| V4L2 sub-devices |
| ---------------- |
| |
| Many drivers need to communicate with sub-devices. These devices can do all |
| sort of tasks, but most commonly they handle audio and/or video muxing, |
| encoding or decoding. For webcams common sub-devices are sensors and camera |
| controllers. |
| |
| Usually these are I2C devices, but not necessarily. In order to provide the |
| driver with a consistent interface to these sub-devices the |
| :c:type:`v4l2_subdev` struct (v4l2-subdev.h) was created. |
| |
| Each sub-device driver must have a :c:type:`v4l2_subdev` struct. This struct |
| can be stand-alone for simple sub-devices or it might be embedded in a larger |
| struct if more state information needs to be stored. Usually there is a |
| low-level device struct (e.g. ``i2c_client``) that contains the device data as |
| setup by the kernel. It is recommended to store that pointer in the private |
| data of :c:type:`v4l2_subdev` using :c:func:`v4l2_set_subdevdata`. That makes |
| it easy to go from a :c:type:`v4l2_subdev` to the actual low-level bus-specific |
| device data. |
| |
| You also need a way to go from the low-level struct to :c:type:`v4l2_subdev`. |
| For the common i2c_client struct the i2c_set_clientdata() call is used to store |
| a :c:type:`v4l2_subdev` pointer, for other busses you may have to use other |
| methods. |
| |
| Bridges might also need to store per-subdev private data, such as a pointer to |
| bridge-specific per-subdev private data. The :c:type:`v4l2_subdev` structure |
| provides host private data for that purpose that can be accessed with |
| :c:func:`v4l2_get_subdev_hostdata` and :c:func:`v4l2_set_subdev_hostdata`. |
| |
| From the bridge driver perspective, you load the sub-device module and somehow |
| obtain the :c:type:`v4l2_subdev` pointer. For i2c devices this is easy: you call |
| ``i2c_get_clientdata()``. For other busses something similar needs to be done. |
| Helper functions exists for sub-devices on an I2C bus that do most of this |
| tricky work for you. |
| |
| Each :c:type:`v4l2_subdev` contains function pointers that sub-device drivers |
| can implement (or leave ``NULL`` if it is not applicable). Since sub-devices can |
| do so many different things and you do not want to end up with a huge ops struct |
| of which only a handful of ops are commonly implemented, the function pointers |
| are sorted according to category and each category has its own ops struct. |
| |
| The top-level ops struct contains pointers to the category ops structs, which |
| may be NULL if the subdev driver does not support anything from that category. |
| |
| It looks like this: |
| |
| .. code-block:: c |
| |
| struct v4l2_subdev_core_ops { |
| int (*log_status)(struct v4l2_subdev *sd); |
| int (*init)(struct v4l2_subdev *sd, u32 val); |
| ... |
| }; |
| |
| struct v4l2_subdev_tuner_ops { |
| ... |
| }; |
| |
| struct v4l2_subdev_audio_ops { |
| ... |
| }; |
| |
| struct v4l2_subdev_video_ops { |
| ... |
| }; |
| |
| struct v4l2_subdev_pad_ops { |
| ... |
| }; |
| |
| struct v4l2_subdev_ops { |
| const struct v4l2_subdev_core_ops *core; |
| const struct v4l2_subdev_tuner_ops *tuner; |
| const struct v4l2_subdev_audio_ops *audio; |
| const struct v4l2_subdev_video_ops *video; |
| const struct v4l2_subdev_pad_ops *video; |
| }; |
| |
| The core ops are common to all subdevs, the other categories are implemented |
| depending on the sub-device. E.g. a video device is unlikely to support the |
| audio ops and vice versa. |
| |
| This setup limits the number of function pointers while still making it easy |
| to add new ops and categories. |
| |
| A sub-device driver initializes the :c:type:`v4l2_subdev` struct using: |
| |
| :c:func:`v4l2_subdev_init <v4l2_subdev_init>` |
| (:c:type:`sd <v4l2_subdev>`, &\ :c:type:`ops <v4l2_subdev_ops>`). |
| |
| |
| Afterwards you need to initialize :c:type:`sd <v4l2_subdev>`->name with a |
| unique name and set the module owner. This is done for you if you use the |
| i2c helper functions. |
| |
| If integration with the media framework is needed, you must initialize the |
| :c:type:`media_entity` struct embedded in the :c:type:`v4l2_subdev` struct |
| (entity field) by calling :c:func:`media_entity_pads_init`, if the entity has |
| pads: |
| |
| .. code-block:: c |
| |
| struct media_pad *pads = &my_sd->pads; |
| int err; |
| |
| err = media_entity_pads_init(&sd->entity, npads, pads); |
| |
| The pads array must have been previously initialized. There is no need to |
| manually set the struct :c:type:`media_entity` function and name fields, but the |
| revision field must be initialized if needed. |
| |
| A reference to the entity will be automatically acquired/released when the |
| subdev device node (if any) is opened/closed. |
| |
| Don't forget to cleanup the media entity before the sub-device is destroyed: |
| |
| .. code-block:: c |
| |
| media_entity_cleanup(&sd->entity); |
| |
| If the subdev driver intends to process video and integrate with the media |
| framework, it must implement format related functionality using |
| :c:type:`v4l2_subdev_pad_ops` instead of :c:type:`v4l2_subdev_video_ops`. |
| |
| In that case, the subdev driver may set the link_validate field to provide |
| its own link validation function. The link validation function is called for |
| every link in the pipeline where both of the ends of the links are V4L2 |
| sub-devices. The driver is still responsible for validating the correctness |
| of the format configuration between sub-devices and video nodes. |
| |
| If link_validate op is not set, the default function |
| :c:func:`v4l2_subdev_link_validate_default` is used instead. This function |
| ensures that width, height and the media bus pixel code are equal on both source |
| and sink of the link. Subdev drivers are also free to use this function to |
| perform the checks mentioned above in addition to their own checks. |
| |
| There are currently two ways to register subdevices with the V4L2 core. The |
| first (traditional) possibility is to have subdevices registered by bridge |
| drivers. This can be done when the bridge driver has the complete information |
| about subdevices connected to it and knows exactly when to register them. This |
| is typically the case for internal subdevices, like video data processing units |
| within SoCs or complex PCI(e) boards, camera sensors in USB cameras or connected |
| to SoCs, which pass information about them to bridge drivers, usually in their |
| platform data. |
| |
| There are however also situations where subdevices have to be registered |
| asynchronously to bridge devices. An example of such a configuration is a Device |
| Tree based system where information about subdevices is made available to the |
| system independently from the bridge devices, e.g. when subdevices are defined |
| in DT as I2C device nodes. The API used in this second case is described further |
| below. |
| |
| Using one or the other registration method only affects the probing process, the |
| run-time bridge-subdevice interaction is in both cases the same. |
| |
| In the synchronous case a device (bridge) driver needs to register the |
| :c:type:`v4l2_subdev` with the v4l2_device: |
| |
| :c:func:`v4l2_device_register_subdev <v4l2_device_register_subdev>` |
| (:c:type:`v4l2_dev <v4l2_device>`, :c:type:`sd <v4l2_subdev>`). |
| |
| This can fail if the subdev module disappeared before it could be registered. |
| After this function was called successfully the subdev->dev field points to |
| the :c:type:`v4l2_device`. |
| |
| If the v4l2_device parent device has a non-NULL mdev field, the sub-device |
| entity will be automatically registered with the media device. |
| |
| You can unregister a sub-device using: |
| |
| :c:func:`v4l2_device_unregister_subdev <v4l2_device_unregister_subdev>` |
| (:c:type:`sd <v4l2_subdev>`). |
| |
| |
| Afterwards the subdev module can be unloaded and |
| :c:type:`sd <v4l2_subdev>`->dev == ``NULL``. |
| |
| You can call an ops function either directly: |
| |
| .. code-block:: c |
| |
| err = sd->ops->core->g_std(sd, &norm); |
| |
| but it is better and easier to use this macro: |
| |
| .. code-block:: c |
| |
| err = v4l2_subdev_call(sd, core, g_std, &norm); |
| |
| The macro will to the right ``NULL`` pointer checks and returns ``-ENODEV`` |
| if :c:type:`sd <v4l2_subdev>` is ``NULL``, ``-ENOIOCTLCMD`` if either |
| :c:type:`sd <v4l2_subdev>`->core or :c:type:`sd <v4l2_subdev>`->core->g_std is ``NULL``, or the actual result of the |
| :c:type:`sd <v4l2_subdev>`->ops->core->g_std ops. |
| |
| It is also possible to call all or a subset of the sub-devices: |
| |
| .. code-block:: c |
| |
| v4l2_device_call_all(v4l2_dev, 0, core, g_std, &norm); |
| |
| Any subdev that does not support this ops is skipped and error results are |
| ignored. If you want to check for errors use this: |
| |
| .. code-block:: c |
| |
| err = v4l2_device_call_until_err(v4l2_dev, 0, core, g_std, &norm); |
| |
| Any error except ``-ENOIOCTLCMD`` will exit the loop with that error. If no |
| errors (except ``-ENOIOCTLCMD``) occurred, then 0 is returned. |
| |
| The second argument to both calls is a group ID. If 0, then all subdevs are |
| called. If non-zero, then only those whose group ID match that value will |
| be called. Before a bridge driver registers a subdev it can set |
| :c:type:`sd <v4l2_subdev>`->grp_id to whatever value it wants (it's 0 by |
| default). This value is owned by the bridge driver and the sub-device driver |
| will never modify or use it. |
| |
| The group ID gives the bridge driver more control how callbacks are called. |
| For example, there may be multiple audio chips on a board, each capable of |
| changing the volume. But usually only one will actually be used when the |
| user want to change the volume. You can set the group ID for that subdev to |
| e.g. AUDIO_CONTROLLER and specify that as the group ID value when calling |
| ``v4l2_device_call_all()``. That ensures that it will only go to the subdev |
| that needs it. |
| |
| If the sub-device needs to notify its v4l2_device parent of an event, then |
| it can call ``v4l2_subdev_notify(sd, notification, arg)``. This macro checks |
| whether there is a ``notify()`` callback defined and returns ``-ENODEV`` if not. |
| Otherwise the result of the ``notify()`` call is returned. |
| |
| The advantage of using :c:type:`v4l2_subdev` is that it is a generic struct and |
| does not contain any knowledge about the underlying hardware. So a driver might |
| contain several subdevs that use an I2C bus, but also a subdev that is |
| controlled through GPIO pins. This distinction is only relevant when setting |
| up the device, but once the subdev is registered it is completely transparent. |
| |
| In the asynchronous case subdevice probing can be invoked independently of the |
| bridge driver availability. The subdevice driver then has to verify whether all |
| the requirements for a successful probing are satisfied. This can include a |
| check for a master clock availability. If any of the conditions aren't satisfied |
| the driver might decide to return ``-EPROBE_DEFER`` to request further reprobing |
| attempts. Once all conditions are met the subdevice shall be registered using |
| the :c:func:`v4l2_async_register_subdev` function. Unregistration is |
| performed using the :c:func:`v4l2_async_unregister_subdev` call. Subdevices |
| registered this way are stored in a global list of subdevices, ready to be |
| picked up by bridge drivers. |
| |
| Bridge drivers in turn have to register a notifier object with an array of |
| subdevice descriptors that the bridge device needs for its operation. This is |
| performed using the :c:func:`v4l2_async_notifier_register` call. To |
| unregister the notifier the driver has to call |
| :c:func:`v4l2_async_notifier_unregister`. The former of the two functions |
| takes two arguments: a pointer to struct :c:type:`v4l2_device` and a pointer to |
| struct :c:type:`v4l2_async_notifier`. The latter contains a pointer to an array |
| of pointers to subdevice descriptors of type struct :c:type:`v4l2_async_subdev` |
| type. The V4L2 core will then use these descriptors to match asynchronously |
| registered |
| subdevices to them. If a match is detected the ``.bound()`` notifier callback |
| is called. After all subdevices have been located the .complete() callback is |
| called. When a subdevice is removed from the system the .unbind() method is |
| called. All three callbacks are optional. |
| |
| V4L2 sub-device userspace API |
| ----------------------------- |
| |
| Beside exposing a kernel API through the :c:type:`v4l2_subdev_ops` structure, |
| V4L2 sub-devices can also be controlled directly by userspace applications. |
| |
| Device nodes named ``v4l-subdev``\ *X* can be created in ``/dev`` to access |
| sub-devices directly. If a sub-device supports direct userspace configuration |
| it must set the ``V4L2_SUBDEV_FL_HAS_DEVNODE`` flag before being registered. |
| |
| After registering sub-devices, the :c:type:`v4l2_device` driver can create |
| device nodes for all registered sub-devices marked with |
| ``V4L2_SUBDEV_FL_HAS_DEVNODE`` by calling |
| :c:func:`v4l2_device_register_subdev_nodes`. Those device nodes will be |
| automatically removed when sub-devices are unregistered. |
| |
| The device node handles a subset of the V4L2 API. |
| |
| ``VIDIOC_QUERYCTRL``, |
| ``VIDIOC_QUERYMENU``, |
| ``VIDIOC_G_CTRL``, |
| ``VIDIOC_S_CTRL``, |
| ``VIDIOC_G_EXT_CTRLS``, |
| ``VIDIOC_S_EXT_CTRLS`` and |
| ``VIDIOC_TRY_EXT_CTRLS``: |
| |
| The controls ioctls are identical to the ones defined in V4L2. They |
| behave identically, with the only exception that they deal only with |
| controls implemented in the sub-device. Depending on the driver, those |
| controls can be also be accessed through one (or several) V4L2 device |
| nodes. |
| |
| ``VIDIOC_DQEVENT``, |
| ``VIDIOC_SUBSCRIBE_EVENT`` and |
| ``VIDIOC_UNSUBSCRIBE_EVENT`` |
| |
| The events ioctls are identical to the ones defined in V4L2. They |
| behave identically, with the only exception that they deal only with |
| events generated by the sub-device. Depending on the driver, those |
| events can also be reported by one (or several) V4L2 device nodes. |
| |
| Sub-device drivers that want to use events need to set the |
| ``V4L2_SUBDEV_USES_EVENTS`` :c:type:`v4l2_subdev`.flags and initialize |
| :c:type:`v4l2_subdev`.nevents to events queue depth before registering |
| the sub-device. After registration events can be queued as usual on the |
| :c:type:`v4l2_subdev`.devnode device node. |
| |
| To properly support events, the ``poll()`` file operation is also |
| implemented. |
| |
| Private ioctls |
| |
| All ioctls not in the above list are passed directly to the sub-device |
| driver through the core::ioctl operation. |
| |
| |
| I2C sub-device drivers |
| ---------------------- |
| |
| Since these drivers are so common, special helper functions are available to |
| ease the use of these drivers (``v4l2-common.h``). |
| |
| The recommended method of adding :c:type:`v4l2_subdev` support to an I2C driver |
| is to embed the :c:type:`v4l2_subdev` struct into the state struct that is |
| created for each I2C device instance. Very simple devices have no state |
| struct and in that case you can just create a :c:type:`v4l2_subdev` directly. |
| |
| A typical state struct would look like this (where 'chipname' is replaced by |
| the name of the chip): |
| |
| .. code-block:: c |
| |
| struct chipname_state { |
| struct v4l2_subdev sd; |
| ... /* additional state fields */ |
| }; |
| |
| Initialize the :c:type:`v4l2_subdev` struct as follows: |
| |
| .. code-block:: c |
| |
| v4l2_i2c_subdev_init(&state->sd, client, subdev_ops); |
| |
| This function will fill in all the fields of :c:type:`v4l2_subdev` ensure that |
| the :c:type:`v4l2_subdev` and i2c_client both point to one another. |
| |
| You should also add a helper inline function to go from a :c:type:`v4l2_subdev` |
| pointer to a chipname_state struct: |
| |
| .. code-block:: c |
| |
| static inline struct chipname_state *to_state(struct v4l2_subdev *sd) |
| { |
| return container_of(sd, struct chipname_state, sd); |
| } |
| |
| Use this to go from the :c:type:`v4l2_subdev` struct to the ``i2c_client`` |
| struct: |
| |
| .. code-block:: c |
| |
| struct i2c_client *client = v4l2_get_subdevdata(sd); |
| |
| And this to go from an ``i2c_client`` to a :c:type:`v4l2_subdev` struct: |
| |
| .. code-block:: c |
| |
| struct v4l2_subdev *sd = i2c_get_clientdata(client); |
| |
| Make sure to call |
| :c:func:`v4l2_device_unregister_subdev`\ (:c:type:`sd <v4l2_subdev>`) |
| when the ``remove()`` callback is called. This will unregister the sub-device |
| from the bridge driver. It is safe to call this even if the sub-device was |
| never registered. |
| |
| You need to do this because when the bridge driver destroys the i2c adapter |
| the ``remove()`` callbacks are called of the i2c devices on that adapter. |
| After that the corresponding v4l2_subdev structures are invalid, so they |
| have to be unregistered first. Calling |
| :c:func:`v4l2_device_unregister_subdev`\ (:c:type:`sd <v4l2_subdev>`) |
| from the ``remove()`` callback ensures that this is always done correctly. |
| |
| |
| The bridge driver also has some helper functions it can use: |
| |
| .. code-block:: c |
| |
| struct v4l2_subdev *sd = v4l2_i2c_new_subdev(v4l2_dev, adapter, |
| "module_foo", "chipid", 0x36, NULL); |
| |
| This loads the given module (can be ``NULL`` if no module needs to be loaded) |
| and calls :c:func:`i2c_new_device` with the given ``i2c_adapter`` and |
| chip/address arguments. If all goes well, then it registers the subdev with |
| the v4l2_device. |
| |
| You can also use the last argument of :c:func:`v4l2_i2c_new_subdev` to pass |
| an array of possible I2C addresses that it should probe. These probe addresses |
| are only used if the previous argument is 0. A non-zero argument means that you |
| know the exact i2c address so in that case no probing will take place. |
| |
| Both functions return ``NULL`` if something went wrong. |
| |
| Note that the chipid you pass to :c:func:`v4l2_i2c_new_subdev` is usually |
| the same as the module name. It allows you to specify a chip variant, e.g. |
| "saa7114" or "saa7115". In general though the i2c driver autodetects this. |
| The use of chipid is something that needs to be looked at more closely at a |
| later date. It differs between i2c drivers and as such can be confusing. |
| To see which chip variants are supported you can look in the i2c driver code |
| for the i2c_device_id table. This lists all the possibilities. |
| |
| There are two more helper functions: |
| |
| :c:func:`v4l2_i2c_new_subdev_cfg`: this function adds new irq and |
| platform_data arguments and has both 'addr' and 'probed_addrs' arguments: |
| if addr is not 0 then that will be used (non-probing variant), otherwise the |
| probed_addrs are probed. |
| |
| For example: this will probe for address 0x10: |
| |
| .. code-block:: c |
| |
| struct v4l2_subdev *sd = v4l2_i2c_new_subdev_cfg(v4l2_dev, adapter, |
| "module_foo", "chipid", 0, NULL, 0, I2C_ADDRS(0x10)); |
| |
| :c:func:`v4l2_i2c_new_subdev_board` uses an :c:type:`i2c_board_info` struct |
| which is passed to the i2c driver and replaces the irq, platform_data and addr |
| arguments. |
| |
| If the subdev supports the s_config core ops, then that op is called with |
| the irq and platform_data arguments after the subdev was setup. |
| |
| The older :c:func:`v4l2_i2c_new_subdev` and |
| :c:func:`v4l2_i2c_new_probed_subdev` functions will call ``s_config`` as |
| well, but with irq set to 0 and platform_data set to ``NULL``. |
| |
| V4L2 sub-device functions and data structures |
| --------------------------------------------- |
| |
| .. kernel-doc:: include/media/v4l2-subdev.h |
| |
| .. kernel-doc:: include/media/v4l2-async.h |