blob: 4a52ccbe393f771d04e10e4989d62f3fa3c46a95 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Broadcom Starfighter 2 DSA switch driver
*
* Copyright (C) 2014, Broadcom Corporation
*/
#include <linux/list.h>
#include <linux/module.h>
#include <linux/netdevice.h>
#include <linux/interrupt.h>
#include <linux/platform_device.h>
#include <linux/phy.h>
#include <linux/phy_fixed.h>
#include <linux/phylink.h>
#include <linux/mii.h>
#include <linux/clk.h>
#include <linux/of.h>
#include <linux/of_irq.h>
#include <linux/of_address.h>
#include <linux/of_net.h>
#include <linux/of_mdio.h>
#include <net/dsa.h>
#include <linux/ethtool.h>
#include <linux/if_bridge.h>
#include <linux/brcmphy.h>
#include <linux/etherdevice.h>
#include <linux/platform_data/b53.h>
#include "bcm_sf2.h"
#include "bcm_sf2_regs.h"
#include "b53/b53_priv.h"
#include "b53/b53_regs.h"
static u16 bcm_sf2_reg_rgmii_cntrl(struct bcm_sf2_priv *priv, int port)
{
switch (priv->type) {
case BCM4908_DEVICE_ID:
switch (port) {
case 7:
return REG_RGMII_11_CNTRL;
default:
break;
}
break;
default:
switch (port) {
case 0:
return REG_RGMII_0_CNTRL;
case 1:
return REG_RGMII_1_CNTRL;
case 2:
return REG_RGMII_2_CNTRL;
default:
break;
}
}
WARN_ONCE(1, "Unsupported port %d\n", port);
/* RO fallback reg */
return REG_SWITCH_STATUS;
}
static u16 bcm_sf2_reg_led_base(struct bcm_sf2_priv *priv, int port)
{
switch (port) {
case 0:
return REG_LED_0_CNTRL;
case 1:
return REG_LED_1_CNTRL;
case 2:
return REG_LED_2_CNTRL;
}
switch (priv->type) {
case BCM4908_DEVICE_ID:
switch (port) {
case 3:
return REG_LED_3_CNTRL;
case 7:
return REG_LED_4_CNTRL;
default:
break;
}
break;
default:
break;
}
WARN_ONCE(1, "Unsupported port %d\n", port);
/* RO fallback reg */
return REG_SWITCH_STATUS;
}
static u32 bcm_sf2_port_override_offset(struct bcm_sf2_priv *priv, int port)
{
switch (priv->type) {
case BCM4908_DEVICE_ID:
case BCM7445_DEVICE_ID:
return port == 8 ? CORE_STS_OVERRIDE_IMP :
CORE_STS_OVERRIDE_GMIIP_PORT(port);
case BCM7278_DEVICE_ID:
return port == 8 ? CORE_STS_OVERRIDE_IMP2 :
CORE_STS_OVERRIDE_GMIIP2_PORT(port);
default:
WARN_ONCE(1, "Unsupported device: %d\n", priv->type);
}
/* RO fallback register */
return REG_SWITCH_STATUS;
}
/* Return the number of active ports, not counting the IMP (CPU) port */
static unsigned int bcm_sf2_num_active_ports(struct dsa_switch *ds)
{
struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
unsigned int port, count = 0;
for (port = 0; port < ds->num_ports; port++) {
if (dsa_is_cpu_port(ds, port))
continue;
if (priv->port_sts[port].enabled)
count++;
}
return count;
}
static void bcm_sf2_recalc_clock(struct dsa_switch *ds)
{
struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
unsigned long new_rate;
unsigned int ports_active;
/* Frequenty in Mhz */
static const unsigned long rate_table[] = {
59220000,
60820000,
62500000,
62500000,
};
ports_active = bcm_sf2_num_active_ports(ds);
if (ports_active == 0 || !priv->clk_mdiv)
return;
/* If we overflow our table, just use the recommended operational
* frequency
*/
if (ports_active > ARRAY_SIZE(rate_table))
new_rate = 90000000;
else
new_rate = rate_table[ports_active - 1];
clk_set_rate(priv->clk_mdiv, new_rate);
}
static void bcm_sf2_imp_setup(struct dsa_switch *ds, int port)
{
struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
unsigned int i;
u32 reg;
/* Enable the port memories */
reg = core_readl(priv, CORE_MEM_PSM_VDD_CTRL);
reg &= ~P_TXQ_PSM_VDD(port);
core_writel(priv, reg, CORE_MEM_PSM_VDD_CTRL);
/* Enable forwarding */
core_writel(priv, SW_FWDG_EN, CORE_SWMODE);
/* Enable IMP port in dumb mode */
reg = core_readl(priv, CORE_SWITCH_CTRL);
reg |= MII_DUMB_FWDG_EN;
core_writel(priv, reg, CORE_SWITCH_CTRL);
/* Configure Traffic Class to QoS mapping, allow each priority to map
* to a different queue number
*/
reg = core_readl(priv, CORE_PORT_TC2_QOS_MAP_PORT(port));
for (i = 0; i < SF2_NUM_EGRESS_QUEUES; i++)
reg |= i << (PRT_TO_QID_SHIFT * i);
core_writel(priv, reg, CORE_PORT_TC2_QOS_MAP_PORT(port));
b53_brcm_hdr_setup(ds, port);
if (port == 8) {
/* Enable Broadcast, Multicast, Unicast forwarding to IMP port */
reg = core_readl(priv, CORE_IMP_CTL);
reg |= (RX_BCST_EN | RX_MCST_EN | RX_UCST_EN);
reg &= ~(RX_DIS | TX_DIS);
core_writel(priv, reg, CORE_IMP_CTL);
} else {
reg = core_readl(priv, CORE_G_PCTL_PORT(port));
reg &= ~(RX_DIS | TX_DIS);
core_writel(priv, reg, CORE_G_PCTL_PORT(port));
}
priv->port_sts[port].enabled = true;
}
static void bcm_sf2_gphy_enable_set(struct dsa_switch *ds, bool enable)
{
struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
u32 reg;
reg = reg_readl(priv, REG_SPHY_CNTRL);
if (enable) {
reg |= PHY_RESET;
reg &= ~(EXT_PWR_DOWN | IDDQ_BIAS | IDDQ_GLOBAL_PWR | CK25_DIS);
reg_writel(priv, reg, REG_SPHY_CNTRL);
udelay(21);
reg = reg_readl(priv, REG_SPHY_CNTRL);
reg &= ~PHY_RESET;
} else {
reg |= EXT_PWR_DOWN | IDDQ_BIAS | PHY_RESET;
reg_writel(priv, reg, REG_SPHY_CNTRL);
mdelay(1);
reg |= CK25_DIS;
}
reg_writel(priv, reg, REG_SPHY_CNTRL);
/* Use PHY-driven LED signaling */
if (!enable) {
u16 led_ctrl = bcm_sf2_reg_led_base(priv, 0);
if (priv->type == BCM7278_DEVICE_ID ||
priv->type == BCM7445_DEVICE_ID) {
reg = reg_led_readl(priv, led_ctrl, 0);
reg |= LED_CNTRL_SPDLNK_SRC_SEL;
reg_led_writel(priv, reg, led_ctrl, 0);
}
}
}
static inline void bcm_sf2_port_intr_enable(struct bcm_sf2_priv *priv,
int port)
{
unsigned int off;
switch (port) {
case 7:
off = P7_IRQ_OFF;
break;
case 0:
/* Port 0 interrupts are located on the first bank */
intrl2_0_mask_clear(priv, P_IRQ_MASK(P0_IRQ_OFF));
return;
default:
off = P_IRQ_OFF(port);
break;
}
intrl2_1_mask_clear(priv, P_IRQ_MASK(off));
}
static inline void bcm_sf2_port_intr_disable(struct bcm_sf2_priv *priv,
int port)
{
unsigned int off;
switch (port) {
case 7:
off = P7_IRQ_OFF;
break;
case 0:
/* Port 0 interrupts are located on the first bank */
intrl2_0_mask_set(priv, P_IRQ_MASK(P0_IRQ_OFF));
intrl2_0_writel(priv, P_IRQ_MASK(P0_IRQ_OFF), INTRL2_CPU_CLEAR);
return;
default:
off = P_IRQ_OFF(port);
break;
}
intrl2_1_mask_set(priv, P_IRQ_MASK(off));
intrl2_1_writel(priv, P_IRQ_MASK(off), INTRL2_CPU_CLEAR);
}
static int bcm_sf2_port_setup(struct dsa_switch *ds, int port,
struct phy_device *phy)
{
struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
unsigned int i;
u32 reg;
if (!dsa_is_user_port(ds, port))
return 0;
priv->port_sts[port].enabled = true;
bcm_sf2_recalc_clock(ds);
/* Clear the memory power down */
reg = core_readl(priv, CORE_MEM_PSM_VDD_CTRL);
reg &= ~P_TXQ_PSM_VDD(port);
core_writel(priv, reg, CORE_MEM_PSM_VDD_CTRL);
/* Enable Broadcom tags for that port if requested */
if (priv->brcm_tag_mask & BIT(port))
b53_brcm_hdr_setup(ds, port);
/* Configure Traffic Class to QoS mapping, allow each priority to map
* to a different queue number
*/
reg = core_readl(priv, CORE_PORT_TC2_QOS_MAP_PORT(port));
for (i = 0; i < SF2_NUM_EGRESS_QUEUES; i++)
reg |= i << (PRT_TO_QID_SHIFT * i);
core_writel(priv, reg, CORE_PORT_TC2_QOS_MAP_PORT(port));
/* Re-enable the GPHY and re-apply workarounds */
if (priv->int_phy_mask & 1 << port && priv->hw_params.num_gphy == 1) {
bcm_sf2_gphy_enable_set(ds, true);
if (phy) {
/* if phy_stop() has been called before, phy
* will be in halted state, and phy_start()
* will call resume.
*
* the resume path does not configure back
* autoneg settings, and since we hard reset
* the phy manually here, we need to reset the
* state machine also.
*/
phy->state = PHY_READY;
phy_init_hw(phy);
}
}
/* Enable MoCA port interrupts to get notified */
if (port == priv->moca_port)
bcm_sf2_port_intr_enable(priv, port);
/* Set per-queue pause threshold to 32 */
core_writel(priv, 32, CORE_TXQ_THD_PAUSE_QN_PORT(port));
/* Set ACB threshold to 24 */
for (i = 0; i < SF2_NUM_EGRESS_QUEUES; i++) {
reg = acb_readl(priv, ACB_QUEUE_CFG(port *
SF2_NUM_EGRESS_QUEUES + i));
reg &= ~XOFF_THRESHOLD_MASK;
reg |= 24;
acb_writel(priv, reg, ACB_QUEUE_CFG(port *
SF2_NUM_EGRESS_QUEUES + i));
}
return b53_enable_port(ds, port, phy);
}
static void bcm_sf2_port_disable(struct dsa_switch *ds, int port)
{
struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
u32 reg;
/* Disable learning while in WoL mode */
if (priv->wol_ports_mask & (1 << port)) {
reg = core_readl(priv, CORE_DIS_LEARN);
reg |= BIT(port);
core_writel(priv, reg, CORE_DIS_LEARN);
return;
}
if (port == priv->moca_port)
bcm_sf2_port_intr_disable(priv, port);
if (priv->int_phy_mask & 1 << port && priv->hw_params.num_gphy == 1)
bcm_sf2_gphy_enable_set(ds, false);
b53_disable_port(ds, port);
/* Power down the port memory */
reg = core_readl(priv, CORE_MEM_PSM_VDD_CTRL);
reg |= P_TXQ_PSM_VDD(port);
core_writel(priv, reg, CORE_MEM_PSM_VDD_CTRL);
priv->port_sts[port].enabled = false;
bcm_sf2_recalc_clock(ds);
}
static int bcm_sf2_sw_indir_rw(struct bcm_sf2_priv *priv, int op, int addr,
int regnum, u16 val)
{
int ret = 0;
u32 reg;
reg = reg_readl(priv, REG_SWITCH_CNTRL);
reg |= MDIO_MASTER_SEL;
reg_writel(priv, reg, REG_SWITCH_CNTRL);
/* Page << 8 | offset */
reg = 0x70;
reg <<= 2;
core_writel(priv, addr, reg);
/* Page << 8 | offset */
reg = 0x80 << 8 | regnum << 1;
reg <<= 2;
if (op)
ret = core_readl(priv, reg);
else
core_writel(priv, val, reg);
reg = reg_readl(priv, REG_SWITCH_CNTRL);
reg &= ~MDIO_MASTER_SEL;
reg_writel(priv, reg, REG_SWITCH_CNTRL);
return ret & 0xffff;
}
static int bcm_sf2_sw_mdio_read(struct mii_bus *bus, int addr, int regnum)
{
struct bcm_sf2_priv *priv = bus->priv;
/* Intercept reads from Broadcom pseudo-PHY address, else, send
* them to our master MDIO bus controller
*/
if (addr == BRCM_PSEUDO_PHY_ADDR && priv->indir_phy_mask & BIT(addr))
return bcm_sf2_sw_indir_rw(priv, 1, addr, regnum, 0);
else
return mdiobus_read_nested(priv->master_mii_bus, addr, regnum);
}
static int bcm_sf2_sw_mdio_write(struct mii_bus *bus, int addr, int regnum,
u16 val)
{
struct bcm_sf2_priv *priv = bus->priv;
/* Intercept writes to the Broadcom pseudo-PHY address, else,
* send them to our master MDIO bus controller
*/
if (addr == BRCM_PSEUDO_PHY_ADDR && priv->indir_phy_mask & BIT(addr))
return bcm_sf2_sw_indir_rw(priv, 0, addr, regnum, val);
else
return mdiobus_write_nested(priv->master_mii_bus, addr,
regnum, val);
}
static irqreturn_t bcm_sf2_switch_0_isr(int irq, void *dev_id)
{
struct dsa_switch *ds = dev_id;
struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
priv->irq0_stat = intrl2_0_readl(priv, INTRL2_CPU_STATUS) &
~priv->irq0_mask;
intrl2_0_writel(priv, priv->irq0_stat, INTRL2_CPU_CLEAR);
return IRQ_HANDLED;
}
static irqreturn_t bcm_sf2_switch_1_isr(int irq, void *dev_id)
{
struct dsa_switch *ds = dev_id;
struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
priv->irq1_stat = intrl2_1_readl(priv, INTRL2_CPU_STATUS) &
~priv->irq1_mask;
intrl2_1_writel(priv, priv->irq1_stat, INTRL2_CPU_CLEAR);
if (priv->irq1_stat & P_LINK_UP_IRQ(P7_IRQ_OFF)) {
priv->port_sts[7].link = true;
dsa_port_phylink_mac_change(ds, 7, true);
}
if (priv->irq1_stat & P_LINK_DOWN_IRQ(P7_IRQ_OFF)) {
priv->port_sts[7].link = false;
dsa_port_phylink_mac_change(ds, 7, false);
}
return IRQ_HANDLED;
}
static int bcm_sf2_sw_rst(struct bcm_sf2_priv *priv)
{
unsigned int timeout = 1000;
u32 reg;
int ret;
/* The watchdog reset does not work on 7278, we need to hit the
* "external" reset line through the reset controller.
*/
if (priv->type == BCM7278_DEVICE_ID) {
ret = reset_control_assert(priv->rcdev);
if (ret)
return ret;
return reset_control_deassert(priv->rcdev);
}
reg = core_readl(priv, CORE_WATCHDOG_CTRL);
reg |= SOFTWARE_RESET | EN_CHIP_RST | EN_SW_RESET;
core_writel(priv, reg, CORE_WATCHDOG_CTRL);
do {
reg = core_readl(priv, CORE_WATCHDOG_CTRL);
if (!(reg & SOFTWARE_RESET))
break;
usleep_range(1000, 2000);
} while (timeout-- > 0);
if (timeout == 0)
return -ETIMEDOUT;
return 0;
}
static void bcm_sf2_crossbar_setup(struct bcm_sf2_priv *priv)
{
struct device *dev = priv->dev->ds->dev;
int shift;
u32 mask;
u32 reg;
int i;
mask = BIT(priv->num_crossbar_int_ports) - 1;
reg = reg_readl(priv, REG_CROSSBAR);
switch (priv->type) {
case BCM4908_DEVICE_ID:
shift = CROSSBAR_BCM4908_INT_P7 * priv->num_crossbar_int_ports;
reg &= ~(mask << shift);
if (0) /* FIXME */
reg |= CROSSBAR_BCM4908_EXT_SERDES << shift;
else if (priv->int_phy_mask & BIT(7))
reg |= CROSSBAR_BCM4908_EXT_GPHY4 << shift;
else if (phy_interface_mode_is_rgmii(priv->port_sts[7].mode))
reg |= CROSSBAR_BCM4908_EXT_RGMII << shift;
else if (WARN(1, "Invalid port mode\n"))
return;
break;
default:
return;
}
reg_writel(priv, reg, REG_CROSSBAR);
reg = reg_readl(priv, REG_CROSSBAR);
for (i = 0; i < priv->num_crossbar_int_ports; i++) {
shift = i * priv->num_crossbar_int_ports;
dev_dbg(dev, "crossbar int port #%d - ext port #%d\n", i,
(reg >> shift) & mask);
}
}
static void bcm_sf2_intr_disable(struct bcm_sf2_priv *priv)
{
intrl2_0_mask_set(priv, 0xffffffff);
intrl2_0_writel(priv, 0xffffffff, INTRL2_CPU_CLEAR);
intrl2_1_mask_set(priv, 0xffffffff);
intrl2_1_writel(priv, 0xffffffff, INTRL2_CPU_CLEAR);
}
static void bcm_sf2_identify_ports(struct bcm_sf2_priv *priv,
struct device_node *dn)
{
struct device *dev = priv->dev->ds->dev;
struct bcm_sf2_port_status *port_st;
struct device_node *port;
unsigned int port_num;
struct property *prop;
int err;
priv->moca_port = -1;
for_each_available_child_of_node(dn, port) {
if (of_property_read_u32(port, "reg", &port_num))
continue;
if (port_num >= DSA_MAX_PORTS) {
dev_err(dev, "Invalid port number %d\n", port_num);
continue;
}
port_st = &priv->port_sts[port_num];
/* Internal PHYs get assigned a specific 'phy-mode' property
* value: "internal" to help flag them before MDIO probing
* has completed, since they might be turned off at that
* time
*/
err = of_get_phy_mode(port, &port_st->mode);
if (err)
continue;
if (port_st->mode == PHY_INTERFACE_MODE_INTERNAL)
priv->int_phy_mask |= 1 << port_num;
if (port_st->mode == PHY_INTERFACE_MODE_MOCA)
priv->moca_port = port_num;
if (of_property_read_bool(port, "brcm,use-bcm-hdr"))
priv->brcm_tag_mask |= 1 << port_num;
/* Ensure that port 5 is not picked up as a DSA CPU port
* flavour but a regular port instead. We should be using
* devlink to be able to set the port flavour.
*/
if (port_num == 5 && priv->type == BCM7278_DEVICE_ID) {
prop = of_find_property(port, "ethernet", NULL);
if (prop)
of_remove_property(port, prop);
}
}
}
static int bcm_sf2_mdio_register(struct dsa_switch *ds)
{
struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
struct device_node *dn, *child;
struct phy_device *phydev;
struct property *prop;
static int index;
int err, reg;
/* Find our integrated MDIO bus node */
dn = of_find_compatible_node(NULL, NULL, "brcm,unimac-mdio");
priv->master_mii_bus = of_mdio_find_bus(dn);
if (!priv->master_mii_bus) {
err = -EPROBE_DEFER;
goto err_of_node_put;
}
priv->user_mii_bus = mdiobus_alloc();
if (!priv->user_mii_bus) {
err = -ENOMEM;
goto err_put_master_mii_bus_dev;
}
priv->user_mii_bus->priv = priv;
priv->user_mii_bus->name = "sf2 user mii";
priv->user_mii_bus->read = bcm_sf2_sw_mdio_read;
priv->user_mii_bus->write = bcm_sf2_sw_mdio_write;
snprintf(priv->user_mii_bus->id, MII_BUS_ID_SIZE, "sf2-%d",
index++);
/* Include the pseudo-PHY address to divert reads towards our
* workaround. This is only required for 7445D0, since 7445E0
* disconnects the internal switch pseudo-PHY such that we can use the
* regular SWITCH_MDIO master controller instead.
*
* Here we flag the pseudo PHY as needing special treatment and would
* otherwise make all other PHY read/writes go to the master MDIO bus
* controller that comes with this switch backed by the "mdio-unimac"
* driver.
*/
if (of_machine_is_compatible("brcm,bcm7445d0"))
priv->indir_phy_mask |= (1 << BRCM_PSEUDO_PHY_ADDR) | (1 << 0);
else
priv->indir_phy_mask = 0;
ds->phys_mii_mask = priv->indir_phy_mask;
ds->user_mii_bus = priv->user_mii_bus;
priv->user_mii_bus->parent = ds->dev->parent;
priv->user_mii_bus->phy_mask = ~priv->indir_phy_mask;
/* We need to make sure that of_phy_connect() will not work by
* removing the 'phandle' and 'linux,phandle' properties and
* unregister the existing PHY device that was already registered.
*/
for_each_available_child_of_node(dn, child) {
if (of_property_read_u32(child, "reg", &reg) ||
reg >= PHY_MAX_ADDR)
continue;
if (!(priv->indir_phy_mask & BIT(reg)))
continue;
prop = of_find_property(child, "phandle", NULL);
if (prop)
of_remove_property(child, prop);
prop = of_find_property(child, "linux,phandle", NULL);
if (prop)
of_remove_property(child, prop);
phydev = of_phy_find_device(child);
if (phydev)
phy_device_remove(phydev);
}
err = mdiobus_register(priv->user_mii_bus);
if (err)
goto err_free_user_mii_bus;
of_node_put(dn);
return 0;
err_free_user_mii_bus:
mdiobus_free(priv->user_mii_bus);
err_put_master_mii_bus_dev:
put_device(&priv->master_mii_bus->dev);
err_of_node_put:
of_node_put(dn);
return err;
}
static void bcm_sf2_mdio_unregister(struct bcm_sf2_priv *priv)
{
mdiobus_unregister(priv->user_mii_bus);
mdiobus_free(priv->user_mii_bus);
put_device(&priv->master_mii_bus->dev);
}
static u32 bcm_sf2_sw_get_phy_flags(struct dsa_switch *ds, int port)
{
struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
/* The BCM7xxx PHY driver expects to find the integrated PHY revision
* in bits 15:8 and the patch level in bits 7:0 which is exactly what
* the REG_PHY_REVISION register layout is.
*/
if (priv->int_phy_mask & BIT(port))
return priv->hw_params.gphy_rev;
else
return PHY_BRCM_AUTO_PWRDWN_ENABLE |
PHY_BRCM_DIS_TXCRXC_NOENRGY |
PHY_BRCM_IDDQ_SUSPEND;
}
static void bcm_sf2_sw_get_caps(struct dsa_switch *ds, int port,
struct phylink_config *config)
{
unsigned long *interfaces = config->supported_interfaces;
struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
if (priv->int_phy_mask & BIT(port)) {
__set_bit(PHY_INTERFACE_MODE_INTERNAL, interfaces);
} else if (priv->moca_port == port) {
__set_bit(PHY_INTERFACE_MODE_MOCA, interfaces);
} else {
__set_bit(PHY_INTERFACE_MODE_MII, interfaces);
__set_bit(PHY_INTERFACE_MODE_REVMII, interfaces);
__set_bit(PHY_INTERFACE_MODE_GMII, interfaces);
phy_interface_set_rgmii(interfaces);
}
config->mac_capabilities = MAC_ASYM_PAUSE | MAC_SYM_PAUSE |
MAC_10 | MAC_100 | MAC_1000;
}
static void bcm_sf2_sw_mac_config(struct dsa_switch *ds, int port,
unsigned int mode,
const struct phylink_link_state *state)
{
struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
u32 id_mode_dis = 0, port_mode;
u32 reg_rgmii_ctrl;
u32 reg;
if (port == core_readl(priv, CORE_IMP0_PRT_ID))
return;
switch (state->interface) {
case PHY_INTERFACE_MODE_RGMII:
id_mode_dis = 1;
fallthrough;
case PHY_INTERFACE_MODE_RGMII_TXID:
port_mode = EXT_GPHY;
break;
case PHY_INTERFACE_MODE_MII:
port_mode = EXT_EPHY;
break;
case PHY_INTERFACE_MODE_REVMII:
port_mode = EXT_REVMII;
break;
default:
/* Nothing required for all other PHYs: internal and MoCA */
return;
}
reg_rgmii_ctrl = bcm_sf2_reg_rgmii_cntrl(priv, port);
/* Clear id_mode_dis bit, and the existing port mode, let
* RGMII_MODE_EN bet set by mac_link_{up,down}
*/
reg = reg_readl(priv, reg_rgmii_ctrl);
reg &= ~ID_MODE_DIS;
reg &= ~(PORT_MODE_MASK << PORT_MODE_SHIFT);
reg |= port_mode;
if (id_mode_dis)
reg |= ID_MODE_DIS;
reg_writel(priv, reg, reg_rgmii_ctrl);
}
static void bcm_sf2_sw_mac_link_set(struct dsa_switch *ds, int port,
phy_interface_t interface, bool link)
{
struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
u32 reg_rgmii_ctrl;
u32 reg;
if (!phy_interface_mode_is_rgmii(interface) &&
interface != PHY_INTERFACE_MODE_MII &&
interface != PHY_INTERFACE_MODE_REVMII)
return;
reg_rgmii_ctrl = bcm_sf2_reg_rgmii_cntrl(priv, port);
/* If the link is down, just disable the interface to conserve power */
reg = reg_readl(priv, reg_rgmii_ctrl);
if (link)
reg |= RGMII_MODE_EN;
else
reg &= ~RGMII_MODE_EN;
reg_writel(priv, reg, reg_rgmii_ctrl);
}
static void bcm_sf2_sw_mac_link_down(struct dsa_switch *ds, int port,
unsigned int mode,
phy_interface_t interface)
{
struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
u32 reg, offset;
if (priv->wol_ports_mask & BIT(port))
return;
offset = bcm_sf2_port_override_offset(priv, port);
reg = core_readl(priv, offset);
reg &= ~LINK_STS;
core_writel(priv, reg, offset);
bcm_sf2_sw_mac_link_set(ds, port, interface, false);
}
static void bcm_sf2_sw_mac_link_up(struct dsa_switch *ds, int port,
unsigned int mode,
phy_interface_t interface,
struct phy_device *phydev,
int speed, int duplex,
bool tx_pause, bool rx_pause)
{
struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
struct ethtool_eee *p = &priv->dev->ports[port].eee;
u32 reg_rgmii_ctrl = 0;
u32 reg, offset;
bcm_sf2_sw_mac_link_set(ds, port, interface, true);
offset = bcm_sf2_port_override_offset(priv, port);
if (phy_interface_mode_is_rgmii(interface) ||
interface == PHY_INTERFACE_MODE_MII ||
interface == PHY_INTERFACE_MODE_REVMII) {
reg_rgmii_ctrl = bcm_sf2_reg_rgmii_cntrl(priv, port);
reg = reg_readl(priv, reg_rgmii_ctrl);
reg &= ~(RX_PAUSE_EN | TX_PAUSE_EN);
if (tx_pause)
reg |= TX_PAUSE_EN;
if (rx_pause)
reg |= RX_PAUSE_EN;
reg_writel(priv, reg, reg_rgmii_ctrl);
}
reg = LINK_STS;
if (port == 8) {
if (priv->type == BCM4908_DEVICE_ID)
reg |= GMII_SPEED_UP_2G;
reg |= MII_SW_OR;
} else {
reg |= SW_OVERRIDE;
}
switch (speed) {
case SPEED_1000:
reg |= SPDSTS_1000 << SPEED_SHIFT;
break;
case SPEED_100:
reg |= SPDSTS_100 << SPEED_SHIFT;
break;
}
if (duplex == DUPLEX_FULL)
reg |= DUPLX_MODE;
if (tx_pause)
reg |= TXFLOW_CNTL;
if (rx_pause)
reg |= RXFLOW_CNTL;
core_writel(priv, reg, offset);
if (mode == MLO_AN_PHY && phydev)
p->eee_enabled = b53_eee_init(ds, port, phydev);
}
static void bcm_sf2_sw_fixed_state(struct dsa_switch *ds, int port,
struct phylink_link_state *status)
{
struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
status->link = false;
/* MoCA port is special as we do not get link status from CORE_LNKSTS,
* which means that we need to force the link at the port override
* level to get the data to flow. We do use what the interrupt handler
* did determine before.
*
* For the other ports, we just force the link status, since this is
* a fixed PHY device.
*/
if (port == priv->moca_port) {
status->link = priv->port_sts[port].link;
/* For MoCA interfaces, also force a link down notification
* since some version of the user-space daemon (mocad) use
* cmd->autoneg to force the link, which messes up the PHY
* state machine and make it go in PHY_FORCING state instead.
*/
if (!status->link)
netif_carrier_off(dsa_to_port(ds, port)->user);
status->duplex = DUPLEX_FULL;
} else {
status->link = true;
}
}
static void bcm_sf2_enable_acb(struct dsa_switch *ds)
{
struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
u32 reg;
/* Enable ACB globally */
reg = acb_readl(priv, ACB_CONTROL);
reg |= (ACB_FLUSH_MASK << ACB_FLUSH_SHIFT);
acb_writel(priv, reg, ACB_CONTROL);
reg &= ~(ACB_FLUSH_MASK << ACB_FLUSH_SHIFT);
reg |= ACB_EN | ACB_ALGORITHM;
acb_writel(priv, reg, ACB_CONTROL);
}
static int bcm_sf2_sw_suspend(struct dsa_switch *ds)
{
struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
unsigned int port;
bcm_sf2_intr_disable(priv);
/* Disable all ports physically present including the IMP
* port, the other ones have already been disabled during
* bcm_sf2_sw_setup
*/
for (port = 0; port < ds->num_ports; port++) {
if (dsa_is_user_port(ds, port) || dsa_is_cpu_port(ds, port))
bcm_sf2_port_disable(ds, port);
}
if (!priv->wol_ports_mask)
clk_disable_unprepare(priv->clk);
return 0;
}
static int bcm_sf2_sw_resume(struct dsa_switch *ds)
{
struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
int ret;
if (!priv->wol_ports_mask)
clk_prepare_enable(priv->clk);
ret = bcm_sf2_sw_rst(priv);
if (ret) {
pr_err("%s: failed to software reset switch\n", __func__);
return ret;
}
bcm_sf2_crossbar_setup(priv);
ret = bcm_sf2_cfp_resume(ds);
if (ret)
return ret;
if (priv->hw_params.num_gphy == 1)
bcm_sf2_gphy_enable_set(ds, true);
ds->ops->setup(ds);
return 0;
}
static void bcm_sf2_sw_get_wol(struct dsa_switch *ds, int port,
struct ethtool_wolinfo *wol)
{
struct net_device *p = dsa_port_to_conduit(dsa_to_port(ds, port));
struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
struct ethtool_wolinfo pwol = { };
/* Get the parent device WoL settings */
if (p->ethtool_ops->get_wol)
p->ethtool_ops->get_wol(p, &pwol);
/* Advertise the parent device supported settings */
wol->supported = pwol.supported;
memset(&wol->sopass, 0, sizeof(wol->sopass));
if (pwol.wolopts & WAKE_MAGICSECURE)
memcpy(&wol->sopass, pwol.sopass, sizeof(wol->sopass));
if (priv->wol_ports_mask & (1 << port))
wol->wolopts = pwol.wolopts;
else
wol->wolopts = 0;
}
static int bcm_sf2_sw_set_wol(struct dsa_switch *ds, int port,
struct ethtool_wolinfo *wol)
{
struct net_device *p = dsa_port_to_conduit(dsa_to_port(ds, port));
struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
s8 cpu_port = dsa_to_port(ds, port)->cpu_dp->index;
struct ethtool_wolinfo pwol = { };
if (p->ethtool_ops->get_wol)
p->ethtool_ops->get_wol(p, &pwol);
if (wol->wolopts & ~pwol.supported)
return -EINVAL;
if (wol->wolopts)
priv->wol_ports_mask |= (1 << port);
else
priv->wol_ports_mask &= ~(1 << port);
/* If we have at least one port enabled, make sure the CPU port
* is also enabled. If the CPU port is the last one enabled, we disable
* it since this configuration does not make sense.
*/
if (priv->wol_ports_mask && priv->wol_ports_mask != (1 << cpu_port))
priv->wol_ports_mask |= (1 << cpu_port);
else
priv->wol_ports_mask &= ~(1 << cpu_port);
return p->ethtool_ops->set_wol(p, wol);
}
static int bcm_sf2_sw_setup(struct dsa_switch *ds)
{
struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
unsigned int port;
/* Enable all valid ports and disable those unused */
for (port = 0; port < priv->hw_params.num_ports; port++) {
/* IMP port receives special treatment */
if (dsa_is_user_port(ds, port))
bcm_sf2_port_setup(ds, port, NULL);
else if (dsa_is_cpu_port(ds, port))
bcm_sf2_imp_setup(ds, port);
else
bcm_sf2_port_disable(ds, port);
}
b53_configure_vlan(ds);
bcm_sf2_enable_acb(ds);
return b53_setup_devlink_resources(ds);
}
static void bcm_sf2_sw_teardown(struct dsa_switch *ds)
{
dsa_devlink_resources_unregister(ds);
}
/* The SWITCH_CORE register space is managed by b53 but operates on a page +
* register basis so we need to translate that into an address that the
* bus-glue understands.
*/
#define SF2_PAGE_REG_MKADDR(page, reg) ((page) << 10 | (reg) << 2)
static int bcm_sf2_core_read8(struct b53_device *dev, u8 page, u8 reg,
u8 *val)
{
struct bcm_sf2_priv *priv = dev->priv;
*val = core_readl(priv, SF2_PAGE_REG_MKADDR(page, reg));
return 0;
}
static int bcm_sf2_core_read16(struct b53_device *dev, u8 page, u8 reg,
u16 *val)
{
struct bcm_sf2_priv *priv = dev->priv;
*val = core_readl(priv, SF2_PAGE_REG_MKADDR(page, reg));
return 0;
}
static int bcm_sf2_core_read32(struct b53_device *dev, u8 page, u8 reg,
u32 *val)
{
struct bcm_sf2_priv *priv = dev->priv;
*val = core_readl(priv, SF2_PAGE_REG_MKADDR(page, reg));
return 0;
}
static int bcm_sf2_core_read64(struct b53_device *dev, u8 page, u8 reg,
u64 *val)
{
struct bcm_sf2_priv *priv = dev->priv;
*val = core_readq(priv, SF2_PAGE_REG_MKADDR(page, reg));
return 0;
}
static int bcm_sf2_core_write8(struct b53_device *dev, u8 page, u8 reg,
u8 value)
{
struct bcm_sf2_priv *priv = dev->priv;
core_writel(priv, value, SF2_PAGE_REG_MKADDR(page, reg));
return 0;
}
static int bcm_sf2_core_write16(struct b53_device *dev, u8 page, u8 reg,
u16 value)
{
struct bcm_sf2_priv *priv = dev->priv;
core_writel(priv, value, SF2_PAGE_REG_MKADDR(page, reg));
return 0;
}
static int bcm_sf2_core_write32(struct b53_device *dev, u8 page, u8 reg,
u32 value)
{
struct bcm_sf2_priv *priv = dev->priv;
core_writel(priv, value, SF2_PAGE_REG_MKADDR(page, reg));
return 0;
}
static int bcm_sf2_core_write64(struct b53_device *dev, u8 page, u8 reg,
u64 value)
{
struct bcm_sf2_priv *priv = dev->priv;
core_writeq(priv, value, SF2_PAGE_REG_MKADDR(page, reg));
return 0;
}
static const struct b53_io_ops bcm_sf2_io_ops = {
.read8 = bcm_sf2_core_read8,
.read16 = bcm_sf2_core_read16,
.read32 = bcm_sf2_core_read32,
.read48 = bcm_sf2_core_read64,
.read64 = bcm_sf2_core_read64,
.write8 = bcm_sf2_core_write8,
.write16 = bcm_sf2_core_write16,
.write32 = bcm_sf2_core_write32,
.write48 = bcm_sf2_core_write64,
.write64 = bcm_sf2_core_write64,
};
static void bcm_sf2_sw_get_strings(struct dsa_switch *ds, int port,
u32 stringset, uint8_t *data)
{
int cnt = b53_get_sset_count(ds, port, stringset);
b53_get_strings(ds, port, stringset, data);
bcm_sf2_cfp_get_strings(ds, port, stringset,
data + cnt * ETH_GSTRING_LEN);
}
static void bcm_sf2_sw_get_ethtool_stats(struct dsa_switch *ds, int port,
uint64_t *data)
{
int cnt = b53_get_sset_count(ds, port, ETH_SS_STATS);
b53_get_ethtool_stats(ds, port, data);
bcm_sf2_cfp_get_ethtool_stats(ds, port, data + cnt);
}
static int bcm_sf2_sw_get_sset_count(struct dsa_switch *ds, int port,
int sset)
{
int cnt = b53_get_sset_count(ds, port, sset);
if (cnt < 0)
return cnt;
cnt += bcm_sf2_cfp_get_sset_count(ds, port, sset);
return cnt;
}
static const struct dsa_switch_ops bcm_sf2_ops = {
.get_tag_protocol = b53_get_tag_protocol,
.setup = bcm_sf2_sw_setup,
.teardown = bcm_sf2_sw_teardown,
.get_strings = bcm_sf2_sw_get_strings,
.get_ethtool_stats = bcm_sf2_sw_get_ethtool_stats,
.get_sset_count = bcm_sf2_sw_get_sset_count,
.get_ethtool_phy_stats = b53_get_ethtool_phy_stats,
.get_phy_flags = bcm_sf2_sw_get_phy_flags,
.phylink_get_caps = bcm_sf2_sw_get_caps,
.phylink_mac_config = bcm_sf2_sw_mac_config,
.phylink_mac_link_down = bcm_sf2_sw_mac_link_down,
.phylink_mac_link_up = bcm_sf2_sw_mac_link_up,
.phylink_fixed_state = bcm_sf2_sw_fixed_state,
.suspend = bcm_sf2_sw_suspend,
.resume = bcm_sf2_sw_resume,
.get_wol = bcm_sf2_sw_get_wol,
.set_wol = bcm_sf2_sw_set_wol,
.port_enable = bcm_sf2_port_setup,
.port_disable = bcm_sf2_port_disable,
.get_mac_eee = b53_get_mac_eee,
.set_mac_eee = b53_set_mac_eee,
.port_bridge_join = b53_br_join,
.port_bridge_leave = b53_br_leave,
.port_pre_bridge_flags = b53_br_flags_pre,
.port_bridge_flags = b53_br_flags,
.port_stp_state_set = b53_br_set_stp_state,
.port_fast_age = b53_br_fast_age,
.port_vlan_filtering = b53_vlan_filtering,
.port_vlan_add = b53_vlan_add,
.port_vlan_del = b53_vlan_del,
.port_fdb_dump = b53_fdb_dump,
.port_fdb_add = b53_fdb_add,
.port_fdb_del = b53_fdb_del,
.get_rxnfc = bcm_sf2_get_rxnfc,
.set_rxnfc = bcm_sf2_set_rxnfc,
.port_mirror_add = b53_mirror_add,
.port_mirror_del = b53_mirror_del,
.port_mdb_add = b53_mdb_add,
.port_mdb_del = b53_mdb_del,
};
struct bcm_sf2_of_data {
u32 type;
const u16 *reg_offsets;
unsigned int core_reg_align;
unsigned int num_cfp_rules;
unsigned int num_crossbar_int_ports;
};
static const u16 bcm_sf2_4908_reg_offsets[] = {
[REG_SWITCH_CNTRL] = 0x00,
[REG_SWITCH_STATUS] = 0x04,
[REG_DIR_DATA_WRITE] = 0x08,
[REG_DIR_DATA_READ] = 0x0c,
[REG_SWITCH_REVISION] = 0x10,
[REG_PHY_REVISION] = 0x14,
[REG_SPHY_CNTRL] = 0x24,
[REG_CROSSBAR] = 0xc8,
[REG_RGMII_11_CNTRL] = 0x014c,
[REG_LED_0_CNTRL] = 0x40,
[REG_LED_1_CNTRL] = 0x4c,
[REG_LED_2_CNTRL] = 0x58,
[REG_LED_3_CNTRL] = 0x64,
[REG_LED_4_CNTRL] = 0x88,
[REG_LED_5_CNTRL] = 0xa0,
[REG_LED_AGGREGATE_CTRL] = 0xb8,
};
static const struct bcm_sf2_of_data bcm_sf2_4908_data = {
.type = BCM4908_DEVICE_ID,
.core_reg_align = 0,
.reg_offsets = bcm_sf2_4908_reg_offsets,
.num_cfp_rules = 256,
.num_crossbar_int_ports = 2,
};
/* Register offsets for the SWITCH_REG_* block */
static const u16 bcm_sf2_7445_reg_offsets[] = {
[REG_SWITCH_CNTRL] = 0x00,
[REG_SWITCH_STATUS] = 0x04,
[REG_DIR_DATA_WRITE] = 0x08,
[REG_DIR_DATA_READ] = 0x0C,
[REG_SWITCH_REVISION] = 0x18,
[REG_PHY_REVISION] = 0x1C,
[REG_SPHY_CNTRL] = 0x2C,
[REG_RGMII_0_CNTRL] = 0x34,
[REG_RGMII_1_CNTRL] = 0x40,
[REG_RGMII_2_CNTRL] = 0x4c,
[REG_LED_0_CNTRL] = 0x90,
[REG_LED_1_CNTRL] = 0x94,
[REG_LED_2_CNTRL] = 0x98,
};
static const struct bcm_sf2_of_data bcm_sf2_7445_data = {
.type = BCM7445_DEVICE_ID,
.core_reg_align = 0,
.reg_offsets = bcm_sf2_7445_reg_offsets,
.num_cfp_rules = 256,
};
static const u16 bcm_sf2_7278_reg_offsets[] = {
[REG_SWITCH_CNTRL] = 0x00,
[REG_SWITCH_STATUS] = 0x04,
[REG_DIR_DATA_WRITE] = 0x08,
[REG_DIR_DATA_READ] = 0x0c,
[REG_SWITCH_REVISION] = 0x10,
[REG_PHY_REVISION] = 0x14,
[REG_SPHY_CNTRL] = 0x24,
[REG_RGMII_0_CNTRL] = 0xe0,
[REG_RGMII_1_CNTRL] = 0xec,
[REG_RGMII_2_CNTRL] = 0xf8,
[REG_LED_0_CNTRL] = 0x40,
[REG_LED_1_CNTRL] = 0x4c,
[REG_LED_2_CNTRL] = 0x58,
};
static const struct bcm_sf2_of_data bcm_sf2_7278_data = {
.type = BCM7278_DEVICE_ID,
.core_reg_align = 1,
.reg_offsets = bcm_sf2_7278_reg_offsets,
.num_cfp_rules = 128,
};
static const struct of_device_id bcm_sf2_of_match[] = {
{ .compatible = "brcm,bcm4908-switch",
.data = &bcm_sf2_4908_data
},
{ .compatible = "brcm,bcm7445-switch-v4.0",
.data = &bcm_sf2_7445_data
},
{ .compatible = "brcm,bcm7278-switch-v4.0",
.data = &bcm_sf2_7278_data
},
{ .compatible = "brcm,bcm7278-switch-v4.8",
.data = &bcm_sf2_7278_data
},
{ /* sentinel */ },
};
MODULE_DEVICE_TABLE(of, bcm_sf2_of_match);
static int bcm_sf2_sw_probe(struct platform_device *pdev)
{
const char *reg_names[BCM_SF2_REGS_NUM] = BCM_SF2_REGS_NAME;
struct device_node *dn = pdev->dev.of_node;
const struct of_device_id *of_id = NULL;
const struct bcm_sf2_of_data *data;
struct b53_platform_data *pdata;
struct dsa_switch_ops *ops;
struct device_node *ports;
struct bcm_sf2_priv *priv;
struct b53_device *dev;
struct dsa_switch *ds;
void __iomem **base;
unsigned int i;
u32 reg, rev;
int ret;
priv = devm_kzalloc(&pdev->dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
ops = devm_kzalloc(&pdev->dev, sizeof(*ops), GFP_KERNEL);
if (!ops)
return -ENOMEM;
dev = b53_switch_alloc(&pdev->dev, &bcm_sf2_io_ops, priv);
if (!dev)
return -ENOMEM;
pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
if (!pdata)
return -ENOMEM;
of_id = of_match_node(bcm_sf2_of_match, dn);
if (!of_id || !of_id->data)
return -EINVAL;
data = of_id->data;
/* Set SWITCH_REG register offsets and SWITCH_CORE align factor */
priv->type = data->type;
priv->reg_offsets = data->reg_offsets;
priv->core_reg_align = data->core_reg_align;
priv->num_cfp_rules = data->num_cfp_rules;
priv->num_crossbar_int_ports = data->num_crossbar_int_ports;
priv->rcdev = devm_reset_control_get_optional_exclusive(&pdev->dev,
"switch");
if (IS_ERR(priv->rcdev))
return PTR_ERR(priv->rcdev);
/* Auto-detection using standard registers will not work, so
* provide an indication of what kind of device we are for
* b53_common to work with
*/
pdata->chip_id = priv->type;
dev->pdata = pdata;
priv->dev = dev;
ds = dev->ds;
ds->ops = &bcm_sf2_ops;
/* Advertise the 8 egress queues */
ds->num_tx_queues = SF2_NUM_EGRESS_QUEUES;
dev_set_drvdata(&pdev->dev, priv);
spin_lock_init(&priv->indir_lock);
mutex_init(&priv->cfp.lock);
INIT_LIST_HEAD(&priv->cfp.rules_list);
/* CFP rule #0 cannot be used for specific classifications, flag it as
* permanently used
*/
set_bit(0, priv->cfp.used);
set_bit(0, priv->cfp.unique);
/* Balance of_node_put() done by of_find_node_by_name() */
of_node_get(dn);
ports = of_find_node_by_name(dn, "ports");
if (ports) {
bcm_sf2_identify_ports(priv, ports);
of_node_put(ports);
}
priv->irq0 = irq_of_parse_and_map(dn, 0);
priv->irq1 = irq_of_parse_and_map(dn, 1);
base = &priv->core;
for (i = 0; i < BCM_SF2_REGS_NUM; i++) {
*base = devm_platform_ioremap_resource(pdev, i);
if (IS_ERR(*base)) {
pr_err("unable to find register: %s\n", reg_names[i]);
return PTR_ERR(*base);
}
base++;
}
priv->clk = devm_clk_get_optional(&pdev->dev, "sw_switch");
if (IS_ERR(priv->clk))
return PTR_ERR(priv->clk);
ret = clk_prepare_enable(priv->clk);
if (ret)
return ret;
priv->clk_mdiv = devm_clk_get_optional(&pdev->dev, "sw_switch_mdiv");
if (IS_ERR(priv->clk_mdiv)) {
ret = PTR_ERR(priv->clk_mdiv);
goto out_clk;
}
ret = clk_prepare_enable(priv->clk_mdiv);
if (ret)
goto out_clk;
ret = bcm_sf2_sw_rst(priv);
if (ret) {
pr_err("unable to software reset switch: %d\n", ret);
goto out_clk_mdiv;
}
bcm_sf2_crossbar_setup(priv);
bcm_sf2_gphy_enable_set(priv->dev->ds, true);
ret = bcm_sf2_mdio_register(ds);
if (ret) {
pr_err("failed to register MDIO bus\n");
goto out_clk_mdiv;
}
bcm_sf2_gphy_enable_set(priv->dev->ds, false);
ret = bcm_sf2_cfp_rst(priv);
if (ret) {
pr_err("failed to reset CFP\n");
goto out_mdio;
}
/* Disable all interrupts and request them */
bcm_sf2_intr_disable(priv);
ret = devm_request_irq(&pdev->dev, priv->irq0, bcm_sf2_switch_0_isr, 0,
"switch_0", ds);
if (ret < 0) {
pr_err("failed to request switch_0 IRQ\n");
goto out_mdio;
}
ret = devm_request_irq(&pdev->dev, priv->irq1, bcm_sf2_switch_1_isr, 0,
"switch_1", ds);
if (ret < 0) {
pr_err("failed to request switch_1 IRQ\n");
goto out_mdio;
}
/* Reset the MIB counters */
reg = core_readl(priv, CORE_GMNCFGCFG);
reg |= RST_MIB_CNT;
core_writel(priv, reg, CORE_GMNCFGCFG);
reg &= ~RST_MIB_CNT;
core_writel(priv, reg, CORE_GMNCFGCFG);
/* Get the maximum number of ports for this switch */
priv->hw_params.num_ports = core_readl(priv, CORE_IMP0_PRT_ID) + 1;
if (priv->hw_params.num_ports > DSA_MAX_PORTS)
priv->hw_params.num_ports = DSA_MAX_PORTS;
/* Assume a single GPHY setup if we can't read that property */
if (of_property_read_u32(dn, "brcm,num-gphy",
&priv->hw_params.num_gphy))
priv->hw_params.num_gphy = 1;
rev = reg_readl(priv, REG_SWITCH_REVISION);
priv->hw_params.top_rev = (rev >> SWITCH_TOP_REV_SHIFT) &
SWITCH_TOP_REV_MASK;
priv->hw_params.core_rev = (rev & SF2_REV_MASK);
rev = reg_readl(priv, REG_PHY_REVISION);
priv->hw_params.gphy_rev = rev & PHY_REVISION_MASK;
ret = b53_switch_register(dev);
if (ret)
goto out_mdio;
dev_info(&pdev->dev,
"Starfighter 2 top: %x.%02x, core: %x.%02x, IRQs: %d, %d\n",
priv->hw_params.top_rev >> 8, priv->hw_params.top_rev & 0xff,
priv->hw_params.core_rev >> 8, priv->hw_params.core_rev & 0xff,
priv->irq0, priv->irq1);
return 0;
out_mdio:
bcm_sf2_mdio_unregister(priv);
out_clk_mdiv:
clk_disable_unprepare(priv->clk_mdiv);
out_clk:
clk_disable_unprepare(priv->clk);
return ret;
}
static void bcm_sf2_sw_remove(struct platform_device *pdev)
{
struct bcm_sf2_priv *priv = platform_get_drvdata(pdev);
if (!priv)
return;
priv->wol_ports_mask = 0;
/* Disable interrupts */
bcm_sf2_intr_disable(priv);
dsa_unregister_switch(priv->dev->ds);
bcm_sf2_cfp_exit(priv->dev->ds);
bcm_sf2_mdio_unregister(priv);
clk_disable_unprepare(priv->clk_mdiv);
clk_disable_unprepare(priv->clk);
if (priv->type == BCM7278_DEVICE_ID)
reset_control_assert(priv->rcdev);
}
static void bcm_sf2_sw_shutdown(struct platform_device *pdev)
{
struct bcm_sf2_priv *priv = platform_get_drvdata(pdev);
if (!priv)
return;
/* For a kernel about to be kexec'd we want to keep the GPHY on for a
* successful MDIO bus scan to occur. If we did turn off the GPHY
* before (e.g: port_disable), this will also power it back on.
*
* Do not rely on kexec_in_progress, just power the PHY on.
*/
if (priv->hw_params.num_gphy == 1)
bcm_sf2_gphy_enable_set(priv->dev->ds, true);
dsa_switch_shutdown(priv->dev->ds);
platform_set_drvdata(pdev, NULL);
}
#ifdef CONFIG_PM_SLEEP
static int bcm_sf2_suspend(struct device *dev)
{
struct bcm_sf2_priv *priv = dev_get_drvdata(dev);
return dsa_switch_suspend(priv->dev->ds);
}
static int bcm_sf2_resume(struct device *dev)
{
struct bcm_sf2_priv *priv = dev_get_drvdata(dev);
return dsa_switch_resume(priv->dev->ds);
}
#endif /* CONFIG_PM_SLEEP */
static SIMPLE_DEV_PM_OPS(bcm_sf2_pm_ops,
bcm_sf2_suspend, bcm_sf2_resume);
static struct platform_driver bcm_sf2_driver = {
.probe = bcm_sf2_sw_probe,
.remove_new = bcm_sf2_sw_remove,
.shutdown = bcm_sf2_sw_shutdown,
.driver = {
.name = "brcm-sf2",
.of_match_table = bcm_sf2_of_match,
.pm = &bcm_sf2_pm_ops,
},
};
module_platform_driver(bcm_sf2_driver);
MODULE_AUTHOR("Broadcom Corporation");
MODULE_DESCRIPTION("Driver for Broadcom Starfighter 2 ethernet switch chip");
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform:brcm-sf2");