| /* | 
 |  * address space "slices" (meta-segments) support | 
 |  * | 
 |  * Copyright (C) 2007 Benjamin Herrenschmidt, IBM Corporation. | 
 |  * | 
 |  * Based on hugetlb implementation | 
 |  * | 
 |  * Copyright (C) 2003 David Gibson, IBM Corporation. | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or modify | 
 |  * it under the terms of the GNU General Public License as published by | 
 |  * the Free Software Foundation; either version 2 of the License, or | 
 |  * (at your option) any later version. | 
 |  * | 
 |  * This program is distributed in the hope that it will be useful, | 
 |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
 |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
 |  * GNU General Public License for more details. | 
 |  * | 
 |  * You should have received a copy of the GNU General Public License | 
 |  * along with this program; if not, write to the Free Software | 
 |  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA | 
 |  */ | 
 |  | 
 | #undef DEBUG | 
 |  | 
 | #include <linux/kernel.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/pagemap.h> | 
 | #include <linux/err.h> | 
 | #include <linux/spinlock.h> | 
 | #include <linux/export.h> | 
 | #include <linux/hugetlb.h> | 
 | #include <asm/mman.h> | 
 | #include <asm/mmu.h> | 
 | #include <asm/copro.h> | 
 | #include <asm/hugetlb.h> | 
 |  | 
 | static DEFINE_SPINLOCK(slice_convert_lock); | 
 | /* | 
 |  * One bit per slice. We have lower slices which cover 256MB segments | 
 |  * upto 4G range. That gets us 16 low slices. For the rest we track slices | 
 |  * in 1TB size. | 
 |  */ | 
 | struct slice_mask { | 
 | 	u64 low_slices; | 
 | 	DECLARE_BITMAP(high_slices, SLICE_NUM_HIGH); | 
 | }; | 
 |  | 
 | #ifdef DEBUG | 
 | int _slice_debug = 1; | 
 |  | 
 | static void slice_print_mask(const char *label, struct slice_mask mask) | 
 | { | 
 | 	if (!_slice_debug) | 
 | 		return; | 
 | 	pr_devel("%s low_slice: %*pbl\n", label, (int)SLICE_NUM_LOW, &mask.low_slices); | 
 | 	pr_devel("%s high_slice: %*pbl\n", label, (int)SLICE_NUM_HIGH, mask.high_slices); | 
 | } | 
 |  | 
 | #define slice_dbg(fmt...) do { if (_slice_debug) pr_devel(fmt); } while (0) | 
 |  | 
 | #else | 
 |  | 
 | static void slice_print_mask(const char *label, struct slice_mask mask) {} | 
 | #define slice_dbg(fmt...) | 
 |  | 
 | #endif | 
 |  | 
 | static void slice_range_to_mask(unsigned long start, unsigned long len, | 
 | 				struct slice_mask *ret) | 
 | { | 
 | 	unsigned long end = start + len - 1; | 
 |  | 
 | 	ret->low_slices = 0; | 
 | 	bitmap_zero(ret->high_slices, SLICE_NUM_HIGH); | 
 |  | 
 | 	if (start < SLICE_LOW_TOP) { | 
 | 		unsigned long mend = min(end, (SLICE_LOW_TOP - 1)); | 
 |  | 
 | 		ret->low_slices = (1u << (GET_LOW_SLICE_INDEX(mend) + 1)) | 
 | 			- (1u << GET_LOW_SLICE_INDEX(start)); | 
 | 	} | 
 |  | 
 | 	if ((start + len) > SLICE_LOW_TOP) { | 
 | 		unsigned long start_index = GET_HIGH_SLICE_INDEX(start); | 
 | 		unsigned long align_end = ALIGN(end, (1UL << SLICE_HIGH_SHIFT)); | 
 | 		unsigned long count = GET_HIGH_SLICE_INDEX(align_end) - start_index; | 
 |  | 
 | 		bitmap_set(ret->high_slices, start_index, count); | 
 | 	} | 
 | } | 
 |  | 
 | static int slice_area_is_free(struct mm_struct *mm, unsigned long addr, | 
 | 			      unsigned long len) | 
 | { | 
 | 	struct vm_area_struct *vma; | 
 |  | 
 | 	if ((mm->task_size - len) < addr) | 
 | 		return 0; | 
 | 	vma = find_vma(mm, addr); | 
 | 	return (!vma || (addr + len) <= vm_start_gap(vma)); | 
 | } | 
 |  | 
 | static int slice_low_has_vma(struct mm_struct *mm, unsigned long slice) | 
 | { | 
 | 	return !slice_area_is_free(mm, slice << SLICE_LOW_SHIFT, | 
 | 				   1ul << SLICE_LOW_SHIFT); | 
 | } | 
 |  | 
 | static int slice_high_has_vma(struct mm_struct *mm, unsigned long slice) | 
 | { | 
 | 	unsigned long start = slice << SLICE_HIGH_SHIFT; | 
 | 	unsigned long end = start + (1ul << SLICE_HIGH_SHIFT); | 
 |  | 
 | 	/* Hack, so that each addresses is controlled by exactly one | 
 | 	 * of the high or low area bitmaps, the first high area starts | 
 | 	 * at 4GB, not 0 */ | 
 | 	if (start == 0) | 
 | 		start = SLICE_LOW_TOP; | 
 |  | 
 | 	return !slice_area_is_free(mm, start, end - start); | 
 | } | 
 |  | 
 | static void slice_mask_for_free(struct mm_struct *mm, struct slice_mask *ret) | 
 | { | 
 | 	unsigned long i; | 
 |  | 
 | 	ret->low_slices = 0; | 
 | 	bitmap_zero(ret->high_slices, SLICE_NUM_HIGH); | 
 |  | 
 | 	for (i = 0; i < SLICE_NUM_LOW; i++) | 
 | 		if (!slice_low_has_vma(mm, i)) | 
 | 			ret->low_slices |= 1u << i; | 
 |  | 
 | 	if (mm->task_size <= SLICE_LOW_TOP) | 
 | 		return; | 
 |  | 
 | 	for (i = 0; i < GET_HIGH_SLICE_INDEX(mm->context.addr_limit); i++) | 
 | 		if (!slice_high_has_vma(mm, i)) | 
 | 			__set_bit(i, ret->high_slices); | 
 | } | 
 |  | 
 | static void slice_mask_for_size(struct mm_struct *mm, int psize, struct slice_mask *ret) | 
 | { | 
 | 	unsigned char *hpsizes; | 
 | 	int index, mask_index; | 
 | 	unsigned long i; | 
 | 	u64 lpsizes; | 
 |  | 
 | 	ret->low_slices = 0; | 
 | 	bitmap_zero(ret->high_slices, SLICE_NUM_HIGH); | 
 |  | 
 | 	lpsizes = mm->context.low_slices_psize; | 
 | 	for (i = 0; i < SLICE_NUM_LOW; i++) | 
 | 		if (((lpsizes >> (i * 4)) & 0xf) == psize) | 
 | 			ret->low_slices |= 1u << i; | 
 |  | 
 | 	hpsizes = mm->context.high_slices_psize; | 
 | 	for (i = 0; i < GET_HIGH_SLICE_INDEX(mm->context.addr_limit); i++) { | 
 | 		mask_index = i & 0x1; | 
 | 		index = i >> 1; | 
 | 		if (((hpsizes[index] >> (mask_index * 4)) & 0xf) == psize) | 
 | 			__set_bit(i, ret->high_slices); | 
 | 	} | 
 | } | 
 |  | 
 | static int slice_check_fit(struct mm_struct *mm, | 
 | 			   struct slice_mask mask, struct slice_mask available) | 
 | { | 
 | 	DECLARE_BITMAP(result, SLICE_NUM_HIGH); | 
 | 	unsigned long slice_count = GET_HIGH_SLICE_INDEX(mm->context.addr_limit); | 
 |  | 
 | 	bitmap_and(result, mask.high_slices, | 
 | 		   available.high_slices, slice_count); | 
 |  | 
 | 	return (mask.low_slices & available.low_slices) == mask.low_slices && | 
 | 		bitmap_equal(result, mask.high_slices, slice_count); | 
 | } | 
 |  | 
 | static void slice_flush_segments(void *parm) | 
 | { | 
 | 	struct mm_struct *mm = parm; | 
 | 	unsigned long flags; | 
 |  | 
 | 	if (mm != current->active_mm) | 
 | 		return; | 
 |  | 
 | 	copy_mm_to_paca(current->active_mm); | 
 |  | 
 | 	local_irq_save(flags); | 
 | 	slb_flush_and_rebolt(); | 
 | 	local_irq_restore(flags); | 
 | } | 
 |  | 
 | static void slice_convert(struct mm_struct *mm, struct slice_mask mask, int psize) | 
 | { | 
 | 	int index, mask_index; | 
 | 	/* Write the new slice psize bits */ | 
 | 	unsigned char *hpsizes; | 
 | 	u64 lpsizes; | 
 | 	unsigned long i, flags; | 
 |  | 
 | 	slice_dbg("slice_convert(mm=%p, psize=%d)\n", mm, psize); | 
 | 	slice_print_mask(" mask", mask); | 
 |  | 
 | 	/* We need to use a spinlock here to protect against | 
 | 	 * concurrent 64k -> 4k demotion ... | 
 | 	 */ | 
 | 	spin_lock_irqsave(&slice_convert_lock, flags); | 
 |  | 
 | 	lpsizes = mm->context.low_slices_psize; | 
 | 	for (i = 0; i < SLICE_NUM_LOW; i++) | 
 | 		if (mask.low_slices & (1u << i)) | 
 | 			lpsizes = (lpsizes & ~(0xful << (i * 4))) | | 
 | 				(((unsigned long)psize) << (i * 4)); | 
 |  | 
 | 	/* Assign the value back */ | 
 | 	mm->context.low_slices_psize = lpsizes; | 
 |  | 
 | 	hpsizes = mm->context.high_slices_psize; | 
 | 	for (i = 0; i < GET_HIGH_SLICE_INDEX(mm->context.addr_limit); i++) { | 
 | 		mask_index = i & 0x1; | 
 | 		index = i >> 1; | 
 | 		if (test_bit(i, mask.high_slices)) | 
 | 			hpsizes[index] = (hpsizes[index] & | 
 | 					  ~(0xf << (mask_index * 4))) | | 
 | 				(((unsigned long)psize) << (mask_index * 4)); | 
 | 	} | 
 |  | 
 | 	slice_dbg(" lsps=%lx, hsps=%lx\n", | 
 | 		  (unsigned long)mm->context.low_slices_psize, | 
 | 		  (unsigned long)mm->context.high_slices_psize); | 
 |  | 
 | 	spin_unlock_irqrestore(&slice_convert_lock, flags); | 
 |  | 
 | 	copro_flush_all_slbs(mm); | 
 | } | 
 |  | 
 | /* | 
 |  * Compute which slice addr is part of; | 
 |  * set *boundary_addr to the start or end boundary of that slice | 
 |  * (depending on 'end' parameter); | 
 |  * return boolean indicating if the slice is marked as available in the | 
 |  * 'available' slice_mark. | 
 |  */ | 
 | static bool slice_scan_available(unsigned long addr, | 
 | 				 struct slice_mask available, | 
 | 				 int end, | 
 | 				 unsigned long *boundary_addr) | 
 | { | 
 | 	unsigned long slice; | 
 | 	if (addr < SLICE_LOW_TOP) { | 
 | 		slice = GET_LOW_SLICE_INDEX(addr); | 
 | 		*boundary_addr = (slice + end) << SLICE_LOW_SHIFT; | 
 | 		return !!(available.low_slices & (1u << slice)); | 
 | 	} else { | 
 | 		slice = GET_HIGH_SLICE_INDEX(addr); | 
 | 		*boundary_addr = (slice + end) ? | 
 | 			((slice + end) << SLICE_HIGH_SHIFT) : SLICE_LOW_TOP; | 
 | 		return !!test_bit(slice, available.high_slices); | 
 | 	} | 
 | } | 
 |  | 
 | static unsigned long slice_find_area_bottomup(struct mm_struct *mm, | 
 | 					      unsigned long len, | 
 | 					      struct slice_mask available, | 
 | 					      int psize, unsigned long high_limit) | 
 | { | 
 | 	int pshift = max_t(int, mmu_psize_defs[psize].shift, PAGE_SHIFT); | 
 | 	unsigned long addr, found, next_end; | 
 | 	struct vm_unmapped_area_info info; | 
 |  | 
 | 	info.flags = 0; | 
 | 	info.length = len; | 
 | 	info.align_mask = PAGE_MASK & ((1ul << pshift) - 1); | 
 | 	info.align_offset = 0; | 
 |  | 
 | 	addr = TASK_UNMAPPED_BASE; | 
 | 	/* | 
 | 	 * Check till the allow max value for this mmap request | 
 | 	 */ | 
 | 	while (addr < high_limit) { | 
 | 		info.low_limit = addr; | 
 | 		if (!slice_scan_available(addr, available, 1, &addr)) | 
 | 			continue; | 
 |  | 
 |  next_slice: | 
 | 		/* | 
 | 		 * At this point [info.low_limit; addr) covers | 
 | 		 * available slices only and ends at a slice boundary. | 
 | 		 * Check if we need to reduce the range, or if we can | 
 | 		 * extend it to cover the next available slice. | 
 | 		 */ | 
 | 		if (addr >= high_limit) | 
 | 			addr = high_limit; | 
 | 		else if (slice_scan_available(addr, available, 1, &next_end)) { | 
 | 			addr = next_end; | 
 | 			goto next_slice; | 
 | 		} | 
 | 		info.high_limit = addr; | 
 |  | 
 | 		found = vm_unmapped_area(&info); | 
 | 		if (!(found & ~PAGE_MASK)) | 
 | 			return found; | 
 | 	} | 
 |  | 
 | 	return -ENOMEM; | 
 | } | 
 |  | 
 | static unsigned long slice_find_area_topdown(struct mm_struct *mm, | 
 | 					     unsigned long len, | 
 | 					     struct slice_mask available, | 
 | 					     int psize, unsigned long high_limit) | 
 | { | 
 | 	int pshift = max_t(int, mmu_psize_defs[psize].shift, PAGE_SHIFT); | 
 | 	unsigned long addr, found, prev; | 
 | 	struct vm_unmapped_area_info info; | 
 |  | 
 | 	info.flags = VM_UNMAPPED_AREA_TOPDOWN; | 
 | 	info.length = len; | 
 | 	info.align_mask = PAGE_MASK & ((1ul << pshift) - 1); | 
 | 	info.align_offset = 0; | 
 |  | 
 | 	addr = mm->mmap_base; | 
 | 	/* | 
 | 	 * If we are trying to allocate above DEFAULT_MAP_WINDOW | 
 | 	 * Add the different to the mmap_base. | 
 | 	 * Only for that request for which high_limit is above | 
 | 	 * DEFAULT_MAP_WINDOW we should apply this. | 
 | 	 */ | 
 | 	if (high_limit  > DEFAULT_MAP_WINDOW) | 
 | 		addr += mm->context.addr_limit - DEFAULT_MAP_WINDOW; | 
 |  | 
 | 	while (addr > PAGE_SIZE) { | 
 | 		info.high_limit = addr; | 
 | 		if (!slice_scan_available(addr - 1, available, 0, &addr)) | 
 | 			continue; | 
 |  | 
 |  prev_slice: | 
 | 		/* | 
 | 		 * At this point [addr; info.high_limit) covers | 
 | 		 * available slices only and starts at a slice boundary. | 
 | 		 * Check if we need to reduce the range, or if we can | 
 | 		 * extend it to cover the previous available slice. | 
 | 		 */ | 
 | 		if (addr < PAGE_SIZE) | 
 | 			addr = PAGE_SIZE; | 
 | 		else if (slice_scan_available(addr - 1, available, 0, &prev)) { | 
 | 			addr = prev; | 
 | 			goto prev_slice; | 
 | 		} | 
 | 		info.low_limit = addr; | 
 |  | 
 | 		found = vm_unmapped_area(&info); | 
 | 		if (!(found & ~PAGE_MASK)) | 
 | 			return found; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * A failed mmap() very likely causes application failure, | 
 | 	 * so fall back to the bottom-up function here. This scenario | 
 | 	 * can happen with large stack limits and large mmap() | 
 | 	 * allocations. | 
 | 	 */ | 
 | 	return slice_find_area_bottomup(mm, len, available, psize, high_limit); | 
 | } | 
 |  | 
 |  | 
 | static unsigned long slice_find_area(struct mm_struct *mm, unsigned long len, | 
 | 				     struct slice_mask mask, int psize, | 
 | 				     int topdown, unsigned long high_limit) | 
 | { | 
 | 	if (topdown) | 
 | 		return slice_find_area_topdown(mm, len, mask, psize, high_limit); | 
 | 	else | 
 | 		return slice_find_area_bottomup(mm, len, mask, psize, high_limit); | 
 | } | 
 |  | 
 | static inline void slice_or_mask(struct slice_mask *dst, struct slice_mask *src) | 
 | { | 
 | 	DECLARE_BITMAP(result, SLICE_NUM_HIGH); | 
 |  | 
 | 	dst->low_slices |= src->low_slices; | 
 | 	bitmap_or(result, dst->high_slices, src->high_slices, SLICE_NUM_HIGH); | 
 | 	bitmap_copy(dst->high_slices, result, SLICE_NUM_HIGH); | 
 | } | 
 |  | 
 | static inline void slice_andnot_mask(struct slice_mask *dst, struct slice_mask *src) | 
 | { | 
 | 	DECLARE_BITMAP(result, SLICE_NUM_HIGH); | 
 |  | 
 | 	dst->low_slices &= ~src->low_slices; | 
 |  | 
 | 	bitmap_andnot(result, dst->high_slices, src->high_slices, SLICE_NUM_HIGH); | 
 | 	bitmap_copy(dst->high_slices, result, SLICE_NUM_HIGH); | 
 | } | 
 |  | 
 | #ifdef CONFIG_PPC_64K_PAGES | 
 | #define MMU_PAGE_BASE	MMU_PAGE_64K | 
 | #else | 
 | #define MMU_PAGE_BASE	MMU_PAGE_4K | 
 | #endif | 
 |  | 
 | unsigned long slice_get_unmapped_area(unsigned long addr, unsigned long len, | 
 | 				      unsigned long flags, unsigned int psize, | 
 | 				      int topdown) | 
 | { | 
 | 	struct slice_mask mask; | 
 | 	struct slice_mask good_mask; | 
 | 	struct slice_mask potential_mask; | 
 | 	struct slice_mask compat_mask; | 
 | 	int fixed = (flags & MAP_FIXED); | 
 | 	int pshift = max_t(int, mmu_psize_defs[psize].shift, PAGE_SHIFT); | 
 | 	struct mm_struct *mm = current->mm; | 
 | 	unsigned long newaddr; | 
 | 	unsigned long high_limit; | 
 |  | 
 | 	/* | 
 | 	 * Check if we need to expland slice area. | 
 | 	 */ | 
 | 	if (unlikely(addr > mm->context.addr_limit && | 
 | 		     mm->context.addr_limit != TASK_SIZE)) { | 
 | 		mm->context.addr_limit = TASK_SIZE; | 
 | 		on_each_cpu(slice_flush_segments, mm, 1); | 
 | 	} | 
 | 	/* | 
 | 	 * This mmap request can allocate upt to 512TB | 
 | 	 */ | 
 | 	if (addr > DEFAULT_MAP_WINDOW) | 
 | 		high_limit = mm->context.addr_limit; | 
 | 	else | 
 | 		high_limit = DEFAULT_MAP_WINDOW; | 
 | 	/* | 
 | 	 * init different masks | 
 | 	 */ | 
 | 	mask.low_slices = 0; | 
 | 	bitmap_zero(mask.high_slices, SLICE_NUM_HIGH); | 
 |  | 
 | 	/* silence stupid warning */; | 
 | 	potential_mask.low_slices = 0; | 
 | 	bitmap_zero(potential_mask.high_slices, SLICE_NUM_HIGH); | 
 |  | 
 | 	compat_mask.low_slices = 0; | 
 | 	bitmap_zero(compat_mask.high_slices, SLICE_NUM_HIGH); | 
 |  | 
 | 	/* Sanity checks */ | 
 | 	BUG_ON(mm->task_size == 0); | 
 | 	VM_BUG_ON(radix_enabled()); | 
 |  | 
 | 	slice_dbg("slice_get_unmapped_area(mm=%p, psize=%d...\n", mm, psize); | 
 | 	slice_dbg(" addr=%lx, len=%lx, flags=%lx, topdown=%d\n", | 
 | 		  addr, len, flags, topdown); | 
 |  | 
 | 	if (len > mm->task_size) | 
 | 		return -ENOMEM; | 
 | 	if (len & ((1ul << pshift) - 1)) | 
 | 		return -EINVAL; | 
 | 	if (fixed && (addr & ((1ul << pshift) - 1))) | 
 | 		return -EINVAL; | 
 | 	if (fixed && addr > (mm->task_size - len)) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	/* If hint, make sure it matches our alignment restrictions */ | 
 | 	if (!fixed && addr) { | 
 | 		addr = _ALIGN_UP(addr, 1ul << pshift); | 
 | 		slice_dbg(" aligned addr=%lx\n", addr); | 
 | 		/* Ignore hint if it's too large or overlaps a VMA */ | 
 | 		if (addr > mm->task_size - len || | 
 | 		    !slice_area_is_free(mm, addr, len)) | 
 | 			addr = 0; | 
 | 	} | 
 |  | 
 | 	/* First make up a "good" mask of slices that have the right size | 
 | 	 * already | 
 | 	 */ | 
 | 	slice_mask_for_size(mm, psize, &good_mask); | 
 | 	slice_print_mask(" good_mask", good_mask); | 
 |  | 
 | 	/* | 
 | 	 * Here "good" means slices that are already the right page size, | 
 | 	 * "compat" means slices that have a compatible page size (i.e. | 
 | 	 * 4k in a 64k pagesize kernel), and "free" means slices without | 
 | 	 * any VMAs. | 
 | 	 * | 
 | 	 * If MAP_FIXED: | 
 | 	 *	check if fits in good | compat => OK | 
 | 	 *	check if fits in good | compat | free => convert free | 
 | 	 *	else bad | 
 | 	 * If have hint: | 
 | 	 *	check if hint fits in good => OK | 
 | 	 *	check if hint fits in good | free => convert free | 
 | 	 * Otherwise: | 
 | 	 *	search in good, found => OK | 
 | 	 *	search in good | free, found => convert free | 
 | 	 *	search in good | compat | free, found => convert free. | 
 | 	 */ | 
 |  | 
 | #ifdef CONFIG_PPC_64K_PAGES | 
 | 	/* If we support combo pages, we can allow 64k pages in 4k slices */ | 
 | 	if (psize == MMU_PAGE_64K) { | 
 | 		slice_mask_for_size(mm, MMU_PAGE_4K, &compat_mask); | 
 | 		if (fixed) | 
 | 			slice_or_mask(&good_mask, &compat_mask); | 
 | 	} | 
 | #endif | 
 |  | 
 | 	/* First check hint if it's valid or if we have MAP_FIXED */ | 
 | 	if (addr != 0 || fixed) { | 
 | 		/* Build a mask for the requested range */ | 
 | 		slice_range_to_mask(addr, len, &mask); | 
 | 		slice_print_mask(" mask", mask); | 
 |  | 
 | 		/* Check if we fit in the good mask. If we do, we just return, | 
 | 		 * nothing else to do | 
 | 		 */ | 
 | 		if (slice_check_fit(mm, mask, good_mask)) { | 
 | 			slice_dbg(" fits good !\n"); | 
 | 			return addr; | 
 | 		} | 
 | 	} else { | 
 | 		/* Now let's see if we can find something in the existing | 
 | 		 * slices for that size | 
 | 		 */ | 
 | 		newaddr = slice_find_area(mm, len, good_mask, | 
 | 					  psize, topdown, high_limit); | 
 | 		if (newaddr != -ENOMEM) { | 
 | 			/* Found within the good mask, we don't have to setup, | 
 | 			 * we thus return directly | 
 | 			 */ | 
 | 			slice_dbg(" found area at 0x%lx\n", newaddr); | 
 | 			return newaddr; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* We don't fit in the good mask, check what other slices are | 
 | 	 * empty and thus can be converted | 
 | 	 */ | 
 | 	slice_mask_for_free(mm, &potential_mask); | 
 | 	slice_or_mask(&potential_mask, &good_mask); | 
 | 	slice_print_mask(" potential", potential_mask); | 
 |  | 
 | 	if ((addr != 0 || fixed) && slice_check_fit(mm, mask, potential_mask)) { | 
 | 		slice_dbg(" fits potential !\n"); | 
 | 		goto convert; | 
 | 	} | 
 |  | 
 | 	/* If we have MAP_FIXED and failed the above steps, then error out */ | 
 | 	if (fixed) | 
 | 		return -EBUSY; | 
 |  | 
 | 	slice_dbg(" search...\n"); | 
 |  | 
 | 	/* If we had a hint that didn't work out, see if we can fit | 
 | 	 * anywhere in the good area. | 
 | 	 */ | 
 | 	if (addr) { | 
 | 		addr = slice_find_area(mm, len, good_mask, | 
 | 				       psize, topdown, high_limit); | 
 | 		if (addr != -ENOMEM) { | 
 | 			slice_dbg(" found area at 0x%lx\n", addr); | 
 | 			return addr; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Now let's see if we can find something in the existing slices | 
 | 	 * for that size plus free slices | 
 | 	 */ | 
 | 	addr = slice_find_area(mm, len, potential_mask, | 
 | 			       psize, topdown, high_limit); | 
 |  | 
 | #ifdef CONFIG_PPC_64K_PAGES | 
 | 	if (addr == -ENOMEM && psize == MMU_PAGE_64K) { | 
 | 		/* retry the search with 4k-page slices included */ | 
 | 		slice_or_mask(&potential_mask, &compat_mask); | 
 | 		addr = slice_find_area(mm, len, potential_mask, | 
 | 				       psize, topdown, high_limit); | 
 | 	} | 
 | #endif | 
 |  | 
 | 	if (addr == -ENOMEM) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	slice_range_to_mask(addr, len, &mask); | 
 | 	slice_dbg(" found potential area at 0x%lx\n", addr); | 
 | 	slice_print_mask(" mask", mask); | 
 |  | 
 |  convert: | 
 | 	slice_andnot_mask(&mask, &good_mask); | 
 | 	slice_andnot_mask(&mask, &compat_mask); | 
 | 	if (mask.low_slices || !bitmap_empty(mask.high_slices, SLICE_NUM_HIGH)) { | 
 | 		slice_convert(mm, mask, psize); | 
 | 		if (psize > MMU_PAGE_BASE) | 
 | 			on_each_cpu(slice_flush_segments, mm, 1); | 
 | 	} | 
 | 	return addr; | 
 |  | 
 | } | 
 | EXPORT_SYMBOL_GPL(slice_get_unmapped_area); | 
 |  | 
 | unsigned long arch_get_unmapped_area(struct file *filp, | 
 | 				     unsigned long addr, | 
 | 				     unsigned long len, | 
 | 				     unsigned long pgoff, | 
 | 				     unsigned long flags) | 
 | { | 
 | 	return slice_get_unmapped_area(addr, len, flags, | 
 | 				       current->mm->context.user_psize, 0); | 
 | } | 
 |  | 
 | unsigned long arch_get_unmapped_area_topdown(struct file *filp, | 
 | 					     const unsigned long addr0, | 
 | 					     const unsigned long len, | 
 | 					     const unsigned long pgoff, | 
 | 					     const unsigned long flags) | 
 | { | 
 | 	return slice_get_unmapped_area(addr0, len, flags, | 
 | 				       current->mm->context.user_psize, 1); | 
 | } | 
 |  | 
 | unsigned int get_slice_psize(struct mm_struct *mm, unsigned long addr) | 
 | { | 
 | 	unsigned char *hpsizes; | 
 | 	int index, mask_index; | 
 |  | 
 | 	/* | 
 | 	 * Radix doesn't use slice, but can get enabled along with MMU_SLICE | 
 | 	 */ | 
 | 	if (radix_enabled()) { | 
 | #ifdef CONFIG_PPC_64K_PAGES | 
 | 		return MMU_PAGE_64K; | 
 | #else | 
 | 		return MMU_PAGE_4K; | 
 | #endif | 
 | 	} | 
 | 	if (addr < SLICE_LOW_TOP) { | 
 | 		u64 lpsizes; | 
 | 		lpsizes = mm->context.low_slices_psize; | 
 | 		index = GET_LOW_SLICE_INDEX(addr); | 
 | 		return (lpsizes >> (index * 4)) & 0xf; | 
 | 	} | 
 | 	hpsizes = mm->context.high_slices_psize; | 
 | 	index = GET_HIGH_SLICE_INDEX(addr); | 
 | 	mask_index = index & 0x1; | 
 | 	return (hpsizes[index >> 1] >> (mask_index * 4)) & 0xf; | 
 | } | 
 | EXPORT_SYMBOL_GPL(get_slice_psize); | 
 |  | 
 | /* | 
 |  * This is called by hash_page when it needs to do a lazy conversion of | 
 |  * an address space from real 64K pages to combo 4K pages (typically | 
 |  * when hitting a non cacheable mapping on a processor or hypervisor | 
 |  * that won't allow them for 64K pages). | 
 |  * | 
 |  * This is also called in init_new_context() to change back the user | 
 |  * psize from whatever the parent context had it set to | 
 |  * N.B. This may be called before mm->context.id has been set. | 
 |  * | 
 |  * This function will only change the content of the {low,high)_slice_psize | 
 |  * masks, it will not flush SLBs as this shall be handled lazily by the | 
 |  * caller. | 
 |  */ | 
 | void slice_set_user_psize(struct mm_struct *mm, unsigned int psize) | 
 | { | 
 | 	int index, mask_index; | 
 | 	unsigned char *hpsizes; | 
 | 	unsigned long flags, lpsizes; | 
 | 	unsigned int old_psize; | 
 | 	int i; | 
 |  | 
 | 	slice_dbg("slice_set_user_psize(mm=%p, psize=%d)\n", mm, psize); | 
 |  | 
 | 	VM_BUG_ON(radix_enabled()); | 
 | 	spin_lock_irqsave(&slice_convert_lock, flags); | 
 |  | 
 | 	old_psize = mm->context.user_psize; | 
 | 	slice_dbg(" old_psize=%d\n", old_psize); | 
 | 	if (old_psize == psize) | 
 | 		goto bail; | 
 |  | 
 | 	mm->context.user_psize = psize; | 
 | 	wmb(); | 
 |  | 
 | 	lpsizes = mm->context.low_slices_psize; | 
 | 	for (i = 0; i < SLICE_NUM_LOW; i++) | 
 | 		if (((lpsizes >> (i * 4)) & 0xf) == old_psize) | 
 | 			lpsizes = (lpsizes & ~(0xful << (i * 4))) | | 
 | 				(((unsigned long)psize) << (i * 4)); | 
 | 	/* Assign the value back */ | 
 | 	mm->context.low_slices_psize = lpsizes; | 
 |  | 
 | 	hpsizes = mm->context.high_slices_psize; | 
 | 	for (i = 0; i < SLICE_NUM_HIGH; i++) { | 
 | 		mask_index = i & 0x1; | 
 | 		index = i >> 1; | 
 | 		if (((hpsizes[index] >> (mask_index * 4)) & 0xf) == old_psize) | 
 | 			hpsizes[index] = (hpsizes[index] & | 
 | 					  ~(0xf << (mask_index * 4))) | | 
 | 				(((unsigned long)psize) << (mask_index * 4)); | 
 | 	} | 
 |  | 
 |  | 
 |  | 
 |  | 
 | 	slice_dbg(" lsps=%lx, hsps=%lx\n", | 
 | 		  (unsigned long)mm->context.low_slices_psize, | 
 | 		  (unsigned long)mm->context.high_slices_psize); | 
 |  | 
 |  bail: | 
 | 	spin_unlock_irqrestore(&slice_convert_lock, flags); | 
 | } | 
 |  | 
 | void slice_set_range_psize(struct mm_struct *mm, unsigned long start, | 
 | 			   unsigned long len, unsigned int psize) | 
 | { | 
 | 	struct slice_mask mask; | 
 |  | 
 | 	VM_BUG_ON(radix_enabled()); | 
 |  | 
 | 	slice_range_to_mask(start, len, &mask); | 
 | 	slice_convert(mm, mask, psize); | 
 | } | 
 |  | 
 | #ifdef CONFIG_HUGETLB_PAGE | 
 | /* | 
 |  * is_hugepage_only_range() is used by generic code to verify whether | 
 |  * a normal mmap mapping (non hugetlbfs) is valid on a given area. | 
 |  * | 
 |  * until the generic code provides a more generic hook and/or starts | 
 |  * calling arch get_unmapped_area for MAP_FIXED (which our implementation | 
 |  * here knows how to deal with), we hijack it to keep standard mappings | 
 |  * away from us. | 
 |  * | 
 |  * because of that generic code limitation, MAP_FIXED mapping cannot | 
 |  * "convert" back a slice with no VMAs to the standard page size, only | 
 |  * get_unmapped_area() can. It would be possible to fix it here but I | 
 |  * prefer working on fixing the generic code instead. | 
 |  * | 
 |  * WARNING: This will not work if hugetlbfs isn't enabled since the | 
 |  * generic code will redefine that function as 0 in that. This is ok | 
 |  * for now as we only use slices with hugetlbfs enabled. This should | 
 |  * be fixed as the generic code gets fixed. | 
 |  */ | 
 | int is_hugepage_only_range(struct mm_struct *mm, unsigned long addr, | 
 | 			   unsigned long len) | 
 | { | 
 | 	struct slice_mask mask, available; | 
 | 	unsigned int psize = mm->context.user_psize; | 
 |  | 
 | 	if (radix_enabled()) | 
 | 		return 0; | 
 |  | 
 | 	slice_range_to_mask(addr, len, &mask); | 
 | 	slice_mask_for_size(mm, psize, &available); | 
 | #ifdef CONFIG_PPC_64K_PAGES | 
 | 	/* We need to account for 4k slices too */ | 
 | 	if (psize == MMU_PAGE_64K) { | 
 | 		struct slice_mask compat_mask; | 
 | 		slice_mask_for_size(mm, MMU_PAGE_4K, &compat_mask); | 
 | 		slice_or_mask(&available, &compat_mask); | 
 | 	} | 
 | #endif | 
 |  | 
 | #if 0 /* too verbose */ | 
 | 	slice_dbg("is_hugepage_only_range(mm=%p, addr=%lx, len=%lx)\n", | 
 | 		 mm, addr, len); | 
 | 	slice_print_mask(" mask", mask); | 
 | 	slice_print_mask(" available", available); | 
 | #endif | 
 | 	return !slice_check_fit(mm, mask, available); | 
 | } | 
 | #endif |