blob: 501e21c341f19cdc5d4c9daacb1ce4ec05c671f1 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 1994 Linus Torvalds
*
* Pentium III FXSR, SSE support
* General FPU state handling cleanups
* Gareth Hughes <gareth@valinux.com>, May 2000
*/
#include <asm/fpu/api.h>
#include <asm/fpu/regset.h>
#include <asm/fpu/sched.h>
#include <asm/fpu/signal.h>
#include <asm/fpu/types.h>
#include <asm/traps.h>
#include <asm/irq_regs.h>
#include <linux/hardirq.h>
#include <linux/pkeys.h>
#include "context.h"
#include "internal.h"
#include "legacy.h"
#include "xstate.h"
#define CREATE_TRACE_POINTS
#include <asm/trace/fpu.h>
/* The FPU state configuration data for kernel and user space */
struct fpu_state_config fpu_kernel_cfg __ro_after_init;
struct fpu_state_config fpu_user_cfg __ro_after_init;
/*
* Represents the initial FPU state. It's mostly (but not completely) zeroes,
* depending on the FPU hardware format:
*/
struct fpstate init_fpstate __ro_after_init;
/*
* Track whether the kernel is using the FPU state
* currently.
*
* This flag is used:
*
* - by IRQ context code to potentially use the FPU
* if it's unused.
*
* - to debug kernel_fpu_begin()/end() correctness
*/
static DEFINE_PER_CPU(bool, in_kernel_fpu);
/*
* Track which context is using the FPU on the CPU:
*/
DEFINE_PER_CPU(struct fpu *, fpu_fpregs_owner_ctx);
static bool kernel_fpu_disabled(void)
{
return this_cpu_read(in_kernel_fpu);
}
static bool interrupted_kernel_fpu_idle(void)
{
return !kernel_fpu_disabled();
}
/*
* Were we in user mode (or vm86 mode) when we were
* interrupted?
*
* Doing kernel_fpu_begin/end() is ok if we are running
* in an interrupt context from user mode - we'll just
* save the FPU state as required.
*/
static bool interrupted_user_mode(void)
{
struct pt_regs *regs = get_irq_regs();
return regs && user_mode(regs);
}
/*
* Can we use the FPU in kernel mode with the
* whole "kernel_fpu_begin/end()" sequence?
*
* It's always ok in process context (ie "not interrupt")
* but it is sometimes ok even from an irq.
*/
bool irq_fpu_usable(void)
{
return !in_interrupt() ||
interrupted_user_mode() ||
interrupted_kernel_fpu_idle();
}
EXPORT_SYMBOL(irq_fpu_usable);
/*
* Save the FPU register state in fpu->fpstate->regs. The register state is
* preserved.
*
* Must be called with fpregs_lock() held.
*
* The legacy FNSAVE instruction clears all FPU state unconditionally, so
* register state has to be reloaded. That might be a pointless exercise
* when the FPU is going to be used by another task right after that. But
* this only affects 20+ years old 32bit systems and avoids conditionals all
* over the place.
*
* FXSAVE and all XSAVE variants preserve the FPU register state.
*/
void save_fpregs_to_fpstate(struct fpu *fpu)
{
if (likely(use_xsave())) {
os_xsave(fpu->fpstate);
/*
* AVX512 state is tracked here because its use is
* known to slow the max clock speed of the core.
*/
if (fpu->fpstate->regs.xsave.header.xfeatures & XFEATURE_MASK_AVX512)
fpu->avx512_timestamp = jiffies;
return;
}
if (likely(use_fxsr())) {
fxsave(&fpu->fpstate->regs.fxsave);
return;
}
/*
* Legacy FPU register saving, FNSAVE always clears FPU registers,
* so we have to reload them from the memory state.
*/
asm volatile("fnsave %[fp]; fwait" : [fp] "=m" (fpu->fpstate->regs.fsave));
frstor(&fpu->fpstate->regs.fsave);
}
void restore_fpregs_from_fpstate(struct fpstate *fpstate, u64 mask)
{
/*
* AMD K7/K8 and later CPUs up to Zen don't save/restore
* FDP/FIP/FOP unless an exception is pending. Clear the x87 state
* here by setting it to fixed values. "m" is a random variable
* that should be in L1.
*/
if (unlikely(static_cpu_has_bug(X86_BUG_FXSAVE_LEAK))) {
asm volatile(
"fnclex\n\t"
"emms\n\t"
"fildl %P[addr]" /* set F?P to defined value */
: : [addr] "m" (fpstate));
}
if (use_xsave()) {
os_xrstor(&fpstate->regs.xsave, mask);
} else {
if (use_fxsr())
fxrstor(&fpstate->regs.fxsave);
else
frstor(&fpstate->regs.fsave);
}
}
void fpu_reset_from_exception_fixup(void)
{
restore_fpregs_from_fpstate(&init_fpstate, xfeatures_mask_fpstate());
}
#if IS_ENABLED(CONFIG_KVM)
void fpu_swap_kvm_fpu(struct fpu *save, struct fpu *rstor, u64 restore_mask)
{
fpregs_lock();
if (save) {
struct fpstate *fpcur = current->thread.fpu.fpstate;
if (test_thread_flag(TIF_NEED_FPU_LOAD))
memcpy(&save->fpstate->regs, &fpcur->regs, fpcur->size);
else
save_fpregs_to_fpstate(save);
}
if (rstor) {
restore_mask &= xfeatures_mask_fpstate();
restore_fpregs_from_fpstate(rstor->fpstate, restore_mask);
}
fpregs_mark_activate();
fpregs_unlock();
}
EXPORT_SYMBOL_GPL(fpu_swap_kvm_fpu);
void fpu_copy_fpstate_to_kvm_uabi(struct fpu *fpu, void *buf,
unsigned int size, u32 pkru)
{
struct fpstate *kstate = fpu->fpstate;
union fpregs_state *ustate = buf;
struct membuf mb = { .p = buf, .left = size };
if (cpu_feature_enabled(X86_FEATURE_XSAVE)) {
__copy_xstate_to_uabi_buf(mb, kstate, pkru, XSTATE_COPY_XSAVE);
} else {
memcpy(&ustate->fxsave, &kstate->regs.fxsave,
sizeof(ustate->fxsave));
/* Make it restorable on a XSAVE enabled host */
ustate->xsave.header.xfeatures = XFEATURE_MASK_FPSSE;
}
}
EXPORT_SYMBOL_GPL(fpu_copy_fpstate_to_kvm_uabi);
int fpu_copy_kvm_uabi_to_fpstate(struct fpu *fpu, const void *buf, u64 xcr0,
u32 *vpkru)
{
struct fpstate *kstate = fpu->fpstate;
const union fpregs_state *ustate = buf;
struct pkru_state *xpkru;
int ret;
if (!cpu_feature_enabled(X86_FEATURE_XSAVE)) {
if (ustate->xsave.header.xfeatures & ~XFEATURE_MASK_FPSSE)
return -EINVAL;
if (ustate->fxsave.mxcsr & ~mxcsr_feature_mask)
return -EINVAL;
memcpy(&kstate->regs.fxsave, &ustate->fxsave, sizeof(ustate->fxsave));
return 0;
}
if (ustate->xsave.header.xfeatures & ~xcr0)
return -EINVAL;
ret = copy_uabi_from_kernel_to_xstate(kstate, ustate);
if (ret)
return ret;
/* Retrieve PKRU if not in init state */
if (kstate->regs.xsave.header.xfeatures & XFEATURE_MASK_PKRU) {
xpkru = get_xsave_addr(&kstate->regs.xsave, XFEATURE_PKRU);
*vpkru = xpkru->pkru;
}
/* Ensure that XCOMP_BV is set up for XSAVES */
xstate_init_xcomp_bv(&kstate->regs.xsave, xfeatures_mask_uabi());
return 0;
}
EXPORT_SYMBOL_GPL(fpu_copy_kvm_uabi_to_fpstate);
#endif /* CONFIG_KVM */
void kernel_fpu_begin_mask(unsigned int kfpu_mask)
{
preempt_disable();
WARN_ON_FPU(!irq_fpu_usable());
WARN_ON_FPU(this_cpu_read(in_kernel_fpu));
this_cpu_write(in_kernel_fpu, true);
if (!(current->flags & PF_KTHREAD) &&
!test_thread_flag(TIF_NEED_FPU_LOAD)) {
set_thread_flag(TIF_NEED_FPU_LOAD);
save_fpregs_to_fpstate(&current->thread.fpu);
}
__cpu_invalidate_fpregs_state();
/* Put sane initial values into the control registers. */
if (likely(kfpu_mask & KFPU_MXCSR) && boot_cpu_has(X86_FEATURE_XMM))
ldmxcsr(MXCSR_DEFAULT);
if (unlikely(kfpu_mask & KFPU_387) && boot_cpu_has(X86_FEATURE_FPU))
asm volatile ("fninit");
}
EXPORT_SYMBOL_GPL(kernel_fpu_begin_mask);
void kernel_fpu_end(void)
{
WARN_ON_FPU(!this_cpu_read(in_kernel_fpu));
this_cpu_write(in_kernel_fpu, false);
preempt_enable();
}
EXPORT_SYMBOL_GPL(kernel_fpu_end);
/*
* Sync the FPU register state to current's memory register state when the
* current task owns the FPU. The hardware register state is preserved.
*/
void fpu_sync_fpstate(struct fpu *fpu)
{
WARN_ON_FPU(fpu != &current->thread.fpu);
fpregs_lock();
trace_x86_fpu_before_save(fpu);
if (!test_thread_flag(TIF_NEED_FPU_LOAD))
save_fpregs_to_fpstate(fpu);
trace_x86_fpu_after_save(fpu);
fpregs_unlock();
}
static inline unsigned int init_fpstate_copy_size(void)
{
if (!use_xsave())
return fpu_kernel_cfg.default_size;
/* XSAVE(S) just needs the legacy and the xstate header part */
return sizeof(init_fpstate.regs.xsave);
}
static inline void fpstate_init_fxstate(struct fpstate *fpstate)
{
fpstate->regs.fxsave.cwd = 0x37f;
fpstate->regs.fxsave.mxcsr = MXCSR_DEFAULT;
}
/*
* Legacy x87 fpstate state init:
*/
static inline void fpstate_init_fstate(struct fpstate *fpstate)
{
fpstate->regs.fsave.cwd = 0xffff037fu;
fpstate->regs.fsave.swd = 0xffff0000u;
fpstate->regs.fsave.twd = 0xffffffffu;
fpstate->regs.fsave.fos = 0xffff0000u;
}
/*
* Used in two places:
* 1) Early boot to setup init_fpstate for non XSAVE systems
* 2) fpu_init_fpstate_user() which is invoked from KVM
*/
void fpstate_init_user(struct fpstate *fpstate)
{
if (!cpu_feature_enabled(X86_FEATURE_FPU)) {
fpstate_init_soft(&fpstate->regs.soft);
return;
}
xstate_init_xcomp_bv(&fpstate->regs.xsave, xfeatures_mask_uabi());
if (cpu_feature_enabled(X86_FEATURE_FXSR))
fpstate_init_fxstate(fpstate);
else
fpstate_init_fstate(fpstate);
}
void fpstate_reset(struct fpu *fpu)
{
/* Set the fpstate pointer to the default fpstate */
fpu->fpstate = &fpu->__fpstate;
/* Initialize sizes and feature masks */
fpu->fpstate->size = fpu_kernel_cfg.default_size;
fpu->fpstate->user_size = fpu_user_cfg.default_size;
fpu->fpstate->xfeatures = fpu_kernel_cfg.default_features;
fpu->fpstate->user_xfeatures = fpu_user_cfg.default_features;
}
#if IS_ENABLED(CONFIG_KVM)
void fpu_init_fpstate_user(struct fpu *fpu)
{
fpstate_reset(fpu);
fpstate_init_user(fpu->fpstate);
}
EXPORT_SYMBOL_GPL(fpu_init_fpstate_user);
#endif
/* Clone current's FPU state on fork */
int fpu_clone(struct task_struct *dst)
{
struct fpu *src_fpu = &current->thread.fpu;
struct fpu *dst_fpu = &dst->thread.fpu;
/* The new task's FPU state cannot be valid in the hardware. */
dst_fpu->last_cpu = -1;
fpstate_reset(dst_fpu);
if (!cpu_feature_enabled(X86_FEATURE_FPU))
return 0;
/*
* Enforce reload for user space tasks and prevent kernel threads
* from trying to save the FPU registers on context switch.
*/
set_tsk_thread_flag(dst, TIF_NEED_FPU_LOAD);
/*
* No FPU state inheritance for kernel threads and IO
* worker threads.
*/
if (dst->flags & (PF_KTHREAD | PF_IO_WORKER)) {
/* Clear out the minimal state */
memcpy(&dst_fpu->fpstate->regs, &init_fpstate.regs,
init_fpstate_copy_size());
return 0;
}
/*
* If the FPU registers are not owned by current just memcpy() the
* state. Otherwise save the FPU registers directly into the
* child's FPU context, without any memory-to-memory copying.
*/
fpregs_lock();
if (test_thread_flag(TIF_NEED_FPU_LOAD)) {
memcpy(&dst_fpu->fpstate->regs, &src_fpu->fpstate->regs,
dst_fpu->fpstate->size);
} else {
save_fpregs_to_fpstate(dst_fpu);
}
fpregs_unlock();
trace_x86_fpu_copy_src(src_fpu);
trace_x86_fpu_copy_dst(dst_fpu);
return 0;
}
/*
* Whitelist the FPU register state embedded into task_struct for hardened
* usercopy.
*/
void fpu_thread_struct_whitelist(unsigned long *offset, unsigned long *size)
{
*offset = offsetof(struct thread_struct, fpu.__fpstate.regs);
*size = fpu_kernel_cfg.default_size;
}
/*
* Drops current FPU state: deactivates the fpregs and
* the fpstate. NOTE: it still leaves previous contents
* in the fpregs in the eager-FPU case.
*
* This function can be used in cases where we know that
* a state-restore is coming: either an explicit one,
* or a reschedule.
*/
void fpu__drop(struct fpu *fpu)
{
preempt_disable();
if (fpu == &current->thread.fpu) {
/* Ignore delayed exceptions from user space */
asm volatile("1: fwait\n"
"2:\n"
_ASM_EXTABLE(1b, 2b));
fpregs_deactivate(fpu);
}
trace_x86_fpu_dropped(fpu);
preempt_enable();
}
/*
* Clear FPU registers by setting them up from the init fpstate.
* Caller must do fpregs_[un]lock() around it.
*/
static inline void restore_fpregs_from_init_fpstate(u64 features_mask)
{
if (use_xsave())
os_xrstor(&init_fpstate.regs.xsave, features_mask);
else if (use_fxsr())
fxrstor(&init_fpstate.regs.fxsave);
else
frstor(&init_fpstate.regs.fsave);
pkru_write_default();
}
/*
* Reset current->fpu memory state to the init values.
*/
static void fpu_reset_fpstate(void)
{
struct fpu *fpu = &current->thread.fpu;
fpregs_lock();
fpu__drop(fpu);
/*
* This does not change the actual hardware registers. It just
* resets the memory image and sets TIF_NEED_FPU_LOAD so a
* subsequent return to usermode will reload the registers from the
* task's memory image.
*
* Do not use fpstate_init() here. Just copy init_fpstate which has
* the correct content already except for PKRU.
*
* PKRU handling does not rely on the xstate when restoring for
* user space as PKRU is eagerly written in switch_to() and
* flush_thread().
*/
memcpy(&fpu->fpstate->regs, &init_fpstate.regs, init_fpstate_copy_size());
set_thread_flag(TIF_NEED_FPU_LOAD);
fpregs_unlock();
}
/*
* Reset current's user FPU states to the init states. current's
* supervisor states, if any, are not modified by this function. The
* caller guarantees that the XSTATE header in memory is intact.
*/
void fpu__clear_user_states(struct fpu *fpu)
{
WARN_ON_FPU(fpu != &current->thread.fpu);
fpregs_lock();
if (!cpu_feature_enabled(X86_FEATURE_FPU)) {
fpu_reset_fpstate();
fpregs_unlock();
return;
}
/*
* Ensure that current's supervisor states are loaded into their
* corresponding registers.
*/
if (xfeatures_mask_supervisor() &&
!fpregs_state_valid(fpu, smp_processor_id())) {
os_xrstor(&fpu->fpstate->regs.xsave, xfeatures_mask_supervisor());
}
/* Reset user states in registers. */
restore_fpregs_from_init_fpstate(xfeatures_mask_restore_user());
/*
* Now all FPU registers have their desired values. Inform the FPU
* state machine that current's FPU registers are in the hardware
* registers. The memory image does not need to be updated because
* any operation relying on it has to save the registers first when
* current's FPU is marked active.
*/
fpregs_mark_activate();
fpregs_unlock();
}
void fpu_flush_thread(void)
{
fpu_reset_fpstate();
}
/*
* Load FPU context before returning to userspace.
*/
void switch_fpu_return(void)
{
if (!static_cpu_has(X86_FEATURE_FPU))
return;
fpregs_restore_userregs();
}
EXPORT_SYMBOL_GPL(switch_fpu_return);
#ifdef CONFIG_X86_DEBUG_FPU
/*
* If current FPU state according to its tracking (loaded FPU context on this
* CPU) is not valid then we must have TIF_NEED_FPU_LOAD set so the context is
* loaded on return to userland.
*/
void fpregs_assert_state_consistent(void)
{
struct fpu *fpu = &current->thread.fpu;
if (test_thread_flag(TIF_NEED_FPU_LOAD))
return;
WARN_ON_FPU(!fpregs_state_valid(fpu, smp_processor_id()));
}
EXPORT_SYMBOL_GPL(fpregs_assert_state_consistent);
#endif
void fpregs_mark_activate(void)
{
struct fpu *fpu = &current->thread.fpu;
fpregs_activate(fpu);
fpu->last_cpu = smp_processor_id();
clear_thread_flag(TIF_NEED_FPU_LOAD);
}
/*
* x87 math exception handling:
*/
int fpu__exception_code(struct fpu *fpu, int trap_nr)
{
int err;
if (trap_nr == X86_TRAP_MF) {
unsigned short cwd, swd;
/*
* (~cwd & swd) will mask out exceptions that are not set to unmasked
* status. 0x3f is the exception bits in these regs, 0x200 is the
* C1 reg you need in case of a stack fault, 0x040 is the stack
* fault bit. We should only be taking one exception at a time,
* so if this combination doesn't produce any single exception,
* then we have a bad program that isn't synchronizing its FPU usage
* and it will suffer the consequences since we won't be able to
* fully reproduce the context of the exception.
*/
if (boot_cpu_has(X86_FEATURE_FXSR)) {
cwd = fpu->fpstate->regs.fxsave.cwd;
swd = fpu->fpstate->regs.fxsave.swd;
} else {
cwd = (unsigned short)fpu->fpstate->regs.fsave.cwd;
swd = (unsigned short)fpu->fpstate->regs.fsave.swd;
}
err = swd & ~cwd;
} else {
/*
* The SIMD FPU exceptions are handled a little differently, as there
* is only a single status/control register. Thus, to determine which
* unmasked exception was caught we must mask the exception mask bits
* at 0x1f80, and then use these to mask the exception bits at 0x3f.
*/
unsigned short mxcsr = MXCSR_DEFAULT;
if (boot_cpu_has(X86_FEATURE_XMM))
mxcsr = fpu->fpstate->regs.fxsave.mxcsr;
err = ~(mxcsr >> 7) & mxcsr;
}
if (err & 0x001) { /* Invalid op */
/*
* swd & 0x240 == 0x040: Stack Underflow
* swd & 0x240 == 0x240: Stack Overflow
* User must clear the SF bit (0x40) if set
*/
return FPE_FLTINV;
} else if (err & 0x004) { /* Divide by Zero */
return FPE_FLTDIV;
} else if (err & 0x008) { /* Overflow */
return FPE_FLTOVF;
} else if (err & 0x012) { /* Denormal, Underflow */
return FPE_FLTUND;
} else if (err & 0x020) { /* Precision */
return FPE_FLTRES;
}
/*
* If we're using IRQ 13, or supposedly even some trap
* X86_TRAP_MF implementations, it's possible
* we get a spurious trap, which is not an error.
*/
return 0;
}