| /* |
| * Resizable, Scalable, Concurrent Hash Table |
| * |
| * Copyright (c) 2014-2015 Thomas Graf <tgraf@suug.ch> |
| * Copyright (c) 2008-2014 Patrick McHardy <kaber@trash.net> |
| * |
| * Based on the following paper: |
| * https://www.usenix.org/legacy/event/atc11/tech/final_files/Triplett.pdf |
| * |
| * Code partially derived from nft_hash |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/init.h> |
| #include <linux/log2.h> |
| #include <linux/sched.h> |
| #include <linux/slab.h> |
| #include <linux/vmalloc.h> |
| #include <linux/mm.h> |
| #include <linux/jhash.h> |
| #include <linux/random.h> |
| #include <linux/rhashtable.h> |
| #include <linux/err.h> |
| |
| #define HASH_DEFAULT_SIZE 64UL |
| #define HASH_MIN_SIZE 4UL |
| #define BUCKET_LOCKS_PER_CPU 128UL |
| |
| /* Base bits plus 1 bit for nulls marker */ |
| #define HASH_RESERVED_SPACE (RHT_BASE_BITS + 1) |
| |
| enum { |
| RHT_LOCK_NORMAL, |
| RHT_LOCK_NESTED, |
| }; |
| |
| /* The bucket lock is selected based on the hash and protects mutations |
| * on a group of hash buckets. |
| * |
| * A maximum of tbl->size/2 bucket locks is allocated. This ensures that |
| * a single lock always covers both buckets which may both contains |
| * entries which link to the same bucket of the old table during resizing. |
| * This allows to simplify the locking as locking the bucket in both |
| * tables during resize always guarantee protection. |
| * |
| * IMPORTANT: When holding the bucket lock of both the old and new table |
| * during expansions and shrinking, the old bucket lock must always be |
| * acquired first. |
| */ |
| static spinlock_t *bucket_lock(const struct bucket_table *tbl, u32 hash) |
| { |
| return &tbl->locks[hash & tbl->locks_mask]; |
| } |
| |
| static void *rht_obj(const struct rhashtable *ht, const struct rhash_head *he) |
| { |
| return (void *) he - ht->p.head_offset; |
| } |
| |
| static u32 rht_bucket_index(const struct bucket_table *tbl, u32 hash) |
| { |
| return hash & (tbl->size - 1); |
| } |
| |
| static u32 obj_raw_hashfn(const struct rhashtable *ht, const void *ptr) |
| { |
| u32 hash; |
| |
| if (unlikely(!ht->p.key_len)) |
| hash = ht->p.obj_hashfn(ptr, ht->p.hash_rnd); |
| else |
| hash = ht->p.hashfn(ptr + ht->p.key_offset, ht->p.key_len, |
| ht->p.hash_rnd); |
| |
| return hash >> HASH_RESERVED_SPACE; |
| } |
| |
| static u32 key_hashfn(struct rhashtable *ht, const void *key, u32 len) |
| { |
| return ht->p.hashfn(key, len, ht->p.hash_rnd) >> HASH_RESERVED_SPACE; |
| } |
| |
| static u32 head_hashfn(const struct rhashtable *ht, |
| const struct bucket_table *tbl, |
| const struct rhash_head *he) |
| { |
| return rht_bucket_index(tbl, obj_raw_hashfn(ht, rht_obj(ht, he))); |
| } |
| |
| #ifdef CONFIG_PROVE_LOCKING |
| static void debug_dump_buckets(const struct rhashtable *ht, |
| const struct bucket_table *tbl) |
| { |
| struct rhash_head *he; |
| unsigned int i, hash; |
| |
| for (i = 0; i < tbl->size; i++) { |
| pr_warn(" [Bucket %d] ", i); |
| rht_for_each_rcu(he, tbl, i) { |
| hash = head_hashfn(ht, tbl, he); |
| pr_cont("[hash = %#x, lock = %p] ", |
| hash, bucket_lock(tbl, hash)); |
| } |
| pr_cont("\n"); |
| } |
| |
| } |
| |
| static void debug_dump_table(struct rhashtable *ht, |
| const struct bucket_table *tbl, |
| unsigned int hash) |
| { |
| struct bucket_table *old_tbl, *future_tbl; |
| |
| pr_emerg("BUG: lock for hash %#x in table %p not held\n", |
| hash, tbl); |
| |
| rcu_read_lock(); |
| future_tbl = rht_dereference_rcu(ht->future_tbl, ht); |
| old_tbl = rht_dereference_rcu(ht->tbl, ht); |
| if (future_tbl != old_tbl) { |
| pr_warn("Future table %p (size: %zd)\n", |
| future_tbl, future_tbl->size); |
| debug_dump_buckets(ht, future_tbl); |
| } |
| |
| pr_warn("Table %p (size: %zd)\n", old_tbl, old_tbl->size); |
| debug_dump_buckets(ht, old_tbl); |
| |
| rcu_read_unlock(); |
| } |
| |
| #define ASSERT_RHT_MUTEX(HT) BUG_ON(!lockdep_rht_mutex_is_held(HT)) |
| #define ASSERT_BUCKET_LOCK(HT, TBL, HASH) \ |
| do { \ |
| if (unlikely(!lockdep_rht_bucket_is_held(TBL, HASH))) { \ |
| debug_dump_table(HT, TBL, HASH); \ |
| BUG(); \ |
| } \ |
| } while (0) |
| |
| int lockdep_rht_mutex_is_held(struct rhashtable *ht) |
| { |
| return (debug_locks) ? lockdep_is_held(&ht->mutex) : 1; |
| } |
| EXPORT_SYMBOL_GPL(lockdep_rht_mutex_is_held); |
| |
| int lockdep_rht_bucket_is_held(const struct bucket_table *tbl, u32 hash) |
| { |
| spinlock_t *lock = bucket_lock(tbl, hash); |
| |
| return (debug_locks) ? lockdep_is_held(lock) : 1; |
| } |
| EXPORT_SYMBOL_GPL(lockdep_rht_bucket_is_held); |
| #else |
| #define ASSERT_RHT_MUTEX(HT) |
| #define ASSERT_BUCKET_LOCK(HT, TBL, HASH) |
| #endif |
| |
| |
| static struct rhash_head __rcu **bucket_tail(struct bucket_table *tbl, u32 n) |
| { |
| struct rhash_head __rcu **pprev; |
| |
| for (pprev = &tbl->buckets[n]; |
| !rht_is_a_nulls(rht_dereference_bucket(*pprev, tbl, n)); |
| pprev = &rht_dereference_bucket(*pprev, tbl, n)->next) |
| ; |
| |
| return pprev; |
| } |
| |
| static int alloc_bucket_locks(struct rhashtable *ht, struct bucket_table *tbl) |
| { |
| unsigned int i, size; |
| #if defined(CONFIG_PROVE_LOCKING) |
| unsigned int nr_pcpus = 2; |
| #else |
| unsigned int nr_pcpus = num_possible_cpus(); |
| #endif |
| |
| nr_pcpus = min_t(unsigned int, nr_pcpus, 32UL); |
| size = roundup_pow_of_two(nr_pcpus * ht->p.locks_mul); |
| |
| /* Never allocate more than 0.5 locks per bucket */ |
| size = min_t(unsigned int, size, tbl->size >> 1); |
| |
| if (sizeof(spinlock_t) != 0) { |
| #ifdef CONFIG_NUMA |
| if (size * sizeof(spinlock_t) > PAGE_SIZE) |
| tbl->locks = vmalloc(size * sizeof(spinlock_t)); |
| else |
| #endif |
| tbl->locks = kmalloc_array(size, sizeof(spinlock_t), |
| GFP_KERNEL); |
| if (!tbl->locks) |
| return -ENOMEM; |
| for (i = 0; i < size; i++) |
| spin_lock_init(&tbl->locks[i]); |
| } |
| tbl->locks_mask = size - 1; |
| |
| return 0; |
| } |
| |
| static void bucket_table_free(const struct bucket_table *tbl) |
| { |
| if (tbl) |
| kvfree(tbl->locks); |
| |
| kvfree(tbl); |
| } |
| |
| static struct bucket_table *bucket_table_alloc(struct rhashtable *ht, |
| size_t nbuckets) |
| { |
| struct bucket_table *tbl = NULL; |
| size_t size; |
| int i; |
| |
| size = sizeof(*tbl) + nbuckets * sizeof(tbl->buckets[0]); |
| if (size <= (PAGE_SIZE << PAGE_ALLOC_COSTLY_ORDER)) |
| tbl = kzalloc(size, GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY); |
| if (tbl == NULL) |
| tbl = vzalloc(size); |
| if (tbl == NULL) |
| return NULL; |
| |
| tbl->size = nbuckets; |
| |
| if (alloc_bucket_locks(ht, tbl) < 0) { |
| bucket_table_free(tbl); |
| return NULL; |
| } |
| |
| for (i = 0; i < nbuckets; i++) |
| INIT_RHT_NULLS_HEAD(tbl->buckets[i], ht, i); |
| |
| return tbl; |
| } |
| |
| /** |
| * rht_grow_above_75 - returns true if nelems > 0.75 * table-size |
| * @ht: hash table |
| * @new_size: new table size |
| */ |
| static bool rht_grow_above_75(const struct rhashtable *ht, size_t new_size) |
| { |
| /* Expand table when exceeding 75% load */ |
| return atomic_read(&ht->nelems) > (new_size / 4 * 3) && |
| (!ht->p.max_shift || atomic_read(&ht->shift) < ht->p.max_shift); |
| } |
| |
| /** |
| * rht_shrink_below_30 - returns true if nelems < 0.3 * table-size |
| * @ht: hash table |
| * @new_size: new table size |
| */ |
| static bool rht_shrink_below_30(const struct rhashtable *ht, size_t new_size) |
| { |
| /* Shrink table beneath 30% load */ |
| return atomic_read(&ht->nelems) < (new_size * 3 / 10) && |
| (atomic_read(&ht->shift) > ht->p.min_shift); |
| } |
| |
| static void lock_buckets(struct bucket_table *new_tbl, |
| struct bucket_table *old_tbl, unsigned int hash) |
| __acquires(old_bucket_lock) |
| { |
| spin_lock_bh(bucket_lock(old_tbl, hash)); |
| if (new_tbl != old_tbl) |
| spin_lock_bh_nested(bucket_lock(new_tbl, hash), |
| RHT_LOCK_NESTED); |
| } |
| |
| static void unlock_buckets(struct bucket_table *new_tbl, |
| struct bucket_table *old_tbl, unsigned int hash) |
| __releases(old_bucket_lock) |
| { |
| if (new_tbl != old_tbl) |
| spin_unlock_bh(bucket_lock(new_tbl, hash)); |
| spin_unlock_bh(bucket_lock(old_tbl, hash)); |
| } |
| |
| /** |
| * Unlink entries on bucket which hash to different bucket. |
| * |
| * Returns true if no more work needs to be performed on the bucket. |
| */ |
| static bool hashtable_chain_unzip(struct rhashtable *ht, |
| const struct bucket_table *new_tbl, |
| struct bucket_table *old_tbl, |
| size_t old_hash) |
| { |
| struct rhash_head *he, *p, *next; |
| unsigned int new_hash, new_hash2; |
| |
| ASSERT_BUCKET_LOCK(ht, old_tbl, old_hash); |
| |
| /* Old bucket empty, no work needed. */ |
| p = rht_dereference_bucket(old_tbl->buckets[old_hash], old_tbl, |
| old_hash); |
| if (rht_is_a_nulls(p)) |
| return false; |
| |
| new_hash = head_hashfn(ht, new_tbl, p); |
| ASSERT_BUCKET_LOCK(ht, new_tbl, new_hash); |
| |
| /* Advance the old bucket pointer one or more times until it |
| * reaches a node that doesn't hash to the same bucket as the |
| * previous node p. Call the previous node p; |
| */ |
| rht_for_each_continue(he, p->next, old_tbl, old_hash) { |
| new_hash2 = head_hashfn(ht, new_tbl, he); |
| ASSERT_BUCKET_LOCK(ht, new_tbl, new_hash2); |
| |
| if (new_hash != new_hash2) |
| break; |
| p = he; |
| } |
| rcu_assign_pointer(old_tbl->buckets[old_hash], p->next); |
| |
| /* Find the subsequent node which does hash to the same |
| * bucket as node P, or NULL if no such node exists. |
| */ |
| INIT_RHT_NULLS_HEAD(next, ht, old_hash); |
| if (!rht_is_a_nulls(he)) { |
| rht_for_each_continue(he, he->next, old_tbl, old_hash) { |
| if (head_hashfn(ht, new_tbl, he) == new_hash) { |
| next = he; |
| break; |
| } |
| } |
| } |
| |
| /* Set p's next pointer to that subsequent node pointer, |
| * bypassing the nodes which do not hash to p's bucket |
| */ |
| rcu_assign_pointer(p->next, next); |
| |
| p = rht_dereference_bucket(old_tbl->buckets[old_hash], old_tbl, |
| old_hash); |
| |
| return !rht_is_a_nulls(p); |
| } |
| |
| static void link_old_to_new(struct rhashtable *ht, struct bucket_table *new_tbl, |
| unsigned int new_hash, struct rhash_head *entry) |
| { |
| ASSERT_BUCKET_LOCK(ht, new_tbl, new_hash); |
| |
| rcu_assign_pointer(*bucket_tail(new_tbl, new_hash), entry); |
| } |
| |
| /** |
| * rhashtable_expand - Expand hash table while allowing concurrent lookups |
| * @ht: the hash table to expand |
| * |
| * A secondary bucket array is allocated and the hash entries are migrated |
| * while keeping them on both lists until the end of the RCU grace period. |
| * |
| * This function may only be called in a context where it is safe to call |
| * synchronize_rcu(), e.g. not within a rcu_read_lock() section. |
| * |
| * The caller must ensure that no concurrent resizing occurs by holding |
| * ht->mutex. |
| * |
| * It is valid to have concurrent insertions and deletions protected by per |
| * bucket locks or concurrent RCU protected lookups and traversals. |
| */ |
| int rhashtable_expand(struct rhashtable *ht) |
| { |
| struct bucket_table *new_tbl, *old_tbl = rht_dereference(ht->tbl, ht); |
| struct rhash_head *he; |
| unsigned int new_hash, old_hash; |
| bool complete = false; |
| |
| ASSERT_RHT_MUTEX(ht); |
| |
| new_tbl = bucket_table_alloc(ht, old_tbl->size * 2); |
| if (new_tbl == NULL) |
| return -ENOMEM; |
| |
| atomic_inc(&ht->shift); |
| |
| /* Make insertions go into the new, empty table right away. Deletions |
| * and lookups will be attempted in both tables until we synchronize. |
| * The synchronize_rcu() guarantees for the new table to be picked up |
| * so no new additions go into the old table while we relink. |
| */ |
| rcu_assign_pointer(ht->future_tbl, new_tbl); |
| synchronize_rcu(); |
| |
| /* For each new bucket, search the corresponding old bucket for the |
| * first entry that hashes to the new bucket, and link the end of |
| * newly formed bucket chain (containing entries added to future |
| * table) to that entry. Since all the entries which will end up in |
| * the new bucket appear in the same old bucket, this constructs an |
| * entirely valid new hash table, but with multiple buckets |
| * "zipped" together into a single imprecise chain. |
| */ |
| for (new_hash = 0; new_hash < new_tbl->size; new_hash++) { |
| old_hash = rht_bucket_index(old_tbl, new_hash); |
| lock_buckets(new_tbl, old_tbl, new_hash); |
| rht_for_each(he, old_tbl, old_hash) { |
| if (head_hashfn(ht, new_tbl, he) == new_hash) { |
| link_old_to_new(ht, new_tbl, new_hash, he); |
| break; |
| } |
| } |
| unlock_buckets(new_tbl, old_tbl, new_hash); |
| cond_resched(); |
| } |
| |
| /* Unzip interleaved hash chains */ |
| while (!complete && !ht->being_destroyed) { |
| /* Wait for readers. All new readers will see the new |
| * table, and thus no references to the old table will |
| * remain. |
| */ |
| synchronize_rcu(); |
| |
| /* For each bucket in the old table (each of which |
| * contains items from multiple buckets of the new |
| * table): ... |
| */ |
| complete = true; |
| for (old_hash = 0; old_hash < old_tbl->size; old_hash++) { |
| lock_buckets(new_tbl, old_tbl, old_hash); |
| |
| if (hashtable_chain_unzip(ht, new_tbl, old_tbl, |
| old_hash)) |
| complete = false; |
| |
| unlock_buckets(new_tbl, old_tbl, old_hash); |
| cond_resched(); |
| } |
| } |
| |
| rcu_assign_pointer(ht->tbl, new_tbl); |
| synchronize_rcu(); |
| |
| bucket_table_free(old_tbl); |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(rhashtable_expand); |
| |
| /** |
| * rhashtable_shrink - Shrink hash table while allowing concurrent lookups |
| * @ht: the hash table to shrink |
| * |
| * This function may only be called in a context where it is safe to call |
| * synchronize_rcu(), e.g. not within a rcu_read_lock() section. |
| * |
| * The caller must ensure that no concurrent resizing occurs by holding |
| * ht->mutex. |
| * |
| * The caller must ensure that no concurrent table mutations take place. |
| * It is however valid to have concurrent lookups if they are RCU protected. |
| * |
| * It is valid to have concurrent insertions and deletions protected by per |
| * bucket locks or concurrent RCU protected lookups and traversals. |
| */ |
| int rhashtable_shrink(struct rhashtable *ht) |
| { |
| struct bucket_table *new_tbl, *tbl = rht_dereference(ht->tbl, ht); |
| unsigned int new_hash; |
| |
| ASSERT_RHT_MUTEX(ht); |
| |
| new_tbl = bucket_table_alloc(ht, tbl->size / 2); |
| if (new_tbl == NULL) |
| return -ENOMEM; |
| |
| rcu_assign_pointer(ht->future_tbl, new_tbl); |
| synchronize_rcu(); |
| |
| /* Link the first entry in the old bucket to the end of the |
| * bucket in the new table. As entries are concurrently being |
| * added to the new table, lock down the new bucket. As we |
| * always divide the size in half when shrinking, each bucket |
| * in the new table maps to exactly two buckets in the old |
| * table. |
| */ |
| for (new_hash = 0; new_hash < new_tbl->size; new_hash++) { |
| lock_buckets(new_tbl, tbl, new_hash); |
| |
| rcu_assign_pointer(*bucket_tail(new_tbl, new_hash), |
| tbl->buckets[new_hash]); |
| ASSERT_BUCKET_LOCK(ht, tbl, new_hash + new_tbl->size); |
| rcu_assign_pointer(*bucket_tail(new_tbl, new_hash), |
| tbl->buckets[new_hash + new_tbl->size]); |
| |
| unlock_buckets(new_tbl, tbl, new_hash); |
| cond_resched(); |
| } |
| |
| /* Publish the new, valid hash table */ |
| rcu_assign_pointer(ht->tbl, new_tbl); |
| atomic_dec(&ht->shift); |
| |
| /* Wait for readers. No new readers will have references to the |
| * old hash table. |
| */ |
| synchronize_rcu(); |
| |
| bucket_table_free(tbl); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(rhashtable_shrink); |
| |
| static void rht_deferred_worker(struct work_struct *work) |
| { |
| struct rhashtable *ht; |
| struct bucket_table *tbl; |
| struct rhashtable_walker *walker; |
| |
| ht = container_of(work, struct rhashtable, run_work); |
| mutex_lock(&ht->mutex); |
| if (ht->being_destroyed) |
| goto unlock; |
| |
| tbl = rht_dereference(ht->tbl, ht); |
| |
| list_for_each_entry(walker, &ht->walkers, list) |
| walker->resize = true; |
| |
| if (rht_grow_above_75(ht, tbl->size)) |
| rhashtable_expand(ht); |
| else if (rht_shrink_below_30(ht, tbl->size)) |
| rhashtable_shrink(ht); |
| unlock: |
| mutex_unlock(&ht->mutex); |
| } |
| |
| static void __rhashtable_insert(struct rhashtable *ht, struct rhash_head *obj, |
| struct bucket_table *tbl, |
| const struct bucket_table *old_tbl, u32 hash) |
| { |
| bool no_resize_running = tbl == old_tbl; |
| struct rhash_head *head; |
| |
| hash = rht_bucket_index(tbl, hash); |
| head = rht_dereference_bucket(tbl->buckets[hash], tbl, hash); |
| |
| ASSERT_BUCKET_LOCK(ht, tbl, hash); |
| |
| if (rht_is_a_nulls(head)) |
| INIT_RHT_NULLS_HEAD(obj->next, ht, hash); |
| else |
| RCU_INIT_POINTER(obj->next, head); |
| |
| rcu_assign_pointer(tbl->buckets[hash], obj); |
| |
| atomic_inc(&ht->nelems); |
| if (no_resize_running && rht_grow_above_75(ht, tbl->size)) |
| schedule_work(&ht->run_work); |
| } |
| |
| /** |
| * rhashtable_insert - insert object into hash table |
| * @ht: hash table |
| * @obj: pointer to hash head inside object |
| * |
| * Will take a per bucket spinlock to protect against mutual mutations |
| * on the same bucket. Multiple insertions may occur in parallel unless |
| * they map to the same bucket lock. |
| * |
| * It is safe to call this function from atomic context. |
| * |
| * Will trigger an automatic deferred table resizing if the size grows |
| * beyond the watermark indicated by grow_decision() which can be passed |
| * to rhashtable_init(). |
| */ |
| void rhashtable_insert(struct rhashtable *ht, struct rhash_head *obj) |
| { |
| struct bucket_table *tbl, *old_tbl; |
| unsigned hash; |
| |
| rcu_read_lock(); |
| |
| tbl = rht_dereference_rcu(ht->future_tbl, ht); |
| old_tbl = rht_dereference_rcu(ht->tbl, ht); |
| hash = obj_raw_hashfn(ht, rht_obj(ht, obj)); |
| |
| lock_buckets(tbl, old_tbl, hash); |
| __rhashtable_insert(ht, obj, tbl, old_tbl, hash); |
| unlock_buckets(tbl, old_tbl, hash); |
| |
| rcu_read_unlock(); |
| } |
| EXPORT_SYMBOL_GPL(rhashtable_insert); |
| |
| /** |
| * rhashtable_remove - remove object from hash table |
| * @ht: hash table |
| * @obj: pointer to hash head inside object |
| * |
| * Since the hash chain is single linked, the removal operation needs to |
| * walk the bucket chain upon removal. The removal operation is thus |
| * considerable slow if the hash table is not correctly sized. |
| * |
| * Will automatically shrink the table via rhashtable_expand() if the |
| * shrink_decision function specified at rhashtable_init() returns true. |
| * |
| * The caller must ensure that no concurrent table mutations occur. It is |
| * however valid to have concurrent lookups if they are RCU protected. |
| */ |
| bool rhashtable_remove(struct rhashtable *ht, struct rhash_head *obj) |
| { |
| struct bucket_table *tbl, *new_tbl, *old_tbl; |
| struct rhash_head __rcu **pprev; |
| struct rhash_head *he, *he2; |
| unsigned int hash, new_hash; |
| bool ret = false; |
| |
| rcu_read_lock(); |
| old_tbl = rht_dereference_rcu(ht->tbl, ht); |
| tbl = new_tbl = rht_dereference_rcu(ht->future_tbl, ht); |
| new_hash = obj_raw_hashfn(ht, rht_obj(ht, obj)); |
| |
| lock_buckets(new_tbl, old_tbl, new_hash); |
| restart: |
| hash = rht_bucket_index(tbl, new_hash); |
| pprev = &tbl->buckets[hash]; |
| rht_for_each(he, tbl, hash) { |
| if (he != obj) { |
| pprev = &he->next; |
| continue; |
| } |
| |
| ASSERT_BUCKET_LOCK(ht, tbl, hash); |
| |
| if (old_tbl->size > new_tbl->size && tbl == old_tbl && |
| !rht_is_a_nulls(obj->next) && |
| head_hashfn(ht, tbl, obj->next) != hash) { |
| rcu_assign_pointer(*pprev, (struct rhash_head *) rht_marker(ht, hash)); |
| } else if (unlikely(old_tbl->size < new_tbl->size && tbl == new_tbl)) { |
| rht_for_each_continue(he2, obj->next, tbl, hash) { |
| if (head_hashfn(ht, tbl, he2) == hash) { |
| rcu_assign_pointer(*pprev, he2); |
| goto found; |
| } |
| } |
| |
| rcu_assign_pointer(*pprev, (struct rhash_head *) rht_marker(ht, hash)); |
| } else { |
| rcu_assign_pointer(*pprev, obj->next); |
| } |
| |
| found: |
| ret = true; |
| break; |
| } |
| |
| /* The entry may be linked in either 'tbl', 'future_tbl', or both. |
| * 'future_tbl' only exists for a short period of time during |
| * resizing. Thus traversing both is fine and the added cost is |
| * very rare. |
| */ |
| if (tbl != old_tbl) { |
| tbl = old_tbl; |
| goto restart; |
| } |
| |
| unlock_buckets(new_tbl, old_tbl, new_hash); |
| |
| if (ret) { |
| bool no_resize_running = new_tbl == old_tbl; |
| |
| atomic_dec(&ht->nelems); |
| if (no_resize_running && rht_shrink_below_30(ht, new_tbl->size)) |
| schedule_work(&ht->run_work); |
| } |
| |
| rcu_read_unlock(); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(rhashtable_remove); |
| |
| struct rhashtable_compare_arg { |
| struct rhashtable *ht; |
| const void *key; |
| }; |
| |
| static bool rhashtable_compare(void *ptr, void *arg) |
| { |
| struct rhashtable_compare_arg *x = arg; |
| struct rhashtable *ht = x->ht; |
| |
| return !memcmp(ptr + ht->p.key_offset, x->key, ht->p.key_len); |
| } |
| |
| /** |
| * rhashtable_lookup - lookup key in hash table |
| * @ht: hash table |
| * @key: pointer to key |
| * |
| * Computes the hash value for the key and traverses the bucket chain looking |
| * for a entry with an identical key. The first matching entry is returned. |
| * |
| * This lookup function may only be used for fixed key hash table (key_len |
| * parameter set). It will BUG() if used inappropriately. |
| * |
| * Lookups may occur in parallel with hashtable mutations and resizing. |
| */ |
| void *rhashtable_lookup(struct rhashtable *ht, const void *key) |
| { |
| struct rhashtable_compare_arg arg = { |
| .ht = ht, |
| .key = key, |
| }; |
| |
| BUG_ON(!ht->p.key_len); |
| |
| return rhashtable_lookup_compare(ht, key, &rhashtable_compare, &arg); |
| } |
| EXPORT_SYMBOL_GPL(rhashtable_lookup); |
| |
| /** |
| * rhashtable_lookup_compare - search hash table with compare function |
| * @ht: hash table |
| * @key: the pointer to the key |
| * @compare: compare function, must return true on match |
| * @arg: argument passed on to compare function |
| * |
| * Traverses the bucket chain behind the provided hash value and calls the |
| * specified compare function for each entry. |
| * |
| * Lookups may occur in parallel with hashtable mutations and resizing. |
| * |
| * Returns the first entry on which the compare function returned true. |
| */ |
| void *rhashtable_lookup_compare(struct rhashtable *ht, const void *key, |
| bool (*compare)(void *, void *), void *arg) |
| { |
| const struct bucket_table *tbl, *old_tbl; |
| struct rhash_head *he; |
| u32 hash; |
| |
| rcu_read_lock(); |
| |
| old_tbl = rht_dereference_rcu(ht->tbl, ht); |
| tbl = rht_dereference_rcu(ht->future_tbl, ht); |
| hash = key_hashfn(ht, key, ht->p.key_len); |
| restart: |
| rht_for_each_rcu(he, tbl, rht_bucket_index(tbl, hash)) { |
| if (!compare(rht_obj(ht, he), arg)) |
| continue; |
| rcu_read_unlock(); |
| return rht_obj(ht, he); |
| } |
| |
| if (unlikely(tbl != old_tbl)) { |
| tbl = old_tbl; |
| goto restart; |
| } |
| rcu_read_unlock(); |
| |
| return NULL; |
| } |
| EXPORT_SYMBOL_GPL(rhashtable_lookup_compare); |
| |
| /** |
| * rhashtable_lookup_insert - lookup and insert object into hash table |
| * @ht: hash table |
| * @obj: pointer to hash head inside object |
| * |
| * Locks down the bucket chain in both the old and new table if a resize |
| * is in progress to ensure that writers can't remove from the old table |
| * and can't insert to the new table during the atomic operation of search |
| * and insertion. Searches for duplicates in both the old and new table if |
| * a resize is in progress. |
| * |
| * This lookup function may only be used for fixed key hash table (key_len |
| * parameter set). It will BUG() if used inappropriately. |
| * |
| * It is safe to call this function from atomic context. |
| * |
| * Will trigger an automatic deferred table resizing if the size grows |
| * beyond the watermark indicated by grow_decision() which can be passed |
| * to rhashtable_init(). |
| */ |
| bool rhashtable_lookup_insert(struct rhashtable *ht, struct rhash_head *obj) |
| { |
| struct rhashtable_compare_arg arg = { |
| .ht = ht, |
| .key = rht_obj(ht, obj) + ht->p.key_offset, |
| }; |
| |
| BUG_ON(!ht->p.key_len); |
| |
| return rhashtable_lookup_compare_insert(ht, obj, &rhashtable_compare, |
| &arg); |
| } |
| EXPORT_SYMBOL_GPL(rhashtable_lookup_insert); |
| |
| /** |
| * rhashtable_lookup_compare_insert - search and insert object to hash table |
| * with compare function |
| * @ht: hash table |
| * @obj: pointer to hash head inside object |
| * @compare: compare function, must return true on match |
| * @arg: argument passed on to compare function |
| * |
| * Locks down the bucket chain in both the old and new table if a resize |
| * is in progress to ensure that writers can't remove from the old table |
| * and can't insert to the new table during the atomic operation of search |
| * and insertion. Searches for duplicates in both the old and new table if |
| * a resize is in progress. |
| * |
| * Lookups may occur in parallel with hashtable mutations and resizing. |
| * |
| * Will trigger an automatic deferred table resizing if the size grows |
| * beyond the watermark indicated by grow_decision() which can be passed |
| * to rhashtable_init(). |
| */ |
| bool rhashtable_lookup_compare_insert(struct rhashtable *ht, |
| struct rhash_head *obj, |
| bool (*compare)(void *, void *), |
| void *arg) |
| { |
| struct bucket_table *new_tbl, *old_tbl; |
| u32 new_hash; |
| bool success = true; |
| |
| BUG_ON(!ht->p.key_len); |
| |
| rcu_read_lock(); |
| old_tbl = rht_dereference_rcu(ht->tbl, ht); |
| new_tbl = rht_dereference_rcu(ht->future_tbl, ht); |
| new_hash = obj_raw_hashfn(ht, rht_obj(ht, obj)); |
| |
| lock_buckets(new_tbl, old_tbl, new_hash); |
| |
| if (rhashtable_lookup_compare(ht, rht_obj(ht, obj) + ht->p.key_offset, |
| compare, arg)) { |
| success = false; |
| goto exit; |
| } |
| |
| __rhashtable_insert(ht, obj, new_tbl, old_tbl, new_hash); |
| |
| exit: |
| unlock_buckets(new_tbl, old_tbl, new_hash); |
| rcu_read_unlock(); |
| |
| return success; |
| } |
| EXPORT_SYMBOL_GPL(rhashtable_lookup_compare_insert); |
| |
| /** |
| * rhashtable_walk_init - Initialise an iterator |
| * @ht: Table to walk over |
| * @iter: Hash table Iterator |
| * |
| * This function prepares a hash table walk. |
| * |
| * Note that if you restart a walk after rhashtable_walk_stop you |
| * may see the same object twice. Also, you may miss objects if |
| * there are removals in between rhashtable_walk_stop and the next |
| * call to rhashtable_walk_start. |
| * |
| * For a completely stable walk you should construct your own data |
| * structure outside the hash table. |
| * |
| * This function may sleep so you must not call it from interrupt |
| * context or with spin locks held. |
| * |
| * You must call rhashtable_walk_exit if this function returns |
| * successfully. |
| */ |
| int rhashtable_walk_init(struct rhashtable *ht, struct rhashtable_iter *iter) |
| { |
| iter->ht = ht; |
| iter->p = NULL; |
| iter->slot = 0; |
| iter->skip = 0; |
| |
| iter->walker = kmalloc(sizeof(*iter->walker), GFP_KERNEL); |
| if (!iter->walker) |
| return -ENOMEM; |
| |
| INIT_LIST_HEAD(&iter->walker->list); |
| iter->walker->resize = false; |
| |
| mutex_lock(&ht->mutex); |
| list_add(&iter->walker->list, &ht->walkers); |
| mutex_unlock(&ht->mutex); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(rhashtable_walk_init); |
| |
| /** |
| * rhashtable_walk_exit - Free an iterator |
| * @iter: Hash table Iterator |
| * |
| * This function frees resources allocated by rhashtable_walk_init. |
| */ |
| void rhashtable_walk_exit(struct rhashtable_iter *iter) |
| { |
| mutex_lock(&iter->ht->mutex); |
| list_del(&iter->walker->list); |
| mutex_unlock(&iter->ht->mutex); |
| kfree(iter->walker); |
| } |
| EXPORT_SYMBOL_GPL(rhashtable_walk_exit); |
| |
| /** |
| * rhashtable_walk_start - Start a hash table walk |
| * @iter: Hash table iterator |
| * |
| * Start a hash table walk. Note that we take the RCU lock in all |
| * cases including when we return an error. So you must always call |
| * rhashtable_walk_stop to clean up. |
| * |
| * Returns zero if successful. |
| * |
| * Returns -EAGAIN if resize event occured. Note that the iterator |
| * will rewind back to the beginning and you may use it immediately |
| * by calling rhashtable_walk_next. |
| */ |
| int rhashtable_walk_start(struct rhashtable_iter *iter) |
| { |
| rcu_read_lock(); |
| |
| if (iter->walker->resize) { |
| iter->slot = 0; |
| iter->skip = 0; |
| iter->walker->resize = false; |
| return -EAGAIN; |
| } |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(rhashtable_walk_start); |
| |
| /** |
| * rhashtable_walk_next - Return the next object and advance the iterator |
| * @iter: Hash table iterator |
| * |
| * Note that you must call rhashtable_walk_stop when you are finished |
| * with the walk. |
| * |
| * Returns the next object or NULL when the end of the table is reached. |
| * |
| * Returns -EAGAIN if resize event occured. Note that the iterator |
| * will rewind back to the beginning and you may continue to use it. |
| */ |
| void *rhashtable_walk_next(struct rhashtable_iter *iter) |
| { |
| const struct bucket_table *tbl; |
| struct rhashtable *ht = iter->ht; |
| struct rhash_head *p = iter->p; |
| void *obj = NULL; |
| |
| tbl = rht_dereference_rcu(ht->tbl, ht); |
| |
| if (p) { |
| p = rht_dereference_bucket_rcu(p->next, tbl, iter->slot); |
| goto next; |
| } |
| |
| for (; iter->slot < tbl->size; iter->slot++) { |
| int skip = iter->skip; |
| |
| rht_for_each_rcu(p, tbl, iter->slot) { |
| if (!skip) |
| break; |
| skip--; |
| } |
| |
| next: |
| if (!rht_is_a_nulls(p)) { |
| iter->skip++; |
| iter->p = p; |
| obj = rht_obj(ht, p); |
| goto out; |
| } |
| |
| iter->skip = 0; |
| } |
| |
| iter->p = NULL; |
| |
| out: |
| if (iter->walker->resize) { |
| iter->p = NULL; |
| iter->slot = 0; |
| iter->skip = 0; |
| iter->walker->resize = false; |
| return ERR_PTR(-EAGAIN); |
| } |
| |
| return obj; |
| } |
| EXPORT_SYMBOL_GPL(rhashtable_walk_next); |
| |
| /** |
| * rhashtable_walk_stop - Finish a hash table walk |
| * @iter: Hash table iterator |
| * |
| * Finish a hash table walk. |
| */ |
| void rhashtable_walk_stop(struct rhashtable_iter *iter) |
| { |
| rcu_read_unlock(); |
| iter->p = NULL; |
| } |
| EXPORT_SYMBOL_GPL(rhashtable_walk_stop); |
| |
| static size_t rounded_hashtable_size(struct rhashtable_params *params) |
| { |
| return max(roundup_pow_of_two(params->nelem_hint * 4 / 3), |
| 1UL << params->min_shift); |
| } |
| |
| /** |
| * rhashtable_init - initialize a new hash table |
| * @ht: hash table to be initialized |
| * @params: configuration parameters |
| * |
| * Initializes a new hash table based on the provided configuration |
| * parameters. A table can be configured either with a variable or |
| * fixed length key: |
| * |
| * Configuration Example 1: Fixed length keys |
| * struct test_obj { |
| * int key; |
| * void * my_member; |
| * struct rhash_head node; |
| * }; |
| * |
| * struct rhashtable_params params = { |
| * .head_offset = offsetof(struct test_obj, node), |
| * .key_offset = offsetof(struct test_obj, key), |
| * .key_len = sizeof(int), |
| * .hashfn = jhash, |
| * .nulls_base = (1U << RHT_BASE_SHIFT), |
| * }; |
| * |
| * Configuration Example 2: Variable length keys |
| * struct test_obj { |
| * [...] |
| * struct rhash_head node; |
| * }; |
| * |
| * u32 my_hash_fn(const void *data, u32 seed) |
| * { |
| * struct test_obj *obj = data; |
| * |
| * return [... hash ...]; |
| * } |
| * |
| * struct rhashtable_params params = { |
| * .head_offset = offsetof(struct test_obj, node), |
| * .hashfn = jhash, |
| * .obj_hashfn = my_hash_fn, |
| * }; |
| */ |
| int rhashtable_init(struct rhashtable *ht, struct rhashtable_params *params) |
| { |
| struct bucket_table *tbl; |
| size_t size; |
| |
| size = HASH_DEFAULT_SIZE; |
| |
| if ((params->key_len && !params->hashfn) || |
| (!params->key_len && !params->obj_hashfn)) |
| return -EINVAL; |
| |
| if (params->nulls_base && params->nulls_base < (1U << RHT_BASE_SHIFT)) |
| return -EINVAL; |
| |
| params->min_shift = max_t(size_t, params->min_shift, |
| ilog2(HASH_MIN_SIZE)); |
| |
| if (params->nelem_hint) |
| size = rounded_hashtable_size(params); |
| |
| memset(ht, 0, sizeof(*ht)); |
| mutex_init(&ht->mutex); |
| memcpy(&ht->p, params, sizeof(*params)); |
| INIT_LIST_HEAD(&ht->walkers); |
| |
| if (params->locks_mul) |
| ht->p.locks_mul = roundup_pow_of_two(params->locks_mul); |
| else |
| ht->p.locks_mul = BUCKET_LOCKS_PER_CPU; |
| |
| tbl = bucket_table_alloc(ht, size); |
| if (tbl == NULL) |
| return -ENOMEM; |
| |
| atomic_set(&ht->nelems, 0); |
| atomic_set(&ht->shift, ilog2(tbl->size)); |
| RCU_INIT_POINTER(ht->tbl, tbl); |
| RCU_INIT_POINTER(ht->future_tbl, tbl); |
| |
| if (!ht->p.hash_rnd) |
| get_random_bytes(&ht->p.hash_rnd, sizeof(ht->p.hash_rnd)); |
| |
| INIT_WORK(&ht->run_work, rht_deferred_worker); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(rhashtable_init); |
| |
| /** |
| * rhashtable_destroy - destroy hash table |
| * @ht: the hash table to destroy |
| * |
| * Frees the bucket array. This function is not rcu safe, therefore the caller |
| * has to make sure that no resizing may happen by unpublishing the hashtable |
| * and waiting for the quiescent cycle before releasing the bucket array. |
| */ |
| void rhashtable_destroy(struct rhashtable *ht) |
| { |
| ht->being_destroyed = true; |
| |
| cancel_work_sync(&ht->run_work); |
| |
| mutex_lock(&ht->mutex); |
| bucket_table_free(rht_dereference(ht->tbl, ht)); |
| mutex_unlock(&ht->mutex); |
| } |
| EXPORT_SYMBOL_GPL(rhashtable_destroy); |