the Maximum Transfer Unit
* @netdev: network interface device structure
* @new_mtu: new value for maximum frame size
*
* Returns 0 on success, negative on failure
*/
static int atl2_change_mtu(struct net_device *netdev, int new_mtu)
{
struct atl2_adapter *adapter = netdev_priv(netdev);
struct atl2_hw *hw = &adapter->hw;
/* set MTU */
netdev->mtu = new_mtu;
hw->max_frame_size = new_mtu;
ATL2_WRITE_REG(hw, REG_MTU, new_mtu + ETH_HLEN +
VLAN_HLEN + ETH_FCS_LEN);
return 0;
}
/**
* atl2_set_mac - Change the Ethernet Address of the NIC
* @netdev: network interface device structure
* @p: pointer to an address structure
*
* Returns 0 on success, negative on failure
*/
static int atl2_set_mac(struct net_device *netdev, void *p)
{
struct atl2_adapter *adapter = netdev_priv(netdev);
struct sockaddr *addr = p;
if (!is_valid_ether_addr(addr->sa_data))
return -EADDRNOTAVAIL;
if (netif_running(netdev))
return -EBUSY;
eth_hw_addr_set(netdev, addr->sa_data);
memcpy(adapter->hw.mac_addr, addr->sa_data, netdev->addr_len);
atl2_set_mac_addr(&adapter->hw);
return 0;
}
static int atl2_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
{
struct atl2_adapter *adapter = netdev_priv(netdev);
struct mii_ioctl_data *data = if_mii(ifr);
unsigned long flags;
switch (cmd) {
case SIOCGMIIPHY:
data->phy_id = 0;
break;
case SIOCGMIIREG:
spin_lock_irqsave(&adapter->stats_lock, flags);
if (atl2_read_phy_reg(&adapter->hw,
data->reg_num & 0x1F, &data->val_out)) {
spin_unlock_irqrestore(&adapter->stats_lock, flags);
return -EIO;
}
spin_unlock_irqrestore(&adapter->stats_lock, flags);
break;
case SIOCSMIIREG:
if (data->reg_num & ~(0x1F))
return -EFAULT;
spin_lock_irqsave(&adapter->stats_lock, flags);
if (atl2_write_phy_reg(&adapter->hw, data->reg_num,
data->val_in)) {
spin_unlock_irqrestore(&adapter->stats_lock, flags);
return -EIO;
}
spin_unlock_irqrestore(&adapter->stats_lock, flags);
break;
default:
return -EOPNOTSUPP;
}
return 0;
}
static int atl2_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
{
switch (cmd) {
case SIOCGMIIPHY:
case SIOCGMIIREG:
case SIOCSMIIREG:
return atl2_mii_ioctl(netdev, ifr, cmd);
#ifdef ETHTOOL_OPS_COMPAT
case SIOCETHTOOL:
return ethtool_ioctl(ifr);
#endif
default:
return -EOPNOTSUPP;
}
}
/**
* atl2_tx_timeout - Respond to a Tx Hang
* @netdev: network interface device structure
* @txqueue: index of the hanging transmit queue
*/
static void atl2_tx_timeout(struct net_device *netdev, unsigned int txqueue)
{
struct atl2_adapter *adapter = netdev_priv(netdev);
/* Do the reset outside of interrupt context */
schedule_work(&adapter->reset_task);
}
/**
* atl2_watchdog - Timer Call-back
* @t: timer list containing a pointer to netdev cast into an unsigned long
*/
static void atl2_watchdog(struct timer_list *t)
{
struct atl2_adapter *adapter = from_timer(adapter, t, watchdog_timer);
if (!test_bit(__ATL2_DOWN, &adapter->flags)) {
u32 drop_rxd, drop_rxs;
unsigned long flags;
spin_lock_irqsave(&adapter->stats_lock, flags);
drop_rxd = ATL2_READ_REG(&adapter->hw, REG_STS_RXD_OV);
drop_rxs = ATL2_READ_REG(&adapter->hw, REG_STS_RXS_OV);
spin_unlock_irqrestore(&adapter->stats_lock, flags);
adapter->netdev->stats.rx_over_errors += drop_rxd + drop_rxs;
/* Reset the timer */
mod_timer(&adapter->watchdog_timer,
round_jiffies(jiffies + 4 * HZ));
}
}
/**
* atl2_phy_config - Timer Call-back
* @t: timer list containing a pointer to netdev cast into an unsigned long
*/
static void atl2_phy_config(struct timer_list *t)
{
struct atl2_adapter *adapter = from_timer(adapter, t,
phy_config_timer);
struct atl2_hw *hw = &adapter->hw;
unsigned long flags;
spin_lock_irqsave(&adapter->stats_lock, flags);
atl2_write_phy_reg(hw, MII_ADVERTISE, hw->mii_autoneg_adv_reg);
atl2_write_phy_reg(hw, MII_BMCR, MII_CR_RESET | MII_CR_AUTO_NEG_EN |
MII_CR_RESTART_AUTO_NEG);
spin_unlock_irqrestore(&adapter->stats_lock, flags);
clear_bit(0, &adapter->cfg_phy);
}
static int atl2_up(struct atl2_adapter *adapter)
{
struct net_device *netdev = adapter->netdev;
int err = 0;
u32 val;
/* hardware has been reset, we need to reload some things */
err = atl2_init_hw(&adapter->hw);
if (err) {
err = -EIO;
return err;
}
atl2_set_multi(netdev);
init_ring_ptrs(adapter);
atl2_restore_vlan(adapter);
if (atl2_configure(adapter)) {
err = -EIO;
goto err_up;
}
clear_bit(__ATL2_DOWN, &adapter->flags);
val = ATL2_READ_REG(&adapter->hw, REG_MASTER_CTRL);
ATL2_WRITE_REG(&adapter->hw, REG_MASTER_CTRL, val |
MASTER_CTRL_MANUAL_INT);
atl2_irq_enable(adapter);
err_up:
return err;
}
static void atl2_reinit_locked(struct atl2_adapter *adapter)
{
while (test_and_set_bit(__ATL2_RESETTING, &adapter->flags))
msleep(1);
atl2_down(adapter);
atl2_up(adapter);
clear_bit(__ATL2_RESETTING, &adapter->flags);
}
static void atl2_reset_task(struct work_struct *work)
{
struct atl2_adapter *adapter;
adapter = container_of(work, struct atl2_adapter, reset_task);
atl2_reinit_locked(adapter);
}
static void atl2_setup_mac_ctrl(struct atl2_adapter *adapter)
{
u32 value;
struct atl2_hw *hw = &adapter->hw;
struct net_device *netdev = adapter->netdev;
/* Config MAC CTRL Register */
value = MAC_CTRL_TX_EN | MAC_CTRL_RX_EN | MAC_CTRL_MACLP_CLK_PHY;
/* duplex */
if (FULL_DUPLEX == adapter->link_duplex)
value |= MAC_CTRL_DUPLX;
/* flow control */
value |= (MAC_CTRL_TX_FLOW | MAC_CTRL_RX_FLOW);
/* PAD & CRC */
value |= (MAC_CTRL_ADD_CRC | MAC_CTRL_PAD);
/* preamble length */
value |= (((u32)adapter->hw.preamble_len & MAC_CTRL_PRMLEN_MASK) <<
MAC_CTRL_PRMLEN_SHIFT);
/* vlan */
__atl2_vlan_mode(netdev->features, &value);
/* filter mode */
value |= MAC_CTRL_BC_EN;
if (netdev->flags & IFF_PROMISC)
value |= MAC_CTRL_PROMIS_EN;
else if (netdev->flags & IFF_ALLMULTI)
value |= MAC_CTRL_MC_ALL_EN;
/* half retry buffer */
value |= (((u32)(adapter->hw.retry_buf &
MAC_CTRL_HALF_LEFT_BUF_MASK)) << MAC_CTRL_HALF_LEFT_BUF_SHIFT);
ATL2_WRITE_REG(hw, REG_MAC_CTRL, value);
}
static int atl2_check_link(struct atl2_adapter *adapter)
{
struct atl2_hw *hw = &adapter->hw;
struct net_device *netdev = adapter->netdev;
int ret_val;
u16 speed, duplex, phy_data;
int reconfig = 0;
/* MII_BMSR must read twise */
atl2_read_phy_reg(hw, MII_BMSR, &phy_data);
atl2_read_phy_reg(hw, MII_BMSR, &phy_data);
if (!(phy_data&BMSR_LSTATUS)) { /* link down */
if (netif_carrier_ok(netdev)) { /* old link state: Up */
u32 value;
/* disable rx */
value = ATL2_READ_REG(hw, REG_MAC_CTRL);
value &= ~MAC_CTRL_RX_EN;
ATL2_WRITE_REG(hw, REG_MAC_CTRL, value);
adapter->link_speed = SPEED_0;
netif_carrier_off(netdev);
netif_stop_queue(netdev);
}
return 0;
}
/* Link Up */
ret_val = atl2_get_speed_and_duplex(hw, &speed, &duplex);
if (ret_val)
return ret_val;
switch (hw->MediaType) {
case MEDIA_TYPE_100M_FULL:
if (speed != SPEED_100 || duplex != FULL_DUPLEX)
reconfig = 1;
break;
case MEDIA_TYPE_100M_HALF:
if (speed != SPEED_100 || duplex != HALF_DUPLEX)
reconfig = 1;
break;
case MEDIA_TYPE_10M_FULL:
if (speed != SPEED_10 || duplex != FULL_DUPLEX)
reconfig = 1;
break;
case MEDIA_TYPE_10M_HALF:
if (speed != SPEED_10 || duplex != HALF_DUPLEX)
reconfig = 1;
break;
}
/* link result is our setting */
if (reconfig == 0) {
if (adapter->link_speed != speed ||
adapter->link_duplex != duplex) {
adapter->link_speed = speed;
adapter->link_duplex = duplex;
atl2_setup_mac_ctrl(adapter);
printk(KERN_INFO "%s: %s NIC Link is Up<%d Mbps %s>\n",
atl2_driver_name, netdev->name,
adapter->link_speed,
adapter->link_duplex == FULL_DUPLEX ?
"Full Duplex" : "Half Duplex");
}
if (!netif_carrier_ok(netdev)) { /* Link down -> Up */
netif_carrier_on(netdev);
netif_wake_queue(netdev);
}
return 0;
}
/* change original link status */
if (netif_carrier_ok(netdev)) {
u32 value;
/* disable rx */
value = ATL2_READ_REG(hw, REG_MAC_CTRL);
value &= ~MAC_CTRL_RX_EN;
ATL2_WRITE_REG(hw, REG_MAC_CTRL, value);
adapter->link_speed = SPEED_0;
netif_carrier_off(netdev);
netif_stop_queue(netdev);
}
/* auto-neg, insert timer to re-config phy
* (if interval smaller than 5 seconds, something strange) */
if (!test_bit(__ATL2_DOWN, &adapter->flags)) {
if (!test_and_set_bit(0, &adapter->cfg_phy))
mod_timer(&adapter->phy_config_timer,
round_jiffies(jiffies + 5 * HZ));
}
return 0;
}
/**
* atl2_link_chg_task - deal with link change event Out of interrupt context
* @work: pointer to work struct with private info
*/
static void atl2_link_chg_task(struct work_struct *work)
{
struct atl2_adapter *adapter;
unsigned long flags;
adapter = container_of(work, struct atl2_adapter, link_chg_task);
spin_lock_irqsave(&adapter->stats_lock, flags);
atl2_check_link(adapter);
spin_unlock_irqrestore(&adapter->stats_lock, flags);
}
static void atl2_setup_pcicmd(struct pci_dev *pdev)
{
u16 cmd;
pci_read_config_word(pdev, PCI_COMMAND, &cmd);
if (cmd & PCI_COMMAND_INTX_DISABLE)
cmd &= ~PCI_COMMAND_INTX_DISABLE;
if (cmd & PCI_COMMAND_IO)
cmd &= ~PCI_COMMAND_IO;
if (0 == (cmd & PCI_COMMAND_MEMORY))
cmd |= PCI_COMMAND_MEMORY;
if (0 == (cmd & PCI_COMMAND_MASTER))
cmd |= PCI_COMMAND_MASTER;
pci_write_config_word(pdev, PCI_COMMAND, cmd);
/*
* some motherboards BIOS(PXE/EFI) driver may set PME
* while they transfer control to OS (Windows/Linux)
* so we should clear this bit before NIC work normally
*/
pci_write_config_dword(pdev, REG_PM_CTRLSTAT, 0);
}
#ifdef CONFIG_NET_POLL_CONTROLLER
static void atl2_poll_controller(struct net_device *netdev)
{
disable_irq(netdev->irq);
atl2_intr(netdev->irq, netdev);
enable_irq(netdev->irq);
}
#endif
static const struct net_device_ops atl2_netdev_ops = {
.ndo_open = atl2_open,
.ndo_stop = atl2_close,
.ndo_start_xmit = atl2_xmit_frame,
.ndo_set_rx_mode = atl2_set_multi,
.ndo_validate_addr = eth_validate_addr,
.ndo_set_mac_address = atl2_set_mac,
.ndo_change_mtu = atl2_change_mtu,
.ndo_fix_features = atl2_fix_features,
.ndo_set_features = atl2_set_features,
.ndo_eth_ioctl = atl2_ioctl,
.ndo_tx_timeout = atl2_tx_timeout,
#ifdef CONFIG_NET_POLL_CONTROLLER
.ndo_poll_controller = atl2_poll_controller,
#endif
};
/**
* atl2_probe - Device Initialization Routine
* @pdev: PCI device information struct
* @ent: entry in atl2_pci_tbl
*
* Returns 0 on success, negative on failure
*
* atl2_probe initializes an adapter identified by a pci_dev structure.
* The OS initialization, configuring of the adapter private structure,
* and a hardware reset occur.
*/
static int atl2_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
{
struct net_device *netdev;
struct atl2_adapter *adapter;
static int cards_found = 0;
unsigned long mmio_start;
int mmio_len;
int err;
err = pci_enable_device(pdev);
if (err)
return err;
/*
* atl2 is a shared-high-32-bit device, so we're stuck with 32-bit DMA
* until the kernel has the proper infrastructure to support 64-bit DMA
* on these devices.
*/
if (dma_set_mask(&pdev->dev, DMA_BIT_MASK(32)) &&
dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32))) {
printk(KERN_ERR "atl2: No usable DMA configuration, aborting\n");
err = -EIO;
goto err_dma;
}
/* Mark all PCI regions associated with PCI device
* pdev as being reserved by owner atl2_driver_name */
err = pci_request_regions(pdev, atl2_driver_name);
if (err)
goto err_pci_reg;
/* Enables bus-mastering on the device and calls
* pcibios_set_master to do the needed arch specific settings */
pci_set_master(pdev);
netdev = alloc_etherdev(sizeof(struct atl2_adapter));
if (!netdev) {
err = -ENOMEM;
goto err_alloc_etherdev;
}
SET_NETDEV_DEV(netdev, &pdev->dev);
pci_set_drvdata(pdev, netdev);
adapter = netdev_priv(netdev);
adapter->netdev = netdev;
adapter->pdev = pdev;
adapter->hw.back = adapter;
mmio_start = pci_resource_start(pdev, 0x0);
mmio_len = pci_resource_len(pdev, 0x0);
adapter->hw.mem_rang = (u32)mmio_len;
adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
if (!adapter->hw.hw_addr) {
err = -EIO;
goto err_ioremap;
}
atl2_setup_pcicmd(pdev);
netdev->netdev_ops = &atl2_netdev_ops;
netdev->ethtool_ops = &atl2_ethtool_ops;
netdev->watchdog_timeo = 5 * HZ;
netdev->min_mtu = 40;
netdev->max_mtu = ETH_DATA_LEN + VLAN_HLEN;
strscpy(netdev->name, pci_name(pdev), sizeof(netdev->name));
netdev->mem_start = mmio_start;
netdev->mem_end = mmio_start + mmio_len;
adapter->bd_number = cards_found;
adapter->pci_using_64 = false;
/* setup the private structure */
err = atl2_sw_init(adapter);
if (err)
goto err_sw_init;
netdev->hw_features = NETIF_F_HW_VLAN_CTAG_RX;
netdev->features |= (NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX);
/* Init PHY as early as possible due to power saving issue */
atl2_phy_init(&adapter->hw);
/* reset the controller to
* put the device in a known good starting state */
if (atl2_reset_hw(&adapter->hw)) {
err = -EIO;
goto err_reset;
}
/* copy the MAC address out of the EEPROM */
atl2_read_mac_addr(&adapter->hw);
eth_hw_addr_set(netdev, adapter->hw.mac_addr);
if (!is_valid_ether_addr(netdev->dev_addr)) {
err = -EIO;
goto err_eeprom;
}
atl2_check_options(adapter);
timer_setup(&adapter->watchdog_timer, atl2_watchdog, 0);
timer_setup(&adapter->phy_config_timer, atl2_phy_config, 0);
INIT_WORK(&adapter->reset_task, atl2_reset_task);
INIT_WORK(&adapter->link_chg_task, atl2_link_chg_task);
strcpy(netdev->name, "eth%d"); /* ?? */
err = register_netdev(netdev);
if (err)
goto err_register;
/* assume we have no link for now */
netif_carrier_off(netdev);
netif_stop_queue(netdev);
cards_found++;
return 0;
err_reset:
err_register:
err_sw_init:
err_eeprom:
iounmap(adapter->hw.hw_addr);
err_ioremap:
free_netdev(netdev);
err_alloc_etherdev:
pci_release_regions(pdev);
err_pci_reg:
err_dma:
pci_disable_device(pdev);
return err;
}
/**
* atl2_remove - Device Removal Routine
* @pdev: PCI device information struct
*
* atl2_remove is called by the PCI subsystem to alert the driver
* that it should release a PCI device. The could be caused by a
* Hot-Plug event, or because the driver is going to be removed from
* memory.
*/
/* FIXME: write the original MAC address back in case it was changed from a
* BIOS-set value, as in atl1 -- CHS */
static void atl2_remove(struct pci_dev *pdev)
{
struct net_device *netdev = pci_get_drvdata(pdev);
struct atl2_adapter *adapter = netdev_priv(netdev);
/* flush_scheduled work may reschedule our watchdog task, so
* explicitly disable watchdog tasks from being rescheduled */
set_bit(__ATL2_DOWN, &adapter->flags);
del_timer_sync(&adapter->watchdog_timer);
del_timer_sync(&adapter->phy_config_timer);
cancel_work_sync(&adapter->reset_task);
cancel_work_sync(&adapter->link_chg_task);
unregister_netdev(netdev);
atl2_force_ps(&adapter->hw);
iounmap(adapter->hw.hw_addr);
pci_release_regions(pdev);
free_netdev(netdev);
pci_disable_device(pdev);
}
static int atl2_suspend(struct pci_dev *pdev, pm_message_t state)
{
struct net_device *netdev = pci_get_drvdata(pdev);
struct atl2_adapter *adapter = netdev_priv(netdev);
struct atl2_hw *hw = &adapter->hw;
u16 speed, duplex;
u32 ctrl = 0;
u32 wufc = adapter->wol;
#ifdef CONFIG_PM
int retval = 0;
#endif
netif_device_detach(netdev);
if (netif_running(netdev)) {
WARN_ON(test_bit(__ATL2_RESETTING, &adapter->flags));
atl2_down(adapter);
}
#ifdef CONFIG_PM
retval = pci_save_state(pdev);
if (retval)
return retval;
#endif
atl2_read_phy_reg(hw, MII_BMSR, (u16 *)&ctrl);
atl2_read_phy_reg(hw, MII_BMSR, (u16 *)&ctrl);
if (ctrl & BMSR_LSTATUS)
wufc &= ~ATLX_WUFC_LNKC;
if (0 != (ctrl & BMSR_LSTATUS) && 0 != wufc) {
u32 ret_val;
/* get current link speed & duplex */
ret_val = atl2_get_speed_and_duplex(hw, &speed, &duplex);
if (ret_val) {
printk(KERN_DEBUG
"%s: get speed&duplex error while suspend\n",
atl2_driver_name);
goto wol_dis;
}
ctrl = 0;
/* turn on magic packet wol */
if (wufc & ATLX_WUFC_MAG)
ctrl |= (WOL_MAGIC_EN | WOL_MAGIC_PME_EN);
/* ignore Link Chg event when Link is up */
ATL2_WRITE_REG(hw, REG_WOL_CTRL, ctrl);
/* Config MAC CTRL Register */
ctrl = MAC_CTRL_RX_EN | MAC_CTRL_MACLP_CLK_PHY;
if (FULL_DUPLEX == adapter->link_duplex)
ctrl |= MAC_CTRL_DUPLX;
ctrl |= (MAC_CTRL_ADD_CRC | MAC_CTRL_PAD);
ctrl |= (((u32)adapter->hw.preamble_len &
MAC_CTRL_PRMLEN_MASK) << MAC_CTRL_PRMLEN_SHIFT);
ctrl |= (((u32)(adapter->hw.retry_buf &
MAC_CTRL_HALF_LEFT_BUF_MASK)) <<
MAC_CTRL_HALF_LEFT_BUF_SHIFT);
if (wufc & ATLX_WUFC_MAG) {
/* magic packet maybe Broadcast&multicast&Unicast */
ctrl |= MAC_CTRL_BC_EN;
}
ATL2_WRITE_REG(hw, REG_MAC_CTRL, ctrl);
/* pcie patch */
ctrl = ATL2_READ_REG(hw, REG_PCIE_PHYMISC);
ctrl |= PCIE_PHYMISC_FORCE_RCV_DET;
ATL2_WRITE_REG(hw, REG_PCIE_PHYMISC, ctrl);
ctrl = ATL2_READ_REG(hw, REG_PCIE_DLL_TX_CTRL1);
ctrl |= PCIE_DLL_TX_CTRL1_SEL_NOR_CLK;
ATL2_WRITE_REG(hw, REG_PCIE_DLL_TX_CTRL1, ctrl);
pci_enable_wake(pdev, pci_choose_state(pdev, state), 1);
goto suspend_exit;
}
if (0 == (ctrl&BMSR_LSTATUS) && 0 != (wufc&ATLX_WUFC_LNKC)) {
/* link is down, so only LINK CHG WOL event enable */
ctrl |= (WOL_LINK_CHG_EN | WOL_LINK_CHG_PME_EN);
ATL2_WRITE_REG(hw, REG_WOL_CTRL, ctrl);
ATL2_WRITE_REG(hw, REG_MAC_CTRL, 0);
/* pcie patch */
ctrl = ATL2_READ_REG(hw, REG_PCIE_PHYMISC);
ctrl |= PCIE_PHYMISC_FORCE_RCV_DET;
ATL2_WRITE_REG(hw, REG_PCIE_PHYMISC, ctrl);
ctrl = ATL2_READ_REG(hw, REG_PCIE_DLL_TX_CTRL1);
ctrl |= PCIE_DLL_TX_CTRL1_SEL_NOR_CLK;
ATL2_WRITE_REG(hw, REG_PCIE_DLL_TX_CTRL1, ctrl);
hw->phy_configured = false; /* re-init PHY when resume */
pci_enable_wake(pdev, pci_choose_state(pdev, state), 1);
goto suspend_exit;
}
wol_dis:
/* WOL disabled */
ATL2_WRITE_REG(hw, REG_WOL_CTRL, 0);
/* pcie patch */
ctrl = ATL2_READ_REG(hw, REG_PCIE_PHYMISC);
ctrl |= PCIE_PHYMISC_FORCE_RCV_DET;
ATL2_WRITE_REG(hw, REG_PCIE_PHYMISC, ctrl);
ctrl = ATL2_READ_REG(hw, REG_PCIE_DLL_TX_CTRL1);
ctrl |= PCIE_DLL_TX_CTRL1_SEL_NOR_CLK;
ATL2_WRITE_REG(hw, REG_PCIE_DLL_TX_CTRL1, ctrl);
atl2_force_ps(hw);
hw->phy_configured = false; /* re-init PHY when resume */
pci_enable_wake(pdev, pci_choose_state(pdev, state), 0);
suspend_exit:
if (netif_running(netdev))
atl2_free_irq(adapter);
pci_disable_device(pdev);
pci_set_power_state(pdev, pci_choose_state(pdev, state));
return 0;
}
#ifdef CONFIG_PM
static int atl2_resume(struct pci_dev *pdev)
{
struct net_device *netdev = pci_get_drvdata(pdev);
struct atl2_adapter *adapter = netdev_priv(netdev);
u32 err;
pci_set_power_state(pdev, PCI_D0);
pci_restore_state(pdev);
err = pci_enable_device(pdev);
if (err) {
printk(KERN_ERR
"atl2: Cannot enable PCI device from suspend\n");
return err;
}
pci_set_master(pdev);
ATL2_READ_REG(&adapter->hw, REG_WOL_CTRL); /* clear WOL status */
pci_enable_wake(pdev, PCI_D3hot, 0);
pci_enable_wake(pdev, PCI_D3cold, 0);
ATL2_WRITE_REG(&adapter->hw, REG_WOL_CTRL, 0);
if (netif_running(netdev)) {
err = atl2_request_irq(adapter);
if (err)
return err;
}
atl2_reset_hw(&adapter->hw);
if (netif_running(netdev))
atl2_up(adapter);
netif_device_attach(netdev);
return 0;
}
#endif
static void atl2_shutdown(struct pci_dev *pdev)
{
atl2_suspend(pdev, PMSG_SUSPEND);
}
static struct pci_driver atl2_driver = {
.name = atl2_driver_name,
.id_table = atl2_pci_tbl,
.probe = atl2_probe,
.remove = atl2_remove,
/* Power Management Hooks */
.suspend = atl2_suspend,
#ifdef CONFIG_PM
.resume = atl2_resume,
#endif
.shutdown = atl2_shutdown,
};
module_pci_driver(atl2_driver);
static void atl2_read_pci_cfg(struct atl2_hw *hw, u32 reg, u16 *value)
{
struct atl2_adapter *adapter = hw->back;
pci_read_config_word(adapter->pdev, reg, value);
}
static void atl2_write_pci_cfg(struct atl2_hw *hw, u32 reg, u16 *value)
{
struct atl2_adapter *adapter = hw->back;
pci_write_config_word(adapter->pdev, reg, *value);
}
static int atl2_get_link_ksettings(struct net_device *netdev,
struct ethtool_link_ksettings *cmd)
{
struct atl2_adapter *adapter = netdev_priv(netdev);
struct atl2_hw *hw = &adapter->hw;
u32 supported, advertising;
supported = (SUPPORTED_10baseT_Half |
SUPPORTED_10baseT_Full |
SUPPORTED_100baseT_Half |
SUPPORTED_100baseT_Full |
SUPPORTED_Autoneg |
SUPPORTED_TP);
advertising = ADVERTISED_TP;
advertising |= ADVERTISED_Autoneg;
advertising |= hw->autoneg_advertised;
cmd->base.port = PORT_TP;
cmd->base.phy_address = 0;
if (adapter->link_speed != SPEED_0) {
cmd->base.speed = adapter->link_speed;
if (adapter->link_duplex == FULL_DUPLEX)
cmd->base.duplex = DUPLEX_FULL;
else
cmd->base.duplex = DUPLEX_HALF;
} else {
cmd->base.speed = SPEED_UNKNOWN;
cmd->base.duplex = DUPLEX_UNKNOWN;
}
cmd->base.autoneg = AUTONEG_ENABLE;
ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
supported);
ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
advertising);
return 0;
}
static int atl2_set_link_ksettings(struct net_device *netdev,
const struct ethtool_link_ksettings *cmd)
{
struct atl2_adapter *adapter = netdev_priv(netdev);
struct atl2_hw *hw = &adapter->hw;
u32 advertising;
ethtool_convert_link_mode_to_legacy_u32(&advertising,
cmd->link_modes.advertising);
while (test_and_set_bit(__ATL2_RESETTING, &adapter->flags))
msleep(1);
if (cmd->base.autoneg == AUTONEG_ENABLE) {
#define MY_ADV_MASK (ADVERTISE_10_HALF | \
ADVERTISE_10_FULL | \
ADVERTISE_100_HALF| \
ADVERTISE_100_FULL)
if ((advertising & MY_ADV_MASK) == MY_ADV_MASK) {
hw->MediaType = MEDIA_TYPE_AUTO_SENSOR;
hw->autoneg_advertised = MY_ADV_MASK;
} else if ((advertising & MY_ADV_MASK) == ADVERTISE_100_FULL) {
hw->MediaType = MEDIA_TYPE_100M_FULL;
hw->autoneg_advertised = ADVERTISE_100_FULL;
} else if ((advertising & MY_ADV_MASK) == ADVERTISE_100_HALF) {
hw->MediaType = MEDIA_TYPE_100M_HALF;
hw->autoneg_advertised = ADVERTISE_100_HALF;
} else if ((advertising & MY_ADV_MASK) == ADVERTISE_10_FULL) {
hw->MediaType = MEDIA_TYPE_10M_FULL;
hw->autoneg_advertised = ADVERTISE_10_FULL;
} else if ((advertising & MY_ADV_MASK) == ADVERTISE_10_HALF) {
hw->MediaType = MEDIA_TYPE_10M_HALF;
hw->autoneg_advertised = ADVERTISE_10_HALF;
} else {
clear_bit(__ATL2_RESETTING, &adapter->flags);
return -EINVAL;
}
advertising = hw->autoneg_advertised |
ADVERTISED_TP | ADVERTISED_Autoneg;
} else {
clear_bit(__ATL2_RESETTING, &adapter->flags);
return -EINVAL;
}
/* reset the link */
if (netif_running(adapter->netdev)) {
atl2_down(adapter);
atl2_up(adapter);
} else
atl2_reset_hw(&adapter->hw);
clear_bit(__ATL2_RESETTING, &adapter->flags);
return 0;
}
static u32 atl2_get_msglevel(struct net_device *netdev)
{
return 0;
}
/*
* It's sane for this to be empty, but we might want to take advantage of this.
*/
static void atl2_set_msglevel(struct net_device *netdev, u32 data)
{
}
static int atl2_get_regs_len(struct net_device *netdev)
{
#define ATL2_REGS_LEN 42
return sizeof(u32) * ATL2_REGS_LEN;
}
static void atl2_get_regs(struct net_device *netdev,
struct ethtool_regs *regs, void *p)
{
struct atl2_adapter *adapter = netdev_priv(netdev);
struct atl2_hw *hw = &adapter->hw;
u32 *regs_buff = p;
u16 phy_data;
memset(p, 0, sizeof(u32) * ATL2_REGS_LEN);
regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
regs_buff[0] = ATL2_READ_REG(hw, REG_VPD_CAP);
regs_buff[1] = ATL2_READ_REG(hw, REG_SPI_FLASH_CTRL);
regs_buff[2] = ATL2_READ_REG(hw, REG_SPI_FLASH_CONFIG);
regs_buff[3] = ATL2_READ_REG(hw, REG_TWSI_CTRL);
regs_buff[4] = ATL2_READ_REG(hw, REG_PCIE_DEV_MISC_CTRL);
regs_buff[5] = ATL2_READ_REG(hw, REG_MASTER_CTRL);
regs_buff[6] = ATL2_READ_REG(hw, REG_MANUAL_TIMER_INIT);
regs_buff[7] = ATL2_READ_REG(hw, REG_IRQ_MODU_TIMER_INIT);
regs_buff[8] = ATL2_READ_REG(hw, REG_PHY_ENABLE);
regs_buff[9] = ATL2_READ_REG(hw, REG_CMBDISDMA_TIMER);
regs_buff[10] = ATL2_READ_REG(hw, REG_IDLE_STATUS);
regs_buff[11] = ATL2_READ_REG(hw, REG_MDIO_CTRL);
regs_buff[12] = ATL2_READ_REG(hw, REG_SERDES_LOCK);
regs_buff[13] = ATL2_READ_REG(hw, REG_MAC_CTRL);
regs_buff[14] = ATL2_READ_REG(hw, REG_MAC_IPG_IFG);
regs_buff[15] = ATL2_READ_REG(hw, REG_MAC_STA_ADDR);
regs_buff[16] = ATL2_READ_REG(hw, REG_MAC_STA_ADDR+4);
regs_buff[17] = ATL2_READ_REG(hw, REG_RX_HASH_TABLE);
regs_buff[18] = ATL2_READ_REG(hw, REG_RX_HASH_TABLE+4);
regs_buff[19] = ATL2_READ_REG(hw, REG_MAC_HALF_DUPLX_CTRL);
regs_buff[20] = ATL2_READ_REG(hw, REG_MTU);
regs_buff[21] = ATL2_READ_REG(hw, REG_WOL_CTRL);
regs_buff[22] = ATL2_READ_REG(hw, REG_SRAM_TXRAM_END);
regs_buff[23] = ATL2_READ_REG(hw, REG_DESC_BASE_ADDR_HI);
regs_buff[24] = ATL2_READ_REG(hw, REG_TXD_BASE_ADDR_LO);
regs_buff[25] = ATL2_READ_REG(hw, REG_TXD_MEM_SIZE);
regs_buff[26] = ATL2_READ_REG(hw, REG_TXS_BASE_ADDR_LO);
regs_buff[27] = ATL2_READ_REG(hw, REG_TXS_MEM_SIZE);
regs_buff[28] = ATL2_READ_REG(hw, REG_RXD_BASE_ADDR_LO);
regs_buff[29] = ATL2_READ_REG(hw, REG_RXD_BUF_NUM);
regs_buff[30] = ATL2_READ_REG(hw, REG_DMAR);
regs_buff[31] = ATL2_READ_REG(hw, REG_TX_CUT_THRESH);
regs_buff[32] = ATL2_READ_REG(hw, REG_DMAW);
regs_buff[33] = ATL2_READ_REG(hw, REG_PAUSE_ON_TH);
regs_buff[34] = ATL2_READ_REG(hw, REG_PAUSE_OFF_TH);
regs_buff[35] = ATL2_READ_REG(hw, REG_MB_TXD_WR_IDX);
regs_buff[36] = ATL2_READ_REG(hw, REG_MB_RXD_RD_IDX);
regs_buff[38] = ATL2_READ_REG(hw, REG_ISR);
regs_buff[39] = ATL2_READ_REG(hw, REG_IMR);
atl2_read_phy_reg(hw, MII_BMCR, &phy_data);
regs_buff[40] = (u32)phy_data;
atl2_read_phy_reg(hw, MII_BMSR, &phy_data);
regs_buff[41] = (u32)phy_data;
}
static int atl2_get_eeprom_len(struct net_device *netdev)
{
struct atl2_adapter *adapter = netdev_priv(netdev);
if (!atl2_check_eeprom_exist(&adapter->hw))
return 512;
else
return 0;
}
static int atl2_get_eeprom(struct net_device *netdev,
struct ethtool_eeprom *eeprom, u8 *bytes)
{
struct atl2_adapter *adapter = netdev_priv(netdev);
struct atl2_hw *hw = &adapter->hw;
u32 *eeprom_buff;
int first_dword, last_dword;
int ret_val = 0;
int i;
if (eeprom->len == 0)
return -EINVAL;
if (atl2_check_eeprom_exist(hw))
return -EINVAL;
eeprom->magic = hw->vendor_id | (hw->device_id << 16);
first_dword = eeprom->offset >> 2;
last_dword = (eeprom->offset + eeprom->len - 1) >> 2;
eeprom_buff = kmalloc_array(last_dword - first_dword + 1, sizeof(u32),
GFP_KERNEL);
if (!eeprom_buff)
return -ENOMEM;
for (i = first_dword; i < last_dword; i++) {
if (!atl2_read_eeprom(hw, i*4, &(eeprom_buff[i-first_dword]))) {
ret_val = -EIO;
goto free;
}
}
memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 3),
eeprom->len);
free:
kfree(eeprom_buff);
return ret_val;
}
static int atl2_set_eeprom(struct net_device *netdev,
struct ethtool_eeprom *eeprom, u8 *bytes)
{
struct atl2_adapter *adapter = netdev_priv(netdev);
struct atl2_hw *hw = &adapter->hw;
u32 *eeprom_buff;
u32 *ptr;
int max_len, first_dword, last_dword, ret_val = 0;
int i;
if (eeprom->len == 0)
return -EOPNOTSUPP;
if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
return -EFAULT;
max_len = 512;
first_dword = eeprom->offset >> 2;
last_dword = (eeprom->offset + eeprom->len - 1) >> 2;
eeprom_buff = kmalloc(max_len, GFP_KERNEL);
if (!eeprom_buff)
return -ENOMEM;
ptr = eeprom_buff;
if (eeprom->offset & 3) {
/* need read/modify/write of first changed EEPROM word */
/* only the second byte of the word is being modified */
if (!atl2_read_eeprom(hw, first_dword*4, &(eeprom_buff[0]))) {
ret_val = -EIO;
goto out;
}
ptr++;
}
if (((eeprom->offset + eeprom->len) & 3)) {
/*
* need read/modify/write of last changed EEPROM word
* only the first byte of the word is being modified
*/
if (!atl2_read_eeprom(hw, last_dword * 4,
&(eeprom_buff[last_dword - first_dword]))) {
ret_val = -EIO;
goto out;
}
}
/* Device's eeprom is always little-endian, word addressable */
memcpy(ptr, bytes, eeprom->len);
for (i = 0; i < last_dword - first_dword + 1; i++) {
if (!atl2_write_eeprom(hw, ((first_dword+i)*4), eeprom_buff[i])) {
ret_val = -EIO;
goto out;
}
}
out:
kfree(eeprom_buff);
return ret_val;
}
static void atl2_get_drvinfo(struct net_device *netdev,
struct ethtool_drvinfo *drvinfo)
{
struct atl2_adapter *adapter = netdev_priv(netdev);
strscpy(drvinfo->driver, atl2_driver_name, sizeof(drvinfo->driver));
strscpy(drvinfo->fw_version, "L2", sizeof(drvinfo->fw_version));
strscpy(drvinfo->bus_info, pci_name(adapter->pdev),
sizeof(drvinfo->bus_info));
}
static void atl2_get_wol(struct net_device *netdev,
struct ethtool_wolinfo *wol)
{
struct atl2_adapter *adapter = netdev_priv(netdev);
wol->supported = WAKE_MAGIC;
wol->wolopts = 0;
if (adapter->wol & ATLX_WUFC_EX)
wol->wolopts |= WAKE_UCAST;
if (adapter->wol & ATLX_WUFC_MC)
wol->wolopts |= WAKE_MCAST;
if (adapter->wol & ATLX_WUFC_BC)
wol->wolopts |= WAKE_BCAST;
if (adapter->wol & ATLX_WUFC_MAG)
wol->wolopts |= WAKE_MAGIC;
if (adapter->wol & ATLX_WUFC_LNKC)
wol->wolopts |= WAKE_PHY;
}
static int atl2_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
{
struct atl2_adapter *adapter = netdev_priv(netdev);
if (wol->wolopts & (WAKE_ARP | WAKE_MAGICSECURE))
return -EOPNOTSUPP;
if (wol->wolopts & (WAKE_UCAST | WAKE_BCAST | WAKE_MCAST))
return -EOPNOTSUPP;
/* these settings will always override what we currently have */
adapter->wol = 0;
if (wol->wolopts & WAKE_MAGIC)
adapter->wol |= ATLX_WUFC_MAG;
if (wol->wolopts & WAKE_PHY)
adapter->wol |= ATLX_WUFC_LNKC;
return 0;
}
static int atl2_nway_reset(struct net_device *netdev)
{
struct atl2_adapter *adapter = netdev_priv(netdev);
if (netif_running(netdev))
atl2_reinit_locked(adapter);
return 0;
}
static const struct ethtool_ops atl2_ethtool_ops = {
.get_drvinfo = atl2_get_drvinfo,
.get_regs_len = atl2_get_regs_len,
.get_regs = atl2_get_regs,
.get_wol = atl2_get_wol,
.set_wol = atl2_set_wol,
.get_msglevel = atl2_get_msglevel,
.set_msglevel = atl2_set_msglevel,
.nway_reset = atl2_nway_reset,
.get_link = ethtool_op_get_link,
.get_eeprom_len = atl2_get_eeprom_len,
.get_eeprom = atl2_get_eeprom,
.set_eeprom = atl2_set_eeprom,
.get_link_ksettings = atl2_get_link_ksettings,
.set_link_ksettings = atl2_set_link_ksettings,
};
#define LBYTESWAP(a) ((((a) & 0x00ff00ff) << 8) | \
(((a) & 0xff00ff00) >> 8))
#define LONGSWAP(a) ((LBYTESWAP(a) << 16) | (LBYTESWAP(a) >> 16))
#define SHORTSWAP(a) (((a) << 8) | ((a) >> 8))
/*
* Reset the transmit and receive units; mask and clear all interrupts.
*
* hw - Struct containing variables accessed by shared code
* return : 0 or idle status (if error)
*/
static s32 atl2_reset_hw(struct atl2_hw *hw)
{
u32 icr;
u16 pci_cfg_cmd_word;
int i;
/* Workaround for PCI problem when BIOS sets MMRBC incorrectly. */
atl2_read_pci_cfg(hw, PCI_REG_COMMAND, &pci_cfg_cmd_word);
if ((pci_cfg_cmd_word &
(CMD_IO_SPACE|CMD_MEMORY_SPACE|CMD_BUS_MASTER)) !=
(CMD_IO_SPACE|CMD_MEMORY_SPACE|CMD_BUS_MASTER)) {
pci_cfg_cmd_word |=
(CMD_IO_SPACE|CMD_MEMORY_SPACE|CMD_BUS_MASTER);
atl2_write_pci_cfg(hw, PCI_REG_COMMAND, &pci_cfg_cmd_word);
}
/* Clear Interrupt mask to stop board from generating
* interrupts & Clear any pending interrupt events
*/
/* FIXME */
/* ATL2_WRITE_REG(hw, REG_IMR, 0); */
/* ATL2_WRITE_REG(hw, REG_ISR, 0xffffffff); */
/* Issue Soft Reset to the MAC. This will reset the chip's
* transmit, receive, DMA. It will not effect
* the current PCI configuration. The global reset bit is self-
* clearing, and should clear within a microsecond.
*/
ATL2_WRITE_REG(hw, REG_MASTER_CTRL, MASTER_CTRL_SOFT_RST);
wmb();
msleep(1); /* delay about 1ms */
/* Wait at least 10ms for All module to be Idle */
for (i = 0; i < 10; i++) {
icr = ATL2_READ_REG(hw, REG_IDLE_STATUS);
if (!icr)
break;
msleep(1); /* delay 1 ms */
cpu_relax();
}
if (icr)
return icr;
return 0;
}
#define CUSTOM_SPI_CS_SETUP 2
#define CUSTOM_SPI_CLK_HI 2
#define CUSTOM_SPI_CLK_LO 2
#define CUSTOM_SPI_CS_HOLD 2
#define CUSTOM_SPI_CS_HI 3
static struct atl2_spi_flash_dev flash_table[] =
{
/* MFR WRSR READ PROGRAM WREN WRDI RDSR RDID SECTOR_ERASE CHIP_ERASE */
{"Atmel", 0x0, 0x03, 0x02, 0x06, 0x04, 0x05, 0x15, 0x52, 0x62 },
{"SST", 0x01, 0x03, 0x02, 0x06, 0x04, 0x05, 0x90, 0x20, 0x60 },
{"ST", 0x01, 0x03, 0x02, 0x06, 0x04, 0x05, 0xAB, 0xD8, 0xC7 },
};
static bool atl2_spi_read(struct atl2_hw *hw, u32 addr, u32 *buf)
{
int i;
u32 value;
ATL2_WRITE_REG(hw, REG_SPI_DATA, 0);
ATL2_WRITE_REG(hw, REG_SPI_ADDR, addr);
value = SPI_FLASH_CTRL_WAIT_READY |
(CUSTOM_SPI_CS_SETUP & SPI_FLASH_CTRL_CS_SETUP_MASK) <<
SPI_FLASH_CTRL_CS_SETUP_SHIFT |
(CUSTOM_SPI_CLK_HI & SPI_FLASH_CTRL_CLK_HI_MASK) <<
SPI_FLASH_CTRL_CLK_HI_SHIFT |
(CUSTOM_SPI_CLK_LO & SPI_FLASH_CTRL_CLK_LO_MASK) <<
SPI_FLASH_CTRL_CLK_LO_SHIFT |
(CUSTOM_SPI_CS_HOLD & SPI_FLASH_CTRL_CS_HOLD_MASK) <<
SPI_FLASH_CTRL_CS_HOLD_SHIFT |
(CUSTOM_SPI_CS_HI & SPI_FLASH_CTRL_CS_HI_MASK) <<
SPI_FLASH_CTRL_CS_HI_SHIFT |
(0x1 & SPI_FLASH_CTRL_INS_MASK) << SPI_FLASH_CTRL_INS_SHIFT;
ATL2_WRITE_REG(hw, REG_SPI_FLASH_CTRL, value);
value |= SPI_FLASH_CTRL_START;
ATL2_WRITE_REG(hw, REG_SPI_FLASH_CTRL, value);
for (i = 0; i < 10; i++) {
msleep(1);
value = ATL2_READ_REG(hw, REG_SPI_FLASH_CTRL);
if (!(value & SPI_FLASH_CTRL_START))
break;
}
if (value & SPI_FLASH_CTRL_START)
return false;
*buf = ATL2_READ_REG(hw, REG_SPI_DATA);
return true;
}
/*
* get_permanent_address
* return 0 if get valid mac address,
*/
static int get_permanent_address(struct atl2_hw *hw)
{
u32 Addr[2];
u32 i, Control;
u16 Register;
u8 EthAddr[ETH_ALEN];
bool KeyValid;
if (is_valid_ether_addr(hw->perm_mac_addr))
return 0;
Addr[0] = 0;
Addr[1] = 0;
if (!atl2_check_eeprom_exist(hw)) { /* eeprom exists */
Register = 0;
KeyValid = false;
/* Read out all EEPROM content */
i = 0;
while (1) {
if (atl2_read_eeprom(hw, i + 0x100, &Control)) {
if (KeyValid) {
if (Register == REG_MAC_STA_ADDR)
Addr[0] = Control;
else if (Register ==
(REG_MAC_STA_ADDR + 4))
Addr[1] = Control;
KeyValid = false;
} else if ((Control & 0xff) == 0x5A) {
KeyValid = true;
Register = (u16) (Control >> 16);
} else {
/* assume data end while encount an invalid KEYWORD */
break;
}
} else {
break; /* read error */
}
i += 4;
}
*(u32 *) &EthAddr[2] = LONGSWAP(Addr[0]);
*(u16 *) &EthAddr[0] = SHORTSWAP(*(u16 *) &Addr[1]);
if (is_valid_ether_addr(EthAddr)) {
memcpy(hw->perm_mac_addr, EthAddr, ETH_ALEN);
return 0;
}
return 1;
}
/* see if SPI flash exists? */
Addr[0] = 0;
Addr[1] = 0;
Register = 0;
KeyValid = false;
i = 0;
while (1) {
if (atl2_spi_read(hw, i + 0x1f000, &Control)) {
if (KeyValid) {
if (Register == REG_MAC_STA_ADDR)
Addr[0] = Control;
else if (Register == (REG_MAC_STA_ADDR + 4))
Addr[1] = Control;
KeyValid = false;
} else if ((Control & 0xff) == 0x5A) {
KeyValid = true;
Register = (u16) (Control >> 16);
} else {
break; /* data end */
}
} else {
break; /* read error */
}
i += 4;
}
*(u32 *) &EthAddr[2] = LONGSWAP(Addr[0]);
*(u16 *) &EthAddr[0] = SHORTSWAP(*(u16 *)&Addr[1]);
if (is_valid_ether_addr(EthAddr)) {
memcpy(hw->perm_mac_addr, EthAddr, ETH_ALEN);
return 0;
}
/* maybe MAC-address is from BIOS */
Addr[0] = ATL2_READ_REG(hw, REG_MAC_STA_ADDR);
Addr[1] = ATL2_READ_REG(hw, REG_MAC_STA_ADDR + 4);
*(u32 *) &EthAddr[2] = LONGSWAP(Addr[0]);
*(u16 *) &EthAddr[0] = SHORTSWAP(*(u16 *) &Addr[1]);
if (is_valid_ether_addr(EthAddr)) {
memcpy(hw->perm_mac_addr, EthAddr, ETH_ALEN);
return 0;
}
return 1;
}
/*
* Reads the adapter's MAC address from the EEPROM
*
* hw - Struct containing variables accessed by shared code
*/
static s32 atl2_read_mac_addr(struct atl2_hw *hw)
{
if (get_permanent_address(hw)) {
/* for test */
/* FIXME: shouldn't we use eth_random_addr() here? */
hw->perm_mac_addr[0] = 0x00;
hw->perm_mac_addr[1] = 0x13;
hw->perm_mac_addr[2] = 0x74;
hw->perm_mac_addr[3] = 0x00;
hw->perm_mac_addr[4] = 0x5c;
hw->perm_mac_addr[5] = 0x38;
}
memcpy(hw->mac_addr, hw->perm_mac_addr, ETH_ALEN);
return 0;
}
/*
* Hashes an address to determine its location in the multicast table
*
* hw - Struct containing variables accessed by shared code
* mc_addr - the multicast address to hash
*
* atl2_hash_mc_addr
* purpose
* set hash value for a multicast address
* hash calcu processing :
* 1. calcu 32bit CRC for multicast address
* 2. reverse crc with MSB to LSB
*/
static u32 atl2_hash_mc_addr(struct atl2_hw *hw, u8 *mc_addr)
{
u32 crc32, value;
int i;
value = 0;
crc32 = ether_crc_le(6, mc_addr);
for (i = 0; i < 32; i++)
value |= (((crc32 >> i) & 1) << (31 - i));
return value;
}
/*
* Sets the bit in the multicast table corresponding to the hash value.
*
* hw - Struct containing variables accessed by shared code
* hash_value - Multicast address hash value
*/
static void atl2_hash_set(struct atl2_hw *hw, u32 hash_value)
{
u32 hash_bit, hash_reg;
u32 mta;
/* The HASH Table is a register array of 2 32-bit registers.
* It is treated like an array of 64 bits. We want to set
* bit BitArray[hash_value]. So we figure out what register
* the bit is in, read it, OR in the new bit, then write
* back the new value. The register is determined by the
* upper 7 bits of the hash value and the bit within that
* register are determined by the lower 5 bits of the value.
*/
hash_reg = (hash_value >> 31) & 0x1;
hash_bit = (hash_value >> 26) & 0x1F;
mta = ATL2_READ_REG_ARRAY(hw, REG_RX_HASH_TABLE, hash_reg);
mta |= (1 << hash_bit);
ATL2_WRITE_REG_ARRAY(hw, REG_RX_HASH_TABLE, hash_reg, mta);
}
/*
* atl2_init_pcie - init PCIE module
*/
static void atl2_init_pcie(struct atl2_hw *hw)
{
u32 value;
value = LTSSM_TEST_MODE_DEF;
ATL2_WRITE_REG(hw, REG_LTSSM_TEST_MODE, value);
value = PCIE_DLL_TX_CTRL1_DEF;
ATL2_WRITE_REG(hw, REG_PCIE_DLL_TX_CTRL1, value);
}
static void atl2_init_flash_opcode(struct atl2_hw *hw)
{
if (hw->flash_vendor >= ARRAY_SIZE(flash_table))
hw->flash_vendor = 0; /* ATMEL */
/* Init OP table */
ATL2_WRITE_REGB(hw, REG_SPI_FLASH_OP_PROGRAM,
flash_table[hw->flash_vendor].cmdPROGRAM);
ATL2_WRITE_REGB(hw, REG_SPI_FLASH_OP_SC_ERASE,
flash_table[hw->flash_vendor].cmdSECTOR_ERASE);
ATL2_WRITE_REGB(hw, REG_SPI_FLASH_OP_CHIP_ERASE,
flash_table[hw->flash_vendor].cmdCHIP_ERASE);
ATL2_WRITE_REGB(hw, REG_SPI_FLASH_OP_RDID,
flash_table[hw->flash_vendor].cmdRDID);
ATL2_WRITE_REGB(hw, REG_SPI_FLASH_OP_WREN,
flash_table[hw->flash_vendor].cmdWREN);
ATL2_WRITE_REGB(hw, REG_SPI_FLASH_OP_RDSR,
flash_table[hw->flash_vendor].cmdRDSR);
ATL2_WRITE_REGB(hw, REG_SPI_FLASH_OP_WRSR,
flash_table[hw->flash_vendor].cmdWRSR);
ATL2_WRITE_REGB(hw, REG_SPI_FLASH_OP_READ,
flash_table[hw->flash_vendor].cmdREAD);
}
/********************************************************************
* Performs basic configuration of the adapter.
*
* hw - Struct containing variables accessed by shared code
* Assumes that the controller has previously been reset and is in a
* post-reset uninitialized state. Initializes multicast table,
* and Calls routines to setup link
* Leaves the transmit and receive units disabled and uninitialized.
********************************************************************/
static s32 atl2_init_hw(struct atl2_hw *hw)
{
u32 ret_val = 0;
atl2_init_pcie(hw);
/* Zero out the Multicast HASH table */
/* clear the old settings from the multicast hash table */
ATL2_WRITE_REG(hw, REG_RX_HASH_TABLE, 0);
ATL2_WRITE_REG_ARRAY(hw, REG_RX_HASH_TABLE, 1, 0);
atl2_init_flash_opcode(hw);
ret_val = atl2_phy_init(hw);
return ret_val;
}
/*
* Detects the current speed and duplex settings of the hardware.
*
* hw - Struct containing variables accessed by shared code
* speed - Speed of the connection
* duplex - Duplex setting of the connection
*/
static s32 atl2_get_speed_and_duplex(struct atl2_hw *hw, u16 *speed,
u16 *duplex)
{
s32 ret_val;
u16 phy_data;
/* Read PHY Specific Status Register (17) */
ret_val = atl2_read_phy_reg(hw, MII_ATLX_PSSR, &phy_data);
if (ret_val)
return ret_val;
if (!(phy_data & MII_ATLX_PSSR_SPD_DPLX_RESOLVED))
return ATLX_ERR_PHY_RES;
switch (phy_data & MII_ATLX_PSSR_SPEED) {
case MII_ATLX_PSSR_100MBS:
*speed = SPEED_100;
break;
case MII_ATLX_PSSR_10MBS:
*speed = SPEED_10;
break;
default:
return ATLX_ERR_PHY_SPEED;
}
if (phy_data & MII_ATLX_PSSR_DPLX)
*duplex = FULL_DUPLEX;
else
*duplex = HALF_DUPLEX;
return 0;
}
/*
* Reads the value from a PHY register
* hw - Struct containing variables accessed by shared code
* reg_addr - address of the PHY register to read
*/
static s32 atl2_read_phy_reg(struct atl2_hw *hw, u16 reg_addr, u16 *phy_data)
{
u32 val;
int i;
val = ((u32)(reg_addr & MDIO_REG_ADDR_MASK)) << MDIO_REG_ADDR_SHIFT |
MDIO_START |
MDIO_SUP_PREAMBLE |
MDIO_RW |
MDIO_CLK_25_4 << MDIO_CLK_SEL_SHIFT;
ATL2_WRITE_REG(hw, REG_MDIO_CTRL, val);
wmb();
for (i = 0; i < MDIO_WAIT_TIMES; i++) {
udelay(2);
val = ATL2_READ_REG(hw, REG_MDIO_CTRL);
if (!(val & (MDIO_START | MDIO_BUSY)))
break;
wmb();
}
if (!(val & (MDIO_START | MDIO_BUSY))) {
*phy_data = (u16)val;
return 0;
}
return ATLX_ERR_PHY;
}
/*
* Writes a value to a PHY register
* hw - Struct containing variables accessed by shared code
* reg_addr - address of the PHY register to write
* data - data to write to the PHY
*/
static s32 atl2_write_phy_reg(struct atl2_hw *hw, u32 reg_addr, u16 phy_data)
{
int i;
u32 val;
val = ((u32)(phy_data & MDIO_DATA_MASK)) << MDIO_DATA_SHIFT |
(reg_addr & MDIO_REG_ADDR_MASK) << MDIO_REG_ADDR_SHIFT |
MDIO_SUP_PREAMBLE |
MDIO_START |
MDIO_CLK_25_4 << MDIO_CLK_SEL_SHIFT;
ATL2_WRITE_REG(hw, REG_MDIO_CTRL, val);
wmb();
for (i = 0; i < MDIO_WAIT_TIMES; i++) {
udelay(2);
val = ATL2_READ_REG(hw, REG_MDIO_CTRL);
if (!(val & (MDIO_START | MDIO_BUSY)))
break;
wmb();
}
if (!(val & (MDIO_START | MDIO_BUSY)))
return 0;
return ATLX_ERR_PHY;
}
/*
* Configures PHY autoneg and flow control advertisement settings
*
* hw - Struct containing variables accessed by shared code
*/
static s32 atl2_phy_setup_autoneg_adv(struct atl2_hw *hw)
{
s16 mii_autoneg_adv_reg;
/* Read the MII Auto-Neg Advertisement Register (Address 4). */
mii_autoneg_adv_reg = MII_AR_DEFAULT_CAP_MASK;
/* Need to parse autoneg_advertised and set up
* the appropriate PHY registers. First we will parse for
* autoneg_advertised software override. Since we can advertise
* a plethora of combinations, we need to check each bit
* individually.
*/
/* First we clear all the 10/100 mb speed bits in the Auto-Neg
* Advertisement Register (Address 4) and the 1000 mb speed bits in
* the 1000Base-T Control Register (Address 9). */
mii_autoneg_adv_reg &= ~MII_AR_SPEED_MASK;
/* Need to parse MediaType and setup the
* appropriate PHY registers. */
switch (hw->MediaType) {
case MEDIA_TYPE_AUTO_SENSOR:
mii_autoneg_adv_reg |=
(MII_AR_10T_HD_CAPS |
MII_AR_10T_FD_CAPS |
MII_AR_100TX_HD_CAPS|
MII_AR_100TX_FD_CAPS);
hw->autoneg_advertised =
ADVERTISE_10_HALF |
ADVERTISE_10_FULL |
ADVERTISE_100_HALF|
ADVERTISE_100_FULL;
break;
case MEDIA_TYPE_100M_FULL:
mii_autoneg_adv_reg |= MII_AR_100TX_FD_CAPS;
hw->autoneg_advertised = ADVERTISE_100_FULL;
break;
case MEDIA_TYPE_100M_HALF:
mii_autoneg_adv_reg |= MII_AR_100TX_HD_CAPS;
hw->autoneg_advertised = ADVERTISE_100_HALF;
break;
case MEDIA_TYPE_10M_FULL:
mii_autoneg_adv_reg |= MII_AR_10T_FD_CAPS;
hw->autoneg_advertised = ADVERTISE_10_FULL;
break;
default:
mii_autoneg_adv_reg |= MII_AR_10T_HD_CAPS;
hw->autoneg_advertised = ADVERTISE_10_HALF;
break;
}
/* flow control fixed to enable all */
mii_autoneg_adv_reg |= (MII_AR_ASM_DIR | MII_AR_PAUSE);
hw->mii_autoneg_adv_reg = mii_autoneg_adv_reg;
return atl2_write_phy_reg(hw, MII_ADVERTISE, mii_autoneg_adv_reg);
}
/*
* Resets the PHY and make all config validate
*
* hw - Struct containing variables accessed by shared code
*
* Sets bit 15 and 12 of the MII Control regiser (for F001 bug)
*/
static s32 atl2_phy_commit(struct atl2_hw *hw)
{
s32 ret_val;
u16 phy_data;
phy_data = MII_CR_RESET | MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG;
ret_val = atl2_write_phy_reg(hw, MII_BMCR, phy_data);
if (ret_val) {
u32 val;
int i;
/* pcie serdes link may be down ! */
for (i = 0; i < 25; i++) {
msleep(1);
val = ATL2_READ_REG(hw, REG_MDIO_CTRL);
if (!(val & (MDIO_START | MDIO_BUSY)))
break;
}
if (0 != (val & (MDIO_START | MDIO_BUSY))) {
printk(KERN_ERR "atl2: PCIe link down for at least 25ms !\n");
return ret_val;
}
}
return 0;
}
static s32 atl2_phy_init(struct atl2_hw *hw)
{
s32 ret_val;
u16 phy_val;
if (hw->phy_configured)
return 0;
/* Enable PHY */
ATL2_WRITE_REGW(hw, REG_PHY_ENABLE, 1);
ATL2_WRITE_FLUSH(hw);
msleep(1);
/* check if the PHY is in powersaving mode */
atl2_write_phy_reg(hw, MII_DBG_ADDR, 0);
atl2_read_phy_reg(hw, MII_DBG_DATA, &phy_val);
/* 024E / 124E 0r 0274 / 1274 ? */
if (phy_val & 0x1000) {
phy_val &= ~0x1000;
atl2_write_phy_reg(hw, MII_DBG_DATA, phy_val);
}
msleep(1);
/*Enable PHY LinkChange Interrupt */
ret_val = atl2_write_phy_reg(hw, 18, 0xC00);
if (ret_val)
return ret_val;
/* setup AutoNeg parameters */
ret_val = atl2_phy_setup_autoneg_adv(hw);
if (ret_val)
return ret_val;
/* SW.Reset & En-Auto-Neg to restart Auto-Neg */
ret_val = atl2_phy_commit(hw);
if (ret_val)
return ret_val;
hw->phy_configured = true;
return ret_val;
}
static void atl2_set_mac_addr(struct atl2_hw *hw)
{
u32 value;
/* 00-0B-6A-F6-00-DC
* 0: 6AF600DC 1: 000B
* low dword */
value = (((u32)hw->mac_addr[2]) << 24) |
(((u32)hw->mac_addr[3]) << 16) |
(((u32)hw->mac_addr[4]) << 8) |
(((u32)hw->mac_addr[5]));
ATL2_WRITE_REG_ARRAY(hw, REG_MAC_STA_ADDR, 0, value);
/* hight dword */
value = (((u32)hw->mac_addr[0]) << 8) |
(((u32)hw->mac_addr[1]));
ATL2_WRITE_REG_ARRAY(hw, REG_MAC_STA_ADDR, 1, value);
}
/*
* check_eeprom_exist
* return 0 if eeprom exist
*/
static int atl2_check_eeprom_exist(struct atl2_hw *hw)
{
u32 value;
value = ATL2_READ_REG(hw, REG_SPI_FLASH_CTRL);
if (value & SPI_FLASH_CTRL_EN_VPD) {
value &= ~SPI_FLASH_CTRL_EN_VPD;
ATL2_WRITE_REG(hw, REG_SPI_FLASH_CTRL, value);
}
value = ATL2_READ_REGW(hw, REG_PCIE_CAP_LIST);
return ((value & 0xFF00) == 0x6C00) ? 0 : 1;
}
/* FIXME: This doesn't look right. -- CHS */
static bool atl2_write_eeprom(struct atl2_hw *hw, u32 offset, u32 value)
{
return true;
}
static bool atl2_read_eeprom(struct atl2_hw *hw, u32 Offset, u32 *pValue)
{
int i;
u32 Control;
if (Offset & 0x3)
return false; /* address do not align */
ATL2_WRITE_REG(hw, REG_VPD_DATA, 0);
Control = (Offset & VPD_CAP_VPD_ADDR_MASK) << VPD_CAP_VPD_ADDR_SHIFT;
ATL2_WRITE_REG(hw, REG_VPD_CAP, Control);
for (i = 0; i < 10; i++) {
msleep(2);
Control = ATL2_READ_REG(hw, REG_VPD_CAP);
if (Control & VPD_CAP_VPD_FLAG)
break;
}
if (Control & VPD_CAP_VPD_FLAG) {
*pValue = ATL2_READ_REG(hw, REG_VPD_DATA);
return true;
}
return false; /* timeout */
}
static void atl2_force_ps(struct atl2_hw *hw)
{
u16 phy_val;
atl2_write_phy_reg(hw, MII_DBG_ADDR, 0);
atl2_read_phy_reg(hw, MII_DBG_DATA, &phy_val);
atl2_write_phy_reg(hw, MII_DBG_DATA, phy_val | 0x1000);
atl2_write_phy_reg(hw, MII_DBG_ADDR, 2);
atl2_write_phy_reg(hw, MII_DBG_DATA, 0x3000);
atl2_write_phy_reg(hw, MII_DBG_ADDR, 3);
atl2_write_phy_reg(hw, MII_DBG_DATA, 0);
}
/* This is the only thing that needs to be changed to adjust the
* maximum number of ports that the driver can manage.
*/
#define ATL2_MAX_NIC 4
#define OPTION_UNSET -1
#define OPTION_DISABLED 0
#define OPTION_ENABLED 1
/* All parameters are treated the same, as an integer array of values.
* This macro just reduces the need to repeat the same declaration code
* over and over (plus this helps to avoid typo bugs).
*/
#define ATL2_PARAM_INIT {[0 ... ATL2_MAX_NIC] = OPTION_UNSET}
#ifndef module_param_array
/* Module Parameters are always initialized to -1, so that the driver
* can tell the difference between no user specified value or the
* user asking for the default value.
* The true default values are loaded in when atl2_check_options is called.
*
* This is a GCC extension to ANSI C.
* See the item "Labeled Elements in Initializers" in the section
* "Extensions to the C Language Family" of the GCC documentation.
*/
#define ATL2_PARAM(X, desc) \
static const int X[ATL2_MAX_NIC + 1] = ATL2_PARAM_INIT; \
MODULE_PARM(X, "1-" __MODULE_STRING(ATL2_MAX_NIC) "i"); \
MODULE_PARM_DESC(X, desc);
#else
#define ATL2_PARAM(X, desc) \
static int X[ATL2_MAX_NIC+1] = ATL2_PARAM_INIT; \
static unsigned int num_##X; \
module_param_array_named(X, X, int, &num_##X, 0); \
MODULE_PARM_DESC(X, desc);
#endif
/*
* Transmit Memory Size
* Valid Range: 64-2048
* Default Value: 128
*/
#define ATL2_MIN_TX_MEMSIZE 4 /* 4KB */
#define ATL2_MAX_TX_MEMSIZE 64 /* 64KB */
#define ATL2_DEFAULT_TX_MEMSIZE 8 /* 8KB */
ATL2_PARAM(TxMemSize, "Bytes of Transmit Memory");
/*
* Receive Memory Block Count
* Valid Range: 16-512
* Default Value: 128
*/
#define ATL2_MIN_RXD_COUNT 16
#define ATL2_MAX_RXD_COUNT 512
#define ATL2_DEFAULT_RXD_COUNT 64
ATL2_PARAM(RxMemBlock, "Number of receive memory block");
/*
* User Specified MediaType Override
*
* Valid Range: 0-5
* - 0 - auto-negotiate at all supported speeds
* - 1 - only link at 1000Mbps Full Duplex
* - 2 - only link at 100Mbps Full Duplex
* - 3 - only link at 100Mbps Half Duplex
* - 4 - only link at 10Mbps Full Duplex
* - 5 - only link at 10Mbps Half Duplex
* Default Value: 0
*/
ATL2_PARAM(MediaType, "MediaType Select");
/*
* Interrupt Moderate Timer in units of 2048 ns (~2 us)
* Valid Range: 10-65535
* Default Value: 45000(90ms)
*/
#define INT_MOD_DEFAULT_CNT 100 /* 200us */
#define INT_MOD_MAX_CNT 65000
#define INT_MOD_MIN_CNT 50
ATL2_PARAM(IntModTimer, "Interrupt Moderator Timer");
/*
* FlashVendor
* Valid Range: 0-2
* 0 - Atmel
* 1 - SST
* 2 - ST
*/
ATL2_PARAM(FlashVendor, "SPI Flash Vendor");
#define AUTONEG_ADV_DEFAULT 0x2F
#define AUTONEG_ADV_MASK 0x2F
#define FLOW_CONTROL_DEFAULT FLOW_CONTROL_FULL
#define FLASH_VENDOR_DEFAULT 0
#define FLASH_VENDOR_MIN 0
#define FLASH_VENDOR_MAX 2
struct atl2_option {
enum { enable_option, range_option, list_option } type;
char *name;
char *err;
int def;
union {
struct { /* range_option info */
int min;
int max;
} r;
struct { /* list_option info */
int nr;
struct atl2_opt_list { int i; char *str; } *p;
} l;
} arg;
};
static int atl2_validate_option(int *value, struct atl2_option *opt)
{
int i;
struct atl2_opt_list *ent;
if (*value == OPTION_UNSET) {
*value = opt->def;
return 0;
}
switch (opt->type) {
case enable_option:
switch (*value) {
case OPTION_ENABLED:
printk(KERN_INFO "%s Enabled\n", opt->name);
return 0;
case OPTION_DISABLED:
printk(KERN_INFO "%s Disabled\n", opt->name);
return 0;
}
break;
case range_option:
if (*value >= opt->arg.r.min && *value <= opt->arg.r.max) {
printk(KERN_INFO "%s set to %i\n", opt->name, *value);
return 0;
}
break;
case list_option:
for (i = 0; i < opt->arg.l.nr; i++) {
ent = &opt->arg.l.p[i];
if (*value == ent->i) {
if (ent->str[0] != '\0')
printk(KERN_INFO "%s\n", ent->str);
return 0;
}
}
break;
default:
BUG();
}
printk(KERN_INFO "Invalid %s specified (%i) %s\n",
opt->name, *value, opt->err);
*value = opt->def;
return -1;
}
/**
* atl2_check_options - Range Checking for Command Line Parameters
* @adapter: board private structure
*
* This routine checks all command line parameters for valid user
* input. If an invalid value is given, or if no user specified
* value exists, a default value is used. The final value is stored
* in a variable in the adapter structure.
*/
static void atl2_check_options(struct atl2_adapter *adapter)
{
int val;
struct atl2_option opt;
int bd = adapter->bd_number;
if (bd >= ATL2_MAX_NIC) {
printk(KERN_NOTICE "Warning: no configuration for board #%i\n",
bd);
printk(KERN_NOTICE "Using defaults for all values\n");
#ifndef module_param_array
bd = ATL2_MAX_NIC;
#endif
}
/* Bytes of Transmit Memory */
opt.type = range_option;
opt.name = "Bytes of Transmit Memory";
opt.err = "using default of " __MODULE_STRING(ATL2_DEFAULT_TX_MEMSIZE);
opt.def = ATL2_DEFAULT_TX_MEMSIZE;
opt.arg.r.min = ATL2_MIN_TX_MEMSIZE;
opt.arg.r.max = ATL2_MAX_TX_MEMSIZE;
#ifdef module_param_array
if (num_TxMemSize > bd) {
#endif
val = TxMemSize[bd];
atl2_validate_option(&val, &opt);
adapter->txd_ring_size = ((u32) val) * 1024;
#ifdef module_param_array
} else
adapter->txd_ring_size = ((u32)opt.def) * 1024;
#endif
/* txs ring size: */
adapter->txs_ring_size = adapter->txd_ring_size / 128;
if (adapter->txs_ring_size > 160)
adapter->txs_ring_size = 160;
/* Receive Memory Block Count */
opt.type = range_option;
opt.name = "Number of receive memory block";
opt.err = "using default of " __MODULE_STRING(ATL2_DEFAULT_RXD_COUNT);
opt.def = ATL2_DEFAULT_RXD_COUNT;
opt.arg.r.min = ATL2_MIN_RXD_COUNT;
opt.arg.r.max = ATL2_MAX_RXD_COUNT;
#ifdef module_param_array
if (num_RxMemBlock > bd) {
#endif
val = RxMemBlock[bd];
atl2_validate_option(&val, &opt);
adapter->rxd_ring_size = (u32)val;
/* FIXME */
/* ((u16)val)&~1; */ /* even number */
#ifdef module_param_array
} else
adapter->rxd_ring_size = (u32)opt.def;
#endif
/* init RXD Flow control value */
adapter->hw.fc_rxd_hi = (adapter->rxd_ring_size / 8) * 7;
adapter->hw.fc_rxd_lo = (ATL2_MIN_RXD_COUNT / 8) >
(adapter->rxd_ring_size / 12) ? (ATL2_MIN_RXD_COUNT / 8) :
(adapter->rxd_ring_size / 12);
/* Interrupt Moderate Timer */
opt.type = range_option;
opt.name = "Interrupt Moderate Timer";
opt.err = "using default of " __MODULE_STRING(INT_MOD_DEFAULT_CNT);
opt.def = INT_MOD_DEFAULT_CNT;
opt.arg.r.min = INT_MOD_MIN_CNT;
opt.arg.r.max = INT_MOD_MAX_CNT;
#ifdef module_param_array
if (num_IntModTimer > bd) {
#endif
val = IntModTimer[bd];
atl2_validate_option(&val, &opt);
adapter->imt = (u16) val;
#ifdef module_param_array
} else
adapter->imt = (u16)(opt.def);
#endif
/* Flash Vendor */
opt.type = range_option;
opt.name = "SPI Flash Vendor";
opt.err = "using default of " __MODULE_STRING(FLASH_VENDOR_DEFAULT);
opt.def = FLASH_VENDOR_DEFAULT;
opt.arg.r.min = FLASH_VENDOR_MIN;
opt.arg.r.max = FLASH_VENDOR_MAX;
#ifdef module_param_array
if (num_FlashVendor > bd) {
#endif
val = FlashVendor[bd];
atl2_validate_option(&val, &opt);
adapter->hw.flash_vendor = (u8) val;
#ifdef module_param_array
} else
adapter->hw.flash_vendor = (u8)(opt.def);
#endif
/* MediaType */
opt.type = range_option;
opt.name = "Speed/Duplex Selection";
opt.err = "using default of " __MODULE_STRING(MEDIA_TYPE_AUTO_SENSOR);
opt.def = MEDIA_TYPE_AUTO_SENSOR;
opt.arg.r.min = MEDIA_TYPE_AUTO_SENSOR;
opt.arg.r.max = MEDIA_TYPE_10M_HALF;
#ifdef module_param_array
if (num_MediaType > bd) {
#endif
val = MediaType[bd];
atl2_validate_option(&val, &opt);
adapter->hw.MediaType = (u16) val;
#ifdef module_param_array
} else
adapter->hw.MediaType = (u16)(opt.def);
#endif
}