blob: c6a4ac766b2bf95801533ff917130407be646cf2 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Page table handling routines for radix page table.
*
* Copyright 2015-2016, Aneesh Kumar K.V, IBM Corporation.
*/
#define pr_fmt(fmt) "radix-mmu: " fmt
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/sched/mm.h>
#include <linux/memblock.h>
#include <linux/of.h>
#include <linux/of_fdt.h>
#include <linux/mm.h>
#include <linux/hugetlb.h>
#include <linux/string_helpers.h>
#include <linux/memory.h>
#include <asm/pgalloc.h>
#include <asm/mmu_context.h>
#include <asm/dma.h>
#include <asm/machdep.h>
#include <asm/mmu.h>
#include <asm/firmware.h>
#include <asm/powernv.h>
#include <asm/sections.h>
#include <asm/smp.h>
#include <asm/trace.h>
#include <asm/uaccess.h>
#include <asm/ultravisor.h>
#include <asm/set_memory.h>
#include <trace/events/thp.h>
#include <mm/mmu_decl.h>
unsigned int mmu_base_pid;
static __ref void *early_alloc_pgtable(unsigned long size, int nid,
unsigned long region_start, unsigned long region_end)
{
phys_addr_t min_addr = MEMBLOCK_LOW_LIMIT;
phys_addr_t max_addr = MEMBLOCK_ALLOC_ANYWHERE;
void *ptr;
if (region_start)
min_addr = region_start;
if (region_end)
max_addr = region_end;
ptr = memblock_alloc_try_nid(size, size, min_addr, max_addr, nid);
if (!ptr)
panic("%s: Failed to allocate %lu bytes align=0x%lx nid=%d from=%pa max_addr=%pa\n",
__func__, size, size, nid, &min_addr, &max_addr);
return ptr;
}
/*
* When allocating pud or pmd pointers, we allocate a complete page
* of PAGE_SIZE rather than PUD_TABLE_SIZE or PMD_TABLE_SIZE. This
* is to ensure that the page obtained from the memblock allocator
* can be completely used as page table page and can be freed
* correctly when the page table entries are removed.
*/
static int early_map_kernel_page(unsigned long ea, unsigned long pa,
pgprot_t flags,
unsigned int map_page_size,
int nid,
unsigned long region_start, unsigned long region_end)
{
unsigned long pfn = pa >> PAGE_SHIFT;
pgd_t *pgdp;
p4d_t *p4dp;
pud_t *pudp;
pmd_t *pmdp;
pte_t *ptep;
pgdp = pgd_offset_k(ea);
p4dp = p4d_offset(pgdp, ea);
if (p4d_none(*p4dp)) {
pudp = early_alloc_pgtable(PAGE_SIZE, nid,
region_start, region_end);
p4d_populate(&init_mm, p4dp, pudp);
}
pudp = pud_offset(p4dp, ea);
if (map_page_size == PUD_SIZE) {
ptep = (pte_t *)pudp;
goto set_the_pte;
}
if (pud_none(*pudp)) {
pmdp = early_alloc_pgtable(PAGE_SIZE, nid, region_start,
region_end);
pud_populate(&init_mm, pudp, pmdp);
}
pmdp = pmd_offset(pudp, ea);
if (map_page_size == PMD_SIZE) {
ptep = pmdp_ptep(pmdp);
goto set_the_pte;
}
if (!pmd_present(*pmdp)) {
ptep = early_alloc_pgtable(PAGE_SIZE, nid,
region_start, region_end);
pmd_populate_kernel(&init_mm, pmdp, ptep);
}
ptep = pte_offset_kernel(pmdp, ea);
set_the_pte:
set_pte_at(&init_mm, ea, ptep, pfn_pte(pfn, flags));
asm volatile("ptesync": : :"memory");
return 0;
}
/*
* nid, region_start, and region_end are hints to try to place the page
* table memory in the same node or region.
*/
static int __map_kernel_page(unsigned long ea, unsigned long pa,
pgprot_t flags,
unsigned int map_page_size,
int nid,
unsigned long region_start, unsigned long region_end)
{
unsigned long pfn = pa >> PAGE_SHIFT;
pgd_t *pgdp;
p4d_t *p4dp;
pud_t *pudp;
pmd_t *pmdp;
pte_t *ptep;
/*
* Make sure task size is correct as per the max adddr
*/
BUILD_BUG_ON(TASK_SIZE_USER64 > RADIX_PGTABLE_RANGE);
#ifdef CONFIG_PPC_64K_PAGES
BUILD_BUG_ON(RADIX_KERN_MAP_SIZE != (1UL << MAX_EA_BITS_PER_CONTEXT));
#endif
if (unlikely(!slab_is_available()))
return early_map_kernel_page(ea, pa, flags, map_page_size,
nid, region_start, region_end);
/*
* Should make page table allocation functions be able to take a
* node, so we can place kernel page tables on the right nodes after
* boot.
*/
pgdp = pgd_offset_k(ea);
p4dp = p4d_offset(pgdp, ea);
pudp = pud_alloc(&init_mm, p4dp, ea);
if (!pudp)
return -ENOMEM;
if (map_page_size == PUD_SIZE) {
ptep = (pte_t *)pudp;
goto set_the_pte;
}
pmdp = pmd_alloc(&init_mm, pudp, ea);
if (!pmdp)
return -ENOMEM;
if (map_page_size == PMD_SIZE) {
ptep = pmdp_ptep(pmdp);
goto set_the_pte;
}
ptep = pte_alloc_kernel(pmdp, ea);
if (!ptep)
return -ENOMEM;
set_the_pte:
set_pte_at(&init_mm, ea, ptep, pfn_pte(pfn, flags));
asm volatile("ptesync": : :"memory");
return 0;
}
int radix__map_kernel_page(unsigned long ea, unsigned long pa,
pgprot_t flags,
unsigned int map_page_size)
{
return __map_kernel_page(ea, pa, flags, map_page_size, -1, 0, 0);
}
#ifdef CONFIG_STRICT_KERNEL_RWX
static void radix__change_memory_range(unsigned long start, unsigned long end,
unsigned long clear)
{
unsigned long idx;
pgd_t *pgdp;
p4d_t *p4dp;
pud_t *pudp;
pmd_t *pmdp;
pte_t *ptep;
start = ALIGN_DOWN(start, PAGE_SIZE);
end = PAGE_ALIGN(end); // aligns up
pr_debug("Changing flags on range %lx-%lx removing 0x%lx\n",
start, end, clear);
for (idx = start; idx < end; idx += PAGE_SIZE) {
pgdp = pgd_offset_k(idx);
p4dp = p4d_offset(pgdp, idx);
pudp = pud_alloc(&init_mm, p4dp, idx);
if (!pudp)
continue;
if (pud_is_leaf(*pudp)) {
ptep = (pte_t *)pudp;
goto update_the_pte;
}
pmdp = pmd_alloc(&init_mm, pudp, idx);
if (!pmdp)
continue;
if (pmd_is_leaf(*pmdp)) {
ptep = pmdp_ptep(pmdp);
goto update_the_pte;
}
ptep = pte_alloc_kernel(pmdp, idx);
if (!ptep)
continue;
update_the_pte:
radix__pte_update(&init_mm, idx, ptep, clear, 0, 0);
}
radix__flush_tlb_kernel_range(start, end);
}
void radix__mark_rodata_ro(void)
{
unsigned long start, end;
start = (unsigned long)_stext;
end = (unsigned long)__end_rodata;
radix__change_memory_range(start, end, _PAGE_WRITE);
for (start = PAGE_OFFSET; start < (unsigned long)_stext; start += PAGE_SIZE) {
end = start + PAGE_SIZE;
if (overlaps_interrupt_vector_text(start, end))
radix__change_memory_range(start, end, _PAGE_WRITE);
else
break;
}
}
void radix__mark_initmem_nx(void)
{
unsigned long start = (unsigned long)__init_begin;
unsigned long end = (unsigned long)__init_end;
radix__change_memory_range(start, end, _PAGE_EXEC);
}
#endif /* CONFIG_STRICT_KERNEL_RWX */
static inline void __meminit
print_mapping(unsigned long start, unsigned long end, unsigned long size, bool exec)
{
char buf[10];
if (end <= start)
return;
string_get_size(size, 1, STRING_UNITS_2, buf, sizeof(buf));
pr_info("Mapped 0x%016lx-0x%016lx with %s pages%s\n", start, end, buf,
exec ? " (exec)" : "");
}
static unsigned long next_boundary(unsigned long addr, unsigned long end)
{
#ifdef CONFIG_STRICT_KERNEL_RWX
unsigned long stext_phys;
stext_phys = __pa_symbol(_stext);
// Relocatable kernel running at non-zero real address
if (stext_phys != 0) {
// The end of interrupts code at zero is a rodata boundary
unsigned long end_intr = __pa_symbol(__end_interrupts) - stext_phys;
if (addr < end_intr)
return end_intr;
// Start of relocated kernel text is a rodata boundary
if (addr < stext_phys)
return stext_phys;
}
if (addr < __pa_symbol(__srwx_boundary))
return __pa_symbol(__srwx_boundary);
#endif
return end;
}
static int __meminit create_physical_mapping(unsigned long start,
unsigned long end,
int nid, pgprot_t _prot)
{
unsigned long vaddr, addr, mapping_size = 0;
bool prev_exec, exec = false;
pgprot_t prot;
int psize;
unsigned long max_mapping_size = memory_block_size;
if (debug_pagealloc_enabled_or_kfence())
max_mapping_size = PAGE_SIZE;
start = ALIGN(start, PAGE_SIZE);
end = ALIGN_DOWN(end, PAGE_SIZE);
for (addr = start; addr < end; addr += mapping_size) {
unsigned long gap, previous_size;
int rc;
gap = next_boundary(addr, end) - addr;
if (gap > max_mapping_size)
gap = max_mapping_size;
previous_size = mapping_size;
prev_exec = exec;
if (IS_ALIGNED(addr, PUD_SIZE) && gap >= PUD_SIZE &&
mmu_psize_defs[MMU_PAGE_1G].shift) {
mapping_size = PUD_SIZE;
psize = MMU_PAGE_1G;
} else if (IS_ALIGNED(addr, PMD_SIZE) && gap >= PMD_SIZE &&
mmu_psize_defs[MMU_PAGE_2M].shift) {
mapping_size = PMD_SIZE;
psize = MMU_PAGE_2M;
} else {
mapping_size = PAGE_SIZE;
psize = mmu_virtual_psize;
}
vaddr = (unsigned long)__va(addr);
if (overlaps_kernel_text(vaddr, vaddr + mapping_size) ||
overlaps_interrupt_vector_text(vaddr, vaddr + mapping_size)) {
prot = PAGE_KERNEL_X;
exec = true;
} else {
prot = _prot;
exec = false;
}
if (mapping_size != previous_size || exec != prev_exec) {
print_mapping(start, addr, previous_size, prev_exec);
start = addr;
}
rc = __map_kernel_page(vaddr, addr, prot, mapping_size, nid, start, end);
if (rc)
return rc;
update_page_count(psize, 1);
}
print_mapping(start, addr, mapping_size, exec);
return 0;
}
static void __init radix_init_pgtable(void)
{
unsigned long rts_field;
phys_addr_t start, end;
u64 i;
/* We don't support slb for radix */
slb_set_size(0);
/*
* Create the linear mapping
*/
for_each_mem_range(i, &start, &end) {
/*
* The memblock allocator is up at this point, so the
* page tables will be allocated within the range. No
* need or a node (which we don't have yet).
*/
if (end >= RADIX_VMALLOC_START) {
pr_warn("Outside the supported range\n");
continue;
}
WARN_ON(create_physical_mapping(start, end,
-1, PAGE_KERNEL));
}
if (!cpu_has_feature(CPU_FTR_HVMODE) &&
cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG)) {
/*
* Older versions of KVM on these machines prefer if the
* guest only uses the low 19 PID bits.
*/
mmu_pid_bits = 19;
}
mmu_base_pid = 1;
/*
* Allocate Partition table and process table for the
* host.
*/
BUG_ON(PRTB_SIZE_SHIFT > 36);
process_tb = early_alloc_pgtable(1UL << PRTB_SIZE_SHIFT, -1, 0, 0);
/*
* Fill in the process table.
*/
rts_field = radix__get_tree_size();
process_tb->prtb0 = cpu_to_be64(rts_field | __pa(init_mm.pgd) | RADIX_PGD_INDEX_SIZE);
/*
* The init_mm context is given the first available (non-zero) PID,
* which is the "guard PID" and contains no page table. PIDR should
* never be set to zero because that duplicates the kernel address
* space at the 0x0... offset (quadrant 0)!
*
* An arbitrary PID that may later be allocated by the PID allocator
* for userspace processes must not be used either, because that
* would cause stale user mappings for that PID on CPUs outside of
* the TLB invalidation scheme (because it won't be in mm_cpumask).
*
* So permanently carve out one PID for the purpose of a guard PID.
*/
init_mm.context.id = mmu_base_pid;
mmu_base_pid++;
}
static void __init radix_init_partition_table(void)
{
unsigned long rts_field, dw0, dw1;
mmu_partition_table_init();
rts_field = radix__get_tree_size();
dw0 = rts_field | __pa(init_mm.pgd) | RADIX_PGD_INDEX_SIZE | PATB_HR;
dw1 = __pa(process_tb) | (PRTB_SIZE_SHIFT - 12) | PATB_GR;
mmu_partition_table_set_entry(0, dw0, dw1, false);
pr_info("Initializing Radix MMU\n");
}
static int __init get_idx_from_shift(unsigned int shift)
{
int idx = -1;
switch (shift) {
case 0xc:
idx = MMU_PAGE_4K;
break;
case 0x10:
idx = MMU_PAGE_64K;
break;
case 0x15:
idx = MMU_PAGE_2M;
break;
case 0x1e:
idx = MMU_PAGE_1G;
break;
}
return idx;
}
static int __init radix_dt_scan_page_sizes(unsigned long node,
const char *uname, int depth,
void *data)
{
int size = 0;
int shift, idx;
unsigned int ap;
const __be32 *prop;
const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
/* We are scanning "cpu" nodes only */
if (type == NULL || strcmp(type, "cpu") != 0)
return 0;
/* Grab page size encodings */
prop = of_get_flat_dt_prop(node, "ibm,processor-radix-AP-encodings", &size);
if (!prop)
return 0;
pr_info("Page sizes from device-tree:\n");
for (; size >= 4; size -= 4, ++prop) {
struct mmu_psize_def *def;
/* top 3 bit is AP encoding */
shift = be32_to_cpu(prop[0]) & ~(0xe << 28);
ap = be32_to_cpu(prop[0]) >> 29;
pr_info("Page size shift = %d AP=0x%x\n", shift, ap);
idx = get_idx_from_shift(shift);
if (idx < 0)
continue;
def = &mmu_psize_defs[idx];
def->shift = shift;
def->ap = ap;
def->h_rpt_pgsize = psize_to_rpti_pgsize(idx);
}
/* needed ? */
cur_cpu_spec->mmu_features &= ~MMU_FTR_NO_SLBIE_B;
return 1;
}
void __init radix__early_init_devtree(void)
{
int rc;
/*
* Try to find the available page sizes in the device-tree
*/
rc = of_scan_flat_dt(radix_dt_scan_page_sizes, NULL);
if (!rc) {
/*
* No page size details found in device tree.
* Let's assume we have page 4k and 64k support
*/
mmu_psize_defs[MMU_PAGE_4K].shift = 12;
mmu_psize_defs[MMU_PAGE_4K].ap = 0x0;
mmu_psize_defs[MMU_PAGE_4K].h_rpt_pgsize =
psize_to_rpti_pgsize(MMU_PAGE_4K);
mmu_psize_defs[MMU_PAGE_64K].shift = 16;
mmu_psize_defs[MMU_PAGE_64K].ap = 0x5;
mmu_psize_defs[MMU_PAGE_64K].h_rpt_pgsize =
psize_to_rpti_pgsize(MMU_PAGE_64K);
}
return;
}
void __init radix__early_init_mmu(void)
{
unsigned long lpcr;
#ifdef CONFIG_PPC_64S_HASH_MMU
#ifdef CONFIG_PPC_64K_PAGES
/* PAGE_SIZE mappings */
mmu_virtual_psize = MMU_PAGE_64K;
#else
mmu_virtual_psize = MMU_PAGE_4K;
#endif
#endif
/*
* initialize page table size
*/
__pte_index_size = RADIX_PTE_INDEX_SIZE;
__pmd_index_size = RADIX_PMD_INDEX_SIZE;
__pud_index_size = RADIX_PUD_INDEX_SIZE;
__pgd_index_size = RADIX_PGD_INDEX_SIZE;
__pud_cache_index = RADIX_PUD_INDEX_SIZE;
__pte_table_size = RADIX_PTE_TABLE_SIZE;
__pmd_table_size = RADIX_PMD_TABLE_SIZE;
__pud_table_size = RADIX_PUD_TABLE_SIZE;
__pgd_table_size = RADIX_PGD_TABLE_SIZE;
__pmd_val_bits = RADIX_PMD_VAL_BITS;
__pud_val_bits = RADIX_PUD_VAL_BITS;
__pgd_val_bits = RADIX_PGD_VAL_BITS;
__kernel_virt_start = RADIX_KERN_VIRT_START;
__vmalloc_start = RADIX_VMALLOC_START;
__vmalloc_end = RADIX_VMALLOC_END;
__kernel_io_start = RADIX_KERN_IO_START;
__kernel_io_end = RADIX_KERN_IO_END;
vmemmap = (struct page *)RADIX_VMEMMAP_START;
ioremap_bot = IOREMAP_BASE;
#ifdef CONFIG_PCI
pci_io_base = ISA_IO_BASE;
#endif
__pte_frag_nr = RADIX_PTE_FRAG_NR;
__pte_frag_size_shift = RADIX_PTE_FRAG_SIZE_SHIFT;
__pmd_frag_nr = RADIX_PMD_FRAG_NR;
__pmd_frag_size_shift = RADIX_PMD_FRAG_SIZE_SHIFT;
radix_init_pgtable();
if (!firmware_has_feature(FW_FEATURE_LPAR)) {
lpcr = mfspr(SPRN_LPCR);
mtspr(SPRN_LPCR, lpcr | LPCR_UPRT | LPCR_HR);
radix_init_partition_table();
} else {
radix_init_pseries();
}
memblock_set_current_limit(MEMBLOCK_ALLOC_ANYWHERE);
/* Switch to the guard PID before turning on MMU */
radix__switch_mmu_context(NULL, &init_mm);
tlbiel_all();
}
void radix__early_init_mmu_secondary(void)
{
unsigned long lpcr;
/*
* update partition table control register and UPRT
*/
if (!firmware_has_feature(FW_FEATURE_LPAR)) {
lpcr = mfspr(SPRN_LPCR);
mtspr(SPRN_LPCR, lpcr | LPCR_UPRT | LPCR_HR);
set_ptcr_when_no_uv(__pa(partition_tb) |
(PATB_SIZE_SHIFT - 12));
}
radix__switch_mmu_context(NULL, &init_mm);
tlbiel_all();
/* Make sure userspace can't change the AMR */
mtspr(SPRN_UAMOR, 0);
}
/* Called during kexec sequence with MMU off */
notrace void radix__mmu_cleanup_all(void)
{
unsigned long lpcr;
if (!firmware_has_feature(FW_FEATURE_LPAR)) {
lpcr = mfspr(SPRN_LPCR);
mtspr(SPRN_LPCR, lpcr & ~LPCR_UPRT);
set_ptcr_when_no_uv(0);
powernv_set_nmmu_ptcr(0);
radix__flush_tlb_all();
}
}
#ifdef CONFIG_MEMORY_HOTPLUG
static void free_pte_table(pte_t *pte_start, pmd_t *pmd)
{
pte_t *pte;
int i;
for (i = 0; i < PTRS_PER_PTE; i++) {
pte = pte_start + i;
if (!pte_none(*pte))
return;
}
pte_free_kernel(&init_mm, pte_start);
pmd_clear(pmd);
}
static void free_pmd_table(pmd_t *pmd_start, pud_t *pud)
{
pmd_t *pmd;
int i;
for (i = 0; i < PTRS_PER_PMD; i++) {
pmd = pmd_start + i;
if (!pmd_none(*pmd))
return;
}
pmd_free(&init_mm, pmd_start);
pud_clear(pud);
}
static void free_pud_table(pud_t *pud_start, p4d_t *p4d)
{
pud_t *pud;
int i;
for (i = 0; i < PTRS_PER_PUD; i++) {
pud = pud_start + i;
if (!pud_none(*pud))
return;
}
pud_free(&init_mm, pud_start);
p4d_clear(p4d);
}
#ifdef CONFIG_SPARSEMEM_VMEMMAP
static bool __meminit vmemmap_pmd_is_unused(unsigned long addr, unsigned long end)
{
unsigned long start = ALIGN_DOWN(addr, PMD_SIZE);
return !vmemmap_populated(start, PMD_SIZE);
}
static bool __meminit vmemmap_page_is_unused(unsigned long addr, unsigned long end)
{
unsigned long start = ALIGN_DOWN(addr, PAGE_SIZE);
return !vmemmap_populated(start, PAGE_SIZE);
}
#endif
static void __meminit free_vmemmap_pages(struct page *page,
struct vmem_altmap *altmap,
int order)
{
unsigned int nr_pages = 1 << order;
if (altmap) {
unsigned long alt_start, alt_end;
unsigned long base_pfn = page_to_pfn(page);
/*
* with 2M vmemmap mmaping we can have things setup
* such that even though atlmap is specified we never
* used altmap.
*/
alt_start = altmap->base_pfn;
alt_end = altmap->base_pfn + altmap->reserve + altmap->free;
if (base_pfn >= alt_start && base_pfn < alt_end) {
vmem_altmap_free(altmap, nr_pages);
return;
}
}
if (PageReserved(page)) {
/* allocated from memblock */
while (nr_pages--)
free_reserved_page(page++);
} else
free_pages((unsigned long)page_address(page), order);
}
static void __meminit remove_pte_table(pte_t *pte_start, unsigned long addr,
unsigned long end, bool direct,
struct vmem_altmap *altmap)
{
unsigned long next, pages = 0;
pte_t *pte;
pte = pte_start + pte_index(addr);
for (; addr < end; addr = next, pte++) {
next = (addr + PAGE_SIZE) & PAGE_MASK;
if (next > end)
next = end;
if (!pte_present(*pte))
continue;
if (PAGE_ALIGNED(addr) && PAGE_ALIGNED(next)) {
if (!direct)
free_vmemmap_pages(pte_page(*pte), altmap, 0);
pte_clear(&init_mm, addr, pte);
pages++;
}
#ifdef CONFIG_SPARSEMEM_VMEMMAP
else if (!direct && vmemmap_page_is_unused(addr, next)) {
free_vmemmap_pages(pte_page(*pte), altmap, 0);
pte_clear(&init_mm, addr, pte);
}
#endif
}
if (direct)
update_page_count(mmu_virtual_psize, -pages);
}
static void __meminit remove_pmd_table(pmd_t *pmd_start, unsigned long addr,
unsigned long end, bool direct,
struct vmem_altmap *altmap)
{
unsigned long next, pages = 0;
pte_t *pte_base;
pmd_t *pmd;
pmd = pmd_start + pmd_index(addr);
for (; addr < end; addr = next, pmd++) {
next = pmd_addr_end(addr, end);
if (!pmd_present(*pmd))
continue;
if (pmd_is_leaf(*pmd)) {
if (IS_ALIGNED(addr, PMD_SIZE) &&
IS_ALIGNED(next, PMD_SIZE)) {
if (!direct)
free_vmemmap_pages(pmd_page(*pmd), altmap, get_order(PMD_SIZE));
pte_clear(&init_mm, addr, (pte_t *)pmd);
pages++;
}
#ifdef CONFIG_SPARSEMEM_VMEMMAP
else if (!direct && vmemmap_pmd_is_unused(addr, next)) {
free_vmemmap_pages(pmd_page(*pmd), altmap, get_order(PMD_SIZE));
pte_clear(&init_mm, addr, (pte_t *)pmd);
}
#endif
continue;
}
pte_base = (pte_t *)pmd_page_vaddr(*pmd);
remove_pte_table(pte_base, addr, next, direct, altmap);
free_pte_table(pte_base, pmd);
}
if (direct)
update_page_count(MMU_PAGE_2M, -pages);
}
static void __meminit remove_pud_table(pud_t *pud_start, unsigned long addr,
unsigned long end, bool direct,
struct vmem_altmap *altmap)
{
unsigned long next, pages = 0;
pmd_t *pmd_base;
pud_t *pud;
pud = pud_start + pud_index(addr);
for (; addr < end; addr = next, pud++) {
next = pud_addr_end(addr, end);
if (!pud_present(*pud))
continue;
if (pud_is_leaf(*pud)) {
if (!IS_ALIGNED(addr, PUD_SIZE) ||
!IS_ALIGNED(next, PUD_SIZE)) {
WARN_ONCE(1, "%s: unaligned range\n", __func__);
continue;
}
pte_clear(&init_mm, addr, (pte_t *)pud);
pages++;
continue;
}
pmd_base = pud_pgtable(*pud);
remove_pmd_table(pmd_base, addr, next, direct, altmap);
free_pmd_table(pmd_base, pud);
}
if (direct)
update_page_count(MMU_PAGE_1G, -pages);
}
static void __meminit
remove_pagetable(unsigned long start, unsigned long end, bool direct,
struct vmem_altmap *altmap)
{
unsigned long addr, next;
pud_t *pud_base;
pgd_t *pgd;
p4d_t *p4d;
spin_lock(&init_mm.page_table_lock);
for (addr = start; addr < end; addr = next) {
next = pgd_addr_end(addr, end);
pgd = pgd_offset_k(addr);
p4d = p4d_offset(pgd, addr);
if (!p4d_present(*p4d))
continue;
if (p4d_is_leaf(*p4d)) {
if (!IS_ALIGNED(addr, P4D_SIZE) ||
!IS_ALIGNED(next, P4D_SIZE)) {
WARN_ONCE(1, "%s: unaligned range\n", __func__);
continue;
}
pte_clear(&init_mm, addr, (pte_t *)pgd);
continue;
}
pud_base = p4d_pgtable(*p4d);
remove_pud_table(pud_base, addr, next, direct, altmap);
free_pud_table(pud_base, p4d);
}
spin_unlock(&init_mm.page_table_lock);
radix__flush_tlb_kernel_range(start, end);
}
int __meminit radix__create_section_mapping(unsigned long start,
unsigned long end, int nid,
pgprot_t prot)
{
if (end >= RADIX_VMALLOC_START) {
pr_warn("Outside the supported range\n");
return -1;
}
return create_physical_mapping(__pa(start), __pa(end),
nid, prot);
}
int __meminit radix__remove_section_mapping(unsigned long start, unsigned long end)
{
remove_pagetable(start, end, true, NULL);
return 0;
}
#endif /* CONFIG_MEMORY_HOTPLUG */
#ifdef CONFIG_SPARSEMEM_VMEMMAP
static int __map_kernel_page_nid(unsigned long ea, unsigned long pa,
pgprot_t flags, unsigned int map_page_size,
int nid)
{
return __map_kernel_page(ea, pa, flags, map_page_size, nid, 0, 0);
}
int __meminit radix__vmemmap_create_mapping(unsigned long start,
unsigned long page_size,
unsigned long phys)
{
/* Create a PTE encoding */
int nid = early_pfn_to_nid(phys >> PAGE_SHIFT);
int ret;
if ((start + page_size) >= RADIX_VMEMMAP_END) {
pr_warn("Outside the supported range\n");
return -1;
}
ret = __map_kernel_page_nid(start, phys, PAGE_KERNEL, page_size, nid);
BUG_ON(ret);
return 0;
}
bool vmemmap_can_optimize(struct vmem_altmap *altmap, struct dev_pagemap *pgmap)
{
if (radix_enabled())
return __vmemmap_can_optimize(altmap, pgmap);
return false;
}
int __meminit vmemmap_check_pmd(pmd_t *pmdp, int node,
unsigned long addr, unsigned long next)
{
int large = pmd_large(*pmdp);
if (large)
vmemmap_verify(pmdp_ptep(pmdp), node, addr, next);
return large;
}
void __meminit vmemmap_set_pmd(pmd_t *pmdp, void *p, int node,
unsigned long addr, unsigned long next)
{
pte_t entry;
pte_t *ptep = pmdp_ptep(pmdp);
VM_BUG_ON(!IS_ALIGNED(addr, PMD_SIZE));
entry = pfn_pte(__pa(p) >> PAGE_SHIFT, PAGE_KERNEL);
set_pte_at(&init_mm, addr, ptep, entry);
asm volatile("ptesync": : :"memory");
vmemmap_verify(ptep, node, addr, next);
}
static pte_t * __meminit radix__vmemmap_pte_populate(pmd_t *pmdp, unsigned long addr,
int node,
struct vmem_altmap *altmap,
struct page *reuse)
{
pte_t *pte = pte_offset_kernel(pmdp, addr);
if (pte_none(*pte)) {
pte_t entry;
void *p;
if (!reuse) {
/*
* make sure we don't create altmap mappings
* covering things outside the device.
*/
if (altmap && altmap_cross_boundary(altmap, addr, PAGE_SIZE))
altmap = NULL;
p = vmemmap_alloc_block_buf(PAGE_SIZE, node, altmap);
if (!p && altmap)
p = vmemmap_alloc_block_buf(PAGE_SIZE, node, NULL);
if (!p)
return NULL;
pr_debug("PAGE_SIZE vmemmap mapping\n");
} else {
/*
* When a PTE/PMD entry is freed from the init_mm
* there's a free_pages() call to this page allocated
* above. Thus this get_page() is paired with the
* put_page_testzero() on the freeing path.
* This can only called by certain ZONE_DEVICE path,
* and through vmemmap_populate_compound_pages() when
* slab is available.
*/
get_page(reuse);
p = page_to_virt(reuse);
pr_debug("Tail page reuse vmemmap mapping\n");
}
VM_BUG_ON(!PAGE_ALIGNED(addr));
entry = pfn_pte(__pa(p) >> PAGE_SHIFT, PAGE_KERNEL);
set_pte_at(&init_mm, addr, pte, entry);
asm volatile("ptesync": : :"memory");
}
return pte;
}
static inline pud_t *vmemmap_pud_alloc(p4d_t *p4dp, int node,
unsigned long address)
{
pud_t *pud;
/* All early vmemmap mapping to keep simple do it at PAGE_SIZE */
if (unlikely(p4d_none(*p4dp))) {
if (unlikely(!slab_is_available())) {
pud = early_alloc_pgtable(PAGE_SIZE, node, 0, 0);
p4d_populate(&init_mm, p4dp, pud);
/* go to the pud_offset */
} else
return pud_alloc(&init_mm, p4dp, address);
}
return pud_offset(p4dp, address);
}
static inline pmd_t *vmemmap_pmd_alloc(pud_t *pudp, int node,
unsigned long address)
{
pmd_t *pmd;
/* All early vmemmap mapping to keep simple do it at PAGE_SIZE */
if (unlikely(pud_none(*pudp))) {
if (unlikely(!slab_is_available())) {
pmd = early_alloc_pgtable(PAGE_SIZE, node, 0, 0);
pud_populate(&init_mm, pudp, pmd);
} else
return pmd_alloc(&init_mm, pudp, address);
}
return pmd_offset(pudp, address);
}
static inline pte_t *vmemmap_pte_alloc(pmd_t *pmdp, int node,
unsigned long address)
{
pte_t *pte;
/* All early vmemmap mapping to keep simple do it at PAGE_SIZE */
if (unlikely(pmd_none(*pmdp))) {
if (unlikely(!slab_is_available())) {
pte = early_alloc_pgtable(PAGE_SIZE, node, 0, 0);
pmd_populate(&init_mm, pmdp, pte);
} else
return pte_alloc_kernel(pmdp, address);
}
return pte_offset_kernel(pmdp, address);
}
int __meminit radix__vmemmap_populate(unsigned long start, unsigned long end, int node,
struct vmem_altmap *altmap)
{
unsigned long addr;
unsigned long next;
pgd_t *pgd;
p4d_t *p4d;
pud_t *pud;
pmd_t *pmd;
pte_t *pte;
for (addr = start; addr < end; addr = next) {
next = pmd_addr_end(addr, end);
pgd = pgd_offset_k(addr);
p4d = p4d_offset(pgd, addr);
pud = vmemmap_pud_alloc(p4d, node, addr);
if (!pud)
return -ENOMEM;
pmd = vmemmap_pmd_alloc(pud, node, addr);
if (!pmd)
return -ENOMEM;
if (pmd_none(READ_ONCE(*pmd))) {
void *p;
/*
* keep it simple by checking addr PMD_SIZE alignment
* and verifying the device boundary condition.
* For us to use a pmd mapping, both addr and pfn should
* be aligned. We skip if addr is not aligned and for
* pfn we hope we have extra area in the altmap that
* can help to find an aligned block. This can result
* in altmap block allocation failures, in which case
* we fallback to RAM for vmemmap allocation.
*/
if (altmap && (!IS_ALIGNED(addr, PMD_SIZE) ||
altmap_cross_boundary(altmap, addr, PMD_SIZE))) {
/*
* make sure we don't create altmap mappings
* covering things outside the device.
*/
goto base_mapping;
}
p = vmemmap_alloc_block_buf(PMD_SIZE, node, altmap);
if (p) {
vmemmap_set_pmd(pmd, p, node, addr, next);
pr_debug("PMD_SIZE vmemmap mapping\n");
continue;
} else if (altmap) {
/*
* A vmemmap block allocation can fail due to
* alignment requirements and we trying to align
* things aggressively there by running out of
* space. Try base mapping on failure.
*/
goto base_mapping;
}
} else if (vmemmap_check_pmd(pmd, node, addr, next)) {
/*
* If a huge mapping exist due to early call to
* vmemmap_populate, let's try to use that.
*/
continue;
}
base_mapping:
/*
* Not able allocate higher order memory to back memmap
* or we found a pointer to pte page. Allocate base page
* size vmemmap
*/
pte = vmemmap_pte_alloc(pmd, node, addr);
if (!pte)
return -ENOMEM;
pte = radix__vmemmap_pte_populate(pmd, addr, node, altmap, NULL);
if (!pte)
return -ENOMEM;
vmemmap_verify(pte, node, addr, addr + PAGE_SIZE);
next = addr + PAGE_SIZE;
}
return 0;
}
static pte_t * __meminit radix__vmemmap_populate_address(unsigned long addr, int node,
struct vmem_altmap *altmap,
struct page *reuse)
{
pgd_t *pgd;
p4d_t *p4d;
pud_t *pud;
pmd_t *pmd;
pte_t *pte;
pgd = pgd_offset_k(addr);
p4d = p4d_offset(pgd, addr);
pud = vmemmap_pud_alloc(p4d, node, addr);
if (!pud)
return NULL;
pmd = vmemmap_pmd_alloc(pud, node, addr);
if (!pmd)
return NULL;
if (pmd_leaf(*pmd))
/*
* The second page is mapped as a hugepage due to a nearby request.
* Force our mapping to page size without deduplication
*/
return NULL;
pte = vmemmap_pte_alloc(pmd, node, addr);
if (!pte)
return NULL;
radix__vmemmap_pte_populate(pmd, addr, node, NULL, NULL);
vmemmap_verify(pte, node, addr, addr + PAGE_SIZE);
return pte;
}
static pte_t * __meminit vmemmap_compound_tail_page(unsigned long addr,
unsigned long pfn_offset, int node)
{
pgd_t *pgd;
p4d_t *p4d;
pud_t *pud;
pmd_t *pmd;
pte_t *pte;
unsigned long map_addr;
/* the second vmemmap page which we use for duplication */
map_addr = addr - pfn_offset * sizeof(struct page) + PAGE_SIZE;
pgd = pgd_offset_k(map_addr);
p4d = p4d_offset(pgd, map_addr);
pud = vmemmap_pud_alloc(p4d, node, map_addr);
if (!pud)
return NULL;
pmd = vmemmap_pmd_alloc(pud, node, map_addr);
if (!pmd)
return NULL;
if (pmd_leaf(*pmd))
/*
* The second page is mapped as a hugepage due to a nearby request.
* Force our mapping to page size without deduplication
*/
return NULL;
pte = vmemmap_pte_alloc(pmd, node, map_addr);
if (!pte)
return NULL;
/*
* Check if there exist a mapping to the left
*/
if (pte_none(*pte)) {
/*
* Populate the head page vmemmap page.
* It can fall in different pmd, hence
* vmemmap_populate_address()
*/
pte = radix__vmemmap_populate_address(map_addr - PAGE_SIZE, node, NULL, NULL);
if (!pte)
return NULL;
/*
* Populate the tail pages vmemmap page
*/
pte = radix__vmemmap_pte_populate(pmd, map_addr, node, NULL, NULL);
if (!pte)
return NULL;
vmemmap_verify(pte, node, map_addr, map_addr + PAGE_SIZE);
return pte;
}
return pte;
}
int __meminit vmemmap_populate_compound_pages(unsigned long start_pfn,
unsigned long start,
unsigned long end, int node,
struct dev_pagemap *pgmap)
{
/*
* we want to map things as base page size mapping so that
* we can save space in vmemmap. We could have huge mapping
* covering out both edges.
*/
unsigned long addr;
unsigned long addr_pfn = start_pfn;
unsigned long next;
pgd_t *pgd;
p4d_t *p4d;
pud_t *pud;
pmd_t *pmd;
pte_t *pte;
for (addr = start; addr < end; addr = next) {
pgd = pgd_offset_k(addr);
p4d = p4d_offset(pgd, addr);
pud = vmemmap_pud_alloc(p4d, node, addr);
if (!pud)
return -ENOMEM;
pmd = vmemmap_pmd_alloc(pud, node, addr);
if (!pmd)
return -ENOMEM;
if (pmd_leaf(READ_ONCE(*pmd))) {
/* existing huge mapping. Skip the range */
addr_pfn += (PMD_SIZE >> PAGE_SHIFT);
next = pmd_addr_end(addr, end);
continue;
}
pte = vmemmap_pte_alloc(pmd, node, addr);
if (!pte)
return -ENOMEM;
if (!pte_none(*pte)) {
/*
* This could be because we already have a compound
* page whose VMEMMAP_RESERVE_NR pages were mapped and
* this request fall in those pages.
*/
addr_pfn += 1;
next = addr + PAGE_SIZE;
continue;
} else {
unsigned long nr_pages = pgmap_vmemmap_nr(pgmap);
unsigned long pfn_offset = addr_pfn - ALIGN_DOWN(addr_pfn, nr_pages);
pte_t *tail_page_pte;
/*
* if the address is aligned to huge page size it is the
* head mapping.
*/
if (pfn_offset == 0) {
/* Populate the head page vmemmap page */
pte = radix__vmemmap_pte_populate(pmd, addr, node, NULL, NULL);
if (!pte)
return -ENOMEM;
vmemmap_verify(pte, node, addr, addr + PAGE_SIZE);
/*
* Populate the tail pages vmemmap page
* It can fall in different pmd, hence
* vmemmap_populate_address()
*/
pte = radix__vmemmap_populate_address(addr + PAGE_SIZE, node, NULL, NULL);
if (!pte)
return -ENOMEM;
addr_pfn += 2;
next = addr + 2 * PAGE_SIZE;
continue;
}
/*
* get the 2nd mapping details
* Also create it if that doesn't exist
*/
tail_page_pte = vmemmap_compound_tail_page(addr, pfn_offset, node);
if (!tail_page_pte) {
pte = radix__vmemmap_pte_populate(pmd, addr, node, NULL, NULL);
if (!pte)
return -ENOMEM;
vmemmap_verify(pte, node, addr, addr + PAGE_SIZE);
addr_pfn += 1;
next = addr + PAGE_SIZE;
continue;
}
pte = radix__vmemmap_pte_populate(pmd, addr, node, NULL, pte_page(*tail_page_pte));
if (!pte)
return -ENOMEM;
vmemmap_verify(pte, node, addr, addr + PAGE_SIZE);
addr_pfn += 1;
next = addr + PAGE_SIZE;
continue;
}
}
return 0;
}
#ifdef CONFIG_MEMORY_HOTPLUG
void __meminit radix__vmemmap_remove_mapping(unsigned long start, unsigned long page_size)
{
remove_pagetable(start, start + page_size, true, NULL);
}
void __ref radix__vmemmap_free(unsigned long start, unsigned long end,
struct vmem_altmap *altmap)
{
remove_pagetable(start, end, false, altmap);
}
#endif
#endif
#if defined(CONFIG_DEBUG_PAGEALLOC) || defined(CONFIG_KFENCE)
void radix__kernel_map_pages(struct page *page, int numpages, int enable)
{
unsigned long addr;
addr = (unsigned long)page_address(page);
if (enable)
set_memory_p(addr, numpages);
else
set_memory_np(addr, numpages);
}
#endif
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
unsigned long radix__pmd_hugepage_update(struct mm_struct *mm, unsigned long addr,
pmd_t *pmdp, unsigned long clr,
unsigned long set)
{
unsigned long old;
#ifdef CONFIG_DEBUG_VM
WARN_ON(!radix__pmd_trans_huge(*pmdp) && !pmd_devmap(*pmdp));
assert_spin_locked(pmd_lockptr(mm, pmdp));
#endif
old = radix__pte_update(mm, addr, pmdp_ptep(pmdp), clr, set, 1);
trace_hugepage_update_pmd(addr, old, clr, set);
return old;
}
unsigned long radix__pud_hugepage_update(struct mm_struct *mm, unsigned long addr,
pud_t *pudp, unsigned long clr,
unsigned long set)
{
unsigned long old;
#ifdef CONFIG_DEBUG_VM
WARN_ON(!pud_devmap(*pudp));
assert_spin_locked(pud_lockptr(mm, pudp));
#endif
old = radix__pte_update(mm, addr, pudp_ptep(pudp), clr, set, 1);
trace_hugepage_update_pud(addr, old, clr, set);
return old;
}
pmd_t radix__pmdp_collapse_flush(struct vm_area_struct *vma, unsigned long address,
pmd_t *pmdp)
{
pmd_t pmd;
VM_BUG_ON(address & ~HPAGE_PMD_MASK);
VM_BUG_ON(radix__pmd_trans_huge(*pmdp));
VM_BUG_ON(pmd_devmap(*pmdp));
/*
* khugepaged calls this for normal pmd
*/
pmd = *pmdp;
pmd_clear(pmdp);
radix__flush_tlb_collapsed_pmd(vma->vm_mm, address);
return pmd;
}
/*
* For us pgtable_t is pte_t *. Inorder to save the deposisted
* page table, we consider the allocated page table as a list
* head. On withdraw we need to make sure we zero out the used
* list_head memory area.
*/
void radix__pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
pgtable_t pgtable)
{
struct list_head *lh = (struct list_head *) pgtable;
assert_spin_locked(pmd_lockptr(mm, pmdp));
/* FIFO */
if (!pmd_huge_pte(mm, pmdp))
INIT_LIST_HEAD(lh);
else
list_add(lh, (struct list_head *) pmd_huge_pte(mm, pmdp));
pmd_huge_pte(mm, pmdp) = pgtable;
}
pgtable_t radix__pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp)
{
pte_t *ptep;
pgtable_t pgtable;
struct list_head *lh;
assert_spin_locked(pmd_lockptr(mm, pmdp));
/* FIFO */
pgtable = pmd_huge_pte(mm, pmdp);
lh = (struct list_head *) pgtable;
if (list_empty(lh))
pmd_huge_pte(mm, pmdp) = NULL;
else {
pmd_huge_pte(mm, pmdp) = (pgtable_t) lh->next;
list_del(lh);
}
ptep = (pte_t *) pgtable;
*ptep = __pte(0);
ptep++;
*ptep = __pte(0);
return pgtable;
}
pmd_t radix__pmdp_huge_get_and_clear(struct mm_struct *mm,
unsigned long addr, pmd_t *pmdp)
{
pmd_t old_pmd;
unsigned long old;
old = radix__pmd_hugepage_update(mm, addr, pmdp, ~0UL, 0);
old_pmd = __pmd(old);
return old_pmd;
}
pud_t radix__pudp_huge_get_and_clear(struct mm_struct *mm,
unsigned long addr, pud_t *pudp)
{
pud_t old_pud;
unsigned long old;
old = radix__pud_hugepage_update(mm, addr, pudp, ~0UL, 0);
old_pud = __pud(old);
return old_pud;
}
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
void radix__ptep_set_access_flags(struct vm_area_struct *vma, pte_t *ptep,
pte_t entry, unsigned long address, int psize)
{
struct mm_struct *mm = vma->vm_mm;
unsigned long set = pte_val(entry) & (_PAGE_DIRTY | _PAGE_SOFT_DIRTY |
_PAGE_ACCESSED | _PAGE_RW | _PAGE_EXEC);
unsigned long change = pte_val(entry) ^ pte_val(*ptep);
/*
* On POWER9, the NMMU is not able to relax PTE access permissions
* for a translation with a TLB. The PTE must be invalidated, TLB
* flushed before the new PTE is installed.
*
* This only needs to be done for radix, because hash translation does
* flush when updating the linux pte (and we don't support NMMU
* accelerators on HPT on POWER9 anyway XXX: do we?).
*
* POWER10 (and P9P) NMMU does behave as per ISA.
*/
if (!cpu_has_feature(CPU_FTR_ARCH_31) && (change & _PAGE_RW) &&
atomic_read(&mm->context.copros) > 0) {
unsigned long old_pte, new_pte;
old_pte = __radix_pte_update(ptep, _PAGE_PRESENT, _PAGE_INVALID);
new_pte = old_pte | set;
radix__flush_tlb_page_psize(mm, address, psize);
__radix_pte_update(ptep, _PAGE_INVALID, new_pte);
} else {
__radix_pte_update(ptep, 0, set);
/*
* Book3S does not require a TLB flush when relaxing access
* restrictions when the address space (modulo the POWER9 nest
* MMU issue above) because the MMU will reload the PTE after
* taking an access fault, as defined by the architecture. See
* "Setting a Reference or Change Bit or Upgrading Access
* Authority (PTE Subject to Atomic Hardware Updates)" in
* Power ISA Version 3.1B.
*/
}
/* See ptesync comment in radix__set_pte_at */
}
void radix__ptep_modify_prot_commit(struct vm_area_struct *vma,
unsigned long addr, pte_t *ptep,
pte_t old_pte, pte_t pte)
{
struct mm_struct *mm = vma->vm_mm;
/*
* POWER9 NMMU must flush the TLB after clearing the PTE before
* installing a PTE with more relaxed access permissions, see
* radix__ptep_set_access_flags.
*/
if (!cpu_has_feature(CPU_FTR_ARCH_31) &&
is_pte_rw_upgrade(pte_val(old_pte), pte_val(pte)) &&
(atomic_read(&mm->context.copros) > 0))
radix__flush_tlb_page(vma, addr);
set_pte_at(mm, addr, ptep, pte);
}
int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
{
pte_t *ptep = (pte_t *)pud;
pte_t new_pud = pfn_pte(__phys_to_pfn(addr), prot);
if (!radix_enabled())
return 0;
set_pte_at(&init_mm, 0 /* radix unused */, ptep, new_pud);
return 1;
}
int pud_clear_huge(pud_t *pud)
{
if (pud_is_leaf(*pud)) {
pud_clear(pud);
return 1;
}
return 0;
}
int pud_free_pmd_page(pud_t *pud, unsigned long addr)
{
pmd_t *pmd;
int i;
pmd = pud_pgtable(*pud);
pud_clear(pud);
flush_tlb_kernel_range(addr, addr + PUD_SIZE);
for (i = 0; i < PTRS_PER_PMD; i++) {
if (!pmd_none(pmd[i])) {
pte_t *pte;
pte = (pte_t *)pmd_page_vaddr(pmd[i]);
pte_free_kernel(&init_mm, pte);
}
}
pmd_free(&init_mm, pmd);
return 1;
}
int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
{
pte_t *ptep = (pte_t *)pmd;
pte_t new_pmd = pfn_pte(__phys_to_pfn(addr), prot);
if (!radix_enabled())
return 0;
set_pte_at(&init_mm, 0 /* radix unused */, ptep, new_pmd);
return 1;
}
int pmd_clear_huge(pmd_t *pmd)
{
if (pmd_is_leaf(*pmd)) {
pmd_clear(pmd);
return 1;
}
return 0;
}
int pmd_free_pte_page(pmd_t *pmd, unsigned long addr)
{
pte_t *pte;
pte = (pte_t *)pmd_page_vaddr(*pmd);
pmd_clear(pmd);
flush_tlb_kernel_range(addr, addr + PMD_SIZE);
pte_free_kernel(&init_mm, pte);
return 1;
}